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Applications of the Signal Space Separation Method
Samu Taulu, Juha Simola, and Matti Kajola

Abstract—The reliability of biomagnetic measurements is tradi-
tionally challenged by external interference signals, movement ar-
tifacts, and comparison problems caused by different positions of
the subjects or different sensor configurations. The Signal Space
Separation method (SSS) idealizes magnetic multichannel signals
by transforming them into device-independent idealized channels
representing the measured data in uncorrelated form. The trans-
formation has separate components for the biomagnetic and ex-
ternal interference signals, and thus, the biomagnetic signals can
be reconstructed simply by leaving out the contribution of the ex-
ternal interference. The foundation of SSS is a basis spanning all
multichannel signals of magnetic origin. It is based on Maxwell’s
equations and the geometry of the sensor array only, with the as-
sumption that the sensors are located in a current free volume.
SSS is demonstrated to provide suppression of external interfer-
ence signals, standardization of different positions of the subject,
standardization of different sensor configurations, compensation
for distortions caused by movement of the subject (even a subject
containing magnetic impurities), suppression of sporadic sensor
artifacts, a tool for fine calibration of the device, extraction of bio-
magnetic DC fields, and an aid for realizing an active compensation
system. Thus, SSS removes many limitations of traditional biomag-
netic measurements.

Index Terms—Biomagnetism, calibration, DC measurements,
interference suppression, magnetoencephalography, movement
compensation, source modeling, spherical harmonics, virtual
signals.

I. INTRODUCTION

B
IOMAGNETIC measurements provide information

of ionic current distributions in living organizms. For

example, magnetoencephalography (MEG) [1] measures non-

invasively the magnetic fields produced by the brain with a

good spatial resolution and an excellent temporal resolution.

These fields are very weak, and therefore, sensors with extreme

sensitivity are required. Today, superconducting quantum

interference devices (SQUIDs) [2] are the most widely used de-

tectors of the biomagnetic fields, although recent developments

with magnetoresistive elements [3] and optical magnetometers

[4] may lead to practical biomagnetic applications. The SQUID

sensors are typically operated in liquid helium (4 K), and they

are located 2–4 cm from the skin. Modern measurement devices

contain up to over 300 sensors.

The basic problem of biomagnetic measurements is the weak-

ness of the signals, as compared with the external interference

signals. In addition, the unprocessed MEG signals suffer from

the fact that the coordinate systems of the head and the device

are different. This complicates the comparison of different mea-
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surement sessions, even from the same subject, as the head usu-

ally cannot be fixed to the device. Furthermore, grand averages

across different subjects may be biased because the subjects are

not necessarily at the same position with respect to the device.

Even more difficult problems are caused by movement of the

subject during measurement because the movement distorts the

biomagnetic field pattern and may also cause additional arti-

fact signals if the subject has magnetic impurities, such as small

magnetic particles, on the head or body.

Traditional methods for solving these problems deal with one

problem at a time without attempting to find a general solution.

These methods also often contain strong, artificial, and some-

times false assumptions of the spatial and temporal features of

the signals sources.

The most common methods to reduce the effect of external

interference signals are the magnetically shielded rooms [5]–[7]

and gradiometer coils [1], [8]. To further suppress the residual

interference inside the shielded room, reference channels [9]

and signal space methods [10] have been widely used. Calcu-

lation of virtual signals and compensation for the movement

distortions require the MEG signals to be represented with

a device-independent source model. An example is the min-

imum-norm estimate (MNE) [11], [12] that has been used for

movement correction [13] without separately modeling the

external interference signals, as will be done in this paper.

In transforming biomagnetic signals between different sensor

configurations, MNE and multipole expansions of the field

have been used [14], [15]. There have been no efficient solu-

tions to deal with the movement artifacts caused by magnetic

impurities. This significantly limits the applicability of MEG

because several patient groups are prone to movement artifacts,

sometimes rendering the data useless for further analysis.

Because of the lack of robust general-purpose methods to im-

prove the quality of MEG data, experimenters usually try to

minimize the effect of signal distortions in the raw MEG sig-

nals. This requires extreme magnetic hygiene inside the shielded

room, minimization of the movement, and sometimes even de-

magnetization of the subjects. Therefore, traditional MEG mea-

surements require very careful preparations, highly trained per-

sonnel, and special, nonmagnetic equipment. However, even

with careful preparation, it is impossible, especially in the clinic

but also in the research laboratory, to suppress all distortions

from MEG data with these precautions.

In this paper, we show how the multichannel MEG signals can

be transformed into an idealized form that is free of the problems

mentioned above, thus relaxing the strict limitations and require-

ments related to conventional MEG measurements. The idealiza-

tionisdonebythesignalspaceseparationmethod(SSS)[16], [17]

that transforms the data collected with a high number of chan-

nels into idealizedsignals containing uncorrelated information of
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the underlying current distributions. SSS is based only on exact

knowledge on the sensor geometry, Maxwell’s equations, and the

quasistatic approximation. Furthermore, we rely on the fact that

all sources of magnetic fields (both biomagnetic and external in-

terference sources) are located more than a couple of centimeters

away from the sensors. It will be shown that SSS is able to sup-

press external interference signals, produce virtual signals, and

compensateformovementdistortionsandartifactswithonelinear

transformation. In SSS, the only necessary a priori information is

the knowledge of the geometry of the sensor array and its relative

position with respect to the head.

The purpose of this paper is to give a comprehensive but less

formal description of SSS than that presented in our theoret-

ical paper [17]. Furthermore, we will review some of the most

common problems of biomagnetic measurements and demon-

strate with practical examples how SSS solves these problems.

II. IDEALIZATION OF MEASURED SIGNALS

A. Spatial Filtering and the SSS Basis

A modern MEG device records the neuromagnetic field dis-

tribution by sampling the field simultaneously at 200–500 dis-

tinct locations around the subject’s head. When the total number

of recording channels is , the measurement result at each mo-

ment of time is a vector , comprising components. The di-

rection of the signal vector in the -dimensional signal space

is determined by the ratios of the vector components, that is,

the ratios of the signal amplitudes in the different channels. In

principle, any direction in the signal space represents a valid re-

sult of a magnetic field measurement. However, by combining

what is known about the location of possible sources of mag-

netic field, the geometry of the MEG sensor array, and some

basic electromagnetic theory, it is possible to differentiate be-

tween the signal space directions that are meaningful results of

a neuromagnetic recording and those that are not and, thus, con-

siderably constrain the relevant signal space.

