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Abstract

The electrochemical activity of the heart gives rise to an electric field. In
electrocardiography, cardiac electrical activity is assessed by analyzing the
potential distribution of this field on the body surface. The potential dis-
tribution, or the set of measured surface-voltage signals, is called the elec-
trocardiogram (ECG). Spatial properties of the ECG can be captured with
body surface potential mapping (BSPM), in which the electrocardiogram is
measured using dozens of electrodes. In this Thesis, methods for solving
the forward and inverse problems of electrocardiography are developed and
applied to characterization of acute myocardial ischemia.

The methodology is based on numerical computation of quasi-static electric
fields in a volume conductor model. An open-source Matlab toolbox for solv-
ing volume conductor problems with the boundary element method (BEM)
is presented. The Galerkin BEM and analytical operator-integrals are, for
the first time, applied to the epicardial potential problem; the formulation for
a piece-wise homogeneous volume conductor is presented in detail, enabling
straightforward inclusion of the lungs or other inhomogeneities in the thorax
model.

The results show that errors due to discretization and forward-computation
are smaller with the linear Galerkin (LG) method than with the conventional
methods. These benefits do, however, not reflect to the Tikhonov-regularized
inverse solution. If the lungs are omitted, as commonly is done, the choice
of the computational method is not significant.

In a set of 22 patients measured with BSPM during coronary angioplasty
(PTCA), the application of a BEM thorax model with dipolar equivalent
sources enabled accurate discrimination between occluded coronary arteries:
the correct classification was obtained in 21 patients using the BSPM and in
20 patients using a 5-electrode set suggested elsewhere. The ischemic regions
could also be localized anatomically correctly with simplified epicardial po-
tential imaging, even though patient-specific thorax models were not used. In
another set, comprising 79 acute ischemic patients and 84 controls, dipole-
markers performed well in detection and quantification of acute ischemia.
These results show that the modeling-approach can provide valuable infor-
mation also without patient-specific models and complicated protocols.





Tiivistelmä

Sydänlihassolujen sähkökemiallinen toiminta synnyttää sähkökentän. Elek-
trokardiografiassa sydämen sähköistä toimintaa tutkitaan analysoimalla tä-
män kentän potentiaalijakaumaa kehon pinnalla. Kehon pintapotentiaalija-
kaumaa tai siitä mitattua signaalijoukkoa kutsutaan elektrokardiogrammiksi
(EKG). Elektrokardiogrammin spatiaaliset piirteet saadaan taltioitua EKG-
kartoituksessa, jossa elektrokardiogrammia mitataan kymmenien elektrodien
avulla. Tässä väitöskirjassa kehitetään kentänlaskentamenetelmiä elektrokar-
diografian suoran ja käänteisen ongelman ratkaisuun. Menetelmiä sovelletaan
akuutin sydänlihasiskemian karakterisointiin.

Työn metodiikka perustuu kvasistaattisten sähkökenttien numeeriseen las-
kentaan rintakehän johtavuusmallissa reunaelementtimenetelmän (BEM) avul-
la. BEM-perustyökaluista on koottu avoimen lähdekoodin Matlab-kirjasto.
Galerkinin painotusta ja analyyttisesti laskettuja operaattori-integraaleja so-
velletaan ensimmäistä kertaa epikardiaalipotentiaalin reunaelementtiratkai-
sussa. Tarvittavien yhtälöiden johto ja diskretointi paloittain jatkuvassa vä-
liaineessa esitetään perusteellisesti, mikä mahdollistaa keuhkojen suoraviivai-
sen sisällyttämisen rintakehämalliin.

Lineaarinen Galerkin-menetelmä pienentää suoran ongelman laskennan ja
diskretoinnin aiheuttamia virheitä verrattattuna yleisesti käytettyyn kollo-
kaatiomenetelmään. Nämä hyödyt eivät kuitenkaan heijastu Tikhonov-regu-
larisoinnin avulla laskettuihin käänteisen ongelman ratkaisuihin. Jos keuhkot
jätetään mallintamatta, kuten alan tutkimuksessa tapana on, laskentamene-
telmän valinnalla ei ole merkitystä.

Sepelvaltimon pallolaajennuksen aikana mitattujen EKG-kartoitusten aineis-
tossa tukkeutunut valtimo kyettiin tunnistamaan BEM-rintakehämallin ja
dipolimallinnuksen avulla: 22 potilaasta 21 luokiteltiin oikein EKG-kartoi-
tuksen ja 20 erään aiemmin kuvaillun viiden elektrodin joukon avulla. Iskee-
miset alueet paikannettiin yksinkertaistetun epikardiaalipotentiaalikuvanta-
misen avulla anatomisesti oikein — ilman potilaskohtaisia rintakehämalleja.
79 iskemiapotilaasta ja 84 terveestä verrokista koostuvassa aineistossa dipoli-
malli tuotti lupaavia tuloksia sydänlihasiskemian havaitsemisessa ja infarkti-
vaurion koon arvioinnissa. Tulokset osoittavat, että kentänlaskennallinen lä-
hestymistapa tuottaa hyödyllistä tietoa myös ilman potilaskohtaisia malleja
ja monimutkaisia menetelmiä.
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1 Introduction

Electrochemical activity of cardiac muscle cells gives rise to electric and mag-
netic fields [1]. The electric field is reflected on the body surface as a potential
distribution. In electrocardiography, cardiac electrical activity is assessed by
studying voltage signals measured on the body surface. The set of measured
signals, or more generally, the body surface potential distribution, is called
the electrocardiogram (ECG).

