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Boundary Element Computations in the Forward
and Inverse Problems of Electrocardiography:
Comparison of Collocation and Galerkin Weighting:s

Matti Stenroo$ and Jens Haueisen

Abstract—In electrocardiographic imaging (ECGI), epicardial residual of the discretized solution is minimized [4]. Thare
potentials are reconstructed computationally from electrocardie  two commonly used weighting methods: the point collocation
graphic measurements. The reconstruction is typically done with and the Galerkin method. In the point collocation method
help of the boundary element method (BEM), using the point . . L . . . '
collocation weighting and constant or linear basis functions. In the residual is minimized in a sgt of discrete Po'ms on the
this work, we evaluated the performance of constant and linear boundary surfaces. In the Galerkin method, the integrahef t
point collocation and Galerkin BEMs in the epicardial potential  residual over the boundary surfaces is minimized. ECGI and
problem. _ ) o other epicardial potential modeling studies utilizing BEM

The integral equations and discretizations were formulated have so far been done with point collocation weighting and

in terms of the single- and double-layer operators. All inner . . . .
element integrals were calculated analytically. The computational mostly with constant [5]-{7] and linear basis functions, [8]

methods were validated against analytical solutions in a simplified (9] ) o

geometry. On the basis of the validation, no method was optimal  In this work, we present the application of the constant and
in all testing scenarios. o _ linear Galerkin methods to the forward and inverse problems
Iinmler;rﬂ(]sealz’rilivr?r(?_é)omgl:rﬁ?)zogrgéu?sd ?ELCZﬁ§1e2?t:£g?é’ 'trhhee of electrocardiography in terms of epicardial potentiale W
LG method also produced the smallest discretization error on compare these methods to the constant gnd linear point COI_IO
the epicardial surface. In the inverse computation of epicardial Cation methOd_S- Futher, We assess the IijIuence of modeling
potential, the electrode-specific transfer matrix performed beter ~ errors on the simulation results obtained with all four noeith

than the full transfer matrix. The Tikhonov 2 regularization While the epicardial potential problem is formulated di-
outperformed the Tikhonov 0. In the optimal modeling condi- rectly in terms of potential outside the source region, othe

tions, the best BEM technique depended on electrode positions .
and chosen error measure. When large modeling errors such as approaches to the forward and inverse problems of electroca

omission of the lungs were present, the choice of the basis anddiography utilize source models, e.g., transmembranenpate

weighting functions was not significant. distributions (TMP) [10]-[13] or uniform double layers (WD
Index Terms—Boundary element methods, Electrocardiogra- [14]. The UDL model aims at directly solving for the activa-
phy, Galerkin method, Forward problem, Inverse problem tion wavefronts, and TMP models are used in activation time

imaging (ATI), too [11]-[13]. In analytical validation dies
on forward computation with the TMP model, the Galerkin
|. INTRODUCTION weighting has performed better than the collocation wéngit

Electrocardiographic imaging (ECGI) [1]-[3] is a promigin [11], [13]. Because of the different mathematical appresch
non-invasive method for the characterization of cardiaz-el these results can not be generalized to the epicardial iten
trical events. In ECGI, epicardial potentials are recareted Problem: In the epicardial potential problem, both singled
computationally from electrocardiographic measurempats double-layer integral operations need to be discretizeulew
formed on the body surface. The field computations in ECd] source modeling problems, double-layer integral openat
and other cardiac inverse modeling scenarios are commo@fjd the infinite medium potential due to the sources are
done with help of the boundary element method (BEM) [4]Used. In ATI, a priori information on cardiac activation is

In the BEM, the boundary potentials are discretized in@JS0 used in a way advantageous to the Galerkin method

linear combinations of basis functions, and the weightddl]- Advantages and limitations of different approaches a
discussed in [15].
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shaped volume conductors with a dipolar source model. Tharting point in, e.g., TMP and UDL modeling. The epicardia
results of Tissari and Rahola [19] and Mosher et al. [20] apotential problem is formulated outside the source region.
in favor of the Galerkin method. Thus it can be solved directly in terms of potential. Con-

It has been suggested [21] that a homogeneous volume csequently, no source models are needed. In a homogeneous
ductor model is adequate for the epicardial potential gnobl thoracic volume conductor model, this potential probleadie
After that study, an inhomogeneous BEM model has, to oto an equation pair [5], [6]. Utilizing the operator notatjave
knowledge, not been used in the epicardial potential probleget

Therefore, the homogeneous model is used as starting jpoint i 1 4 N — —

this study, too. Also error measures and regularizatiorhmet 3¢ = D71+ DT -G (7)
ods are chosen according to common practice in epicardial 1

potential computations. §¢B = —DPP[pP] + DPH "] — GBI, (8)

where superscripts “B” and “H” label the body surface and
the outer surface of the heart muscle (epicardium), Bhd=
A. Integral Equations for the Electric Potential in a Volume  53H /gy, is the normal component of the potential gradient on
Conductor the epicardial surface.