The field distribution recorded by an MEG sensor array arises

from sources outside of the volume where the sensors them-

selves are located. This is because the MEG devices, to avoid

instrument artifacts, are constructed so that the sensors and their

immediate vicinity are free of magnetic sources and materials.

In this case, the recorded field is a gradient of a scalar poten-

tial that is free of singularities and harmonic in the volume con-

taining the sensors [18].

A harmonic potential is a solution of the Laplacian

differential equation . Several different sets of har-

monic functions have been presented in the mathematical liter-

ature during the last 150 years. Spherical harmonic functions,

which are usually applied with spherical coordinate system, are

an example of such a set of harmonic functions. These functions

form a complete set, meaning that any harmonic function in a

three-dimensional space can be presented with arbitrary accu-

racy as a series expansion of these functions. Therefore, we can

express any harmonic potential as an expansion

(1)

where

i (2)

is the normalized spherical harmonic function, , and are

the spherical coordinates, is the associated Legendre

function, and i denotes imaginary unit. In practice, is real-

valued, although the calculations can be done compactly with

complex numbers. A direct real-valued expansion for the po-

tential is given, e.g., in [19].

The spherical harmonic functions are labeled with two in-

dices and , with running from 0 to infinity and running

from to . The potential with is associated

with the field of a magnetic monopole and is therefore excluded

from the expansion. When going to higher index values, these

functions contain increasingly higher spatial frequencies. The

radial -dependent part of the expansion separates into two sets

of functions: Those proportional to inverse powers of are sin-

gular at the origin, and those proportional to powers of diverge

at infinity.

Given an array of MEG sensors and a coordinate system with

its origin somewhere inside of the helmet, we can calculate the

signal vectors corresponding to each of the terms in (1). Let us

denote the signal vector corresponding to term

as and, similarly, the signal vector corresponding to term

as . A set of such signal vectors forms a basis

in the —dimensional signal space [17], and hence, the signal

vector is given as

(3)

This basis is not orthogonal, but it is linearly independent so that

any measured signal vector has a unique coordinate presentation

in this basis. The signal space separation method is based on

this coordinate presentation known as the “ -spectrum” of

the recorded signal. Mathematically, this can be expressed as

(4)

where the sub-bases and contain the basis vectors

and , respectively, and vectors and contain the cor-

responding and values (the spectra), respectively.

Utilizing this coordinate presentation, we can first do spatial

filtering in a very meaningful way. The signals from real mag-

netic sources, located at distances larger than about 2 cm from

the sensors, are mostly contained in the low end of the

spectrum. Inherent instrument noise and artifacts of single chan-

nels, being totally uncorrelated spatially, are evenly distributed

among all of the spectral components. Therefore, we may filter

the measured data by including the low components up to

the limit where the contribution arising from the real sources

becomes immeasurably small because it is buried in the sensor

noise that dominates the highest components. This process

of leaving out the high end of the spectrum not only reduces

the noise like ordinary spatial filtering but also guarantees that
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the retained field distribution is consistent with Maxwell’s equa-

tions and the quasistatic in empty space.

Therefore, we call this procedure “Maxwell filtering.”

Additionally, based on this coordinate presentation, we can

perform signal space separation, that is, separate the compo-

nents of field arising from sources inside and outside of the

helmet, respectively. It can be shown that the basis vectors, cor-

responding to the terms in the second sum in expansion (1), rep-

resent the sources external to the helmet [17]. By leaving those

components of the recorded signal out from the reconstructed

coordinates , we are left with the part of the signal coming

from inside of the helmet only. This part of the signal vector

consists of the spectral components corresponding to terms di-

verging at the origin, i.e., the terms in the first sum in (1).

This separation into two independent sub-bases fails only in

the in-practice highly unlikely case when all of the sensors are

on the surface of a sphere, strictly radial, or strictly tangential,

and the coordinate origin is placed in the center of this sphere

[17]. In this case, the basis vectors obtained with same and

but corresponding to the radially converging and diverging

terms, respectively, are identical.

With real data measured with an Elekta Neuromag® 306-

channel device, it turns out that including the components up

to for the basis, and up to for the

basis is optimal in most cases for both the Maxwell filtering

and signal source separation operations. The sufficiency of this

choice of is demonstrated by simulation results shown in

Figs. 1 and 2, which demonstrate the ability of basis to

model signals produced by sources with varying spatial extent.

Fig. 1 shows the subspace angle between and the signal

vector produced by a single dipole as a function of distance

of the dipole from the origin of the harmonic expansion with

values to 9. This angle should be compared with

the signal-to-noise ratio (SNR), which here is defined as the

ratio of the norms of the 306-channel signal vector of Elekta

Neuromag® and the corresponding noise vector. As a randomly

chosen noise vector in 306-dimensional space is approximately

orthogonal to the signal vector, the angle between the measured

and the actual noiseless signal vector is about arctan SNR .

Fig. 2 is similar to Fig. 1, but in this case, the source consists

of 100 simultaneously active dipoles distributed on the surface

of a sphere. The subspace angle is shown as a function of the

radius of the sphere. The comparison of Figs. 1 and 2 indicates

that the performance of SSS is essentially independent of the

focality of the source. The practical multichannel sensor arrays

with finite noise level are not capable of extracting all the details

of extremely complex spatial source patterns, and SSS covers,

with , all measurable features of the field, irrespective

of the complexity of the source distribution. The figures give

both the subspace angle and the corresponding SNR values. It

can be seen that for a typical superficial source distance of 7 cm,

corresponding to distances of about 3.5 cm from the sensors to

the closest dipoles, the effect of SSS on signal morphology only

shows, with considerably large SNR, values higher than 30, even

for a complex source composed of 100 dipoles.