In clinical use, the most common electrocardiographic application is the 12-
lead ECG [2], which is measured with nine electrodes. The 12-lead ECG is
visualized as a set of time-voltage tracings, and spatial analysis is carried out
by comparing relative amplitudes of the tracings. From the 12-lead ECG,
one can characterize the cardiac rhythm and infer the approximate location
and propagation direction of the mean cardiac electrical activity.

In body surface potential mapping (BSPM), the ECG is measured with tens
of electrodes, yielding a more accurate spatial sampling of the potential dis-
tribution on the thorax than that in the 12-lead ECG. The BSPM data are
commonly processed as multi-lead ECG, a collection of time-voltage trac-
ings; quantitative analysis is based on features that are extracted from single
leads, while the spatial analysis resides typically on qualitative level, such
as visual inspection of the spatial distributions of the single-lead features.
With this kind of analysis, geometrical properties of potential distributions
and the knowledge of electrode positions are not effectively utilized. Overall,
the large dimension of the BSPM data poses a challenge for the analysis.

Challenges of the BSPM analysis are tackled with modeling-approaches, in
which the relationship between the cardiac electrical activity and the result-
ing ECG is characterized. In these approaches, the cardiac electrical activity
is represented either with help of a mathematical source model or in terms of
epicardial potential. Electrical properties of the thorax are modeled applying
anatomical imaging, image processing, electromagnetic theory, and numeri-
cal mathematics. Computation of the ECG from a known source model or
epicardial potential is commonly referred to as the forward problem of electro-
cardiography. Respectively, estimation of the sources or epicardial potential
from measured ECG data is called the inverse problem of electrocardiogra-
phy.

The anatomical information needed in the model building is obtained with,
e.g., magnetic resonance imaging or X-ray computed tomography. Electri-
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cal properties of the thorax are typically assumed piece-wise homogeneous,
enabling application of the boundary element method (BEM) in the numer-
ical computations. In order to obtain accurate results, the anatomical and
computational models need to be constructed individually for each patient; in
addition to imaging and computing facilities, lots of manual work from skilled
people is thus needed. The modeling approaches are hereby used primarily
for research purposes. Overall, the worlds of clinical electrocardiography and
modeling are wide apart.

1.1 Aims and Outline

The primary aim of this Thesis is to develop computational methods and
computer program libraries for solving the electrocardiographic forward and
inverse problems. The method development is focused on boundary element
modeling of the epicardial potential problem.

The secondary aim is to bring simple modeling-approaches of electrocardio-
graphy a step closer to the clinical world; to show that modeling can yield
valuable information also without individual thorax models, exactly localized
electrodes, and complicated analysis protocols.

This Thesis consists of an overview and six Publications. In the overview,
the principal aim is to wrap the theory presented in Publications I-III into a
compact but thorough package, presenting the source-modeling and epicar-
dial potential problems in the same context and notation for the first time.
The overview provides also more background for and some discussion on
Publications II and III and an introduction on source-modeling methods. In
addition, the methodology and results of Publications IV-VI are summarized,
extended, and briefly discussed.

The overview is organized as follows:

• Chapter 2: The quasi-static approximation of bioelectromagnetic fields
is reviewed, and the principle behind the boundary element method
(BEM) is introduced. Computation of electric potential in a volume
conductor using the BEM is presented in a compact, but thorough
manner.

• Chapter 3: Forward and inverse problems of electrocardiography are
reviewed: Principles and methodology of source-modeling are intro-
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duced, linking to the theory presented in Chapter 2. Epicardial po-
tential imaging is reviewed in more detail; computational methods and
volume conductor modeling are treated. As part of the review, the Pub-
lications II and III in epicardial potential imaging and Publications IV
and V in dipole modeling are placed in the proper context.

• Chapter 4: Methods treated in this work are applied to spatial chara-
terization of myocardial ischemia. First, dipole modeling is applied
to detection, coarse localization, and quantification of myocardial is-
chemia. Then, simplified epicardial potential imaging is used in local-
ization of the ischemic region.

• Chapter 5: a summary of and outlook on this Thesis and its main
results is given.
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2 Volume Conductor Modeling

2.1 Quasi-Static Approximation of Bioelectric Fields

2.1.1 Wave Equations for Potentials

Electromagnetic phenomena are characterized with the Maxwell equations
[3]. An electrically active nerve or muscle cell acts as a source of electro-
motive force that gives rise to electric field and current in the extracellular
domain. In macroscopic scale, the sources of these fields can be modeled in
terms of primary charge density ρp and current density �Jp [1]. Biological
medium is non-magnetic, conductive, and, at bioelectrical field strengths,
electrically linear. With these source and material properties and harmonic
time dependency of angular frequency ω, the Maxwell equations are

∇ · �E =
ρp

ε
(1)

∇ · �B = 0 (2)

∇× �E = iω �B (3)

∇× �B = μ0
�Jp + μ0(σ − iωε) �E, (4)

where �E is the electric field, �B is the magnetic induction field, ε and σ are the
permittivity and conductivity of the medium, μ0 is the magnetic permeability
of vacuum, and i is the complex unit: i =