In a volume conductor under quasi-static conditions [22],

the electric potential) generated by slowly varying primary g, Boundary Element Discretization
currentsJ, obeys the Poisson equation

Il. METHODS

To solve the potential from the surface integral equations,
V- (oVe)=V- fp, (1) the surface potentials are discretized with the boundasy el
. . - ment method [4], [25]. The discretization procedure cdssis
whereo is the electric conductivity. In order to do bounda%f three phases: tessellation of the boundary surfacesorop

element modeling, the Poisson equation is converted tamrfimation of the boundary potentials with a linear combinatio

integral form with the hGrgen th?orem..To k_eep the nfotgtlo polynomial basis functiong, and minimization of the error
compact, we present the integral equations in terms ofsingl,¢ the approximated solution with respect to some weight

and double-layer operatots and D: functions w. In this work, the surfaces are tessellated into
GHIf)(7) = 1 f(F:) as’. e Sk @) ﬂgt triangles, and the_basis functions are defined according
Ar Jqu |7 — 7| either the nodes or triangles of the mesh.
Xl 1 L (F=7") In case of constant basis functions, each basis function
D¥gl(r) = g(r )qu has the value 1 in one triangle and value O elsewhere. The
number of basis functions thus corresponds to the number of

. S, " o
Wherg ~ and i’ are pOSI.tIOI‘\ vectors in f|gld and Source{riangles in the surface model. Linear basis functions ane,
coordinates, and superscrigtand! label the field and source the contrary, defined according to the nodes of the mesh: A

surfaces, resp ectlvelﬁ/_. ﬁu:aces are labeled )ﬂuthndﬁ far:idg linear basis function is defined in the neighborhood of a node
refer to functions, which the operators act on. In all follo@/ '\ . the value 1 in one node, and the value falls linearly to
equations, the first superscript labels the field surfacethed zero towards the neighboring nodes

second superscript the source surface. If there is only oney general boundary potential can not be accurately rep-

superscript, It Iab_el_s the source surface. resented with a limited set of pre-defined basis functions.
In case of a finite ho_mogen_eoug \{olume conductor Wn’F‘ne error resulting from the application of basis functiags
known primary current distribution inside the conduct®®e t ;inyised with respect to a set of linearly independent Weig
integral equation for the surface potential [23], [24] read g, tions. The number of weight functions is chosen the same
@B = 2¢1030 — QDBB[¢B] (4) as the number of basis functioné. Application of basis and
weight functions leads thus to a system/éflinear equations
1 J CF =) with N unknoyvns. o _ _ .
oo (7) = —/ L dV, (5) The most simple weighting method is the point collocation
dmo Jy, |7 =7 method, in which the residual is minimized in a discrete
where superscript “B” labels the boundary surface of theet of points, defined with the Dirat functions. This point
model — in this work the body surface — and] the volume set consists of the centroids of the mesh triangles in case
containing all the sourcesy is the conductivity inside the of constant basis functions, and of the mesh nodes in case
thorax, andp., is the potential generated b&, in an infinite, of linear basis functions. Another option is to minimize the
homogeneous volume conductor. When the surface potentigdidual over the whole surfaces instead of discrete points
#® is known, the potential inside the volume conductor cafhis is the aim of the Galerkin method, in which the weight

-dS', Fe Sk (3)

E St |F

with

be calculated with [23] functions are chosen identical with the basis functionse Th
B BB points, in which the Galerkin solution is calculated, are th
(1) = doo (1) = DZ[P7](7), ) same as in the collocation solution. These definition points
where DB is the double layer operator of (3) with free of the Galerkin weight functions are in this work, for clgrit

In order to use (4), the source distribution needs to laso called the collocation points. The Galerkin solutisn i
modelled. This equation with varying forms @f2 is the however, not optimized for accuracy in these points.



C. Discretization of the Integral Equations

Discretization of (4), (7), and (8) leads to

AB®P = 2B -—2DPB®P (9)
1
1
§AB¢B _ _DBB(PB + DBH@H _ GBHFH, (11)

where®!, &8, andT contain values ofp'!, ¢B, andT'! in

the collocation points, and, B, D, and G are matrices with

elements

k _
Al =

Bk

ki
D;;

ki
G

/ wipl dS
Sk,
/ W o dS
Sk

/ wy DM [yi] dS

Sk,

[ wtclas.
Sk

12)
(13)
(14)

(15)

in which w} is theith weight function on surfacé, and
is the jth basis function on surfade

1) Point Collocation: In the point collocation weighting,
wk = §(7 — 7F), wherer

7 7

surfacek. With this choice,A* is simplified to an identity

%

matrix, B¥ = ¢..(7F), and

ki
D;;
GH

ij

In the constant coIIocatioan} is geometrically the solid
angle spanned by triangleof surfacel at centroid of triangle
1 of surfacek. In the linear colIocatioanj equals a linearly

~F is the ith collocation point on

(16)
17)

weighted solid angle spanned at nodeof surface k by

triangles that contain nodg¢ of surfacel (see formulas in

[25]).

