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Boundary Element Computations in the Forward
and Inverse Problems of Electrocardiography:

Comparison of Collocation and Galerkin Weightings
Matti Stenroos∗ and Jens Haueisen

Abstract—In electrocardiographic imaging (ECGI), epicardial
potentials are reconstructed computationally from electrocardio-
graphic measurements. The reconstruction is typically done with
help of the boundary element method (BEM), using the point
collocation weighting and constant or linear basis functions. In
this work, we evaluated the performance of constant and linear
point collocation and Galerkin BEMs in the epicardial potential
problem.

The integral equations and discretizations were formulated
in terms of the single- and double-layer operators. All inner
element integrals were calculated analytically. The computational
methods were validated against analytical solutions in a simplified
geometry. On the basis of the validation, no method was optimal
in all testing scenarios.

In the forward computation of the epicardial potential, the
linear Galerkin (LG) method produced the smallest errors. The
LG method also produced the smallest discretization error on
the epicardial surface. In the inverse computation of epicardial
potential, the electrode-specific transfer matrix performed better
than the full transfer matrix. The Tikhonov 2 regularization
outperformed the Tikhonov 0. In the optimal modeling condi-
tions, the best BEM technique depended on electrode positions
and chosen error measure. When large modeling errors such as
omission of the lungs were present, the choice of the basis and
weighting functions was not significant.

Index Terms—Boundary element methods, Electrocardiogra-
phy, Galerkin method, Forward problem, Inverse problem

I. I NTRODUCTION

Electrocardiographic imaging (ECGI) [1]–[3] is a promising
non-invasive method for the characterization of cardiac elec-
trical events. In ECGI, epicardial potentials are reconstructed
computationally from electrocardiographic measurementsper-
formed on the body surface. The field computations in ECGI
and other cardiac inverse modeling scenarios are commonly
done with help of the boundary element method (BEM) [4].

In the BEM, the boundary potentials are discretized into
linear combinations of basis functions, and the weighted
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residual of the discretized solution is minimized [4]. There are
two commonly used weighting methods: the point collocation
and the Galerkin method. In the point collocation method,
the residual is minimized in a set of discrete points on the
boundary surfaces. In the Galerkin method, the integral of the
residual over the boundary surfaces is minimized. ECGI and
other epicardial potential modeling studies utilizing theBEM
have so far been done with point collocation weighting and
mostly with constant [5]–[7] and linear basis functions [8],
[9].

In this work, we present the application of the constant and
linear Galerkin methods to the forward and inverse problems
of electrocardiography in terms of epicardial potential. We
compare these methods to the constant and linear point collo-
cation methods. Further, we assess the influence of modeling
errors on the simulation results obtained with all four methods.

While the epicardial potential problem is formulated di-
rectly in terms of potential outside the source region, other
approaches to the forward and inverse problems of electrocar-
diography utilize source models, e.g., transmembrane potential
distributions (TMP) [10]–[13] or uniform double layers (UDL)
[14]. The UDL model aims at directly solving for the activa-
tion wavefronts, and TMP models are used in activation time
imaging (ATI), too [11]–[13]. In analytical validation studies
on forward computation with the TMP model, the Galerkin
weighting has performed better than the collocation weighting
[11], [13]. Because of the different mathematical approaches,
these results can not be generalized to the epicardial potential
problem: In the epicardial potential problem, both single-and
double-layer integral operations need to be discretized, while
in source modeling problems, double-layer integral operations
and the infinite medium potential due to the sources are
used. In ATI, a priori information on cardiac activation is
also used in a way advantageous to the Galerkin method
[11]. Advantages and limitations of different approaches are
discussed in [15].

In addition to the BEM, the epicardial and transmembrane
potential problems have been solved with the finite element
method (FEM) [13], [16], [17]. The main advantage of the
FEM is the possibility to model anisotropic structures. If
isotropic, piece-wise homogeneous models are used, the FEM
does not seem to offer benefits [13]. It is also possible to use
the BEM elsewhere, but FEM in anisotropic compartments
[18].

For neuroscientific applications, the point collocation and
Galerkin methods have been evaluated in simplified and brain-
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shaped volume conductors with a dipolar source model. The
results of Tissari and Rahola [19] and Mosher et al. [20] are
in favor of the Galerkin method.

It has been suggested [21] that a homogeneous volume con-
ductor model is adequate for the epicardial potential problem.
After that study, an inhomogeneous BEM model has, to our
knowledge, not been used in the epicardial potential problem.
Therefore, the homogeneous model is used as starting point in
this study, too. Also error measures and regularization meth-
ods are chosen according to common practice in epicardial
potential computations.

