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Abstract

The output of a biomagnetic multichannel device comprises up to several hundred sensor-
level signals. Due to overlapping sensitivity distributions, these signals contain redundant
information of the underlying currents. The associated forward models require numerical
integration over the dimensions of the pick-up loops. Here we investigate a representation
of multichannel magnetoencephalographic (MEG) measurements as coordinates in a signal
subspace whose dimension is considerably smaller than the number of channels. The di-
mensionality reduction is based on coordinates that are amplitudes of device-independent
and point-like magnetostatic multipole moments containing spatially orthogonal informa-
tion. The multipole moments related to currents inside of the sensor array can be extracted,
e.g., by the signal space separation method (SSS). The relation between the total current
and the multipole moments allows one to construct simple forward models that are fast to
compute and do not require numerical integration. Here we demonstrate a multipole-based
total current distribution model by simulated and real data. This model does not require any
explicit knowledge of the conductor geometry and thus provides a robust overall estimate of
the source distribution.
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Chapter 1

Introduction

Multichannel magnetic measurement devices comprise spatially distinct sensors designed
to measure signals arising from an object of interest. Applications of such measurements
are common especially in the fields of bioelectromagnetism and geophysics. In the case of
magnetoencephalography (MEG), for example, one measures the magnetic flux through the
sensors located a few centimeters above the surface of the human head. The purpose of such
a measurement is the reconstruction of electric brain activity based on the recorded MEG
signals. For a review of MEG methodology, see e.g. [1].

Modern multichannel MEG-measurements perform a comprehensive discretization of the
continuous field. The raw data consist of signals captured by the individual sensors and
processed by the data acquisition electronics. The signals also contain distortions caused
by the environment and by the actual measurement process. Characteristically, the former
type of distortions includes external interference fields and movements of the subject or
patient while the second type consists of calibration errors, cross-talk between the sensors,
and sporadic sensor artifacts.

Signals obtained by physically feasible magnetic sensor arrays necessarily contain overlap-
ping information. Therefore, a large number of sensors is needed to extract all information
present in the biomagnetic field. In MEG, this number is on the order of a few hundreds
[2, 3]. Because of the overlap, the dimension of a multichannel signal vector, composed of the
outputs of the different channels, is higher than the number of degrees of freedom that can
be detected from the biomagnetic field. Yet, most of the signal processing and data analysis
methods in MEG operate directly on the sensor representation level rather than first con-
verting the recorded result into a more tractable description of the biomagnetic fields. This
complicates interference suppression and makes calculation of forward models and, possibly,
non-parametric inverse solutions unnecessarily intense. Non-parametric inverse problems
may be complicated by the fact that the number of extractable solutions is smaller than
might be expected based on the number of sensors only. Therefore, numerical regularization
is needed, e.g., in minimum-norm estimates [4, 5, 6].

In this paper, we represent the N -dimensional multichannel signal by a set of coordinates
in an n-dimensional subspace with n < N . The subspace includes the n linearly independent
N -dimensional measurements of biomagnetic field that comply with Maxwell’s equations, and
are consistent with the noise level of the sensors. This selection is based on the fact that a
multichannel signal contains only the low end of the spatial frequency spectrum despite of
the fine structure of the source [7] when the field is recorded by sensors at a distance typical
to MEG recordings. The coordinate representation is analogous to the standard Fourier
transformation of temporal signals; in the case of MEG measurements these coordinates are
shown to reduce to magnetostatic multipole moments, which have the advantage that the
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subspace can be divided into two linearly independent parts: one for the biomagnetic signals
and one for the external interference [8]. On a general level, the representation shown in this
paper belongs to the class of linear data transformations discussed in reference [9].

The purpose of this paper is to show that transformation of the multichannel data into
coordinates in this basis can be considered a general-purpose preprocessing step before enter-
ing MEG data analysis. In these coordinates the forward calculation related to the dipolar
model in sphere, for example, becomes analytic and local, independent of the sensor array.
By local we mean that no numerical integration over the sensor pick-up area is needed. Also,
an estimate of the source current distribution can be directly obtained from these recorded
coordinate values. As a specific example, it is shown how the physiological current in the
brain can be estimated as a simple linear combination of vector spherical harmonics. The
weights of this linear combination are directly given by the measured coordinates. Noise
weighting techniques are also discussed.
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Chapter 2

Derivation of the coordinate

representation

2.1 Sampling of the magnetic field

Let us first recall the basic methodology of the sampling of temporal signals. Consider a con-
tinuous time signal s(t) discretized at intervals ∆t = 1/fs, where fs is the sampling frequency.
Collection of Ns such samples produces a signal vector s = [s(t0) s(t0 +∆t) . . . s(t0 +(Ns −
1)∆t)]T with T indicating transpose. According to Nyquist’s sampling theory [10], aliasing
does not occur in s if frequencies higher than fs/2 are not present in s(t). In other words, all
degrees of freedom of the continuous signal can be uniquely reconstructed from adequately
sampled signal s.