2) Galerkin: In the Galerkin weighting,w
Inserting this to (12—15) and applying constant basis fonst

leads to

k

equals k.

(18)
(19)

(20)

(21)

whereT; labels theith triangle, A; is the area of trianglé,
and A is a diagonal matrix. With linear basis functions, theonstructed using the linear basis functions for interpareof

equations are

Al = /N k gk ds (22)
BfF = kb dS 23
: /N o (23)
D = |, VDN Wilds (24)
G}l = . PG [yl ds, (25)

where N; labels the neighborhood of node all triangles,
which contain the node

3) Computation of Element Integrals. In case of the point
collocation methods, all element integrations were caked
analytically. The double-layer integrals (16) were coneplut
with the Helsinki BEM library [25], which performs the
integrations as described in [26], [27]. Single-layer gm&ions
(17) were computed with formulas derived by Graglia: for the
constant basis, Eq. (19) of [28], and for the linear basis, Eq
(24) of [28] were used.

In the Galerkin methods, the inner (operator) integralsewer
calculated as in the collocation methods. The outer integra
including the integrals il }; andB}, were evaluated numer-
ically with the Gaussian quadrature. After testing 7- and 12
point quadratures, the 7-point formula was chosen; the tise o
the 12-point formula did not have significant effect on resul

D. Transfer Matrices

After discretization and integration, transfer matrices a
built. From (9) we get

T
(;AB N DBB) B— a", (26)

wheret labels the inversion of a deflated [29] matrix. In the
deflation procedure, the zero potential is, in this study, se
equal to the integral of the potential over the body surface.

The forward transfer matrix for the epicardial potential is
formed from (10) and (11) by eliminating tH&term and then
solving for ®, leading to

&8 = Lot (27)

-1
L = |:(;AB+DBB> GBH(GHH)IDHB] . (28)
1 (1

Each row of the forward transfer matrlx corresponds to one
collocation point on the body surface. The transfer matix f

a subset of the body surface points can thus be formed by
choosing only those rows of the full transfer matFix which
correspond to the points of interest. In the inverse epiahrd
potential problem, measurement data is available in eldetr
positions only. Then it is feasible to build a transfer matri
L., which yields the body surface potential in the electrode
positions. If the electrode positions do not match with the
collocation points, the electrode-specific transfer riatan be



the potential from the nearest nodes to the electrode positi solid, and in case of the Galerkin methods dotted. The varia-
(not used in this study). tion of the error of each method between different sources
When the body surface potenti@®® is known, the epicar- is visualized with a shaded region around the error curve.
dial potential can be estimated, e.g., by multiply#§ with The borders of this region are tH&'" and 84" percentiles
the inverse of the transfer matrik. This inverse potential of the dataset, which form a non-parametric equivalent to
problem is ill-posed, and. needs to be regularized before ibne standard deviation. The variation regions are plotti¢tdl w
can be inverted. In this study, the Tikhonov zeroth and sg&cotrtansparent gray: the more regions overlap, the darkerrtye g
order regularizations (see [6]) were used. In the Tikhonov 2In Section IV-C3, the results with added modeling error
regularization, the Laplacian matrix on the epicardiafate are described. In addition to the basic error plot described
was built according Eq. (5) in [30]. The regularization paran the previous paragraph, these plots contain informdtion
meter A was optimized so that the relative error of the recoracilitating the comparison to the results in optimal cdiodis.
structed epicardial potential was minimized. Our soludioan The median change of the relative error due to the modeling
thus be called “best-possible Tikhonov solutions” as in [6] error is plotted as described in the previous paragraph, but
without the variation regions. In addition, the variatiohtloe
E. Error Measures error between different methods is plotted as a bar graph.
he height of a bar is equal to the median of the difference
etween maximum and minimum error for each source in
8ptimal conditions.

The error evaluation was done with the relative error (R
estimate. The relative error was computed both in the coll
cation points (cp) and as integral over the surface (int):

=) =.)]2
RE,, = V2l () fﬁtgr’)] (29) G. Outline of Computations
2.il0:(73) The first step in our evaluation of different basis and
[ (¢r — ¢)?dS weighting functions was to validate the methods and com-
REins = 5 ) (30) pare them to analytical solutions. The collocation methods
\/f¢r ds were already validated in [25]; here we performed similar,

where the subscript “r" refers to reference result, and “Put extended analysis. The second step was to evaluate the
correspondingly to the test result. The integration of,RE Performance of different basis and weighting scenariosién t
was performed numerically with the 7-point Gaussian quadrfé)rward calculation of the epl_cardlal potential in a thora>_<
ture. RE, corresponds to the minimization criterium of the?haPed geometry. In connection to that, the error resulting

collocation methods, and RE to the criterium of the Galerkin from the discretization of the epicardial potential wasoals
methods. assessed. The third step was to compare the epicardias@ver

In initial analysis, we also used the correlation coeffitiers@lutions produced with different element basis and wénght
(Eq. 35 in [25]). The correlation coefficient showed less difcenarios. In all computations, care was taken to keep the
ference between the methods than the RE did; this means fHAR/YSiS unbiased.
differences between the methods are more of the amplitude
than of the morphological nature. We did all further analysi [1l. ANALYTICAL VALIDATION

with the RE measure. . L . . .
The analytical validation was carried out in a spherical,

o homogeneous volume conductor with a current dipole source.