II. M ETHODS

A. Integral Equations for the Electric Potential in a Volume
Conductor

In a volume conductor under quasi-static conditions [22],
the electric potentialφ generated by slowly varying primary
currents~Jp obeys the Poisson equation

∇ · (σ∇φ) = ∇ · ~Jp, (1)

whereσ is the electric conductivity. In order to do boundary
element modeling, the Poisson equation is converted to surface
integral form with the Green theorem. To keep the notation
compact, we present the integral equations in terms of single-
and double-layer operatorsG andD:

Gkl[f ](~r) =
1

4π

∫

Sl

f(~r ′)

|~r − ~r ′|
dS ′, ~r ∈ Sk (2)

Dkl[g](~r) =
1

4π

∫

Sl

g(~r ′)
(~r − ~r ′)

|~r − ~r ′|3
· ~dS ′, ~r ∈ Sk, (3)

where ~r and ~r ′ are position vectors in field and source
coordinates, and superscriptsk andl label the field and source
surfaces, respectively. Surfaces are labeled withS, andf andg
refer to functions, which the operators act on. In all following
equations, the first superscript labels the field surface andthe
second superscript the source surface. If there is only one
superscript, it labels the source surface.

In case of a finite homogeneous volume conductor with
known primary current distribution inside the conductor, the
integral equation for the surface potential [23], [24] reads

φB = 2φB
∞ − 2DBB[φB] (4)

with

φB
∞(~r) =

1

4πσ

∫

Vs

~Jp · (~r − ~r ′)

|~r − ~r ′|3
dV ′, (5)

where superscript “B” labels the boundary surface of the
model — in this work the body surface — andVs the volume
containing all the sources,σ is the conductivity inside the
thorax, andφ∞ is the potential generated by~Jp in an infinite,
homogeneous volume conductor. When the surface potential
φB is known, the potential inside the volume conductor can
be calculated with [23]

φ(~r) = φ∞(~r) −DB[φB](~r), (6)

whereDB is the double layer operator of (3) with free~r.
In order to use (4), the source distribution needs to be

modelled. This equation with varying forms ofφB
∞ is the

starting point in, e.g., TMP and UDL modeling. The epicardial
potential problem is formulated outside the source region.
Thus it can be solved directly in terms of potential. Con-
sequently, no source models are needed. In a homogeneous
thoracic volume conductor model, this potential problem leads
to an equation pair [5], [6]. Utilizing the operator notation, we
get

1

2
φH = −DHB[φB] +DHH[φH] −GHH[ΓH] (7)

1

2
φB = −DBB[φB] +DBH[φH] −GBH[ΓH], (8)

where superscripts “B” and “H” label the body surface and
the outer surface of the heart muscle (epicardium), andΓH =
∂φH/∂n is the normal component of the potential gradient on
the epicardial surface.

B. Boundary Element Discretization

To solve the potential from the surface integral equations,
the surface potentials are discretized with the boundary ele-
ment method [4], [25]. The discretization procedure consists
of three phases: tessellation of the boundary surfaces, approx-
imation of the boundary potentials with a linear combination
of polynomial basis functionsψ, and minimization of the error
of the approximated solution with respect to some weight
functions w. In this work, the surfaces are tessellated into
flat triangles, and the basis functions are defined accordingto
either the nodes or triangles of the mesh.

In case of constant basis functions, each basis function
has the value 1 in one triangle and value 0 elsewhere. The
number of basis functions thus corresponds to the number of
triangles in the surface model. Linear basis functions are,on
the contrary, defined according to the nodes of the mesh: A
linear basis function is defined in the neighborhood of a node.
It has the value 1 in one node, and the value falls linearly to
zero towards the neighboring nodes.

A general boundary potential can not be accurately rep-
resented with a limited set of pre-defined basis functions.
The error resulting from the application of basis functionsis
minimized with respect to a set of linearly independent weight
functions. The number of weight functions is chosen the same
as the number of basis functionsN . Application of basis and
weight functions leads thus to a system ofN linear equations
with N unknowns.

The most simple weighting method is the point collocation
method, in which the residual is minimized in a discrete
set of points, defined with the Diracδ functions. This point
set consists of the centroids of the mesh triangles in case
of constant basis functions, and of the mesh nodes in case
of linear basis functions. Another option is to minimize the
residual over the whole surfaces instead of discrete points.
This is the aim of the Galerkin method, in which the weight
functions are chosen identical with the basis functions. The
points, in which the Galerkin solution is calculated, are the
same as in the collocation solution. These definition points
of the Galerkin weight functions are in this work, for clarity,
also called the collocation points. The Galerkin solution is,
however, not optimized for accuracy in these points.
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C. Discretization of the Integral Equations

Discretization of (4), (7), and (8) leads to

A
B
Φ

B = 2B − 2DBB
Φ

B (9)
1

2
A

H
Φ

H = −D
HB

Φ
B + D

HH
Φ

H − G
HH

Γ
H (10)

1

2
A

B
Φ

B = −D
BB

Φ
B + D

BH
Φ

H − G
BH

Γ
H, (11)

whereΦ
H, Φ

B, andΓ contain values ofφH, φB, andΓH in
the collocation points, andA,B,D, andG are matrices with
elements

A
k
ij =

∫

Sk

wk
i ψ

k
j dS (12)

B
k
i =

∫

Sk

wk
i φ∞ dS (13)

D
kl
ij =

∫

Sk

wk
i D

kl[ψl
j ] dS (14)

G
kl
ij =

∫

Sk

wk
i G

kl[ψl
j ] dS, (15)

in which wk
i is the ith weight function on surfacek, andψl

j

is the jth basis function on surfacel.