In practice, the choice of affects the reconstruction error

if is not high enough for to completely model the signals

arising from internal sources. In such a case, part of the energy

Fig. 1. Angle between S and the signal vector produced by a single current
dipole as a function of distance of the dipole from the origin of the harmonic
expansion (center of the device coordinate system) with values L = 2 to 9.
The curves are in descending order, starting from the lowest values of L . The
theoretical SNR values corresponding to the given subspace angle are given on
the right-hand side.

Fig. 2. Angle between S and the signal vector produced by a combination
of 100 current dipoles on a sphere as a function of the radius of the sphere with
valuesL = 2 to 9. The curves are in descending order, starting from the lowest
values of L . The theoretical SNR values corresponding to the given subspace
angle are given on the right-hand side.

of the internal signals falls into in the SSS reconstruction.

To demonstrate the effect, Fig. 3 shows the angle between the

dipole signal vector used in Fig. 1 and the reconstructed signal

vector produced by decomposing the signal in the SSS basis and

reconstructing the signal from components corresponding to

only. It can be seen that with high enough , the reconstruction

error does not essentially differ from that shown in Fig. 1.

The small change of signal morphology can be taken into ac-

count in the source modeling of e.g., a current dipole in such a

way that no localization bias results. However, even if the trun-

cation to the finite is not properly taken into account, the re-

sulting bias is negligible when compared with other sources of

localization error. This is demonstrated in Fig. 4, where the lo-

calization error of a randomly chosen dipole is shown as a func-

tion of after decomposing the signal vector of the dipole to
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Fig. 3. Angle between the signal vector produced by a single current dipole
and the corresponding SSS reconstructed signal vector as a function of distance
of the dipole from the origin of the harmonic expansion (center of the device
coordinate system) with values L = 2 to 9 and L = 3. The curves are in
descending order, starting from the lowest values of L . The theoretical SNR
values corresponding to the given subspace angle are given on the right-hand
side.

Fig. 4. Localization error from an SSS reconstructed dipole signal as a
function of L with L = 4. The circles and stars correspond to a dipole
with distance of 4 and 7 cm from the origin of the expansion, respectively.
The gray bar indicates the range of the linear confidence dimension of dipole
localization between typical high- and low-quality data.

SSS basis with the given and and reconstructing

the signal from components corresponding to only. The er-

rors are shown for a deep and a superficial dipole located at dis-

tances of 4 and 7 cm from the origin, respectively. It can be seen

that the localization error imposed by SSS becomes insignifi-

cantly small with for the deep dipole and for

the superficial dipole, as compared to 1 mm, which is the local-

ization accuracy of even the highest quality MEG data.

The simulations used the spherical conductor model in the

forward calculation of the dipole signal but are also applicable

for a realistic head because SSS is independent of conductor

models.

In the most demanding applications of the SSS method, both

and , as well as the location of the coordinate origin,

can be used as freely adjustable parameters. In some extreme

cases, like a small baby’s heart being a source of large amplitude

interference in the immediate vicinity of the helmet,

may be required. The only limitation as to the choice of and

is that the total number of basis vectors

must be smaller than or, at most, equal to the

dimension of the signal space, that is, the total number channels

in the MEG device.

B. Effect of SSS Reconstruction on Signals and Noise

The effect of the SSS process on the signals, interference, and

noise in the SSS process is schematically illustrated in Fig. 5.

For clarity, the signal space is here reduced to two dimensions:

one containing the entire basis and the other containing the

entire basis. The SSS basis is not orthogonal, and there-

fore, the angle between the “interference space” and the

“brain signal space” is not 90 . The signal vector is decom-

posed into two components and . The latter component

faithfully reproduces, in all the MEG channels, the signals that

would be seen if the interference from the sources external to

the helmet were absent.

The signal decomposition by SSS is different from the

software gradiometrization method, or Signal Space Projection

method (SSP) [10], both of which are projection methods that

are commonly used to remove interference from recorded MEG

data. In these methods, the interference space is either

defined to consist of field gradients up to a given order or, in

SSP, determined by a statistical analysis of an empty room

recording made without a subject. Subsequently, all recorded

data is projected on the subspace orthogonal to giving the

estimate for the brain signal. This removes the interference

but, as seen by comparing and from Fig. 5, also leads

to removal of the brain signal components falling on the

space and, thus, to a distortion of the actual brain signal. In

source modeling, this distortion must, of course, be taken into

account properly so that no localization bias results.

In addition, the qualitative effects of the SSS and the projec-

tion operations on the noise are different and can be concluded

from Fig. 5. There is no increase of noise associated with the

projection methods. Their effect is rather to slightly decrease

the noise because the projection decreases the signal dimen-

sionality: Less than output quantities are derived out of

measurements. In the SSS method, there are two counteracting

mechanisms affecting the noise: The Maxwell filtering reduces

the noise because, like in the projection operations, the dimen-

sionality is reduced when leaving out the high components.

On the other hand, as can be seen from Fig. 5, the noise is en-

hanced when the signal vector is decomposed in an oblique basis

where the angle between the and subspaces is less

than 90 .

This angle, however, can be effectively influenced by proper

design of the sensor array. A larger angle is obtained by

an array design that incorporates both magnetometers and

gradiometers compared with a design with only one type of

sensors. This is because an array containing both gradiometers

and magnetometers has a built-in tendency to resolve between

signals coming from nearby and far-away sources. The basis
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Fig. 5. Graphical illustration of the signal space separation method. The
measured signal vector ��� is decomposed into two components ��� and ��� .
The��� component reproduces the biomagnetic signal undistorted, whereas the
projected component ��� resulting from interference suppression by software
gradiometrization, or by signal space projection, shows a change ��� � ��� in
signal morphology. The gray sphere indicates random noise.

vectors contained in the basis for such an array are pre-

dominantly along the magnetometer dimensions of the signal

space, whereas in the basis, the gradiometric dimensions

dominate. This partial signal separation already taking place on

the hardware level results in a small condition number of the

SSS basis, which means a large angle . The condition number

of a matrix is defined as the ratio of the largest and smallest

singular values of the matrix.

In principle, axial gradiometers are as good as planar gra-

diometers for stabilizing the SSS basis of a multichannel MEG

device. Technically, however, planar gradiometers have two

advantages over axial gradiometers. First, they are easy to

overlap with magnetometers and each other, which ensures

large pick-up area and, thus, high sensitivity of individual

channels, even if the total number of channels exceeds 300.