F. Plots and Statistics The analytical solutions were calculated as described ly Ya

The results of the computations are presented graphica[¥l]. The surface of the sphere was tessellated into 642
plotting the median of the relative error as function of eur nodes and 1280 triangles. The test sources were placed at
depth. Before taking the median, the results from radial a®dequidistant depths betwedf.1R,0.9R], where R is the
tangential sources are pooled together. Median insteactahmradius of the sphere. The mean triangle side lengthOais?.
was chosen, because the error distributions are skewed, fpar each depth, 100 random positions were generated, and for
tially due to the absolute-value nature of the errors. Statil each position, the electric potential generated by a rauidl
significance of the difference of medians was evaluated wightangential unit current dipole was calculated.
the Wilcoxon signed rank test, a non-parametric equivatent In similar analysis published earlier [19], [24], the rasliu
the paired t-test. Briefly, all results pinpointed in thettex of the sphere in the analytical calculations has been scaled
the following sections were statistically significant; fessults in order to match the field calculation points better with the
with sources at relative depth 0.7 and some results with true spherical surface. Ferguson and Stroink [24] expeviete
superficial sources (relative depth0.8), p < 0.001, and for with various scalings, while Tissari and Rahola [19] matthe
the other mentioned results with superficial sourges,0.05. the radius of the reference sphere with the mean distance of

In each plot, there is one curve for each computationtile quadrature points from the origin. In this work, both nhon
method. For the constant basis methods, the data points scaled and scaled spheres were used. In the non-scale@ spher
marked with open circles, while the data points of the linedélhe nodes of the mesh lie on the surface of the sphere; the
methods are marked with black crosses. The line connectifages of the triangles thus lie inside the true sphericdbsar
the data points is in case of the collocation methods drawm the scaled sphere, the radius of the reference sphere was



No scaling Scaling at nine equidistant depths inside the epicardial surfade. A

each depth, 50 randomly positioned dipoles with radial and
tangential orientations were created. The same set of esurc
was used in all calculations in the Dalhousie model.

First, the potential generated by the test dipole on the sur-
face of the thorax was calculated with (9). Then, the pogénti
inside the thorax was calculated with (6). ThE operator was
discretized according to (16). The potential was calcdléte
2800 quadrature points over the epicardial surface (from no
on called “the accurate epicardial potential”) and alsohie t
collocation points. This approach produces a point cotlooa
solution; using it in connection with the Galerkin method
would thus favor the collocation methods. In case of the
Galerkin methods, (6) was discretized fully on both epitdrd
and body surfaces with methods presented in Section [I-C2.

The surface and epicardial potentials obtained as deskcribe

0.2 0.4 0.6 0.8 “02 0.4 0.6 0.8 ) . .
Relative depth Relative depth here served as input and reference data in following computa

tions. Both the reference and the test solution were condpute
with the same set of basis and weight functions, unlessdstate

explanation, see Section II-F. otherwise.

Fig. 1. Median relative error of the electric potential ore teurface
of a spherical volume conductor with different source depffs further

) o B. Discretization and Forward Calculation of the Epicardial
set equal to the mean distance from the origin to the surfaggiential

of the triangulated sphere.

Results of these calculations are presented in Fig. 1. In, . . . . "
X otential was assessed by computing the epicardial patémti
the most simple case, shown on the upper left subplot, ﬁ]o

scaling was used and the error was evaluated in the colbrcat € collocation points, interpolating it over the surfagehhe
ointsg In this setup. methods with constant basis encdrmbasis functions used in the computation, and then comparing
P ' P, P the interpolated potential to the accurate epicardial mi@te

gﬁge;etrz?_gége gitrtzcis t\évghcclnlrrlgg ntb E?Bséslér:(?nc?ég)o:ng; gdian relative errors for each method as function of source
P ' . ooepth are displayed in the left subplot of Fig. 2. Methodswit
produced the smallest error. For superficial sources, the cQ

stant collocation (CC) performed best. At all source depties anear basis outperformed the constant basis methodsp&xcg

i . in case of the LC method and sources very near the epicardial

linear Galerkin (LG) method produced the largest error. When
Surface. The LG method had the smallest errors at all source

scaling was used and error was evaluated in the coIIocauggpthS_ Constant methods had almost identical perfornsance

oints (the upper right subplot), the linear collocationtinoel . .
?LC) oufltperftfrlcr)ned ?)ther mizthznds. The LG method had age{}ﬁse of deep sources. With superficial sources, the CG method
the largest error, except in case of deep sources. was slightly more accurate than the CC method.