Typically, the information contents of the sampled time signals are represented by the
complex Fourier-coefficients c0, c1, . . . , cNs−1 corresponding to basis signals sm(j) = e2πimj/Ns ,
where i is the imaginary unit and m and j are the order and sample number, respectively.
That is, the sampled signal is expressed as a weighted sum of the basis signals corresponding
to increasing frequencies with increasing m as

s(t0 + j∆t) =
1

Ns

Ns−1
∑

m=0

cme2πimj/Ns , (2.1)

and the coefficients are calculated by the Fourier transform

cm =
Ns−1
∑

j=0

s(t0 + j∆t)e−2πimj/Ns (2.2)

≡ < s, sm >, (2.3)

where < · > indicates inner product and sm is a signal vector containing the sampled values
of the mth basis signal.

The coefficients cm contain all information of the sampled signal. They provide a compact
and standardized representation of the degrees of freedom that the sampling procedure is
capable of recording.

The main purpose of this paper is to demonstrate that a representation similar to the
Fourier coefficients can be derived and effectively utilized, for example in source modeling, in
the case of spatially sampled electromagnetic signal, particularly a neuromagnetic field. This
representation is based on the well known physics of the electromagnetic field in source free
space. The quasistatic magnetic field in such space - free of electric currents and magnetic
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materials - exists only as gradients of harmonic potential functions. The most natural rep-
resentation of a magnetic multichannel measurement in source free space is in terms of the
amplitudes of these eigenmodes, rather than outputs of the spatially distributed individual
sensors.

Let us first define the spatial signal vector φ on which we shall operate. Spatially distinct
sensors measuring the magnetic flux density B(r) provide a vector

φ = [φ1 φ2 . . . φN ]T, (2.4)

where φj is the flux of B(r) through the pick-up loop of the jth sensor and N is the number
of channels. The flux is expressed as the surface integral

φj =
∫

Sj

B(r) · dS, (2.5)

where Sj is a surface defined by the pick-up loop. It has been shown [7] that φ contains an
adequately sampled signal in Nyquist’s sense if the distance between adjacent sensors (D)
and the shortest distance between sensors and sources of magnetic field (d) are approximately
equal (D ≈ d). Modern MEG devices are designed to meet this criterion.

In practice, the signal vector φ is a superposition of signals arising from the interesting
source volume and the external interference sources, see figure 1. Furthermore, the geometry
and position of the sensor array with respect to the brain influences φ, which has to be taken
into account when comparing signals from different measurement sessions and especially in
the case of moving subjects. Taking the practical constraints into account, the signal vector
can be represented in the form

φ = φ(Jin, G) + φ(Jout), (2.6)

where Jin and Jout are the internal and external current distributions, respectively, and G
represents the contribution of the measurement geometry, that is, the configuration of the
physical sensors and their positioning with respect to the head. In this representation, the
calibration errors and other unidealities of the device are not taken into account.

Traditionally, the inverse problem of MEG, estimation of Jin, is based directly on φ, which
means that one has to isolate the contribution of Jout and take the parameters of G into
account. For a review of the related methods, see e.g. [1]. We will show how the problem
can be simplified by decomposing φ into multipole moments, which we will call coordinates.

2.2 Coordinate representation of a general multichan-

nel measurement

Development of a representation related to Eqs. (2.1) and (2.3) for a neuromagnetic field
B(r) requires the field to be expanded in some basis fields bk in the form

B(r) =
p
∑

k=1

xkbk(r) + R(r, p), (2.7)

where the functions bk satisfy Maxwell’s equations and the truncation order p is chosen in
such a way that the residual R(r, p) is so small that it cannot be detected from under the
sensor noise. Consequently, according to Eqs. (2.4) and (2.5), the signal vector φ has a linear
model consisting of signal vectors corresponding to individual basis fields

φ =
p
∑

k=1

xkφk ≡ Φx, (2.8)
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rmin

rmax

Jout

Jin

Figure 2.1: Geometry of a MEG measurement. The green volume and the volume from
the red circle to infinity contain the brain and interference sources, respectively. The white
region in between is free of magnetic sources except for cases with artifacts from facial
muscles, vagal nerve or deep brain stimulators or other nearby disturbance sources.
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where we have left out the signal vector of the residual R(r, p). Here