All existing axial systems are based on nonoverlapping pick-up

coils, which is a solution that leads to reduction of pick-up

area and sensitivity of individual channels when the number

of channels already exceeds 200. Second, an accurate geo-

metric parametrization and fine calibration—a prerequisite for

efficient use of SSS—is easy for the magnetometer/planar gra-

TABLE I
MINIMUM, MEAN, AND MAXIMUM PRINCIPAL ANGLES (IN DEGREES) FOR

THREE DEVICES AS A FUNCTION OF L

diometer combination because these sensors can be fabricated,

for example, with a precise thin film process on a single planar

silicon surface.

In practice, represents the principal angles between sub-

spaces and . The largest principal angle is commonly

used as the subspace angle, and its sine is defined as the dis-

tance between two equidimensional subspaces [20]. However,

the whole spectrum of the angles plays a role in the SSS recon-

struction, and thus, the largest principal angle cannot be taken

as a unique value for . To get an idea of the performance of dif-

ferent sensor arrays, Table I shows the smallest, mean, and the

largest principal angle as a function of for a 248-channel

magnetometer system, a 275-channel system containing axial

gradiometers, and a 306-channel system containing 204 gra-

diometers and 102 magnetometers with two orthogonal planar

gradiometers and one magnetometer on each sensor element. In

this calculation, was used.

The relation between noise and the principal angles is not

trivial. To get a more quantitative view on the noise performance

of the different systems, we simulated the effect of the SSS re-

construction on the noise levels of the sensor arrays used in

Table I. In the simulation, SSS reconstruction was performed

on signals consisiting of normal distributed random noise with

equal standard deviation for all channels. It turns out that, on av-

erage, with and , the random noise is increased

by factors 3.7 and 3.6 for the hypothetic 248- and 275-channel

systems, respectively. In the case of the 306-channel system, the

magnetometer noise is increased by a factor of 2.4, but the gra-

diometer noise is decreased, having an average relative noise

of 0.61. In reality, however, the effect of SSS on the noise of

MEG data is not as significant as this simulation indicates be-

cause here, we only take into account the sensor noise, whereas

real noise also contains contributions from the brain and the

radiation shields. The brain signal component is left intact in

the SSS reconstruction as it represents sources inside the sensor

array. The dewar noise component represents sources in the im-

mediate vicinity of the sensors and is, thus, not completely in-

cluded in the SSS model but is still not significantly modified

by SSS. This is also consistent with our experimental observa-

tions: We have not found the SSS reconstruction to essentially

change the noise levels, even those of the magnetometers, in the

306-channel MEG recordings.

C. Idealized Channels

We define the harmonic amplitudes as idealized chan-

nels; see (1). They correspond to the biomagnetic signals only
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and are free of movement distortions as they are attached to the

coordinate system of the head. Furthermore, they contain the in-

formation of the underlying current distribution in a more

compact form than the raw signals from the real channels. This

is easily seen by comparing the lead field forms of the idealized

and real channels. For the definition of the lead field, see, e.g.,

[1], where the lead field of an individual sensor has been de-

fined for primary current by taking the conductivity distribution

into account to correctly incorporate the effect of the volume

currents. However, the accurate conductivity distribution of the

biomagnetic current volume is generally unknown, and here, we

want to show that the idealized channels provide uncorrelated

information of the general current distribution located inside the

sensor array, regardless of the conductivity patterns. Therefore,

we examine the total current, which is a sum of the primary and

volume currents.

In [17], the lead field of the idealized channel is given as

i
(5)

where is the vector spherical harmonic function [18],

[21], [22]. On the other hand, by inserting this lead field to the

expression for the magnetic field [17], one gets the following

expression for the magnetic flux through an individual sensor:

(6)

where is the permeability of a vacuum, is the surface ele-

ment of the sensor , and is the modified vector spher-

ical harmonic function defined in [17]. The integration volume

extends over a spherical volume that fits into the volume in-

side of the sensor array and encloses the biomagnetic currents.

Thus, the lead field of an individual sensor for the total cur-

rent is a linear combination of the lead fields of the idealized

channels

(7)

Because of the orthonormality of the vector spherical har-

monic functions , the lead fields of the ideal-

ized channels are orthogonal. Thus, the idealized channels

contain uncorrelated information of the underlying current dis-

tribution. In contrast, the lead fields of the real channels

are not orthogonal; see (7).

The idealized channels are the components of vector in

(4), and they can be estimated from the measured signal vector

as

(8)

where is the pseudoinverse of . Apparently, the condition

number of is high, yielding an unstable estimate . How-

ever, this is mainly due to the different units of the harmonic

expansion amplitudes, leading to highly different norms of the

columns of . Thus, the basis can be stabilized by normal-

izing the basis vectors, and in most practical applications with a

multichannel device, can be calculated without any regulariza-

tion. This is very convenient as regularization usually contains

parameters that are difficult to determine optimally and because

regularization leads to a biased estimate. After using a normal-

ized basis in (8), one gets the true idealized channels simply by

dividing the components of by the corresponding norms of the

nonnormalized columns in matrix .

Calculation of (8) can be further stabilized by leaving out

those components from the SSS basis that are dominated by

noise. These components can be determined by examining the

sensitivity of the sensor array to different harmonic functions.

In some cases, the contribution of the harmonic components

clearly falls below the noise level of the sensors, even if these

components have values of smaller than the chosen highest

order. Effectively, this selective adoption of basis vectors can

be thought of as a regularization method based on physics and

geometry.

III. SUPPRESSION OF EXTERNAL INTERFERENCE SIGNALS

A. Source Volumes of Biomagnetic Measurements

With SSS utilizing spherical harmonic functions, the internal

and external source volumes are defined by two spheres with

radii and , respectively. For clarity, let us consider the

case with common origin for the internal and external harmonic

expansions. Then, is the distance from the origin to the

closest measurement point (see Fig. 6), and is the distance

from the origin to the farthest measurement point. All signals

generated by sources with are spanned by the sub-

space , and all signals generated by sources with

are spanned by . Consequently, according to (8), the con-

tribution of the internal and external sources can be separated

from each other.

