
Michael  Demmer,  Kevin  Fall,  Teemu  Koponen,  and  Scott  Shenker.  2007.  Towards  a
modern communications API. In: Proceedings of  the 6th ACM SIGCOMM Workshop
on Hot Topics in Networks (HotNets­VI). Atlanta, GA, USA. 14­15 November 2007.

© 2007 by authors



Towards a Modern Communications API

Michael Demmer∗† Kevin Fall† Teemu Koponen‡§ Scott Shenker‡∗

Abstract
We contend that a new networking API could better serve
the needs of data- and service-oriented applications, and
could more easily map to heterogeneous environments,
than the pervasive Sockets API does. In this paper, we
present an initial design of a networking API based on the
publish/subscribe paradigm, along with an exploration
of its security implications, examples to demonstrate
several common use cases, and a discussion of how the
implementation of such an API could leverage a wide
range of networking technologies. We propose this model
not as a final design but as the first step towards a
wider community discussion of the need for a modern
communications API.

1 Introduction
In modern operating systems, applications interact with
the network through a communications API. This inter-
face defines the conceptual network model for applica-
tions, and determines which tasks belong to the protocol
stack and which belong to applications. Given its central
role in the overall networking framework, one might
expect the API to be a carefully architected interface.
Unfortunately, this is not the case.

The dominant interface today is the Sockets interface,
first developed for BSD Unix roughly 20 years ago. In
contrast to the profound architectural discussions about
internetworking protocols (e.g., IP and TCP), the Sockets
API was designed “bottom up” to solve a very particular
problem; once Unix supported TCP (RFC 793), it needed
an API for it. To this day, the Sockets API clearly shows
its TCP roots. More general interfaces were developed
later (e.g., XTI and TLI), but by that time the Sockets API
had firmly taken hold.

Enterprise middleware systems (e.g., CORBA, DCOM,
J2EE) offer object-oriented method invocation, RPC
abstractions and messaging services, but are limited in
reach and scalability. Furthermore, they are typically
implemented using Sockets. We thus contend that the
Sockets interface represents the only generic API used
widely on the Internet.

The Sockets API binds to a protocol and an endpoint,
∗UC Berkeley, Computer Science Division
†Intel Research Berkeley
‡International Computer Science Institute (ICSI)
§Helsinki Institute for Information Technology (HIIT)

requiring the application to know both. This was appro-
priate for early Internet usage, which mostly involved
host-to-host connectivity via a small selection of transport
protocols (UDP/TCP). However, in recent years Internet
usage has changed significantly, in two important ways.

First, modern Internet usage is now predominantly
data- and service-oriented; that is, the application is
designed to retrieve some data (or access some service),
but it often does not matter from which host, nor via
which protocol, the data arrives. Although the application
might have latency and reliability requirements, it does
not intrinsically depend on the details of the transfer.
Thus, there is no reason for these data/service-oriented
applications to be dealing with host names, addresses
and byte-streams; instead, they should be dealing with
directly named data/services and application data units
(ADUs) [2].

Second, the Internet has spread quite widely, leading
to increased heterogeneity. The Internet is now used
in a variety of settings that have wildly divergent per-
formance characteristics; they range, for example, from
high-performance computing (HPC) infrastructures to
intermittently connected environments. There has been
significant work to develop protocols and systems to
operate at these extremes, but none have addressed the
need for a more general network API that can apply across
all settings.

This paper is devoted to a discussion of such an
interface. Our goal is to seek feedback on this very
preliminary design, and to start a broader discussion of
the topic within the community. We understand that
the prospects for near-term adoption are nil, but we
nonetheless believe that this endeavor is of great long-
term importance. Defining a new interface isn’t just
a question of slightly better engineered software, but
of defining new network abstractions that change the
division of labor between applications and the protocol
stack.

Defining a new “spanning layer” (to use the language of
Clark [3]), would facilitate innovation below the API (e.g.,
DTN [5], name-based routing [9], new HPC designs) and
portability above the interface (applications won’t have to
be rewritten for different communication contexts, such
as ad hoc, wired, disconnected, etc.).