1) Point Collocation: In the point collocation weighting,
wk

i = δ(~r − ~r k
i ), where~r k

i is the ith collocation point on
surfacek. With this choice,Ak is simplified to an identity
matrix, Bk

i = φ∞(~r k
i ), and

D
kl
ij = Dkl[ψl

j ](~r
k
i ) (16)

G
kl
ij = Gkl[ψl

j ](~r
k
i ). (17)

In the constant collocation,Dkl
ij is geometrically the solid

angle spanned by trianglej of surfacel at centroid of triangle
i of surfacek. In the linear collocation,Dkl

ij equals a linearly
weighted solid angle spanned at nodei of surface k by
triangles that contain nodej of surface l (see formulas in
[25]).

2) Galerkin: In the Galerkin weighting,wk
i equalsψk

i .
Inserting this to (12–15) and applying constant basis functions
leads to

A
k
ii = Ak

i (18)

B
k
i =

∫

T k

i

φ∞ dS (19)

D
kl
ij =

∫

T k

i

Dkl[ψl
j ] dS (20)

G
kl
ij =

∫

T k

i

Gkl[ψl
j ] dS, (21)

whereTi labels theith triangle,Ai is the area of trianglei,
and A is a diagonal matrix. With linear basis functions, the

equations are

A
k
ij =

∫

Nk

i

ψk
i ψ

k
j dS (22)

B
k
i =

∫

Nk

i

ψk
i φ∞ dS (23)

D
kl
ij =

∫

Nk

i

ψiD
kl[ψl

j ] dS (24)

G
kl
ij =

∫

Nk

i

ψiG
kl[ψl

j ] dS, (25)

whereNi labels the neighborhood of nodei: all triangles,
which contain the nodei.

3) Computation of Element Integrals: In case of the point
collocation methods, all element integrations were calculated
analytically. The double-layer integrals (16) were computed
with the Helsinki BEM library [25], which performs the
integrations as described in [26], [27]. Single-layer integrations
(17) were computed with formulas derived by Graglia: for the
constant basis, Eq. (19) of [28], and for the linear basis, Eq.
(24) of [28] were used.

In the Galerkin methods, the inner (operator) integrals were
calculated as in the collocation methods. The outer integrals,
including the integrals inAk

ij andB
k
i , were evaluated numer-

ically with the Gaussian quadrature. After testing 7- and 12-
point quadratures, the 7-point formula was chosen; the use of
the 12-point formula did not have significant effect on results.

D. Transfer Matrices

After discretization and integration, transfer matrices are
built. From (9) we get

(

1

2
A

B + D
BB

)†

B = Φ
B, (26)

where† labels the inversion of a deflated [29] matrix. In the
deflation procedure, the zero potential is, in this study, set
equal to the integral of the potential over the body surface.

The forward transfer matrix for the epicardial potential is
formed from (10) and (11) by eliminating theΓ-term and then
solving for Φ, leading to

Φ
B = LΦ

H, (27)

L =

[(

1

2
A

B+D
BB

)

−G
BH(GHH)−1

D
HB

]−1

· (28)
[

D
BH + G

BH(GHH)−1

(

1

2
A

H − D
HH

)]

.

Each row of the forward transfer matrixL corresponds to one
collocation point on the body surface. The transfer matrix for
a subset of the body surface points can thus be formed by
choosing only those rows of the full transfer matrixL, which
correspond to the points of interest. In the inverse epicardial
potential problem, measurement data is available in electrode
positions only. Then it is feasible to build a transfer matrix
Le, which yields the body surface potential in the electrode
positions. If the electrode positions do not match with the
collocation points, the electrode-specific transfer matrix can be
constructed using the linear basis functions for interpolation of



4

the potential from the nearest nodes to the electrode positions
(not used in this study).

When the body surface potentialΦ
B is known, the epicar-

dial potential can be estimated, e.g., by multiplyingΦ
B with

the inverse of the transfer matrixL. This inverse potential
problem is ill-posed, andL needs to be regularized before it
can be inverted. In this study, the Tikhonov zeroth and second
order regularizations (see [6]) were used. In the Tikhonov 2
regularization, the Laplacian matrix on the epicardial surface
was built according Eq. (5) in [30]. The regularization para-
meterλ was optimized so that the relative error of the recon-
structed epicardial potential was minimized. Our solutions can
thus be called “best-possible Tikhonov solutions” as in [6].

E. Error Measures

The error evaluation was done with the relative error (RE)
estimate. The relative error was computed both in the collo-
cation points (cp) and as integral over the surface (int):

REcp =

√
∑

i[φr(~ri) − φt(~ri)]2
√

∑

i[φr(~ri)]2
(29)

REint =

√

∫

(φr − φt)2 dS
√

∫

φ2
r dS

, (30)

where the subscript “r” refers to reference result, and “t”
correspondingly to the test result. The integration of REint

was performed numerically with the 7-point Gaussian quadra-
ture. REcp corresponds to the minimization criterium of the
collocation methods, and REint to the criterium of the Galerkin
methods.