: Next, the error due to the use of forward transfer malrix
Next, the relative error was evaluated over the whole sarfa 8) with the discretized epicardial potential was studiBe
(RE;u). The results are shown in the subplots at the botto P P

row of Fia. 1. Now the linear basis clearly outoerformed threconstructed body surface potential was calculated et
constant %.asi.s Results obtained with the >(/:C aFr)1d CG methcﬁ]d%trix from the discretized epicardial potential, and tesuit
T . was compared to the original body surface potential that was
were practically identical. When the reference sphere was ng . .
c|alculated directly from the source with (9). The error was
scaled, the LC method had overall the best performanceewhi . : . .
. , L evaluated in the collocation points only, because in the BEM
the LG method was slightly better with superficial source

With the scaled sphere, the LG method was superior to t .ee. pot_ential on a l?ou_ndary su_rfa(.:e outside the collocation
other methods at all source depths. points is obtained via interpolation; the use o_f iRBwould
thus not lead to a more accurate error estimate over the
body surface. The results are displayed in the right subplot
IV. THORAX-SHAPED GEOMETRY of Fig. 2. Again, the LG method had the best performance.
A. Computational Setup Methods using constant potential produced similar errors f

deep sources, but in case of sources near the epicardiatsurf

The forward and inverse computations of epicardial potep-
tial were performed in the Dalhousie thorax model [6]. Th{e}'e CG method performed better than the CC method. For al

Dalhousie thorax surface consists of 352 nodes (700 tmglsource depths, the LC method produced the largest error.

and the epicardial surface of 202 nodes (400 triangles). The ) o )

epicardial surface is cut at the level of the valves; it sunds C- Inverse Calculation of the Epicardial Potential

thus only the ventricles. 1) Computational Setup: In the inverse computation of the
Also in computations with the Dalhousie model, singlepicardial potential, we used the Helsinki body surfacepot

current dipoles were used as sources. The dipoles weredplatial mapping layout containing 120 thoracic electrodes].[32

The error caused by the discretization of the epicardial
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Fig. 2. Errors due to the discretization and forward compaabf the

epicardial potential for dipolar sources at different dspion the left subplot
is the median integral error on the epicardium, and on the agbtthe median
point-wise error on the body surface. For further explamatsee Section II-F.
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right side subplots.

3) Collocation points: The inverse solution was done with
the full L. matrix and body surface data calculated in all
collocation points

The electrode positions in the Helsinki layout have matghin 4) Cross interpolation: The inverse solution was done
nodes in the Dalhousie thorax model. For calculations with ~ With the full L matrix. For constant methods, the body
collocation points in the centroids of the mesh trianglés, t surface data were calculated with linear basis in the
layout was shifted so that each electrode was placed in a nodal electrode points and interpolated from these nodes
triangle centroid while retaining the geometry of the whole 0 all triangle centroids. For linear methods, the calcu-

Fig. 3. The Dalhousie thorax model and anterior electrodeuts/for linear
(on left) and constant basis (on right)

layout. This was done in order to make direct calculatiort wi lations were done with constant basis in the centroid
the L, matrix possible also with the constant basis functions. ~ €léctrode points, and the body surface data were then
Anterior parts of the electrode layouts are visualized m Bi interpolated to all nodes.

The results of scenario 3 were similar to those of scenario 1,
The inverse computation of the epicardial potential hasgith slightly smaller overall error level. Because there ar
commonly been done with a transfer matrix equivalent to ono electrode setups, which would cover the whole thorax
L. The use of the inverse transfer matrix built from the evenly, the scenario 3 has no practical relevance. Thetsesul
matrix requires knowledge of the potential on the whole bodyf scenario 3 are hence not presented in this paper. Results
surface. In practice, the potential is known only in eledt&ro of scenario 4 are also left out, because they were pragticall
positions. The full body surface potential is in such a casdentical to those of scenario 2.
obtained via interpolation. In this study, this interp@at The median relative error of the body surface potentials
was done by minimizing the surface Laplacian over the bodijue to the interpolation in scenario 2 was between 5.5 and
surface as described in [33], refined with a more advanced percents for deep and superficial sources, respectively
formulation for the Laplacian (Eg. 5 in [30]). In visual comparison, the interpolated potential was taihjc
For each test source, the inverse computation was perfornstidhtly smoother than the potential obtained with scemari
with both Tikhonov 0 and Tikhonov 2 regularizations. Four In all inverse calculations, the Tikhonov 2 regularization
different scenarios regarding the electrode setup andpiote clearly outperformed the Tikhonov 0. Similar results wesma
lation were used: obtained earlier [6]. The results obtained with the TikhoGo
1) Electrodes: The inverse solution was done with tlie regularization are thus not presented.
matrix using the body surface potential data calculated2) Inverse Computation in Optimal Modeling Conditions:
in the electrode points. These results are presentedlirthe first analyses, the inverse potential problem wassasse
the left side subplots of Figures 4-6. without adding any error to the model: the reference and the
2) Interpolation: The inverse solution was done with theiest solutions were computed in identical geometries. This
full L matrix. The body surface data were calculated igituation is referred to as “optimal conditions”. Resulte a
the electrode points, from which they were interpolatepresented in Fig. 4.
to all collocation points. Results are presented in the When electrode data were used and the error was evaluated