Layering shields protocols from the implementation
details of the adjacent layers, thereby enabling inde-
pendent evolution. We wish to extend this decoupling

1



principle beyond implementation issues. In particular,
implicit in the Sockets interface is a tight temporal and
spatial (location) coupling between the application and
the underlying network. That is, the application must
know the destination of the transfer (spatial coupling)
and be involved during the time of the transfer (temporal
coupling). One of the main design goals for this new
API is to break these spatial and temporal bonds, thereby
giving the protocol stack freedom to carry out its task in
a manner appropriate to the current context, and relieving
the burden on the application-writer to deal with a variety
of communication modalities.

Our ideas are borrowed from and inspired by the
existing literature, and here we give a small sampling
of the most influential sources. In the networking
literature, the DOT proposal [12,16] provides an interface
that can invoke a wide variety of underlying transport
methods. The literature on DTN [5] emphasizes temporal
decoupling, and DONA [9] emphasizes spatial decoupling
by providing a name-based anycast abstraction. Hag-
gle [15] provides a set of mechanisms suitable for ad hoc
communications, with the attendant need for spatial and
temporal decoupling, but the focus is not on a general
API.

There have also been important contributions from
sources outside of networking. For instance, Linda [7]
provided a generic communications API, but the strong
semantics in the interface (such as atomic operations)
makes it unsuitable for wide-area deployment.

However, we were most influenced by the literature
on publish/subscribe systems [4], and the many voices
(including Jon Crowcroft, Van Jacobson, and Pekka
Nikander) who have been calling for the use of a pub/sub
paradigm. Pub/sub is a very clean embodiment of
spatial and temporal decoupling; it decouples the act
of consuming content from the act of providing content.
Publishers do not necessarily know who the subscribers
are (and vice versa), and publication can occur before or
after subscription.

Some specific features of our API proposal, discussed
in more detail below, were heavily influenced by addi-
tional sources. The work on scalable data naming [13]
defines grouping of and relationships between data items
that are similar to our notions of a publication and
inter-publication references. Distributed revision control
systems [1, 8, 11] provide a pub/sub like multi-party
access interface to data with temporal (and to some
degree spatial) decoupling. However, neither scalable
data naming nor distributed revision control systems are
proposed as a generic communications API.

We obviously make no claim of originality in turning
to the pub/sub paradigm. Our goal, however, is to go
beyond promoting the paradigm in general to proposing a
detailed API that could serve as a generic communication

Initialization open(P:L, flags, attributes) → handle

put(handle, message(properties))
get(handle) → message(properties)

close(handle)

Access

Cleanup

Table 1: API primitives. For open(), flags include
create, publish, and/or subscribe, and indicate how the
publication will be used, while attributes define the
data flow model and publication security properties.

interface. We present preliminary results of this endeavor
as follows: we define our API proposal in §2, describe its
use in §3, discuss its implementation in §4, and conclude
with a general discussion in §5.

2 API Design
Publications: Publications are first-class objects in this
API. That is to say, publications have a globally unique
name, and the API primitives revolve around publications.

The API is agnostic to the naming of publications;
the only requirement is that publications be uniquely
identified. For the purposes of this discussion, we
adopt the naming conventions introduced by DONA [9]:
The granularity of naming is determined by application
requirements; a principal may correspond to a user, a
particular server, some content from a web site, or any
other abstract entity. Each principal is associated with a
public-private key pair and each publication is associated
with a principal. Publication names are of the form P:L
where P is the cryptographic hash of the principal’s public
key and L is a distinct label assigned by the principal.

Table 1 defines the core API. Publications contain
one or more messages (defined in detail below) and
applications open a publication with flags to indicate their
intention to: create a new publication, subscribe to get
messages, and/or publish by putting messages into the
publication.

Publication names can be embedded in application
data (like URLs in web content). In addition, messages
within a publication may contain explicit references,
i.e., names of other publications, as shown in Figure 1.
Applications use these references to convey structure of
published data, e.g., to indicate that two publications
are related to each other, or to define a hierarchical
arrangement of publications. As discussed in §4, these
references may also be used by the protocol stack for
certain optimizations.

When an application has a publication opened in
subscribe mode, the communication stack arranges to
deliver all currently-relevant messages published to that
publication. Although there is no mechanism to subscribe
to a portion of a publication, we expect that the commu-
nications stack will contain state to record previously-

2



Key:

P1
Seq 0

P1
Seq 1

P1
Seq 2

...
P1

Seq 3

P2
TS 0

P2
TS 1

P2
TS 2

...