In initial analysis, we also used the correlation coefficient
(Eq. 35 in [25]). The correlation coefficient showed less dif-
ference between the methods than the RE did; this means that
differences between the methods are more of the amplitude
than of the morphological nature. We did all further analysis
with the RE measure.

F. Plots and Statistics

The results of the computations are presented graphically,
plotting the median of the relative error as function of source
depth. Before taking the median, the results from radial and
tangential sources are pooled together. Median instead of mean
was chosen, because the error distributions are skewed, par-
tially due to the absolute-value nature of the errors. Statistical
significance of the difference of medians was evaluated with
the Wilcoxon signed rank test, a non-parametric equivalentto
the paired t-test. Briefly, all results pinpointed in the text of
the following sections were statistically significant; forresults
with sources at relative depth≤ 0.7 and some results with
superficial sources (relative depth≥ 0.8), p < 0.001, and for
the other mentioned results with superficial sources,p < 0.05.

In each plot, there is one curve for each computational
method. For the constant basis methods, the data points are
marked with open circles, while the data points of the linear
methods are marked with black crosses. The line connecting
the data points is in case of the collocation methods drawn

solid, and in case of the Galerkin methods dotted. The varia-
tion of the error of each method between different sources
is visualized with a shaded region around the error curve.
The borders of this region are the16th and 84th percentiles
of the dataset, which form a non-parametric equivalent to
one standard deviation. The variation regions are plotted with
transparent gray: the more regions overlap, the darker the gray.

In Section IV-C3, the results with added modeling error
are described. In addition to the basic error plot described
in the previous paragraph, these plots contain informationfor
facilitating the comparison to the results in optimal conditions.
The median change of the relative error due to the modeling
error is plotted as described in the previous paragraph, but
without the variation regions. In addition, the variation of the
error between different methods is plotted as a bar graph.
The height of a bar is equal to the median of the difference
between maximum and minimum error for each source in
optimal conditions.

G. Outline of Computations

The first step in our evaluation of different basis and
weighting functions was to validate the methods and com-
pare them to analytical solutions. The collocation methods
were already validated in [25]; here we performed similar,
but extended analysis. The second step was to evaluate the
performance of different basis and weighting scenarios in the
forward calculation of the epicardial potential in a thorax-
shaped geometry. In connection to that, the error resulting
from the discretization of the epicardial potential was also
assessed. The third step was to compare the epicardial inverse
solutions produced with different element basis and weighting
scenarios. In all computations, care was taken to keep the
analysis unbiased.

III. A NALYTICAL VALIDATION

The analytical validation was carried out in a spherical,
homogeneous volume conductor with a current dipole source.
The analytical solutions were calculated as described by Yao
[31]. The surface of the sphere was tessellated into 642
nodes and 1280 triangles. The test sources were placed at
9 equidistant depths between[0.1R, 0.9R], whereR is the
radius of the sphere. The mean triangle side length was0.15R.
For each depth, 100 random positions were generated, and for
each position, the electric potential generated by a radialand
a tangential unit current dipole was calculated.

In similar analysis published earlier [19], [24], the radius
of the sphere in the analytical calculations has been scaled
in order to match the field calculation points better with the
true spherical surface. Ferguson and Stroink [24] experimented
with various scalings, while Tissari and Rahola [19] matched
the radius of the reference sphere with the mean distance of
the quadrature points from the origin. In this work, both non-
scaled and scaled spheres were used. In the non-scaled sphere,
the nodes of the mesh lie on the surface of the sphere; the
faces of the triangles thus lie inside the true spherical surface.
In the scaled sphere, the radius of the reference sphere was
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Fig. 1. Median relative error of the electric potential on the surface
of a spherical volume conductor with different source depths. For further
explanation, see Section II-F.

set equal to the mean distance from the origin to the surface
of the triangulated sphere.

Results of these calculations are presented in Fig. 1. In
the most simple case, shown on the upper left subplot, no
scaling was used and the error was evaluated in the collocation
points. In this setup, methods with constant basis performed
better than the methods with linear basis. In case of deep
and semi-deep sources, the constant Galerkin (CG) method
produced the smallest error. For superficial sources, the con-
stant collocation (CC) performed best. At all source depths, the
linear Galerkin (LG) method produced the largest error. When
scaling was used and error was evaluated in the collocation
points (the upper right subplot), the linear collocation method
(LC) outperformed other methods. The LG method had again
the largest error, except in case of deep sources.

Next, the relative error was evaluated over the whole surface
(REint). The results are shown in the subplots at the bottom
row of Fig. 1. Now the linear basis clearly outperformed the
constant basis. Results obtained with the CC and CG methods
were practically identical. When the reference sphere was not
scaled, the LC method had overall the best performance, while
the LG method was slightly better with superficial sources.
With the scaled sphere, the LG method was superior to the
other methods at all source depths.