√−1. The relationship between
the primary charges and currents in homogeneous medium is obtained by
taking divergence of Eq. 4 and applying Eq. 1, yielding

ρp

ε
=

∇ · �Jp

iωε − σ
. (5)

In electrocardiography, we are interested in voltages—potential-differences.
Hereby it is logical to characterize the cardiac electromagnetic field with
potential-functions. From Eqs. 2 and 3, we get expressions for fields in terms
of vector potential �A and scalar potential φ:

�B = ∇× �A (6)

�E = iω �A −∇φ. (7)

Using these relations in Eqs. 1 and 2 and applying the Lorenz gauge [3] gives
wave equations for potentials. The general solutions of these equations are
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obtained by integrating the source density weighted with the Green function
of the wave equation, leading to [4]

�A =
μ0

4π

∫
Vp

�Jpe
ik|�r−�r ′|

|�r − �r ′| dV ′ (8)

φ =
1

4π(iωε − σ)

∫
Vp

(∇ ′ · �Jp)e
ik|�r−�r ′|

|�r − �r ′| dV ′, (9)

where

k2 = ω2μ0ε
(
1 +

iσ

ωε

)
, (10)

�r and �r ′ are position vectors in field and source spaces, respectively, and Vp

is the volume containing all primary sources.

In Eq. 4, there are three types of currents: the primary currents �Jp, resistive

volume currents σ �E, and displacement currents iωε �E. The relative strength
of displacement1 and resistive currents is characterized by the ratio ωε/σ.
This ratio defines, whether the medium acts primarily as a conductor or as
an insulator, and, whether the wave motion is decaying or propagating. The
strength of the inductive coupling in Eq. 3 is also governed by σ, ε, and ω.

2.1.2 Electrical Properties of Biological Tissues

Electrical properties of biological tissue depend on frequency and tissue type.
In some tissues, e.g. muscles, these parameters are also anisotropic due to the
directed fibrous structures. Tissue conductivity at frequencies below 1 kHz
has been studied, e.g., in [5–8]. Capacitive properties at low frequencies have,
to the author’s knowledge, been studied only by Schwan and Kay [9,10] and
Gabriel et al. [8]. Values for permittivity ε, conductivity σ, and the amplitude
ratio of displacement and resistive currents in various tissue types at three
frequencies are given in Table 1. The conductivities reported by Gabriel et
al. were, in general, lower than those reported by Schwan and Kay.

Measurement of permittivity at low frequencies is prone to errors. The main
source of error is polarization that takes place at the electrode–tissue interface
[8, 9]. In Table 1, the values marked with asterisk are upper-limit values:
in [10] it is written that “The values at 10 cps are possibly 3 to 10 times
smaller than quoted”. According to Gabriel et al. [8], electrode polarization

1Effects of the displacement currents on the bioelectromagnetic fields are commonly
referred to as “capacitive effects”.
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Table 1: Electrical properties of biological tissues [8, 10]. The values marked
with asterisk are upper-limit estimates.

10 Hz Schwan and Kay Gabriel et al.
ε/106ε0 σ (S/m) |ωε/σ| εr/106 σ (S/m) |ωε/σ|

Heart 20∗ 0.10 0.100∗ 23 0.06 0.233
Liver 50∗ 0.12 0.200∗ 20 0.03 0.371
Lung 25∗ 0.09 0.150∗ 30 0.03 0.596

Muscle 30∗ 0.10 0.150∗ 60 0.23 0.148

100 Hz
Heart 0.82 0.09 0.040 4.00 0.09 0.247
Liver 0.85 0.13 0.035 0.90 0.04 0.125
Lung 0.45 0.09 0.025 1.50 0.05 0.167

Muscle 0.80 0.11 0.035 18.50 0.34 0.303

1000 Hz
Heart 0.32 0.12 0.150 0.30 0.11 0.152
Liver 0.15 0.13 0.060 0.08 0.04 0.111
Lung 0.09 0.10 0.050 0.10 0.05 0.111

Muscle 0.13 0.12 0.060 0.65 0.45 0.080

may affect their results below 100 Hz by a factor of two or three. These
measurements and results are discussed in more detail in [11].

2.1.3 Quasi-Static Approximation

The wave motion is characterized by the exponential term in Eqs. 8 and 9.
Applying the Taylor expansion,

eik|�r−�r ′| = 1 + ik|�r − �r ′| − (k|�r − �r ′|)2

2!
+ ... (11)

Studying the magnitude of k with values from Table 1, we see that

|k||�r − �r ′| =

∣∣∣∣∣∣ω
√

μ0ε

√
1 +

iσ

ωε

∣∣∣∣∣∣ |�r − �r ′| (12)

< 0.002, f = 10 Hz

< 0.001, f = 100 Hz

< 0.017, f = 1000 Hz.
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Hence we can approximate that, at frequencies below 100 Hz, eik|�r−�r ′| = 1.
This means that a change in the source distribution is assumed to reflect
instantaneously into all field points. At higher frequencies, this assumption
introduces small errors.

The electric field is calculated from potentials according to Eq. 7, where iω �A
corresponds to the inductive component of the field. The relative strength of
inductive effects can be studied by calculating the ratio of ω �A and ∇φ for a
differential source element [4, 11]. Such a calculation leads to

|ωA|
|∇φ| ≈ (|k||�r − �r ′|)2. (13)

The inductive effects can thus safely be omitted. The electric field can then
be calculated from the scalar potential: �E = −∇φ.