Pub1

Pub2
P2

[P2:0]

P1
[P1:0]

P1
[P1:1, P2:0]

P2
[P1:0, P2:1]

Pub3

P1
[P1:2, P2:1]

Both P1 and P2 publish

P1 publishes

P2 publishes

Publisher
Version

Reference

Reference

Re
fer
enc
e

Figure 1: Publications are sets of messages, partially
ordered by their versions (defined by publishers using
various methods), and containing optional references
to other publications.

received messages to avoid duplicate transmissions.
Finally, publications are created with attributes that

describe their usage model. These attributes define the
lifetime of the publication, the method used for versioning
the messages, and optionally the method used to obsolete
messages.

Messages: Messages are collections of properties, in-
cluding meta-data as well as data content. Some prop-
erties are well-defined and are interpreted by every
communications stack implementing the API, while
others may be relevant only in some contexts; in this
way they are similar to HTTP headers. The key properties
are as follows (we demonstrate their usefulness in §3):
Publisher: The message publisher’s identity is always
included to disambiguate between multiple publishers
and for authenticity verification.

Reference: A message may contain one or more refer-
ences to other publications by name.

Version: Messages are identified within a publication
using application-specified versions. Some version
schemes may be well-defined and understood by the
communications stack, others may be opaque for the
stack and application-specific; examples include: (i) se-
quence numbers as in TCP, (ii) opaque identifier strings,
(iii) absolute or relative time stamps as in RTP, and
(iv) logical version vectors, i.e., sequences of [publisher,
per-publisher-version] tuples.

Obsoletes: A message may define a version or range of
versions that it renders obsolete, and the stack is expected
to expunge obsolete messages upon publication of a newer
one.

Lifetime: A lifetime is included with messages to help
the stack proactively expire message state. Messages
with infinite lifetimes remain in their corresponding
publications until they are explicitly made obsolete, or
until the publication itself expires.

Data: Of course, messages may also contain application
content.

Security: We adopt a “data-oriented” approach to se-
curity, so the API focuses on securing the content
and not the delivery channel. Indeed, from a security
perspective, it makes little difference to applications
what the communication media is – it could be a secure
filesystem on a USB stick, a public network, or anything
between.

Security is achieved using cryptographic techniques
and key management. For example, publishers would
attach a signed digest to each message, allowing sub-
scribers to ensure the message was not tampered with in
transit or in storage. Similarly, message attributes would
be encrypted such that only their intended recipient(s),
assumed to be holding appropriate key material, can
access their values.

The API provides appropriate interfaces for applica-
tions to express their required security transforms for mes-
sage publication/reception. The communications stack is
therefore aware of applications’ security requirements, so
it is not obligated to use redundant or poorly-performing
mechanisms. For instance, using self-certifying names
implicitly provides security properties such as publisher
authenticity; the use of an alternate naming scheme might
require an implementation to explicitly include additional
authentication credentials.

The data-oriented approach has significant implications
on the network infrastructure. In particular, maintenance
of access control rights relies on a sophisticated key dis-
tribution (and revocation) infrastructure. Also, the ability
to selectively apply security transforms to certain sets of
message attributes requires a flexible encoding scheme
for messages. Neither of these requirements should be
taken lightly; however, given the decoupled nature of
a pub/sub communications model, we believe the data-
oriented security approach to be most appropriate.

Finally, the API does not preclude applications from
implementing their own security mechanisms outside
the structures defined here, similar to SSL/TLS over
insecure sockets. However, this decision would limit the
effectiveness of the protocol stack, as it would not have
access to the unencrypted data content, nor its structures,
that may be useful for optimizing performance, as well as
being less convenient for application developers.

3 Using the API
In this section we show how our proposed API is powerful
enough to warrant consideration as a new spanning layer,
by demonstrating how it can be used for applications in
common use today.

3.1 Pre-Published Content

Content distribution protocols, like HTTP and BitTorrent,
generally have a publisher that registers content with
a distribution or name resolution system, followed by

3



Publisher Subscriber 1 Subscriber 2
open(Pvid:Lch, (create, publish), attrs)→ h open(Pvid:Lch, subscribe)→ h
put(h, data:frame0, ver:t0, obsoletes:∅)) get(h)→ frame0, ver:t0, obsoletes:∅
put(h, data:frame1, ver:t1, obsoletes:≤ t0)) get(h)→ frame1, ver:t1, obsoletes:≤ t0 open(Pvid:Lch, subscribe)→ h
put(h, data:frame2, ver:t2, obsoletes:≤ t1)) get(h)→ frame2, ver:t2, obsoletes:≤ t1 get(h)→ frame2, ver:t2, obsoletes:≤ t1

Figure 3: Using the API for streaming video to two (or more) subscribers. Each frame is versioned with an
increasing timestamp, and the obsoletes property expires old frames so late subscribers start in the middle.