IV. T HORAX-SHAPEDGEOMETRY

A. Computational Setup

The forward and inverse computations of epicardial poten-
tial were performed in the Dalhousie thorax model [6]. The
Dalhousie thorax surface consists of 352 nodes (700 triangles)
and the epicardial surface of 202 nodes (400 triangles). The
epicardial surface is cut at the level of the valves; it surrounds
thus only the ventricles.

Also in computations with the Dalhousie model, single
current dipoles were used as sources. The dipoles were placed

at nine equidistant depths inside the epicardial surface. At
each depth, 50 randomly positioned dipoles with radial and
tangential orientations were created. The same set of sources
was used in all calculations in the Dalhousie model.

First, the potential generated by the test dipole on the sur-
face of the thorax was calculated with (9). Then, the potential
inside the thorax was calculated with (6). TheDB operator was
discretized according to (16). The potential was calculated in
2800 quadrature points over the epicardial surface (from now
on called “the accurate epicardial potential”) and also in the
collocation points. This approach produces a point collocation
solution; using it in connection with the Galerkin method
would thus favor the collocation methods. In case of the
Galerkin methods, (6) was discretized fully on both epicardial
and body surfaces with methods presented in Section II-C2.

The surface and epicardial potentials obtained as described
here served as input and reference data in following computa-
tions. Both the reference and the test solution were computed
with the same set of basis and weight functions, unless stated
otherwise.

B. Discretization and Forward Calculation of the Epicardial
Potential

The error caused by the discretization of the epicardial
potential was assessed by computing the epicardial potential in
the collocation points, interpolating it over the surface with the
basis functions used in the computation, and then comparing
the interpolated potential to the accurate epicardial potential.
Median relative errors for each method as function of source
depth are displayed in the left subplot of Fig. 2. Methods with
linear basis outperformed the constant basis methods, except
in case of the LC method and sources very near the epicardial
surface. The LG method had the smallest errors at all source
depths. Constant methods had almost identical performances in
case of deep sources. With superficial sources, the CG method
was slightly more accurate than the CC method.

Next, the error due to the use of forward transfer matrixL

(28) with the discretized epicardial potential was studied. The
reconstructed body surface potential was calculated with theL

matrix from the discretized epicardial potential, and the result
was compared to the original body surface potential that was
calculated directly from the source with (9). The error was
evaluated in the collocation points only, because in the BEM
the potential on a boundary surface outside the collocation
points is obtained via interpolation; the use of REint would
thus not lead to a more accurate error estimate over the
body surface. The results are displayed in the right subplot
of Fig. 2. Again, the LG method had the best performance.
Methods using constant potential produced similar errors for
deep sources, but in case of sources near the epicardial surface,
the CG method performed better than the CC method. For all
source depths, the LC method produced the largest error.

C. Inverse Calculation of the Epicardial Potential

1) Computational Setup: In the inverse computation of the
epicardial potential, we used the Helsinki body surface poten-
tial mapping layout containing 120 thoracic electrodes [32].
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Fig. 2. Errors due to the discretization and forward computation of the
epicardial potential for dipolar sources at different depths; on the left subplot
is the median integral error on the epicardium, and on the rightone the median
point-wise error on the body surface. For further explanation, see Section II-F.

Fig. 3. The Dalhousie thorax model and anterior electrode layouts for linear
(on left) and constant basis (on right)

The electrode positions in the Helsinki layout have matching
nodes in the Dalhousie thorax model. For calculations with
collocation points in the centroids of the mesh triangles, the
layout was shifted so that each electrode was placed in a
triangle centroid while retaining the geometry of the whole
layout. This was done in order to make direct calculations with
the Le matrix possible also with the constant basis functions.
Anterior parts of the electrode layouts are visualized in Fig. 3.

The inverse computation of the epicardial potential has
commonly been done with a transfer matrix equivalent to our
L. The use of the inverse transfer matrix built from theL

matrix requires knowledge of the potential on the whole body
surface. In practice, the potential is known only in electrode
positions. The full body surface potential is in such a case
obtained via interpolation. In this study, this interpolation
was done by minimizing the surface Laplacian over the body
surface as described in [33], refined with a more advanced
formulation for the Laplacian (Eq. 5 in [30]).

For each test source, the inverse computation was performed
with both Tikhonov 0 and Tikhonov 2 regularizations. Four
different scenarios regarding the electrode setup and interpo-
lation were used:

1) Electrodes: The inverse solution was done with theLe

matrix using the body surface potential data calculated
in the electrode points. These results are presented in
the left side subplots of Figures 4–6.

2) Interpolation: The inverse solution was done with the
full L matrix. The body surface data were calculated in
the electrode points, from which they were interpolated
to all collocation points. Results are presented in the
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Fig. 4. Median REcp and REint in the inverse calculation of the epicardial
potential with Tikhonov 2 regularization. For further explanation, see Section
II-F.

right side subplots.
3) Collocation points: The inverse solution was done with

the full L matrix and body surface data calculated in all
collocation points

4) Cross interpolation: The inverse solution was done
with the full L matrix. For constant methods, the body
surface data were calculated with linear basis in the
nodal electrode points and interpolated from these nodes
to all triangle centroids. For linear methods, the calcu-
lations were done with constant basis in the centroid
electrode points, and the body surface data were then
interpolated to all nodes.