According to the ratios presented in Table 1, resistive currents dominate
over the displacement currents: Gabriel et al. reported [8] that ωε/σ is at
electrocardiographic frequencies larger than 0.1. Both Schwan and Kay [10]
and Gabriel et al. reported ratios of over 0.15 at 10 Hz, but these results
are unreliable. On basis of these results, it is not clear, whether biological
tissues can be assumed purely resistive at bioelectric frequencies. As far
as the author of this Thesis knows, the error introduced by omitting the
displacement currents has not been studied in detail. In [12], the validity of
this approximation was studied using a multi-layer spherical model. In that
study, however, only small (ωε/σ <= 0.004) or large (ωε/σ ≈ 1) ratios were
tested. With the smaller ratio, there were no noticeable capacitive effects;
with the larger ratio, the effects were clear. Henceworth, this study is based
on the conventional assumption that capacitive effects are so small that they
can be left out of the calculations without introducing major errors.

When propagative, inductive, and capacitive effects are omitted, the Maxwell
equations are simplified to the static form. Because the sources are still time-
dependent and conductivity may possess frequency dependency, the concept
”quasi-static” is used. The conductivity is commonly assumed independent
of the frequency, following the results of [6]. In practice, this means that tis-
sues are not supposed to act as temporal filters. To the author’s knowledge,
the error introduced by this assumption on common electrocardiographic ap-
plications has not been studied; in [12], it was concluded that the frequency
dependency of the conductivity may act as a temporal filter on the electroen-
cephalogram and that capacitive effects due to vernix caseosa affect the fetal
electrocardiogram.
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In summary, the quasi-static Maxwell equations for conductive, non-magnetic,
electrically linear material are

∇ · �E =
ρp

ε
(14)

∇ · �B = 0 (15)

∇× �E = 0 (16)

∇× �B = μ0( �Jp + σ �E). (17)

Taking divergence of Eq. 17 and applying �E = −∇φ yields the Poisson
equation in terms of primary-current sources:

∇ · (σ∇φ) = ∇ · �Jp. (18)

2.2 Boundary Element Method

The boundary element method is mathematically based on the method of
weighted residuals [13]: Consider the problem

L[f ](�r) = g(�r), (19)

where L is a differential or integral operator, g is a known function, and f
is the unknown function that L acts on. First, approximate f as a linear
combination of N basis functions ψj(�r) and insert the approximation to the
original equation:

f(�r) ≈
N∑

j=1

ϕjψj(�r) (20)

⇒
N∑

j=1

ϕjL[ψj](�r) − g(�r) = RN(�r), (21)

where RN is the residual of the approximated solution. Then, force the
residual to zero with respect to N weight functions wi(�r) over the solution
domain Ω: ∫

Ω
RN(�r)wi(�r)dΩ = 0 (22)

⇒
N∑

j=1

ϕj

∫
Ω

wi(�r)L[ψj](�r)dΩ =
∫
Ω

wi(�r)g(�r)dΩ. (23)
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Now the discretized problem can be written in matrix form:

LΦ = g, (24)

where Φ and g are N × 1–vector with elements ϕi and gi =
∫
Ω wi(�r)g(�r)dΩ,

respectively, and L is an N × N matrix with elements

Lij =
∫
Ω

wi(�r)L[ψj](�r)dΩ. (25)

The coefficients ϕj are, in principle, solved from Eq. 24 by inverting the
matrix L.

The most simple choice for the weight function is the Dirac δ function. With
this choice, the error is minimized in a discrete set of points [13]. This ap-
proach is called the point collocation method, and the definition points of the
δ functions are referred to as the collocation points. The collocation method
provides for a computationally efficient solution of the residual-minimization
problem: the integrals in previous equations are simplified to evaluations of
the integrands at the definition points of the δ functions. The residual can
also be minimized over the whole domains instead of discrete points. This
is the aim of the Galerkin method, in which the weight functions are chosen
identical to the basis functions [13]. The points, around which the Galerkin
solution is spanned are the same as the collocation points. The Galerkin
solution is, however, not optimized for accuracy in these points.

In the boundary element methods used in this work, the governing partial
differential equations are first converted to surface integral form. Then, the
basis and weight functions are defined on triangulated boundary surfaces,
leading to a linear equation array that yields potentials on the boundary
surfaces. The boundary element method is discussed in more detail in [13]
and in Publications I and II.

The boundary element method was for the first time applied to electrocar-
diographic potential problem in [14,15]. The terminology and notation used
in those studies was different from those used in this Thesis, but effectively,
constant basis functions with Galerkin weighting were used.

2.3 Surface Integral Equations for Electric Potential

In this Section, a compact, but thorough presentation on integral equations
and discretization of the epicardial potential and source-modeling problems
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is given. More background and discussion can be found in Section 3 and in
Publications I–III.

In this presentation, geometry and electrical parameters are kept apart with
help of operator notation. The use of single- and double-layer operators
facilitates understanding of the equations and, especially, implementation
of the boundary-element discretization. Moreover, with effective use of the
operators, both collocation and Galerkin problems can be presented with the
same set of equations.

The Galerkin discretization of the epicardial potential problem was for the
first time presented in Publications II and III. In addition, the Galerkin
discretization of the source-modeling problem is, to the author’s knowledge,
in this Thesis presented for the first time in pure matrix-vector form.