Publisher: open(Pwww:Lhtm, (create, publish), attrs)→ hhtm
P: open(Pwww:Limg, (create, publish), attrs)→ himg
P: put(hhtm, data:index.html, ref:Pwww:Limg)
P: put(himg, data:logo.jpg)
Subscriber: open(Pwww:Lhtm, subscribe)→ hhtm
S: get(hhtm)→ index.html, Pwww:Limg
S: open(Pwww:Limg, subscribe))→ himg
S: get(himg)→ logo.jpg

Figure 2: Using the API to fetch a static web page.

clients that issue requests to obtain content. Such
applications are designed around distributing data ahead
of time, awaiting later consumption of that data; for them,
the API can offer the benefits of both temporal and spatial
decoupling between content producers and consumers.

Static Content: Figure 2 shows a simple example of
publishing and fetching a static web page that contains an
embedded image. Each web object (HTML page, image,
etc.) exists in its own publication, and thus has a name.
This enables the protocol stack to benefit from caching
on the granularity of a single object (similar to existing
caches that index on the URL), and allows objects like
the logo image to be re-used among multiple pages.

The publishing server opens the publications in the
combined create and publish mode, and would publish
messages with a signed digest to ensure authenticity,
but with no encryption, so anyone can subscribe to the
publication and access the content. The client opens the
publications in subscribe-only mode and verifies that the
received content is properly signed by the publisher.

Because the web page also contains an image, the
publisher includes references to the image publication
when publishing the HTML object. This way, an
implementation stack wishing to minimize round trips
could prefetch the other publications or pipeline them
into the same transport connection (see §4 for a more in-
depth discussion of this mechanism). Moreover, because
the clients request the content by name, the protocol stack
can easily leverage anycast or caching services offered by
the networking infrastructure.

Streaming: In situations such as live audio/video stream-
ing, syndicated content such as RSS, or continuous stock
quotes, the publishing application does not necessarily
have all of the content a priori, but instead wants to
continuously post new content as it becomes available.
For these applications, ordering, versioning, and expiring

messages become essential.
As discussed previously, different applications may

use different mechanisms for versioning. In Figure 3,
we demonstrate an example of streaming live video to
two subscribers. The publisher opens the publication in
create/publish mode, then continuously puts a sequence
of video frames, each with a version indicating its relative
timestamp to the beginning of the video. Each frame also
includes the obsoletes property which indicates that prior
frames are no longer relevant. Clients can subscribe at any
time during the broadcast and begin receiving data. The
versioning ensures that clients (and the implementation
stack) know which frames are still relevant, and how they
should be paced during playback.

3.2 On-Demand Published Content

Instead of pulling content prepared beforehand, some
applications may generate content on-demand. Clients
of these applications must transfer a request to a server
which prepares a response. HTTP POST and RPC proto-
cols are common examples of this kind of interaction.

Dynamic Content: Figure 4 shows a case in which the
publisher offers a web search service and dynamically
generates web pages in response to requests.

The server first opens a publication in subscribe mode
to receive search requests. Before posting its request,
the client first creates and subscribes to a new unique
publication for the purpose of retrieving the results.
When the server receives the request, it also receives
a reference to the unique publication; it then publishes
the search response to this publication with references to
publications for the top search results.

The client can benefit from anycast-like functionality
in this situation. The search engine can include an autho-
rization property when setting up the search publication
(Pwww:Lsrch), enabling a server nearby to the client to
handle the request. Unlike the streaming video case
described above, in which video messages were delivered
to all subscribers, in this case the search engine principal
would have set up its publication so messages need only
be delivered to one of its subscribing servers.