The results of scenario 3 were similar to those of scenario 1,
with slightly smaller overall error level. Because there are
no electrode setups, which would cover the whole thorax
evenly, the scenario 3 has no practical relevance. The results
of scenario 3 are hence not presented in this paper. Results
of scenario 4 are also left out, because they were practically
identical to those of scenario 2.

The median relative error of the body surface potentials
due to the interpolation in scenario 2 was between 5.5 and
8.5 percents for deep and superficial sources, respectively.
In visual comparison, the interpolated potential was typically
slightly smoother than the potential obtained with scenario 3.

In all inverse calculations, the Tikhonov 2 regularization
clearly outperformed the Tikhonov 0. Similar results were also
obtained earlier [6]. The results obtained with the Tikhonov 0
regularization are thus not presented.

2) Inverse Computation in Optimal Modeling Conditions:
In the first analyses, the inverse potential problem was assessed
without adding any error to the model: the reference and the
test solutions were computed in identical geometries. This
situation is referred to as “optimal conditions”. Results are
presented in Fig. 4.

When electrode data were used and the error was evaluated
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in the collocation points, differences between the collocation
and Galerkin weightings and different basis functions were
small (top left plot in Fig. 4). The constant methods produced
smaller errors than the linear methods at all source depths.
For deep sources, the CC and CG methods had very similar
performances, while with superficial sources the CG method
was better. Also the linear methods had similar performances
with deep sources. When the source was brought closer to the
surface, the LC method produced slightly smaller error than
the LG method.

In case of electrode data and integrated error (bottom left
in Fig. 4), the linear methods produced smaller errors than the
constant ones at all source depths. In all calculations, theLG
method yielded the smallest errors. The differences between
errors produced by linear and constant methods were larger
than in other scenarios or in any computations done with the
REcp estimate.

When the inverse reconstruction was performed with inter-
polated data, the error was at all source depths clearly larger
than in case of the electrode data. For REint, the differences
between the methods were smaller than in case of electrode
data.

3) Inverse Computation with Added Modeling Errors: In
the following analysis, errors were included in the anatomical
model. First, the epicardial surface was moved 5 mm towards
the anterior thorax, while keeping the source positions fixed
relative to the epicardium. The forward and epicardial refer-
ence solutions were calculated in this geometry, and the inverse
calculations were performed in the original geometry. Results
are displayed in Fig. 5.

In case of electrode data (Fig. 5, the left column), the error
behavior was similar to that in the optimal conditions, but
with larger overall error level. For REcp, the error increase
was larger than the error variation between different methods
in the optimal conditions, except in case of superficial sources.
For REint, there was no performance difference between
the LC and LG methods or the CC and CG methods. The
linear methods suffered more from the modeling error than
the constant methods did. The overall error increase was of
the same order with the variation of REint in the optimal
conditions.

In case of interpolated data (Fig. 5, the right column) and
deep sources, the error increased slightly, but for superficial
sources it even decreased. With interpolated data, all methods
produced practically the same REint. The error increase was
in general smaller than the error variation between different
methods. The error level was higher than in case of electrode
data.

In the second error scenario, the body surface potential
and the reference epicardial potential were calculated with
poorly conducting lungs included in the model (lungs-thorax
conductivity ratio 1:4). The inverse transfer was computed
with the transfer matrix of the homogeneous model. Results
are displayed in Fig. 6.

When using only the electrode data, the increase of the error
was larger than in the earlier analysis with the position error.
With REint, the LG method suffered most and the CG method
least from the added modeling error. The error increase was
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Fig. 5. Relative error in the inverse calculation of the epicardial potential
with Tikhonov 2 regularization, when there is a 5 mm error in the position of
the epicardial surface. Upper sets of curves in each subplot: median RE with
the shifted model; Lower sets of curves: median increase of errors compared
to the optimal conditions; Bars: Variation of error between different methods
in the optimal conditions. For further explanation, see Section II-F.
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Fig. 6. Relative error in the inverse calculation of the epicardial potential
with Tikhonov 2 regularization, when the lungs are includedin the calculation
of the reference potential but not in the inverse solution. Upper sets of curves
in each subplot: median RE with the erroneous model; Lower setsof curves:
median increase of errors compared to the optimal conditions; Bars: Variation
of error between different methods in the optimal conditions.For further
explanation, see Section II-F.

with both error estimates larger than the variation of the error
between different methods in the optimal conditions.