2.3.1 Principle and Notation

The quasi-static potential problem in a piece-wise homogeneous volume con-
ductor obeys the Poisson equation

∇(σ∇φ) = ∇ · �Jp (26)

with two boundary conditions: the potential φ and normal component of
the current density −σ∇φ are continuous. The geometry of the problem is
illustrated in Fig. 1. Proceeding towards the boundary element method, the
Poisson equation is converted to surface integral form with help of the Green
theorem. First, apply the free-space Green function 1

4π|�r−�r ′| and the electric
potential φ to the Green theorem:∫

V

1

|�r − �r ′|∇
′2φ(�r ′) − φ(�r ′)∇ ′2 1

|�r − �r ′| dV ′ =

∮
∂V

[
1

|�r − �r ′|∇
′φ(�r ′) − φ(�r ′)

(�r − �r ′)
|�r − �r ′|3

]
· �dS

′
, (27)

where V is the volume of integration, ∂V is the boundary of V , and �dS is
the differential surface element multiplied with the exterior surface normal:
�dS = �n dS. Then, restrict V to an electrically homogeneous compartment V l

of the volume conductor, apply the Poisson equation, and simplify to get

K l(�r)φ(�r) =
1

4π

∫
V l

�Jp · (�r − �r ′)
|�r − �r ′| dV ′ +
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Figure 1: The piece-wise homogeneous model of the thoracic volume conduc-
tor; Sl labels the exterior boundary surface of the volume V l, and σk is the
conductivity in V k. Superscripts mark the surfaces as follows: H is the epi-
cardial (heart), L is the left lung, R is the the right lung, and B is the body
surface. Normal vector �nl points outwards from volume V l.

1

4π

∮
∂V l

[
1

|�r − �r ′|∇
′φ(�r ′) − φ(�r ′)

(�r − �r ′)
|�r − �r ′|3

]
· �dS

′
, (28)

where, with help of the Dirac δ function and limiting-value analysis [16,17],

K l(�r) =

⎧⎪⎨
⎪⎩

1, �r ∈ V l

1/2, �r ∈ ∂V l

0, �r /∈ V l.
(29)

Surface integral equations for potential are derived by first applying Eq. 28 in
each compartment of interest with the field point �r on each boundary surface
Sl and then eliminating uninteresting variables with help of the boundary
conditions. This process is more thoroughly described in [1, 14, 18] and in
Publication III.

The integral equations are in this study presented with help of single- and
double-layer operators G and D:

Gkl[f ](�r) =
1

4π

∫
Sl

f(�r ′)
|�r − �r ′| dS ′, �r ∈ Sk (30)

Dkl[g](�r) =
1

4π

∫
Sl

g(�r ′)
(�r − �r ′)
|�r − �r ′|3 · �dS

′
, �r ∈ Sk, (31)

where superscripts k and l label the field and source surfaces, respectively.
Surfaces are labeled with S; f and g refer to functions that the operators act
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on. In some of the following equations, the field point is in the volume, not
on boundary surfaces. In those cases, only the source surface is labeled in
the operator relation; for example,

Dl[g](�r) =
1

4π

∫
Sl

g(�r ′)
(�r − �r ′)
|�r − �r ′|3 · �dS

′
. (32)

In the following, surface integral equations are presented and discretized.
The surfaces are labeled by superscripts, whereas subscripts mark elements
of vectors or matrices. Discretized variables are presented as column vectors,
printed in boldface.

2.3.2 Integral Equation for Electric Potential in Terms of Infinite-
Medium Potential

In a piece-wise homogeneous volume conductor with N boundary surfaces
and a known primary current distribution inside the conductor, the integral
equation for potential on surface k [1, 14,18] is

φk(�r) =
2σs

σk− + σk
+

φk
∞(�r) − 2

N∑
l=1

σl
− − σl

+

σk− + σk
+

Dkl[φl], (33)

and the corresponding equation for a field point not on a conductivity bound-
ary is [1, 19]

σ(�r)φ(�r) = σsφ∞(�r) −
N∑

l=1

(σl
− − σl

+)Dl[φl](�r), (34)

where σi
− and σi

+ are conductivities inside and outside surface i, and φi
∞

is the potential generated on surface i by sources in infinite, homogeneous
medium of conductivity σs. When these sources are modeled with primary
currents �Jp, the infinite-medium potential φ∞ is

φ∞(�r) =
1

4πσs

∫
Vs

�Jp · (�r − �r ′)
|�r − �r ′|3 dV ′, (35)

where Vs is the volume containing all primary sources.

Application of basis functions ψ and weight functions w to Eq. 33 leads to

AkΦk = bkBk −
N∑

l=1

cklDklΦl, (36)
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in which

bk =
2σs

σk− + σk
+

, ckl = 2
σl
− − σl

+

σk− + σk
+

, (37)

and the matrices Ak and Dkl and vector Bk are as described in Table 2 2.
With flat triangular elements and polynomial basis functions, all operator
integrals can be calculated analytically [20–23]. Writing discretized integral
equations for all boundary surfaces and collecting them into matrix form
yields

A︷ ︸︸ ︷⎛
⎜⎜⎜⎜⎝

A1

A2

. . .