in the collocation points, differences between the coliora ! Electrodes Interpolated

and Galerkin weightings and different basis functions were |73 ¢G
small (top left plot in Fig. 4). The constant methods produce || = L¢
smaller errors than the linear methods at all source depths.o¢
For deep sources, the CC and CG methods had very simifaro,4 g
performances, while with superficial sources the CG method | i
was better. Also the linear methods had similar performsnce "’ " P
with deep sources. When the source was brought closer to the Oﬁ@ﬁ@ﬁwﬁw
surface, the LC method produced slightly smaller error than
the LG method.
In case of electrode data and integrated error (bottom left os
in Fig. 4), the linear methods produced smaller errors thant _ ¢
constant ones at all source depths. In all calculations|.Ge =
method yielded the smallest errors. The differences betwee **
errors produced by linear and constant methods were largero:

o

1

0.8

0.6

0.4

0.2

than in other scenarios or in any computations done with the o Lo P ——
i 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
RECp estimate. Relative depth Relative depth

When the inverse reconstruction was performed with inter-
polated data, the error was at all source depths clearlglargig. 5. Relative error in the inverse calculation of the apital potential
than in case of the electrode data. FothEthe differences With Ti_khon_ov 2 regularization, when there is_a 5 mm error ie_ fosition _of
between the methods were smaller than in case of electr i epicardial surface. Upper sets of curves in each subipleian RE with

shifted model; Lower sets of curves: median increase ofenompared
data. to the optimal conditions; Bars: Variation of error betweéifiedent methods

3) Inverse Computation with Added Modeling Errors: In in the optimal conditions. For further explanation, see iBack-F.
the following analysis, errors were included in the anatahi
model. First, the epicardial surface was moved 5 mm towards
the anterior thorax, while keeping the source positionsdfixe Electrodes Interpolated
relative to the epicardium. The forward and epicardial refe :
ence solutions were calculated in this geometry, and thersev
calculations were performed in the original geometry. Resu g 06
are displayed in Fig. 5. 2

In case of electrode data (Fig. 5, the left column), the error
behavior was similar to that in the optimal conditions, but
with larger overall error level. For RE, the error increase 0
was larger than the error variation between different mesho
in the optimal conditions, except in case of superficial sesr
For RE,;, there was no performance difference between os
the LC and LG methods or the CC and CG methods. The
linear methods suffered more from the modeling error thaéi?
the constant methods did. The overall error increase was of *
the same order with the variation of RE in the optimal 0.2
conditions.

In case of interpolated data (Fig. 5, the right column) and
deep sources, the error increased slightly, but for supedrfic
sources it even decreased. With interpolated data, allodsthrig. 6. Relative error in the inverse calculation of the apital potential
produced practically the same RE The error increase was With Tikhonov 2 regularization, when the lungs are inclugtethe calculation
in general smaller than the error variation between diﬁCEreof the reference potential but not in the inverse solutioppér sets of curves

. . in each subplot: median RE with the erroneous model; Lowercfetsrves:
methods. The error level was higher than in case of electrogedian increase of errors compared to the optimal conditioass: B/ariation

data. of error between different methods in the optimal conditioRer further
In the second error scenario, the body surface potentfiPlanation. see Section II-F.

and the reference epicardial potential were calculatedh wit

poorly conducting lungs included in the model (lungs-tixora

conductivity ratio 1:4). The inverse transfer was computed.th both timates | than th iati f th
with the transfer matrix of the homogeneous model. Resu dth both error estimates farger than the variation ot therer

are displayed in Fig. 6. etween different methods in the optimal conditions.

When using only the electrode data, the increase of the erroiith the interpolated data, the errors increased little ar n
was larger than in the earlier analysis with the positiomrerr at all, and RE,; even decreased for superficial sources. The
With RE;,;;, the LG method suffered most and the CG methoetror performances of electrode and interpolated data were
least from the added modeling error. The error increase wasctically identical.

0.8

0.2/

1

Relative dépth - Relative depth



V. DISCUSSION unexpected: in the non-scaled sphere, the nodes are on the
A. Formulation of the Equations same surface with the spher.e of Fhe reference solution,rand i
: . . . the scaled sphere the centroid points are closer to theerefer
The operator notation used in our formulation of the integra : .
. : L : . > surface than the nodes are. One might hereby hypothesize tha
equations is not commonly used in biomedical engineering. :
L ) e LC method would suffer and the CC method benefit from
The notation is compact, and the shape of the equations d%s , .
. . - € scaling, but results showed the opposite.
not change in the discretization process. The use of opsrato