Sensor arrangements of the biomagnetic multichannel de-

vices enable clear separation of the biomagnetic and external

interference signals. The example in Fig. 6 illustrates a typical

neuromagnetic measurement where the biomagnetic sources,

i.e., the currents in the brain, are located in the volume with

, and the external interference sources are located in

the volume with . The SSS method is able to separate

from each other the signals arising from sources in these two

volumes.

B. Software Magnetic Shield

The SSS method suppresses the external interferences using

minimal assumptions. However, as the method is based solely

on the physics and geometry of the fields and the sensor array,

it is sensitive to the accuracy of the calibration of the measure-

ment device, in contrast to the SSP method [10], for example. In

order to suppress the interference caused by nearby sources, a

high-dimensional SSS basis must be used, which increases the

noise sensitivity of the basis. Therefore, accurate calibration and
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Fig. 6. Source volumes of a neuromagnetic measurement.

proper sensor configuration is necessary for optimal operation

of SSS. On the other hand, because of its sensitivity to calibra-

tion, SSS can be used as a precise calibration method; deviations

of the measured signals from the SSS model are due to calibra-

tion errors and can be used to correct the calibration parameters.

Increasing the dimension of the SSS basis refines the recon-

struction but also increases the sensitivity of the SSS reconstruc-

tion to calibration errors. On the other hand, this sensitivity is

also affected by the geometry of the sensor array. This is de-

scribed by the ratio of the largest and smallest singular values

of the SSS basis matrix , which is also called the condition

number . The reconstruction error due to measurement errors

and perturbations of the SSS basis matrix is proportional to

when numerical regularization is not used.

The level of software shielding achievable by SSS is studied

here by simulating a source moving continuously from the inte-

rior to the exterior of the sensor array. The corresponding signal

vector is decomposed in the SSS basis without numerical regu-

larization, and the signal corresponding to the internal sources is

reconstructed. The shielding factor is defined as ,

which is the ratio of the norms of the actual signal vector and the

reconstructed signal vector. Ideally, this factor would be 1 when

the source is located inside the sensor array

and infinite when . In practice, the dominating

magnetic interference contribution from a device inside of the

magnetic shield is dipole by character. Consequently, we use in

this simulation a dipolar source.

Fig. 7 shows the shielding factor of the SSS reconstruction

with three different calibration accuracies for the case

. For simplicity, random calibration errors were only

produced for the scalar calibration coefficients and the balance

of the gradiometer channels. The sensor array used in the simu-

lation was the 306-channel Elekta Neuromag® MEG device in-

cluding 204 planar gradiometers and 102 magnetometers. The

imbalance signal was modeled as the signal of a point mag-

netometer located at the center between the gradiometer loops

and with a normal in the plane of the gradiometer. The source

was a magnetic dipole with dipole moment pointing to direc-

Fig. 7. SSS shielding factor as a function of distance of the source from the
origin with three calibration accuracies. Upper (dashed) curve: Perfect accuracy.
Middle curve: accuracy of 0.1%. Lowermost curve: Accuracy of 1%. The curves
have been calculated with L = 8;L = 4.

tion [1,1,1] moved along the negative z-axis of the device coor-

dinate system from 0 to 3 m, and the center of the harmonic

expansions was at the origin of the device coordinate system. In

this case, m, and m. It is seen

that when using SSS, a “software shielding wall” forms in the

region . When the interference source moves fur-

ther away through this wall, the shielding factor grows monot-

onously toward an asymptotic value limited by the calibration

accuracy. A calibration accuracy of 0.1% gives an asymptotic

shielding factor of about 150, whereas this factor with calibra-

tion accuracy of 1% is about 15 only.

Fig. 8 demonstrates how the width of the software shielding

wall is affected by the value of when and the cali-

bration accuracy is 0.1%. The asymptotic value of the shielding

factor is higher for lower values of , but a shielding wall

closer to the helmet is achieved by increasing . The latter is

desirable for interference sources located very near the sensor

array. From Fig. 8, one can actually determine which value of

is optimal for an interference source at a given distance.

For example, in the range m m

would be optimal.

The effect of the SSS-operation on the noise depends cru-

cially on the geometry of the sensor array, as represented by

the condition number of the SSS basis. These numbers for three

different whole head MEG devices, 306 channel (Elekta Neu-

romag® triple sensors), 275 channel (5-cm base axial gradiome-

ters), and 248 channel (magnetometers) relate to each other as

1:1.26:1.37 when are used. For these param-

eter values, there is on the average no increase in the noise for the

306-channel system. The better condition number of the 306-

channel device stems from the intrinsic differentiation between

nearby and far-away sources achieved by the triple sensor com-

prising both short base-length gradiometers and magnetometers.

The above simulations show that with a properly designed

sensor array utilizing SSS, it is possible to reach shielding fac-

tors exceeding 100 even for interference sources closer than 1
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Fig. 8. SSS shielding factor as a function of distance of the source from the
origin with five different values of L with L = 8. The L values for
curves from left to right are 6, 5, 4, 3, and 2. The curves correspond to calibration
accuracy of 0.1%. The dashed curve corresponds to perfect calibration in the
L = 4 case.

m to the device. Importantly, while suppressing the interfer-

ence, the morphology of the brain signals is not affected in

SSS, which is in contrast to methods that completely remove

some particular temporal or spatial patterns that are assumed

to only contain interference. Such methods achieve arbitrarily

high shielding factors against the predefined interference pat-

terns with the cost of removing the projection of the brain signal

to these patterns. In principle, external interference suppression

using reference channels leaves the morphology of the brain sig-

nals intact, provided that the assumption of the reference sen-

sors only measuring interference is valid. For this assumption

to hold, the reference sensors have to be located at a sufficiently

large distance from the signal sensors. On the other hand, the

large distance reduces the accuracy of the interference extrapo-

lation. Consequently, the shielding factor of a practical reference

array is reported to be on the order of 20 for far-away interfer-

ence sources [9]. For interference sources at a distance of 1 m, it

is even considerably less. SSS provides a more efficient interfer-

ence suppression method as it does not need to distinguish be-

tween signal and reference channels or extrapolate signals from

any sensor to any other. All channels give information of both

the brain signals and external interference that can be separated

from each other with the simple procedure described in Sec-

tion II.