Φ = [φ1 φ2 . . . φp] (2.9)

is the basis of signal space spanning all signal vectors and

x = [x1 x2 . . . xp]
T (2.10)

is a vector containing the coordinates of a given signal vector in basis Φ.
If the number of terms, p, is equal to or smaller than the number of channels, N , and if

the basis vectors φk are linearly independent, the coordinates can be estimated by

x̂ = Φ†φ, (2.11)

where
x̂ = [x̂1 x̂2 . . . x̂p]

T, (2.12)

and Φ† is the pseudoinverse of Φ.
Calculation of the estimate x̂ from Eq. (2.11) can be considered an efficient preprocessing

step of a multichannel measurement as it reconstructs the relevant degrees of freedom from
the output of the measurement device. In order to reach a reliable estimate x̂, it is, however,
important to design the sensor array in such a way that calculation of the pseudoinverse
Φ† is as insensitive as possible against calibration errors and random noise. The array
should optimally distinguish between the fields generated by the interesting and uninteresting
objects.

2.3 Coordinates of a biomagnetic multichannel mea-

surement

In biomagnetism, the main goal is the reconstruction of the physiological primary current dis-
tribution based on the discretized measurement of the magnetic field. This field is measured
by sensors relatively distant to the primary current sources. The problem does not have
a unique solution [11], and no biomagnetic coordinate representation can reveal a unique
distribution of the sources. At best we can achieve a representation where the coordinates
describe spatially orthogonal properties of the current. To preserve as general a coordinate
representation as possible, no a priori assumptions other than the spatial division described
in figure 1 are made about the currents. Consequently, we reach for a coordinate vector
x consisting of separate coordinates xin and xout for the internal and external current, re-
spectively. The desire for spatial orthogonality implies that the coordinates xin,j should be
projections of the current distribution to orthogonal sensitivity patterns or lead fields λj:

xin,j =< λj,Jin > (2.13)

with
< λj, λk >= δjk. (2.14)

Physical sensors can be characterized by the lead field expression of Eq. (2.13) but they do
not satisfy Eq. (2.14) due to overlapping lead fields.

In MEG, the measured field obeys quasistatic Maxwell’s equations [12, 1]. Thus, the
above requirements are satisfied, for example, by representing the magnetic field with two
sets of three dimensional vector spherical harmonic (VSH) functions [8]. The first set of
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functions converges at infinity and represents the contribution of Jin while the second set
converges at the origin and represents the contribution of Jout. Application of the VSH
functions in Eq. (2.7) leads to the signal space separation (SSS) basis in Eq. (2.9) and to
the corresponding coordinate vector

x = [{α}Lin
{β}Lout

]T, (2.15)

where {α}Lin
and {β}Lout

denote the magnetostatic multipole moments up to orders Lin and
Lout for the internal and external currents, respectively. The coordinates {α}Lin

satisfy the
lead field and orthogonality requirement of Eqs. (2.13) and (2.14) [8].

The VSH functions are inherently conveniently organized in order of increasing spatial
frequency. The choice of the VSH functions has been investigated in [8] and [13] showing
that with modern MEG devices, approximately 80 VSH functions are needed to describe
the contribution of Jin, and about 15 for Jout. Suppression of interference signals from
sources located very near to the sensors, containing excessively high spatial frequencies has
been investigated in [14]. The typical choice of 80 internal VSH functions corresponds to
expansion order Lin = 8 describing spatial frequencies up to 9/(2πR) on a sphere with radius
R. If the origin is approximately at the center of the brain, the closest sensors are typically at
a distance of at least 10 cm from this origin. The highest spatial frequency modelled by our
set of VSH functions would then be about 14.3 1/m, which is consistent with the sampling
theory [7] stating that spatial frequencies higher than (2D)−1 ≈ 14.7 1/m corresponding to
sensor separation D = 34 mm are insignificant in MEG.