With the interpolated data, the errors increased little or not
at all, and REint even decreased for superficial sources. The
error performances of electrode and interpolated data were
practically identical.
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V. D ISCUSSION

A. Formulation of the Equations

The operator notation used in our formulation of the integral
equations is not commonly used in biomedical engineering.
The notation is compact, and the shape of the equations does
not change in the discretization process. The use of operators
also facilitates the programming of element solvers. For ex-
ample, consider (7) and (8): These equations are commonly
presented as

PBBφB + PBHφH +GBHΓH = 0 (31)

PHBφB + PHHφH +GHHΓH = 0, (32)

whereG, PHB, and PBH correspond to ourG, DHB and
DBH, respectively. OperationsPHH and PBB, however, are
equivalent to ourDHH − 1/2 and DBB + 1/2. Because of
this inconsistent formulation, the labelP loses its geometrical
meaning. In our formulation, all geometrical relations are
readily available and labels are uniquely defined.

B. Element Integrals

Element integrations of theG matrix have in earlier works
been carried out numerically. When the field point is in
the integration domain, the integral of (2) contains a weak
singularity. Methods for approximating the singular integral
have been successfully used [5]–[7], but the error caused
by these approximations has been a subject of discussion:
Recently, Wang and Rudy applied the method of fundamental
solutions (MFS) to the epicardial potential problem [34],
discussing the singular integrals as an important problem
of the BEM. Hoŕaček and Clements [6] discussed that the
numerical quadrature used in the singularity extraction may
decrease the performance of their LC computations. However,
the integral of (17) can, at least in case of constant and
linear basis functions, be calculated analytically as described
by Graglia [28]. The use of analytical integration simplifies
the programming and computations and removes one factor
of uncertainty from the computations. However, the use of
accurate integrals does not necessarily lead to better results,
as Mosher et al. discussed in [20].

C. Analytical Validation

The results presented in Section III show that no method
is optimal in all our test scenarios and for all source depths.
The only clear result is that when the error is evaluated over
the whole surface, the linear methods outperform the constant
ones. This is easy to accept: in constant potential methods,
the potential is assumed constant over each whole triangle,
while in the linear methods, the potential is interpolated
linearly between the nodal potential values, thus being likely
to follow the continuous reference data better than the constant
interpolation. The same reasoning applies to further results as
well.

When the error was analyzed in the collocation points
(REcp) and no scaling was used, the CC method performed
better at all source depths than the LC method, whereas in
the scaled sphere the situation was opposite. This result was

unexpected: in the non-scaled sphere, the nodes are on the
same surface with the sphere of the reference solution, and in
the scaled sphere the centroid points are closer to the reference
surface than the nodes are. One might hereby hypothesize that
the LC method would suffer and the CC method benefit from
the scaling, but results showed the opposite.

When the relative error was integrated over the surface
(REint), the LC method performed better than the LG method
with deep and semi-deep sources, when no scaling was used.
This is surprising, as the error evaluation scenario favorsthe
LG method. Only when the scaling was used in connection
with the REint measure, the LG method outperformed the
other methods. The results of Tissari and Rahola [19] favored
the LG method. Their analysis was done using only one
scenario with a scaled sphere and error evaluation in a dense
point set (13 points in a triangle) — a scenario very similar
to our scaled sphere and REint measure.

D. Discretization and Forward Calculation of the Epicardial
Potential

In order to get good solutions to the inverse problem,
an accurate forward transfer is important, regardless of the
specific inverse techniques: errors due to the forward transfer
can not be corrected in later phases of the analysis. The results
in Section IV-B show that the smallest error in the forward
computation is obtained with the LG method. The largest error
resulted from the LC method. The CG method was better than
the CC method, especially with superficial sources. One reason
for the large errors with the LC method is the so-called auto-
solid angle problem and how it is dealt with [24]; we used the
method suggested by de Munck [24], [27]. With the CC, CG,
and LG methods the auto-solid angle causes no problem as
the calculations are performed in the smooth triangles instead
of nodes.

Horáček and Clements performed similar analysis with
the same volume conductor model using a single deep-lying
dipole source and constant and linear collocation methods [6].
Comparing the results, the errors in the forward transfer with
the CC method were of the same order, but our values were
slightly smaller: Hoŕaček and Clements reported a relative
error of 0.92%, while our calculations with the CC method
and deep sources produced median error of 0.51%, ranging
between 0.19% and 0.88%. The difference may be due to our
use of analytical integration inG operations, but it can result
from any difference in the numerical treatments, too.