> . When the relative error was integrated over the surface

also facilitates the programming of element solvers. For e
) ) . Eint), the LC method performed better than the LG method

ample, consider (7) and (8): These equations are commo

IM . .
with deep and semi-deep sources, when no scaling was used.
presented as L L ) X
This is surprising, as the error evaluation scenario fatioes
PBBgB 4 pBHH L gBHTH  — (31) LG method. Only when the scaling was used in connection
PHBgB | pHHgH | GHHPH  _ (32) with the RE,; measure, the LG method outperformed the
’ other methods. The results of Tissari and Rahola [19] falore

where G, P, and PP! correspond to ouG, D" and the LG method. Their analysis was done using only one
DPH, respectively. Operation®' and PP, however, are scenario with a scaled sphere and error evaluation in a dense
equivalent to ourD"" — 1/2 and DBB + 1/2. Because of point set (13 points in a triangle) — a scenario very similar
this inconsistent formulation, the lab&l loses its geometrical to our scaled sphere and REmeasure.
meaning. In our formulation, all geometrical relations are

readily available and labels are uniquely defined. ) o ] ) i
D. Discretization and Forward Calculation of the Epicardial

Potential

B. Element Integrals _ )
In order to get good solutions to the inverse problem,

Element integrations of th& matrix have in earlier works L
; . . .. .an accurate forward transfer is important, regardless ef th
been carried out numerically. When the field point is in

. : ) . . ecific inverse techniques: errors due to the forward fieans
the integration domain, the integral of (2) contains a wea . .
) ; 2 ) . can not be corrected in later phases of the analysis. Thésesu
singularity. Methods for approximating the singular intdg

in, Section IV-B show that the smallest error in the forward
have been successfully used [5]-[7], but the error caused S s :

o : . .computation is obtained with the LG method. The largestrerro
by these approximations has been a subject of discussion:

Recently, Wang and Rudy applied the method of fundamen[ﬁ?uned from the LC method. The CG method was better than
solutions (MFS) to the epicardial potential problem [3411’ e CC method, especially with superficial sources. Onereas

X ) . . . or the large errors with the LC method is the so-called auto-
discussing the singular integrals as an important problem.. e . )
L . solid angle problem and how it is dealt with [24]; we used the
of the BEM. Hoétek and Clements [6] discussed that the .
. . . ; : method suggested by de Munck [24], [27]. With the CC, CG,
numerical quadrature used in the singularity extractiory ma :
. ; and LG methods the auto-solid angle causes no problem as
decrease the performance of their LC computations. However . . . X
. . the calculations are performed in the smooth triangle®atst
the integral of (17) can, at least in case of constant an
X . . . \ of nodes.
linear basis functions, be calculated analytically as wdesd Horatek and Clements performed similar analvsis with
by Graglia [28]. The use of analytical integration simpkfie b y

the programming and computations and removes one fac&he same volume conductor model using a single deep-lying

r ) :
of uncertainty from the computations. However, the use gpole source and constant and linear collocation meth@[ds [

. . omparing the results, the errors in the forward transfen wi
accurate integrals does not necessarily lead to betteltsres%he CC method were of the same order. but our values were
as Mosher et al. discussed in [20]. ’

slightly smaller: Hoatek and Clements reported a relative
error of 0.92%, while our calculations with the CC method
C. Analytical Validation and deep sources produced median error of 0.51%, ranging
The results presented in Section Ill show that no methdigttween 0.19% and 0.88%. The difference may be due to our
is optimal in all our test scenarios and for all source depthsse of analytical integration i/ operations, but it can result
The only clear result is that when the error is evaluated ovigom any difference in the numerical treatments, too.
the whole surface, the linear methods outperform the cohsta In case of linear basis functions, Hoek and Clements [6]
ones. This is easy to accept: in constant potential methodsported the relative error of 5.3%, while the median error
the potential is assumed constant over each whole triangte,our calculations was 1.5%, ranging between 0.98 and 1.8
while in the linear methods, the potential is interpolatedercents. It is, however, not apparent, whether the referen
linearly between the nodal potential values, thus beingljik solution used by H@tek and Clements was calculated directly
to follow the continuous reference data better than theteons or interpolated from the constant potential solution; teipo-
interpolation. The same reasoning applies to further tesd lation was used, it explains the worse results. The nunlerica
well. integrations used by Hatek and Clements in botl® and
When the error was analyzed in the collocation points operations are likely to form part of the error as well. To
(RE;p) and no scaling was used, the CC method perform@dovide comparison to the numbers presented here, our LG
better at all source depths than the LC method, whereasnirethod with deep sources yielded a median error of 0.09%,
the scaled sphere the situation was opposite. This resdlt wéth values ranging between 0.03 and 0.16 percents.