Remote Execution: The previous example also illus-
trates how remote command execution would work in
a data-oriented manner, unlike the stream-oriented nature
of RSH/SSH. As in the search example above, a server

4



Server (S): open(Pwww:Lsrch, (create, subscribe))→ hsrch

Client (C): open(Pwww:Lsrch, publish)→ hsrch
C: open(Pcli:Luniq, (create, subscribe))→ huniq
C: put(hsrch, data:query=”pub/sub api”, ref:Pcli:Luniq)

S: get(hsrch)→ query=”pub/sub api”, Pcli:Luniq)
S: open(Pcli:Luniq, publish)→ huniq
S: put(huniq, data:result.html, ref:P1:Ldoc1, ref:P2:Ldoc2, ...)

C: get(Pcli:Luniq)→ result.html, P1:Ldoc1, P2:Ldoc2, ...

Figure 4: Using the API for dynamic web content.

would create and subscribe to a publication where it would
receive remote execution requests. A client application
would publish new requests to this publication, including
the command to be executed and relevant credentials to
authorize execution, and would encrypt the message so
only the appropriate destination server(s) can access the
requests. The server, upon receiving the request, would
perform the operation and publish the execution result
onto the referred-to unique publication, encrypted such
that only the client can access it.

3.3 Multiple Publishers

The lack of widespread deployment of IP multicast forces
multi-party communication systems to use centralized
servers or overlay networks, but nevertheless such ap-
plications are widespread. These applications generally
involve multiple entities simultaneously transmitting to
the rest of the group. For such applications, the API
provides implementation flexibility as the protocol stack
is free to use any multicast-like transport it has, and
applications do not need to be rewritten for different
multicast environments or as technologies evolve.

Shared-Group Multicast: A participant in a multi-party
session would first create a publication for the group
communication and notify others of this publication
identifier. All interested parties would then open that
publication both for publishing and for subscribing. Mes-
sages could be ordered based on version vectors, ensuring
the correct logical sequencing regardless of reception
order, or perhaps by timestamps, at the discretion of the
application. Messages could expire after some lifetime
(e.g., in a group chat), or may be subsumed by more recent
messages (e.g., in voice conferencing).

Converge-Cast: In many applications, multiple parties
send messages to a single destination. This communi-
cation pattern is known as converge-cast and is well
known in sensor networks and distributed systems. It
also exists in e-mail, as a single e-mail server receives
messages from a large set of senders. In this case, the
recipient creates a long-lived publication and subscribes to
it. The senders open the publication in publish mode, and
submit messages for the recipient, appropriately signed
and encrypted to provide authenticity and privacy.

3.4 None of the Above
Applications not falling into any of the above categories
may still benefit from the API, as the protocol stack
can provide structures beyond single byte-streams or
datagrams (as in Structured Streams [6]). For example,
the remote login (or its secure version, SSH) application
is tightly integrated with the model of a transport-
layer connection to a particular host, with strong time
requirements on the exchange to support interactive use.
Our pub/sub interface accommodates these applications,
as they simply would create a unique publication (or many,
to have logical channels) for each inter-node connection,
then trade put/get operations to effect message transfers
back and forth.

4 Implementing the API
The implementation challenge is to map the described
pub/sub paradigm to a heterogeneous set of network
technologies, and to do so without causing significant
performance disadvantages. To support the publish and
subscribe primitives, we require the network infrastruc-
ture to provide the following capabilities:
Name resolution: Subscribers and publishers must be
able to resolve publication names to find their content.
Understanding the semantics of anycast in the name
resolution mechanism is beneficial, but not required.
Message transfer: After name resolution enables the ren-
dezvous of subscribers and publishers, some mechanism
is needed to transfer the content.
Subscription state management: Subscribers need to
maintain state about publications (i.e., messages already
seen) to avoid duplicate deliveries.
Finding available communication resources: Since the
API does not define the particular mode of communica-
tion, the protocol stack can make opportunistic use of any
available means for communicating, and therefore needs
to have some intelligence to determine the appropriate
resources to use.

Fixed Internet: There are a wide range of options for
name resolution, e.g., DNS, Akamai’s use of DNS,
DONA [9], a BitTorrent swarm. From the API’s point of
view, it doesn’t matter which is used, but some methods
will produce better application performance than others.
A similar argument applies to the range of transport
protocols used to transfer messages.

We envision pre-published content publications would
be registered to a resolution infrastructure; subscribing to
a publication would thus result in resolving the name,
guiding subscribers to a publisher, and using some
transport protocol(s) to transfer the publication data.
The protocol stack is therefore ultimately responsible
for transferring published content to subscribed clients,
without the involvement of the publishing application.