C. Experimental Results on Software Magnetic Shielding

The simulation of the previous section was verified experi-

mentally. For practical reasons, we moved the magnetic dipole

inside of a magnetically shielded room from 0 m to 1.93 m

only. Apart from this, the parameters of the simulation were

repeated as accurately as possible in the measurement. Fig. 9

shows for and the measured shielding factor

of the SSS reconstruction with the “as received” calibration ac-

curacy of about 1% and with the SSS-based fine calibration ac-

curacy of about 0.15% achieved at that time. The results closely

Fig. 9. Measured SSS shielding factor with a fine calibration accuracy of
0.15% (upper curve) and conventional “as received” accuracy of approximately
1% (lower curve).

Fig. 10. Measured SSS shielding factor with three different values of L
with L = 8 and with fine calibration. Triangle corresponds to L = 4,
circle corresponds to L = 3, and diamond corresponds to L = 2.

follow the simulation results of Fig. 7. Fig. 10 shows the mea-

sured shielding factor with fine calibration for values of 2,

3, and 4 when .

Fig. 11 demonstrates suppression of external interference sig-

nals from an empty room measurement. In this case, we know

that there are no biomagnetic signals, and thus, the SSS recon-

structed signal should be zero. However, as anticipated, SSS is

able to suppress the interference only by a factor of 15–20 with

the “as received” calibration accuracy. On the other hand, SSS

with fine calibration gives interference suppression by a factor

exceeding 200, as seen by comparing the top and bottom traces

in Fig. 11.

To demonstrate that SSS suppresses the external interference

signals without affecting the biomagnetic signals, we placed

a phantom head containing artificial current dipoles inside the
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Fig. 11. Time trace of one magnetometer channel from an empty room
measurement. (Top) Original signal. (Middle) SSS reconstructed signal
with “as received” calibration. (Bottom) SSS reconstructed signal with fine
calibration. Note that the scale in the top figure is by a factor 10 larger than in
the other two figures.

sensor array. Fig. 12 shows time traces of two orthogonal gra-

diometers and a magnetometer in one triple sensor of Elekta

Neuromag®. In this case, the external interference signals were

obviously generated by sources located far away from the sen-

sors. Thus, the original gradiometer signals do not contain inter-

ference but only the sine wave burst produced by the phantom

dipole. The SSS reconstruction leaves the gradiometer signals

and their noise level essentially intact. On the other hand, the

magnetometer channel suffers from low-frequency interference,

which is removed by SSS without affecting the phantom signal.

Figs. 13 and 14 demonstrate SSS reconstruction of a single,

unaveraged auditory response of a newborn baby. In this experi-

ment, the baby had her left hemisphere leaning against the back

of the helmet, and we expect to see the auditory response in the

middle of the sensor group shown in Fig. 14. However, a heart-

beat of the baby partially obscured the brain response, as can

be seen in the original waveforms and field maps. In Fig. 14,

the original field map is distorted by the heart signal, but the

Fig. 12. Original (dashed) and SSS reconstructed (solid) unaveraged signals
from three independent channels of one triple sensor in a phantom measurement.
The two gradiometers are on the left side, and the magnetometer is on the right
side.

dipolar auditory signal is also visible. Dipolarity of the field be-

comes clearer in the SSS reconstruction, and good suppression

of the hearbeat requires a high because the heart of the

newborn is located very close to the sensor array. Figs. 13 and

14 indicate that is sufficient for suppression of this

interference source that is very close to the helmet.

IV. STANDARDIZATION BETWEEN DIFFERENT

MEASUREMENT CONFIGURATIONS

A. Alignment of Different Head Positions

Different locations of the subjects with respect to the mea-

surement device hamper the comparison of data from different

measurement sessions. In order to remove this uncertainty, the

signals have to be aligned to correspond to a standard head po-

sition. The recipe for the conversion is simple: Transform the

measured signals into a device-independent representation at-

tached to the coordinate system of the head, and calculate the

virtual signals that would have been measured from a standard

head position. Suitable device-independent source models to be

used for virtual signals are, e.g., MNE [14] and multipole expan-

sion [15]. Our implementation of SSS uses the multipole expan-

sion and enables virtual signal calculation with the advantage

that the multipole components are first calculated for both the

biomagnetic and external interference signals. Then, the virtual

signals can be calculated from unbiased multipole components

corresponding to the biomagnetic signals only. The basic prin-

ciple is explained in detail in [17].

To demonstrate the ability of SSS to align different head po-

sitions, we measured and averaged the auditory response of a

subject from two head positions and then converted the mea-

surements to a standard head position. In the first measurement,

the subject was leaning against the left side of the inside surface

of the Elekta Neuromag® helmet, and in the second measure-

ment, he leaned against the right inside surface of the helmet.

The original unprocessed waveforms are shown overlayed on

the left side of Fig. 15, and the morphology of the response is

clearly altered by the different head positions. Furthermore, both

measurements suffer from a low-frequency interference dom-

inating the magnetometer signal amplitudes because no inter-

ference compensation was applied during data acquisition. The

right side of Fig. 15 shows the standardized signals from both

measurements overlayed. These signals are the virtual signals
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Fig. 13. Channel layouts representing a single trial auditory response of a newborn baby. (Left) Original signals contaminated by a heartbeat. (Middle) SSS
reconstructed signals with L = 8;L = 3. (Right) SSS reconstructed signals with L = 8;L = 5.

Fig. 14. Field maps from a single auditory response of a newborn baby. (Left)
Original field (Middle) SSS reconstructed field with L = 8;L = 3.
(Right) SSS reconstructed field with L = 8;L = 5.

that would have been measured if the subject would have had

the center of his head 2.3 cm above the centers of the lowest

sensors in the sensor array and with the coordinate axes of the

head aligned with the coordinate axes of the device. In this case,

the standardization generally increases the signals because the

subject was located lower in the real measurement than in the

standardized result. The standardized signals from both mea-

surements are in good accordance with each other and show that

SSS suppresses the discrepancy caused by the different head po-

sitions. Furthermore, the external interference is automatically

removed in the SSS conversion.