Let us now have a closer look at the magnetostatic multipole moments αlm. The indices
{l, m} correspond to the different expansion orders having values l = 1 . . . Lin and m =
−l . . . l. Thus, the number of coordinates is

n = (Lin + 1)2 − 1. (2.16)

Starting from the basic relation between αlm and the current distribution [15, 16], the
lead field form of the magnetostatic multipole moments can be derived [8]:

αlm =< λα
lm,Jin >=

∫

v′

λα
lm(r′) · Jin(r

′)dv′, (2.17)

where the prime indicates source volume. The lead field is of the form

λα
lm(r′) =

i

2l + 1

√

l

l + 1
r

′lX∗

lm(θ′, ϕ′), (2.18)

where Xlm is the tangential VSH function [17, 18], asterix indicates complex conjugate, and
r, θ, and ϕ are the spherical coordinates. Alvarez [19] has derived an expression similar to
Eqs. (2.17) and (2.18). Because of the orthogonality of the VSH functions Xlm, the lead
fields are orthogonal over a spherical volume enclosing Jin(r

′):

< λα
lm, λα

LM >= δlLδmM (2.19)

Thus, the magnetostatic multipole moments satisfy Eqs. (2.13) and (2.14) and can be chosen
as the coordinates of biomagnetic multichannel measurements.

2.4 Estimation of neuromagnetic source by means of

magnetostatic multipole moments

The coordinate representation of biomagnetic multichannel data has several advantages.
The coordinates αlm can be considered point-like virtual channels that have orthogonal lead
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fields. Therefore, in addition to providing a standardized device-independent representation,
the coordinates offer enhanced efficacy in source reconstruction. By dividing the current
distribution Jin into primary Jp and volume currents Jv as Jin = Jp + Jv and taking the
linearity of the inner product into account in Eq. (2.17), the forward model becomes

αlm =< λα
lm,Jp > + < λα

lm,Jv >≡ αp
lm + αv

lm. (2.20)

Thus, the contributions of the primary and volume currents are separated into individual
multipole moments with common lead field given by Eq. (2.18). Based on theory formulated
by Helmholtz [11] and Geselowitz [20], the volume currents can be represented as current
elements normal to the interfaces of the volume conductors each containing tissue of ho-
mogeneous conductivity. Thus, in the case of spherically symmetric conductor and with
origin at the center of this sphere, αv

lm = 0 because the VSH functions Xlm are orthogonal
to the surface. Modelling of realistically shaped volume conductors reduces to modelling of
αv

lm, that is, integrating the inner product of λα
lm and the volume current elements over the

non-spherical surface.
The primary current is independent of the geometry of the volume conductor and so is

αp
lm. Based on the above arguments, spherically symmetric volume conductors have

αspherical
lm = αp

lm. (2.21)

Specifically, the forward model of the widely used source model, the current dipole Jp(r) =
Qδ(r′ − rq) inside a conducting sphere, becomes according to Eqs. (2.17) and (2.18)

αdip
lm =

i

2l + 1

√

l

l + 1
r

′l
qX

∗

lm(θq, ϕq) · Q, (2.22)

where rq, θq, and ϕq are the spherical coordinates corresponding to rq and Q is represented
in the spherical coordinate system.

This is the VSH counterpart of the well known Sarvas’ formula of spherical model [21].
Here also, as in the Sarvas’ formula, the primary current dipole vector Q factorizes out as a
separate multiplier. This feature is related to the perfect symmetry of the spherical model.
For realistic conductor volume shapes the situation is more complicated.

Eq. (2.22) facilitates the forward calculation of the spherical model in the following way.
In traditional dipole source localization one calculates the fluxes of B(r) through the physical
pick-up loops of all the sensors in the array by using the Sarvas’ formula and numerical
integration over the area of each pick-up loop. When the measured αlm coordinates have
been determined from the measurement, Eq. (2.22) can be directly used and no numerical
integration over the loop areas is needed. The localization algorithm is further boosted by
the fact that only about 80 αlm coordinates need to be calculated, which is by factor of three
or four less than the number of sensors. This may not, however, be directly transformed
into comparison of computation times between sensor and multipole moment representations
because of different functions that need to be evaluated in these two models.

It should be pointed out that the numerical integration over the pick-up loops is naturally
needed to construct the basis Φ. But when a fixed device coordinate system is chosen,
this calculation of Φ needs to be done only once, and the result constitutes a generalized
calibration of the entire sensor array.

The αlm coordinates also provide a simple source localization method that goes beyond
the spherical model and the current dipole approximation in the following way. It has been
shown [8] that by starting from the very general model of representing the total current
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distribution as a linear combination of arbitrary orthogonal basis functions, one arrives at
the source current estimate

J(r′) =
∞
∑

l=1

l
∑

m=−l

αlmηl

(

r′

Rα

)l

X∗

lm(θ′, ϕ′), (2.23)

where the monopole term (l = 0) has been left out, Rα is the radius of the sphere enclosing
the current, and

ηl = −i(2l + 1)(2l + 3)

√

l + 1

l

1

Rl+3
α

. (2.24)

For the physical current the real value of the expression of Eq. (2.23) must be used. This
equation relates to any recorded set of coordinates αlm an analytic expression of the source
current distribution in the form of a finite sum of vector spherical harmonics. Unlike the
actual neural current density field in three dimensions this current density vector field is
tangential and constrained inside of a spherical volume with radius Rα.