5



On-demand published content requires two transfers
per interchange: the request and the response. To
accept requests, the server would use a well-known
registration in the naming system, which guides the client
stacks in routing requests. When the client transfers
a request message using some transport connection,
the server in its implementation stack can notice the
reference to the publication where the client is expecting a
response. Therefore, when the server application posts the
response, the same transport connection may be reused.
Alternatively, the request for content and the content
itself could be transferred using a different media (as
in DOT [16]).

Shared multicast group applications would use the reso-
lution infrastructure to discover the publication represent-
ing a group. Whether it’s a network-layer multicast group,
an overlay multicast infrastructure, or a central server
hosting the group doesn’t make any semantic difference
to the applications (though, of course, their performance
may vary). The message transfer mechanism would
depend on the particulars of the underlying multicast
mechanism used, if available, but the applications would
remain unaware of its details as well.

Delay Tolerant Networks: Given the wide range of
environments described as DTNs, there is likely no single
implementation approach appropriate for all. Still, there
are some key aspects of this API that are amenable to
challenged environments like DTNs.

The API is fundamentally asynchronous, so it is
suitable for environments with long round trip times.
The protocol stack has plenty of knowledge to meet the
requirements of such environments. Publications are self-
contained (quite similar to DTN bundles [14]) and not
packets or streams, which gives information to the routing
layer when faced with storage or bandwidth constraints.
Moreover, detailed versioning and security information
is passed to the stack in the messages, so applications do
not need to depend on arrival order to determine inter-
message or inter-publication relationships.

The most challenging part of implementing this API in
a DTN context is the name resolution. However, given
that many DTNs are small in scale, we could proactively
flood local name bindings throughout the network to avoid
needing a potentially long round trip to obtain the location
of where to find a publication, and unknown name lookups
would be routed to a well-known gateway node.

Mobile Ad-Hoc Networks: We expect much of the
complexity in ad-hoc networks to stem from the name
resolution and opportunistic (and intelligent) use of
communication resources (as in Haggle [15]). The
transfer of messages would be straightforward once the
stack has figured whom to contact to subscribe/publish
a publication and which communication method to use.

However, much as in the DTN case, the challenges are
not due to the API itself.

HPC: Esoteric environments, like HPC, have optimized
protocols for both name resolution and content transfer,
which are not built using TCP/IP nor the Sockets API.
However, once protocols are interfaced with the API, the
applications would benefit from having a unified interface
for both HPC and non-HPC resources. Within HPC
environments, applications could benefit from the highly
optimized protocols for data transfer, while connectivity
to services and hosts beyond the environment could use
more common protocols.

In addition to carrying messages on subscriptions, the
API must also implement a mechanism for applications to
manage their publications. Unsurprisingly, our proposed
communications API is similar to filesystem APIs. Both
interfaces have temporal and spatial decoupling, and
both are file/publication-oriented. Thus, we envision
filesystem like abstractions (hierarchical structures and
human readable names) may be especially useful for
applications managing their publications.

5 Discussion
This paper outlines a preliminary design for a modern
communications API. Our intent is to decouple, to the
extent possible, the application from the underlying
communications mechanisms, and to do so we adopt
the publish/subscribe design paradigm. One can view
this effort as moving away from a procedural interface, as
represented by the Sockets API, to a more declarative [10]
one. This frees the communication infrastructure to act
opportunistically, using whatever mechanisms are best
suited to the current context. It also frees the applica-
tion from having to cope with different communication
mechanisms explicitly.

Designing such an interface is an exercise in tradeoffs –
between generality and usability and between powerful
semantics and feasibility. There are some capabilities we
have deliberately left out of this interface, such as content-
based routing, because we don’t know how to scalably
support such functionality.

There are some tasks that this API may make more
difficult than they are today. For instance, counting page
hits in the web application is a challenge because the
publisher is not explicitly notified when subscriptions are
fulfilled (by design). This can be rectified by labeling
certain content as “must count” (just as today some
content is labeled uncacheable), and requiring that all
network caches serving such data must notify the owner
(listed in the metadata) of the number of accesses. Of
course, this design requires caches to obey this injunction,
but this is no different than relying on caches to not cache
uncacheable data.