B. Comparison of Data Acquired With Different Sensor Arrays

In addition to the discrepancy caused by different head po-

sitions, differences between measurement devices may prevent

comparison of MEG data. However, with SSS, one can easily

transform measurements between different biomagnetic instru-

ments by estimating the harmonic amplitudes from the real mea-

surement and calculating the virtual signals using this estimate

and the internal SSS basis of the instrument whose signals in

which one is interested. Mathematically, this operation is equiv-

alent to standardizing different head positions discussed in the

previous section. As long as the device used for the real mea-

surement is capable of recording data with enough information

content (for a definition, see e.g., [23]), the harmonic amplitudes

can be reliably estimated, and the measurement can be trans-

formed to any sensor configuration. This facilitates comparison

between results obtained by different researchers using different

instruments.

Our practical example shown in Fig. 16 [24] is from an av-

eraged MCG measurement where the heart signals were mea-

sured with a 99-channel cardiomagnetometer at the BioMag

Laboratory of the Helsinki University Central Hospital (HUCH)

and then converted using SSS into 49 axial gradiometer signals

corresponding to the device at Physikalisch-Technische Bunde-

sanstalt (PTB), Berlin, Germany. Fig. 16 shows the measured

signals converted from BioMag’s device to PTB’s device, along

with the signals actually measured at PTB from the same sub-

ject. In this case, orderds and were used. The

figure shows very good agreement between the converted and

measured data. The amplitude-weighted correlation used as a

measure of reproduction accuracy in [15] was 0.980 in this case.

V. MOVEMENT COMPENSATION

A. Movement Distortions

Movement of the subject during the recording may severely

distort MEG data. With cooperative healthy subjects, this is not a

problem, but, e.g., with small children and some patient groups,

head movements are unavoidable. Even with very large move-

ment, the recorded MEG signals from a focal source often still

appear dipolar, although they are blurred by the movement. This

is a potential risk as the source modeling of such data may lead

to incorrect localization with statistically high confidence. In

such a case, the only reliable indication of the head movement is

the result of a continuous head position monitoring system. The

analysis of such data requires movement compensation, which

consists of dynamic continuous recording of the head position

and a method that takes the recorded movement into account in

the analysis.

Movement compensation requires decomposing the mea-

sured signals into a source model attached to the coordinate

system of the head. One possible source model is the minimum

norm estimate. However, SSS provides a better source model

for this purpose as it also automatically suppresses the external

interference signals [17] and is computationally fast.

By modeling the movement of the subject as movement of

the sensor array, the subject can be considered static in terms

of the decomposed biomagnetic field components. Thus, virtual
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Fig. 15. Auditory responses at the left frontal quadrant of the sensor array. (Left) Original waveforms of an auditory response recorded from two different head
positions with no interference compensation. Grey and black traces correspond to subject leaning to the left and to the right, respectively. (Right) Standardized
waveforms of an auditory response recorded from two different head positions. Grey and black traces correspond to standardizations made for subject leaning to
the left and to the right, respectively. Interference has been automatically compensated for in the SSS process.

Fig. 16. Comparison of converted and measured axial gradiometer signals.
The grey signals represent the 99-channel data from BioMag converted to the
channel layout of PTB. The black signals represent an actual measurement of
the same subject at PTB (published with permission of PTB).

signals corresponding to any reference head position can be cal-

culated based on the estimated components, and these move-

ment-compensated signals can be used for further data analysis,

as if the subject had not moved during the measurement.

Our practical demonstration of Fig. 17 is from an auditory

measurement. An auditory response was measured from a sub-

ject continuously moving his head in a range of about 5 cm. The

resulting field appears dipolar but is convolved by the move-

ment and gives a localization error of 41 mm, as compared to the

reference response with no head movements. SSS deconvolves

the data and the resulting localization agrees within 3 mm with

Fig. 17. Auditory response from (left) a stable subject,(middle) from a moving
subject without movement correction, and (right) from a moving subject after
SSS-based movement correction.

that of the reference response from stable measurement from

the same subject. The continuous head position monitoring was

based on the method described in [13].

B. Artifacts Caused by Magnetic Impurities

Magnetic impurities on the head or body are DC sources

that, when stationary, do not produce signals in MEG measure-

ment as the SQUID sensors are only sensitive to fields that

are dynamic in their coordinate system. However, if the sub-

ject moves with respect to the device, these DC signals will be

modulated by the movement and appear as artifact signals. Such

artifacts can be encountered, e.g., with patients having involun-

tary movements and containing tiny magnetic particles left from

surgical drills, for example. These artifact signals are often very

strong as compared with the brain responses and typically lead

to rejection of the data from further analysis. Fortunately, with

SSS-based movement compensation, the movement-modulated

DC signals will appear as static components in the reconstructed

signals and can be removed with a simple baseline correction.

Recovery of an SEF-response buried under this kind of move-

ment artifact that is much stronger than the brain response has

been demonstrated in [16].
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Fig. 18. Original and SSS reconstructed signal of one misbehaving
magnetometer channel showing a step-like artifact signal and power line
interference. The signal is from an empty room measurement.

VI. OTHER APPLICATIONS

In Sections III–V, we have described the solutions for sev-

eral problems in biomagnetic measurements by means of SSS.

In this section, we list other specific applications of SSS that

can significantly improve the quality of biomagnetic signals and

data analysis.

SSS suppresses possible sporadic sensor artifacts of elec-

tronics origin, for example. These artifact signals correspond

to sources in the sensor volume and, thus, are not modeled

by the SSS basis. As there is usually only a small number of

malfunctioning channels, if any, and since their artifact signals

are usually uncorrelated, the sensor artifacts correspond to

signal vectors that are approximately orthogonal to the SSS

basis when the number of channels is high. Consequently, the

contribution of the sensor artifacts is suppressed by a large

factor in the SSS reconstruction, as is the case with any reason-

able source model (see Fig. 18).