In addition to the recorded αlm(t)-values that are a unique representation of the registered
magnetic field at time instant t, Eq. (2.23) also contains the free parameters Rα and r′,
which denote the radius of a spherical volume that contains the neural current, and the
radial coordinate of the point where the current estimate is calculated, respectively. The
parameter Rα should therefore be constrained by the conditions Rα ≥ r′, and Rα ≥ rq where
rq is the radial coordinate of any primary current source.

Also, the infinite series of the lm-components in Eq. (2.23) is in practice always truncated
to a finite l ≤ Lmax value ultimately limited by the number of independent MEG-channels,
N . This ultimate limit from Eq. (2.16) is Lmax ≤ (n + 1)1/2 − 1.

The significance of the estimate in Eq. (2.23) is based on the fact that it can be evaluated
at any point in the current space without having to construct and invert any gain matrices
for elementary currents like in the conventional minimum norm estimates. Neither does the
realistic head shape have to be modeled in forward calculations: The effect of conduction
volume geometry is already included in the measured multipole moments αlm.

The distributed estimate of Eq. (2.23) may apparently have a modest spatial resolution.
It contains the contribution of both the physiological primary current and the passive volume
current. Typically, the former current differs from the latter by being highly concentrated
to a small area in the brain tissue. In such an area, the contribution of αp

lm, given by Eq.
(2.22), dominates in Eq. (2.23). Consequently, the active areas can be found by fitting to
Eq. (2.23) the model

Ĵ(rq) =
∞
∑

l=1

l
∑

m=−l

(2l + 3)

R3
α

(

rq

Rα

)2l

[X∗

lm(θq, ϕq) · Q]X∗

lm(θq, ϕq), (2.25)

where rq, θq, and ϕq are the spherical coordinates of the current maximum that is being
searched. The estimate for rq is the location where Eq. (2.25) best matches the general
model Eq. (2.23). The conductor geometry only affects αv

lm and therefore, according to Eq.
(2.20), the contribution of the primary current to the multipole moments αlm is invariant
with respect to changes in the conductor volume. Hence, this kind of a search procedure
should be able to find current maxima irrespective of the conductor geometry.

In practice, the estimated multipole moments are noisy and have to be expressed in the
form

α̂lm = αlm + nlm, (2.26)
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where nlm is the noise term depending on the noise level of the sensors and the ability of
the sensor array to measure the particular multipole moment [8, 13]. One can optimize the
stability of the SSS basis by leaving out those basis functions that are not measured by the
sensor array with a sufficiently high signal-to-noise ratio (SNR). This can be achieved, e.g.,
by maximizing the total information given by the SSS reconstructed signal [?]. In order
to minimize the effect of noise in the current estimate, the estimated multipole moments
are multiplied by weighting factors wlm giving large weight to moments with high expected
SNR. In the current estimate of Eqs. (2.23) the multipole moment αlm is now replaced by
the weighted moment wlmα̂lm. Minimization of the expected noise residual of the current
estimate over a spherical surface with radius Rα results in the Wiener filter coefficients

wlm =
E[α∗

lmαlm ]

E[α∗

lmαlm ] + E[n∗

lmnlm ]
, (2.27)

where E means expectation and E[n∗

lmnlm ] is given by the noise covariance matrix of the
multipole moments [8]. If we assume a normally distributed current with variance σj, the
previous expression gets the form

wlm =
γlσj

γlσj + E[n∗

lmnlm ]
, (2.28)

where

γl =
lR2(l+2)

α

(2l + 1)2(l + 1)
. (2.29)

See Appendix for derivation of Eqs. (2.27) - (2.29) and optimization of the coefficients for
location r′.
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Chapter 3

Results

In this section qualitative results on the current distribution estimates based on Eq. (2.23)
are shown. Both simulated and actual MEG data are used.

It is obvious that the current distribution (2.23) is not unique. This distribution can,
however, be shown to characterize several interesting features of the actual neural current
distribution. Based on the data shown in figures 2 - 4 we describe how the number, location,
tangential orientation, and spatial extent of the active areas carrying the neural current at
a given time instant t can be derived from the set of coordinates αlm(t) and Eq. (2.23).
These figures are based on simulated MEG data generated using a current dipole Q =
[−0.3614 − 0.5294 0.7780]T nAm in spherical conductor model at location rq = [0.0579 −
0.0393 0.0001]T m, corresponding to rq = 0.07 m.