The error resulting from the discretization of the epicakdirelative error, when the computations were performed with
potential has, to the authors’ knowledge, not been assestsal electrode data. The increase of the error was of the same
before. The discretization error curves serve as goodeefey, order as the error variation between the methods. When RE
when analyzing the error sources in modeling or optimizingas used, all methods suffered practically as much from the
the meshes. The discretization error is also the theoteticksplacement. In case of RE, the linear methods suffered
minimum of the integrated error (RE) in the inverse transfer. more from the modeling error than the constant methods did.
Results from the analysis of the discretization error show When the lungs were included in the reference but not in
that the linear methods outperform the constant ones, ahe test solution, the error grew on average by 20 percentage
the LG method produces the smallest errors at all sourngrits. The increase was considerably larger than the i@miat
depths. The success of the LG method was expected, asdhéhe error between the methods. Hereby we can say that the
Galerkin approach aims at minimizing this kind of error. Thehoice of the computational method is not important, if ¢éarg
CG method, despite the Galerkin weighting, did not performmodeling errors such as omission of the lungs are preseat. Th
better than the CC method. Overall, the discretizationrerrimportance of modeling of the lungs has also been demon-
is relatively large for the constant methods: it exceeds 108frated in a phantom study regarding focal source locadizat
for all source depths. With superficial sources, all methodtselectro- and magnetocardiography [35]. In most puhibret
produce over 20% discretization errors. This is not suyis regarding epicardial potential computation, includingemt
as sources at relative depths 0.8 and 0.9 are on average avdyks presenting novel computational techniques [9], ,[34]
0.57, and 0.29 triangle sidelengths away from the nearéstgs have been omitted.
surface point. In practice, an epicardial mesh like the eglu  When interpolated full thorax data were used, differences
here is too coarse for accurate characterization of smales between the methods were smaller than in case of the electrod
cardiac electrical events. With relation to the forwarchsfer data. The errors in the optimal conditions were larger, but
errors, the discretization error comes across as largeseThenodeling errors had smaller effect on results than in casieeof
numbers can, however, not be compared, because the forwslettrode data. Overall, the error behavior was less degeénd
transfer error was assessed in the collocation points only. on the modeling and error evaluation conditions than with th

electrode data. When the lungs were included in the reference
E. Inverse Calculation of Epicardial Potential solution but omitted in the inverse calculation, the intéaped

The errors present in the inverse calculation of the epiabrddata performed, according to visual inspection of the error
potential were assessed both in optimal modeling conditioourves, equivalently with the electrode data. In numerical
and in two scenarios with added modeling errors. The resuiigmparison, the electrode data yielded smaller errorsialso
of these calculations are only valid in case of Tikhonov 0 arttlis case. In practice, interpolation would likely prodigeyer
Tikhonov 2 regularizations; generalizations to other igee errors than in this simulation study due to the modelingrsrro
computation scenarios can not be made. involved at the extremities of the model. Hence we see no

In all calculations, the Tikhonov 2 regularization outperreason for interpolating the data from the electrode pawaés
formed the Tikhonov 0. When the error was evaluated ihe whole thorax.
the collocation points (RE), differences between the basis When comparing the performance of the constant and linear
functions and weighting methods were small. In generdigeit methods, it is important to keep in mind that the electrode
the CC or the CG method produced the smallest error. layouts were optimized for each method. For example, if

Comparison of the relative errors to those obtained hjie segmentation method places nodes at electrode pgsition
Horétek and Clements [6] resembles the forward transfnear methods are likely to perform better than the corstan
comparison done in Section V-D: The errors with the C@ethods; interpolation from the nodes containing the elec-
method are of the same order, our computations producittgdes to the centroids (the cross interpolation scenario i
slightly smaller values. In our computations, the LC metho8ection IV-C) would likely lead to errors equivalent to thos
performed better than in those of Hoek and Clements, but produced with the interpolated data.
worse than the CC method. Hiek and Clements discussed
that the poorer performance of the LC method is due to
the numerical quadratures. Our study confirms their results
and shows that some accuracy difference remains also witin this work, the use of constant and linear collocation and
analytically integrated elements. Galerkin methods in bioelectrical forward and inverse prob

When the error was evaluated over the whole epicardigm were studied. The focus was on the epicardial potential
surface (RE,), the difference between the methods was larggroblem.
than in case of RE. The linear methods produced smaller Inanalytical validation, no combination of basis and weigh
errors than the constant methods did in all calculations. ing functions was preferable to others in all situationsdis:
the optimal conditions, the LG method produced the smallegetization and forward computation of the epicardial ptse,
errors. In computations with displaced epicardium, théedif the linear Galerkin (LG) method performed best.
ence between the LG and LC methods got smaller, and in theThe electrode-specific transfer matilix is preferable over
scenario with the omitted lungs there was no visible difieee  the full transfer matrixl. and the Tikhonov 2 regularization

The modeling error resulting from a 5 mm displacememver the Tikhonov 0. In optimal modeling conditions, the
of the epicardium added up to ten percentage units to thest combination of basis and weight functions depends on

VI. CONCLUSIONS
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electrode positions and chosen error evaluation technigq{®] C. Ramanathan and Y. Rudy, “Electrocardiographic imaglh Effect
When large modeling errors are present, the choice of the
basis and weighting functions is not significant.
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