AN

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

Φ1

Φ2

...
ΦN

⎞
⎟⎟⎟⎟⎠ =

B︷ ︸︸ ︷⎛
⎜⎜⎜⎜⎝

b1B1

b2B2

...
bNBN

⎞
⎟⎟⎟⎟⎠−

D︷ ︸︸ ︷⎛
⎜⎜⎜⎜⎜⎝

c11D11 c12D12 · · · c1ND1N

c21D21 . . .
...

...
. . .

...
cN1DN1 · · · · · · cNNDNN

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

Φ1

Φ2

...
ΦN

⎞
⎟⎟⎟⎟⎠ . (38)

Factoring the terms gives
(A + D)Φ = B, (39)

from which Φ is solved by inverting the left-side matrix. In case of a finite
volume conductor, the matrix (A + D) is, however, singular due to the un-
specified zero level of the potential. The zero potential is set with aid of
deflation [24,25], after which the matrix can be inverted with standard tech-
niques. The discretization process is treated in more detail in Publication
I, and methods for calculating the element integrals are discussed in Pub-
lications I and II. Methods for solving this problem and the corresponding
biomagnetic problem with the collocation BEM are collected to an open-
source Matlab toolbox “Helsinki BEM library”, presented in Publication I.

2Ak can actually be interpreted as a discretized unitary operator

14



Table 2: Elements of the matrices resulting from discretization with constant
collocation (CC), constant Galerkin (CG), linear collocation (LC), and linear
Galerkin (LG) methods. Ωl

j(�r) is the solid angle spanned by triangle j of
surface l at �r, and �v k

i is the ith vertex of surface k. T k
i labels triangle i of

surface k, Ak
i the area and �c k

i the centroid of that triangle.

Dkl
ij Gkl

ij Ak
ij Bk

i

General
∫

Sk

wk
i D

kl[ψl
j] dS

∫
Sk

wk
i G

kl[ψl
j] dS

∫
Sk

wk
i ψ

k
j dS

∫
Sk

wk
i φ∞ dS

CC Ωl
j(�c

k
i ) Gkl[ψl

j](�c
k
i ) δij φ∞(�c k

i )

LC Dkl[ψl
j](�v

k
i ) Gkl[ψl

j](�v
k
i ) δij φ∞(�v k

i )

CG
∫

T k
i

Ωl
j(�r) dS

∫
T k

i

Gkl[ψl
j] dS Ak

i δij

∫
T k

i

φ∞ dS

LG
∫

Nk
i

ψiD
kl[ψl

j] dS
∫

Nk
i

ψiG
kl[ψl

j] dS
∫

Nk
i

ψk
i ψ

k
j dS

∫
Nk

i

ψk
i φ∞ dS

2.3.3 Integral Equations for Electric Potential Outside the Source
Region

If the sources of the electric field are not in the region of interest and the
potential or the normal derivative of the potential is known on any surface
circumventing the source distribution, the integral equations for the electric
potential outside the source region can be stated without any source model.
In electrocardiographic problems, the primary sources are in the heart muscle;
the potential outside the heart can then be specified in terms of the epicardial
potential. In a homogeneous thoracic volume conductor model, this potential
problem is formulated as an equation pair [17,26]

1

2
φH = −DHB[φB] + DHH[φH] − GHH[ΓH] (40)

1

2
φB = −DBB[φB] + DBH[φH] − GBH[ΓH], (41)

where ΓH = ∂φH/∂n is the normal component of the potential-gradient on
the epicardial surface, and superscripts label surfaces as presented in Fig. 1.
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The forward transfer matrix for the epicardial potential is commonly formed
by discretizing Eqs. 40 and 41, eliminating the Γ-term and then solving for
Φ:

ΦB = LΦH, (42)

where

L =
[(

1

2
AB+DBB

)
−GBH(GHH)−1DHB

]−1

· (43)[
DBH + GBH(GHH)−1

(
1

2
AH − DHH

)]
.

Matrix elements are, again, described in Table 2.

When the lower conductivity of the lungs is taken into account, the problem
is stated as a system of four integral equations. This system is derived and
discretized in Publication III. After discretization and factorization, we get

g = LΦH, (44)

in which

L = S−1T, (45)

S =

⎛
⎜⎜⎜⎜⎜⎝

GHH cL
−DHL cR

−DHR DHB

GLH cL+
2
AL + cL

−DLL cR
−DLR DLB

GRH cL
−DRL cR+

2
AR + cR

−DRR DRB

GBH cL
−DBL cR

−DBR DBB + 1
2
AB

⎞
⎟⎟⎟⎟⎟⎠

g =

⎛
⎜⎜⎜⎝

ΓH

ΦL

ΦR

ΦB

⎞
⎟⎟⎟⎠ , T =

⎛
⎜⎜⎜⎝

DHH − 1
2
AH

DLH

DRH

DBH

⎞
⎟⎟⎟⎠ (46)

with

ck
+ =

σk

σB
+ 1 (47)

ck
− =

σk

σB
− 1. (48)

From Eq. 44, the transfer matrix between the epicardial and body surface
potentials is obtained by taking the NB last rows of the matrix L.
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3 Forward and Inverse Problems of Electro-

cardiography

3.1 Source Modeling

In this Section, the most common source-modeling approaches used in elec-
trocardiography are reviewed. The weight is on studies that either connect
closely with this study or have been applied to characterization of measured
ECG datasets. Thus, e.g., computer heart models are not treated.