First, the number and locations of simultaneously active brain areas can be found out
by simply plotting the current density obtained from Eq. (2.23) in a surface plot like that
in figure 3.1. To mimic a realistic situation of MEG data analysis where the location of
the source is not known, this current density distribution plot is done using large enough
parameter values Rα = 0.10 m, and r′ = 0.09 m. A prominent current density maximum
is observed at the angular direction of the simulated dipole. Because expression (2.23) is a
vector field, it also gives the tangential direction of the current source. This information is
left out from figure 3.1 for clarity.

When also the depth coordinate of the source area is known we can repeat the surface
plot of figure 3.1 using Rα = r′ = 0.07 m. The result is shown in the right column of figure
3.1. As can be seen, the current density maximum is sharper in these plots as compared to
the left column. This improvement in angular localization may be valuable in cases when
several nearby sources are active simultaneously.

An example of the total current estimate derived from actual MEG data is shown in
figures 3.2 and 3.3. In figure 3.2 the estimate ‖Ĵ(r′)‖2 based on recorded data in an auditory
evoked experiment is plotted on a mesh approximating the cortex of a human subject. Here
the estimate corresponds to the averaged response at about 100 ms after the stimulus. Figure
3.3 shows the estimate ‖Ĵ(r′)‖6 at the same time instant. The result is quite focal and agrees
well with the associated two-dipole fit localizations of [-0.054 0.003 0.028]T m and [0.053 0.009
0.027]T m for the left and right hemisphere, respectively. Location-dependent noise weighting
(see Appendix) was used in these estimates with σj = 5 · 10−11 A/m2 and noise calculated
from the baseline data.

Finally, we tested the possibility to localize point-like sources in realistic head models by
fitting the model of Eq. (2.25) to the general estimate of Eq. (2.23). The function to be
minimized was the relative error ||Ĵ− J||/||J||, and the multipole moments αlm were calcu-
lated from the simulated signal vector of an Elekta Neuromag r© MEG device for the case of
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Figure 3.1: The normalized power of the current distribution estimate corresponding to
the αlm-spectrum of a current dipole Q = [−0.3614 − 0.5294 0.7780]T nAm at rq =
[0.0579 − 0.0393 0.0001]T m. The left column corresponds to r′ = 0.09 m and Rα = 0.10
m, and the right column to r′ = 0.07 m and Rα = 0.07 m.
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Table 3.1: Comparison of the localization accuracy between single dipole fitting assuming
spherical conductor geometry (center column) and our conductor-independent search for a
local current maximum (right column). The location of the simulated current dipole (left
column) is given in the head coordinate system.

rq (mm) Sphere model error (mm) Current fitting error (mm)

[45 50 10]T 13 3.6

[55 0 20]T 3.0 4.5

[50 25 15]T 4.8 1.9

a single dipole modelled with a realistically shaped BEM model. The BEM forward calcula-
tion of the signals was done using the source modelling program Xfit of Elekta Neuromag.
The same program was used to localize the current dipoles assuming the spherically sym-
metric conductor model in order to assess the associated localization error. Table 1 shows
the cartesian coordinates of the three simulated dipoles and the corresponding localization
results using the sphere model and our fitting method. We used the simplex minimization
algorithm with initial guess within about 1 cm of the correct location of the current dipole.
The dipole moment was 50 · [0 1 − 0.5]T nAm in all cases and it was considered a known
parameter.
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Figure 3.2: Distribution of the normalized value of ‖Ĵ(r′)‖2 corresponding to an auditory
evoked field.
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Figure 3.3: Distribution of the normalized value of ‖Ĵ(r′)‖6 corresponding to an auditory
evoked field.
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Chapter 4

Conclusion

Multichannel measurements can be transformed into fundamental basic components that
can be interpreted as coordinates in a multidimensional basis. Such coordinates can be,
e.g., the Cartesian coordinates, Fourier coefficients or, as shown in this paper, magnetostatic
multipole moments. The latter case applies specifically to MEG measurements where the
corresponding basis is the subspace restricted by the quasistatic Maxwell’s equations and
sampling theory.

The data recorded with any modern multichannel MEG device can be transformed into
magnetostatic multipole moments, αlm and βlm, that are linear combinations of the signals
recorded by the individual channels of the MEG device. In this coordinate representation the
external interference contributions, βlm, can be separated from the biomagnetic field which
is presented in a general, device-independent form, where the distortion resulting from cross
talk, imbalance, and incomplete knowledge concerning the calibration of the recording device
has been effectively removed.