In addition to suppressing distortions and artifacts, SSS pro-

vides a straightforward tool for phantom-free fine calibration

that is capable of utilizing any magnetic signals, for example,

external interference. With the assumption that all interference

sources are located more than a few of centimeters from the sen-

sors, any deviations of the measured signal vectors from the SSS

subspace must be caused by inaccurate knowledge of the geom-

etry of the sensor array and gains of the channels. By fine ad-

justing these calibration parameters in such a way that all the

signals fall into the calculated SSS basis, the system becomes

consistent with Maxwell’s equations. This provides a more ac-

curate and robust calibration method than the traditional way

of using a predesigned probe, e.g., a phantom head, because in

the latter method, the imprecise knowledge on the geometry of

the phantom is also a source of calibration errors. Our method

only requires that the calibrating field obeys Maxwell’s equa-

tions, which is a condition that is obviously fulfilled by any mag-

netic field. In practice, this SSS-based calibration requires that

the sensors can be well characterized by a small number of pa-

rameters, and it is, therefore, especially suited for calibration of

thin film devices having excellent geometric precision and re-

producibility.

In addition to removing movement artifacts caused by mag-

netic particles, the SSS basis can also be utilized in extracting

physiological DC components. This can be accomplished, e.g.,

by recording signal variations as a function of time and by re-

constructing the signals into idealized channels corresponding

to the coordinate system of the head. Dynamic brain signals are

uncorrelated with the head movements, whereas the DC cur-

rents inside the moving head produce a time-varying signal that

can be completely described by the movement. Thus, the move-

ment-modulated signal produced by the DC currents can be de-

modulated back to DC by utilizing continuous head position

monitoring and SSS, as shown in [25].

The idealized channels , as defined in (1), represent the

measured data in a compact form, which is more tractable in

terms of source modeling than the outputs of real channels. For

example, a current dipole in the spherical model can be local-

ized analytically from the multipole components. The Appendix

shows an analytic solution utilizing a subset of the multipole

moments. Calculation of distributed source models is also facil-

itated by SSS [17].

SSS enables a straightforward and robust realization of a

feedback-based active compensation system utilizing actual

signal channels as zero detectors driving compensation coils

inside the shielded room [26]. The morphology of the bio-

magnetic signals is not altered in the compensation process

because SSS suppresses the signals of the compensation coils

that represent external interference sources. Making the passive

magnetic shielding considerably lighter than in the traditional

two to three layer magnetically shielded rooms is thus consid-

erably facilitated.

VII. CONCLUSION

We have demonstrated that SSS idealizes biomagnetic multi-

channel measurements by means of a simple linear model. The

idealized signals correspond to a measurement of a nonmoving

subject in an environment with no external interference signals.

Furthermore, the decomposition can be represented in a form of

idealized channels containing uncorrelated information. Thus,

SSS relaxes many of the traditional restrictions and limitations

of biomagnetic measurements.

The linear SSS basis relies on Maxwell’s equations and the

geometry of the sensor array. The only additional assump-

tion is that all sources—both biomagnetic and interference

sources—are located more than a couple of centimeters from

the sensors. Since this assumption is generally valid in bio-

magnetism, all multichannels signals of magnetic origin are

spanned by the SSS basis with separate basis vectors for signals

arising from inside of the sensor array, the biomagnetic sources,

and for signals arising from outside of the sensor array, i.e., the

external interference sources.

The software magnetic shielding provided by the SSS method

contributes especially to clinical applicability of MEG. Normal

working practices and stimulators of a neurological clinic can

even be applied inside of the magnetic shield without extra at-

tention and training of the personnel, regarding sources of mag-

netic interference. A high-precision multichannel MEG device

calibrated to a relative accuracy of about 0.1 % or better is a

necessary prerequisite for efficient magnetic shielding based on

SSS.

The idealized channels provided by SSS contain the mea-

sured biomagnetic information in a compact form. The signals

of these channels can be used for an efficient visualization of

the data as the number of ideal channels is much smaller than

the number of real channels. Furthermore, virtual signals cor-

responding to any desired sensor configuration can be easily
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calculated from the idealized channels. This can be used, e.g.,

for standardizing head positions or transforming data from one

measurement device to another.

Movement of the subject may severely distort MEG data

without completely destroying the typical spatial pattern of

high-quality MEG data. Source modeling of such distorted

data generally leads to an erroneous localization result. This is

especially harmful in clinical work where accurate localization

is crucial and the patients cannot be expected to stay still during

the measurement. Consequently, a continuous movement-de-

tection system and a mathematical movement-compensation

method are important for reliable MEG analysis. SSS provides

an accurate and efficient method to compensate for movements

in MEG. It also enables movement artifacts caused by magnetic

impurities to be removed by a simple baseline correction.

Other applications of SSS include fine calibration, recording

of physiological DC phenomena, suppression of sporadic sensor

artifacts, facilitated source modeling, and active compensation

utilizing compensation coils inside the shielded room.

APPENDIX

ANALYTICAL LOCALIZATION OF A CURRENT DIPOLE

We derive analytical expressions for localization of a current

dipole in the spherically symmetric conductor model. The fol-

lowing solution only contains low-order multipole components

and is not statistically optimal in the sense of maximum likeli-

hood estimators, but it is computationally fast. Furthermore, the

analytical solution can be used as a good initial guess for non-

linear search of the dipole.

The current dipole can be thought of as a concentration of

the primary current to a single point. Because the radial part of

the dipole does not produce a magnetic field outside the volume

conductor, we can express the dipole using only the tangential

unit vectors

(9)

Let us express the scalar potential corresponding to the

biomagnetic sources in the real form [27]

Re (10)

where i is the non-normalized

spherical harmonic function, and * denotes complex conjugate.

The coefficients are given as a function of the total current

distribution by

(11)

where

(12)

and is Dirac’s delta function. Let us denote

Re

and

Im

giving us, according to (10)

(13)

which is compatible with the usual expression using even and

odd multipoles; see, e.g., [19].

In order to calculate analytical expressions for localizing a

current dipole, one can utilize the expressions giving the har-

monic amplitudes as a function of the current distribution. For

example, by comparing the lead field form of the idealized chan-

nels with (11), or by using the amplitude expressions in

[19], we can find the analytical equations for localization of the

dipole.

Let us first define

(14)

(15)

(16)

(17)

Then, we get the following analytical expressions for the spher-

ical coordinates and moment of the dipole:

(18)

(19)

(20)

(21)

(22)

The signs are chosen in such a way that the results are consistent

with the multipole coefficientes and .
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