3.1.1 Principle

Treatment of a bioelectrical source-modeling problem is started by choosing a
suitable representation for the primary current distribution �Jp. These source
models aim at modeling essential properties of the underlying electrical ac-
tivity while providing a feasible framework for computations. The optimal
source model depends on the specific application: for example, the earliest
ventricular activation of a focal arrhythmia may be localized with a point-
like source model, but accurate simulation of an ischemic electrocardiogram
demands modeling of events on the cellular membrane at ion-current level.

In the boundary element formulation, the general form of a source model is
presented in Eq. 35, in which the infinite-medium potential is reconstructed
by integrating the primary current density over the source volume, weighted
with the appropriate Green function. Practical applications are restricted,
simplified, and optimized forms of this equation. In general, the primary
current density is first discretized either to a set of point-like elementary
current sources or to a linear combination of Ns basis functions:

�Jp(�r
′) =

Ns∑
j=1

Jp,j
�ψj(�r

′), (49)

where �ψj(�r
′) is a normalized vector-form basis function and Jp,j is the am-

plitude of the jth term of the discretized primary current distribution. The
surface potential can then be written as a linear combination of Ns transfer
coefficients Li

φ(�r) =
Ns∑
j=1

Jp,jLj(�r), (50)
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where Lj(�r) is the surface potential generated by the basis function �ψj. For
a set of Nf surface points, the potential Φ can be written with help of a
so-called lead-field matrix (LFM) L

Φ = LJp, (51)

where Jp contains the components Jp,j of the modeled source and Lij =
Lj(�ri). With this lead-field matrix, it is straightforward and computationally
efficient to calculate the surface potential due to any modeled source (the
forward problem).

Reconstruction of the modeled source from the known surface potential (the
inverse problem) is done by inverting the mapping of Eq. 51. While the
solution of the forward problem is unique and, in principle, easy to compute,
the inverse problem is ill-posed [27] and it does not have a unique solution [28].
In order to obtain a feasible source-reconstruction, one needs to restrict the
solution space and often guide the solution to the preferred direction; these
tasks are partially carried out when choosing the source model. If the degree-
of-freedom (DOF) of the source model is smaller than the DOF of the data,
the source reconstruction can be performed in least-squares sense:

Jp = L†Φ, where L† = (LTL)−1LT . (52)

When the DOF of the source model is small, it may be necessary to search
for the optimal discretization points of the source model. The relationship
between the positions of elementary sources and their contribution to the
forward solution is non-linear. When source-positions are optimized, the
problem is typically solved in two steps: the position-search is carried out
with a non-linear optimization method, and for each test-position, the source
amplitudes are computed with linear fitting as described above.

With distributed source models, the DOF of the source is typically larger
than the DOF of the data, leading to an under-determined problem. In such
a case, the source estimation is commonly done by means of minimum-norm
estimate [29] combined with some regularization method. In this Thesis, the
truncated singular value decomposition (tSVD) and Tikhonov regularizations
are used; principles of these and other regularization methods are presented
in [27].
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3.1.2 Dipole and Multipole Models

The equivalent current dipole (ECD) is the most simple source model: the
whole primary current distribution is characterized with one current dipole
�Q,

�Jp = �Qδ(�r ′), (53)

leading to the infinite-medium potential

φ∞ =
1

4πσ

�Q(�r ′) · (�r − �r ′)
|�r − �r ′|3 , (54)

in which �r ′ is the position of the dipole. The dipole position may be either
fixed or time-varying (single moving dipole, SMD). With a moving dipole,
the problem has three linear and three non-linear components.

In 1913, Einthoven et al. [30] characterized the mean direction of the cardiac
electric activation with a two-dimensional vector that can be reconstructed
with help of the triangle hypothesis from measurements performed with three
electrodes. Quantitative framework for this “heart vector” and its relation to
some ECG leads was developed in [31–33]: phantom experiments with a phys-
ical dipole source were performed, and the forward and inverse relationships
between the three-dimensional dipolar source and four electrocardiographic
leads were formulated. These results can be interpreted as the first elecrocar-
diographic forward and inverse solutions, performed in terms of a pre-fixed
ECD. Later, the single moving dipole (SMD) model became more popular,
yielding also an estimate for the location of cardiac electrical events.

The inadequacy of the dipole as a model of the cardiac electrical generator
was realized in 1948 [33]. Non-dipolar features of the human ECG were later
demonstrated in [34]. The clinical interpretation of the spatial properties of
the ECG is, however, still strongly based on the concept of heart vector. The
Frank leadset [35] is the most widely-spread application for quantitative char-
acterization of the heart vector; the mutually orthogonal Frank leads X, Y,
and Z are reconstructed from measurements performed with seven electrodes.
The transfer coefficients for these leads were defined according to phantom
studies with a physical dipole source [35].

Applications of SMD [36–45] can be divided into two partially overlapping
categories: source localization and so-called dipole ranging. In source lo-
calization, limitations of the dipole source are recognized, and the method
is applied with somewhat focal sources, e.g., small infarctions [36], ectopic
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foci [38] or accessory pathways [40]. The SMD has also been used for lo-
calizing a pacing catheter [42], and the suitability of the SMD model for
guiding a catheter towards the arrhythmia focus is being studied [43–45]. In
dipole ranging, a dipole is fitted to the ECG at each time-instant, and dipole
parameters (moment, position) are analyzed as time–amplitude plots as in
conventional ECG analysis [37,39]. The best results with the dipole ranging
method have been obtained with focal data [36,37].