From these coordinates, αlm(t), characterizing the recorded neuromagnetic field at a given
time instant t, estimates of the neural current distribution can be obtained in a straight-
forward way without any assumptions related to source modeling or conduction geometry.
Changes in the conductor only affect the passive volume current contribution αv

lm while the
primary current part αp

lm is invariant with respect to conductor geometry. As the primary
current is typically a local concentration of current, it is enough to search for point-like
currents in the estimate of the total current distribution. We have shown in this paper
that tentatively this approach produces promising results. Further investigation is, however,
needed to study the practical feasibility of this approach.
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Appendix

Here we derive weights for the individual multipole moments that minimize the expected
current estimation error due to noise on a spherical surface with radius Rα. Let us first
express Eq. (2.23) in the form

J(r′) =
∑

lm

α̃lmr′lX∗

lm(θ′, ϕ′), (4.1)

where

α̃lm = αlm
ηl

Rl
α

(4.2)

The noisy estimate of the multipole moment is of the form

ˆ̃αlm = α̂lm
ηl

Rl
α

= (αlm + nlm)
ηl

Rl
α

≡ α̃lm + ñlm. (4.3)

The weighted estimate for the current distribution can be expressed as

Ĵw(r′) =
∑

lm

wlm
ˆ̃αlmr′lX∗

lm(θ′, ϕ′) (4.4)

and the corresponding estimation error

εw(r′) = Ĵw(r′) − J(r′) =
∑

lm

(wlm
ˆ̃αlm − α̃lm)r′lX∗

lm(θ′, ϕ′). (4.5)

Because of the orthonormality of the VSH functions Xlm over any spherical surface, minimiza-
tion of the expected value of the squared error reduces to minimizing the term E[(wlm

ˆ̃αlm −
α̃lm)∗(wlm

ˆ̃αlm − α̃lm)] as can be seen by solving for wlm in equation

d

dwlm
E

[
∫

Ω′

||εw(r′)||2dΩ′

]

= 0, (4.6)

where integration extends over a spherical surface or volume. We have

0 =
d

dwlm
E[(wlm

ˆ̃αlm − α̃lm)∗(wlm
ˆ̃αlm − α̃lm)] (4.7)

=
d

dwlm

{

w2
lm(E[α̃∗

lm α̃lm ] + E[ñ∗

lm ñlm ]) − 2wlmE[α̃∗

lm α̃lm ] + E[α̃∗

lm α̃lm ]
}

, (4.8)

where we have made use of the statistical independence E[α̃∗

lm ñlm ] = E[ñ∗

lm α̃lm ] = 0. The
solution of Eq. (4.8) is

wlm =
E[α̃∗

lm α̃lm ]

E[α̃∗

lm α̃lm ] + E[ñ∗

lm ñlm ]
=

E[α∗

lmαlm ]

E[α∗

lmαlm ] + E[n∗

lmnlm ]
. (4.9)
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The noise estimates E[n∗

lmnlm ] can be determined from the noise levels of the sensors [8].
In addition, an analytical expression can be derived for E[α∗

lmαlm ] if we assume a normally
distributed J. The αlm values are projections of the general current distribution J to the
associated lead field λα

lm. As J does not have a preferred pattern a priori, the spatially
uncorrelated multipole moments are statistically independent leading to

E[α∗

lmαLM ] = E[α∗

lm ]E[αLM ] = E[< λα∗
lm ,J >]E[< λα

LM ,J >] =

< λα∗
lm , E[J] >< λα

LM , E[J] >= 0.

The last equality is based on the fact that E[J] = 0. Without having any assumptions
about the current other than the normal distribution, J can be thought of as being equally
detectable for each multipole moment to simplify the calculations. This current distribu-
tion can be chosen as it is as probable as any other distribution given the lack of a priori
information. For each αlm we then choose an optimal current distribution

J(r′) = jX∗

lm(θ′, ϕ′),

where j is the amplitude of the current. On a sphere with radius Rα we then get according
to Eqs. (2.17) and (2.18)

αlm = j
i

2l + 1

√

l

l + 1
Rl+2

α .