In case of linear basis functions, Horáček and Clements [6]
reported the relative error of 5.3%, while the median error
in our calculations was 1.5%, ranging between 0.98 and 1.8
percents. It is, however, not apparent, whether the reference
solution used by Horáček and Clements was calculated directly
or interpolated from the constant potential solution; if interpo-
lation was used, it explains the worse results. The numerical
integrations used by Horáček and Clements in bothP and
G operations are likely to form part of the error as well. To
provide comparison to the numbers presented here, our LG
method with deep sources yielded a median error of 0.09%,
with values ranging between 0.03 and 0.16 percents.
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The error resulting from the discretization of the epicardial
potential has, to the authors’ knowledge, not been assessed
before. The discretization error curves serve as good reference,
when analyzing the error sources in modeling or optimizing
the meshes. The discretization error is also the theoretical
minimum of the integrated error (REint) in the inverse transfer.
Results from the analysis of the discretization error show
that the linear methods outperform the constant ones, and
the LG method produces the smallest errors at all source
depths. The success of the LG method was expected, as the
Galerkin approach aims at minimizing this kind of error. The
CG method, despite the Galerkin weighting, did not perform
better than the CC method. Overall, the discretization error
is relatively large for the constant methods: it exceeds 10%
for all source depths. With superficial sources, all methods
produce over 20% discretization errors. This is not surprising,
as sources at relative depths 0.8 and 0.9 are on average only
0.57, and 0.29 triangle sidelengths away from the nearest
surface point. In practice, an epicardial mesh like the one used
here is too coarse for accurate characterization of small-scale
cardiac electrical events. With relation to the forward transfer
errors, the discretization error comes across as large. These
numbers can, however, not be compared, because the forward
transfer error was assessed in the collocation points only.

E. Inverse Calculation of Epicardial Potential

The errors present in the inverse calculation of the epicardial
potential were assessed both in optimal modeling conditions
and in two scenarios with added modeling errors. The results
of these calculations are only valid in case of Tikhonov 0 and
Tikhonov 2 regularizations; generalizations to other inverse
computation scenarios can not be made.

In all calculations, the Tikhonov 2 regularization outper-
formed the Tikhonov 0. When the error was evaluated in
the collocation points (REcp), differences between the basis
functions and weighting methods were small. In general, either
the CC or the CG method produced the smallest error.

Comparison of the relative errors to those obtained by
Horáček and Clements [6] resembles the forward transfer
comparison done in Section V-D: The errors with the CC
method are of the same order, our computations producing
slightly smaller values. In our computations, the LC method
performed better than in those of Horáček and Clements, but
worse than the CC method. Horáček and Clements discussed
that the poorer performance of the LC method is due to
the numerical quadratures. Our study confirms their results
and shows that some accuracy difference remains also with
analytically integrated elements.

When the error was evaluated over the whole epicardial
surface (REint), the difference between the methods was larger
than in case of REcp. The linear methods produced smaller
errors than the constant methods did in all calculations. In
the optimal conditions, the LG method produced the smallest
errors. In computations with displaced epicardium, the differ-
ence between the LG and LC methods got smaller, and in the
scenario with the omitted lungs there was no visible difference.

The modeling error resulting from a 5 mm displacement
of the epicardium added up to ten percentage units to the

relative error, when the computations were performed with
the electrode data. The increase of the error was of the same
order as the error variation between the methods. When REcp

was used, all methods suffered practically as much from the
displacement. In case of REint, the linear methods suffered
more from the modeling error than the constant methods did.

When the lungs were included in the reference but not in
the test solution, the error grew on average by 20 percentage
units. The increase was considerably larger than the variation
of the error between the methods. Hereby we can say that the
choice of the computational method is not important, if large
modeling errors such as omission of the lungs are present. The
importance of modeling of the lungs has also been demon-
strated in a phantom study regarding focal source localization
in electro- and magnetocardiography [35]. In most publications
regarding epicardial potential computation, including recent
works presenting novel computational techniques [9], [34],
lungs have been omitted.

When interpolated full thorax data were used, differences
between the methods were smaller than in case of the electrode
data. The errors in the optimal conditions were larger, but
modeling errors had smaller effect on results than in case ofthe
electrode data. Overall, the error behavior was less dependent
on the modeling and error evaluation conditions than with the
electrode data. When the lungs were included in the reference
solution but omitted in the inverse calculation, the interpolated
data performed, according to visual inspection of the error
curves, equivalently with the electrode data. In numerical
comparison, the electrode data yielded smaller errors alsoin
this case. In practice, interpolation would likely producelarger
errors than in this simulation study due to the modeling errors
involved at the extremities of the model. Hence we see no
reason for interpolating the data from the electrode pointsover
the whole thorax.

When comparing the performance of the constant and linear
methods, it is important to keep in mind that the electrode
layouts were optimized for each method. For example, if
the segmentation method places nodes at electrode positions,
linear methods are likely to perform better than the constant
methods; interpolation from the nodes containing the elec-
trodes to the centroids (the cross interpolation scenario in
Section IV-C) would likely lead to errors equivalent to those
produced with the interpolated data.

VI. CONCLUSIONS

In this work, the use of constant and linear collocation and
Galerkin methods in bioelectrical forward and inverse prob-
lem were studied. The focus was on the epicardial potential
problem.

In analytical validation, no combination of basis and weight-
ing functions was preferable to others in all situations. Indis-
cretization and forward computation of the epicardial potential,
the linear Galerkin (LG) method performed best.

The electrode-specific transfer matrixLe is preferable over
the full transfer matrixL and the Tikhonov 2 regularization
over the Tikhonov 0. In optimal modeling conditions, the
best combination of basis and weight functions depends on
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electrode positions and chosen error evaluation technique.
When large modeling errors are present, the choice of the
basis and weighting functions is not significant.
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