6



In addition, we expect there are some applications with
tight temporal and/or spatial requirements, and which
may circumvent this API and access the communication
mechanisms directly, with the attendant loss of portability
across a range of environments. However, we expect
these to represent a small subset of Internet-connected
applications.

More generally, adoption of the API increases porta-
bility, but does not ensure interoperability. We still need
standards for the underlying communication mechanisms,
as wide use of the Sockets API doesn’t preclude the need
for a TCP standard. The key point is that the applications
need not know about new communication methods, but
instead can focus on how to best arrange and convey their
data.

The proposal described here is very preliminary, and we
plan to implement this interface and test it with a variety
of applications. More importantly, since our examples
and use cases are limited by our own experience, we hope
to get feedback from the broader community. This paper
is the first step in soliciting such feedback.

Acknowledgements
We would like to thank the anonymous reviewers for their
insightful and helpful feedback on this paper. Also, this
material is based upon work supported by the National
Science Foundation under Grant Numbers 0722033,
0716342, 0520241, 0225660, and 0205519.

6 References

[1] BitKeeper. The Scalable Distributed Software
Configuration Management System.
http://www.bitkeeper.com/.

[2] D. Clark and D. Tennenhouse. Architectural
Consideration for a New Generation of Protocols.
In Proc. of ACM SIGCOMM ’90, Philadelphia,
USA, 1990.

[3] D. D. Clark. Interoperation, Open Interfaces, and
Protocol Architecture. The Unpredictable Certainty,
Information Infrastructure Through 2000: White
Papers, 1997.

[4] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The Many Faces of Publish/Subscribe.
ACM Computing Surveys, 35(2):114–131, June
2003.

[5] K. Fall. A Delay-Tolerant Network Architecture for
Challenged Internets. In Proc. of ACM
SIGCOMM ’03, Karlsruhe, Germany, Aug. 2003.

[6] B. Ford. Structured Streams: a New Transport
Abstraction. In Proc. of ACM SIGCOMM ’07,
Kyoto, Japan, Aug. 2007.

[7] D. Gelernter and N. Carriero. Coordination
Languages and their Significance. Communications
of ACM, 35(2):97–107, 1992.

[8] Git. Fast Version Control System.
http://git.or.cz/.

[9] T. Koponen, M. Chawla, B.-G. Chun,
A. Ermolinskiy, K. H. Kim, S. Shenker, and
I. Stoica. A Data-Oriented (and Beyond) Network
Architecture. In Proc. of ACM SIGCOMM ’07,
Kyoto, Japan, Aug. 2007.

[10] B. T. Loo, J. M. Hellerstein, I. Stoica, and
R. Ramakrishnan. Declarative Routing: Extensible
Routing with Declarative Queries. In Proc. of ACM
SIGCOMM ’05, Philadelphia, PA, 2005.

[11] Mercurial.
http://www.selenic.com/mercurial.

[12] H. Pucha, D. G. Andersen, and M. Kaminsky.
Exploiting Similarity for Multi-Source Downloads
Using File Handprints. In Proc. of NSDI ’07,
Cambridge, MA, Apr. 2007.

[13] S. Raman and S. McCanne. Scalable Data Naming
for Application Level Framing in Reliable Multicast.
In Proc. of the Sixth ACM International Conference
on Multimedia, Bristol, England, Sept. 1998.

[14] K. Scott and S. Burleigh. Bundle Protocol
Specification. Internet Draft. draft-irtf-dtnrg-
bundle-spec-10.txt, July 2007. Work in Progress.

[15] J. Su, J. Scott, P. Hui, E. Upton, M. H. Lim, C. Diot,
J. Crowcroft, A. Goel, and E. de Lara. Haggle:
Clean-slate Networking for Mobile Devices.
Technical Report UCAM-CL-TR-680, University of
Cambridge, Computer Laboratory, Jan. 2007.

[16] N. Tolia, M. Kaminsky, D. G. Andersen, and
S. Patil. An Architecture for Internet Data Transfer.
In Proc. of NSDI ’06, San Jose, CA, May 2006.

7

http://www.bitkeeper.com/
http://git.or.cz/
http://www.selenic.com/mercurial

	Introduction
	API Design
	Using the API
	Pre-Published Content
	On-Demand Published Content
	Multiple Publishers
	None of the Above

	Implementing the API 
	Discussion
	References