Thus,

E[α∗

lmαlm ] =
lR2(l+2)

α

(2l + 1)2(l+1)
σj, (4.10)

where σj = E[j 2] is the overall variance of the amplitude of the current.
Besides Wiener filtering, one can determine noise weighting coefficients optimized for

a specific point in the source volume or in the space where the magnetic field is to be
reconstructed. For a given source point r′, one minimizes the function

E
[

||εw(r′)||2
]

=
∑

lm

∑

LM

E[(wlm
ˆ̃αlm − α̃lm)∗(wLM

ˆ̃αLM − α̃LM )]r
′l+LX∗

lm(θ′, ϕ′) · X∗

LM (θ′, ϕ′)

(4.11)
Let us define the following variables:

C α̃
lm,LM = E[α̃∗

lm α̃LM ], (4.12)

C ñ
lm,LM = E[ñ∗

lm ñLM ], (4.13)

χα̃
lm,LM = C α̃

lm,LMr
′l+LX∗

lm(θ′, ϕ′) · X∗

LM(θ′, ϕ′), (4.14)

χñ
lm,LM = C ñ

lm,LMr
′l+LX∗

lm(θ′, ϕ′) · X∗

LM(θ′, ϕ′), (4.15)

Minimization of Eq. (4.11) with respect to wLM gives

∑

lm

wlmRe
(

χα̃
lm,LM + χñ

lm,LM

)

=
∑

lm

Re
(

χα̃
lm,LM

)

(4.16)

Let us define matrices χα̃ and χñ composed of the elements χα̃
lm,LM and χñ

lm,LM , respectively,
and the vector χα̃

Σ composed of the column sums of the right side of the previous equation.
Then Eq. (4.16) gets the matrix form

Re
(

χα̃ + χñ
)

w(r′) = Re(χα̃
Σ) (4.17)
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giving

w(r′) =
[

Re
(

χα̃ + χñ
)]

−1
Re(χα̃

Σ) (4.18)

In the case of diagonal covariance matrices C α̃
lm,LM and C ñ

lm,LM , Eq. (4.18) reduces to the
Wiener coefficients of Eq. (4.9).

Weighting coefficients for optimal reconstruction of the magnetic field B̂(r) can be derived
in an analogous manner after making the substitutions

ˆ̃αlm → α̂lm,

r
′lX∗

lm(θ′, ϕ′) →
νlm(θ, ϕ)

rl+2
,

where νlm(θ, ϕ) is the modified VSH function defined in [8]. With these modifications, the
optimal weights are given by Eq. (4.18) with matrix elements

χα
lm,LM = Cα

lm,LM

νlm(θ, ϕ) · νLM(θ, ϕ)

rl+L+4
(4.19)

and

χn
lm,LM = Cn

lm,LM

νlm(θ, ϕ) · νLM (θ, ϕ)

rl+L+4
. (4.20)
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Leitern, mit Anwendung auf die thierisch-elektrischen Versuche”, Ann. Phys. Chem., vol.
89, pp. 353-377, 1853.

[12] R. Plonsey and D. Heppner, “Considerations of quasistationarity in electrophysiological
systems”, Bull. Math. Biophys., vol. 29, pp. 657-664, 1967.

[13] S. Taulu, J. Simola, and M. Kajola, “Applications of the Signal Space Separation
Method”, IEEE Trans. Sign. Proc., vol. 53, pp. 3359-3372, 2005.

21



[14] S. Taulu and J. Simola, “Spatiotemporal signal space separation method for rejecting
nearby interference in MEG measurements”, Phys. Med. Biol., vol. 51, pp. 1759-1768,
2006.

[15] J. Bronzan, “The Magnetic Scalar Potential”, Am. J. Phys., vol. 39, pp. 1357-1359,
1971.

[16] K. Jerbi, J. Mosher, S. Baillet, and R. Leahy, “On MEG forward modelling using mul-
tipolar expansions”, Phys. Med. Biol., vol. 47, pp. 523-555, 2002.

[17] E. Hill, “The Theory of Vector Spherical Harmonics,”Am. J. Phys., vol. 22, pp. 211-214,
1954.

[18] G. Arfken, Mathematical Methods for Physicists, 3rd ed., Academic Press, 1985.

[19] R. Alvarez, “Filter Functions for Computing Multipole Moments from the Magnetic
Field Normal to a Plane”, IEEE Trans. Med. Imag., vol. 10, pp. 375-381, 1991.

[20] D. Geselowitz, “On the Magnetic Field Generated Outside an Inhomogeneous Volume
Conductor by Internal Current Sources”, IEEE Trans. Mag., vol. MAG-6, pp. 346-347,
1970.

[21] J. Sarvas, “Basic mathematical and electromagnetic concepts of the biomagnetic inverse
problems,” Phys. Med. Biol., vol. 32, pp. 11-22, 1987.

[22] J. Nenonen, S. Taulu, M. Kajola, and A. Ahonen, “Total Information Extracted from
MEG Measurements”, Int. Congr. Ser., vol. 1300, pp. 245-248, 2007.

ISBN 978-951-22-9314-8

ISSN 1459-7268