In many early SMD studies, e.g., [36, 37, 39], the volume conductor mod-
eling has been performed in homogeneous thorax models using the Gabor–
Nelson equations [46]. With these equations, the equivalent dipole inside a
homogeneous volume conductor can be defined via integration of the surface
potential; inhomogeneities can not be modeled, and the potential has to be
known or interpolated over the whole surface. In [41], dipole localization was
studied using a BEM model and a two-step dipole fitting procedure (position
search with non-linear optimization, moment fitted with linear least squares
method); this method was found preferable to the Gabor–Nelson approach.
Studies [38,42] were carried out using the BEM.

In Publications IV and V, dipole models were used in detection, classification,
and size-quantification of myocardial ischemia from multi-channel ECG data
using the BEM (see Section 4.3). The dipole hypothesis in these studies rose
from dipolar patterns in body surface potential distributions; the aim was
neither to model or localize the physiological source of the cardiac electrical
activity nor to study the behavior of the heart vector in time domain. In-
stead, the dipole was used as a tool for characterizing the spatial properties of
the body surface potential distribution, for performing a physics-based geo-
metrical dimension-reduction on the multi-electrode data. The application
of the dipole in these Publications is thus more related to Einthoven’s [30]
or Frank’s [35] concept of the heart-vector than to the other dipole studies
reviewed in the previous paragraphs.

The next step in the model complexity is the multipole model, in which
the infinite-medium or boundary potential is written as a multipole series
that contains at least the dipole and quadrupole terms. The multipole ap-
proach of source-modeling has not been used recently, perhaps due to the
lack of physiological or geometrical meaning in case of the higher-order mul-
tipole components. The use of a high-order multipole model can thus be
interpreted rather as dimension-reduction than as a source model. In mag-
netocardiography, the second-order multipole model (dipole and quadrupole)
has performed better than the dipole model in localization of a pre-excitation
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site [47]. The use of dipole and multipole models in electrocardiography is
reviewed in [48].

3.1.3 Distributed Source Models

In distributed source models, the primary current density is modeled as ei-
ther a volume or a surface distribution. In volume source models, the pri-
mary current density is discretized in the myocardial volume, while in surface
source models, the sources may lie on endo- or epicardial, or on both of these
surfaces. The directions of the elementary sources can be either free or re-
stricted.

In the review [48], “multiple dipole models” are treated. In some of these
models, each dipole represents the mean electrical activity of a specific car-
diac region; such an approach can as well be interpreted as discretization
of the primary current distribution. Thus, [48] serves also as a review on
early studies on distributed source models. A volume source model has later
been used for, e.g., estimation of the viable myocardium from electro- and
magnetocardiographic data [49]. In one example in Publication I, a surface
source model spanned at the endo- and epicardium is used for localization of
a region of simulated myocardial ischemia.

The equivalent double-layer model (EDL) [50–53] is an application of the
surface source model, in which a simple model of cardiac depolarization is
utilized: A depolarization wavefront is modeled as a uniform double-layer
(UDL). As long as this layer is closed, it produces no external potential.
When the wavefront reaches either the endo- or epicardium, the double-layer
opens up, contributing to the electrocardiogram. The open double-layer can
be modeled as a sum of a closed layer and an oppositely-directed open UDL
at the region of the opening. Thus, the source of the external potential can
be modeled as an equivalent double-layer spanned at endo- and epicardial
surfaces. The infinite-medium potential due to the EDL can then simply be
stated in terms of the double-layer operator,

φ∞ =
1

σs

DH[sH], (55)

where H is the union of endo- and epicardial surfaces and sH is the EDL
strength (the normal component of the primary current). The tools that are
used in Section 2.3.2 apply also to discretization of the EDL source.
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The bidomain theory of the cardiac muscle [51, 54] provides the theoreti-
cal framework for the double-layer source model: In the bidomain theory,
the cardiac muscle is modeled as a continuum of intertwined intra- and ex-
tracellular spaces that are connected via currents passing through the cell
membrane. With help of this theory, the relationship between the primary
current �Jp and the transmembrane potential (TMP) φm can be written [54]

�Jp = −σi∇φm, (56)

where σi is the intracellular conductivity. In a homogeneous compartment of
cardiac tissue, the infinite-medium potential generated by the volume TMP
can be written directly in terms of the surface TMP [51,52]:

φ∞ = −σi

σs

DH[φm]. (57)

The connection between the surface TMP and the extracellular potential
enables the use of knowledge on cardiac action potential. This feature is
utilized effectively in applications of the EDL. The EDL method has, in
addition to depolarization, also been applied to the repolarization [52]. In
the ECGSIM program3 [53], simulation of the electrocardiogram is based on
endo- and epicardial action potential waveforms that can be altered in time
and shape. The volume conductor modeling in [50,52,53] is performed with
the boundary element method, applying the point collocation weighting and
taking into account the effects of lungs and intracardiac bloodmasses.

In activation time imaging (ATI) and its application “Noninvasive Imaging
of Cardiac Electrophysiology” (NICE) [55], the TMP model is utilized in in-
verse reconstruction of cardiac activation times. In simulation study [25],
pre-defined action potential waveform and a time-course model of the ven-
tricular depolarization were coupled with both point collocation and Galerkin
BEMs; the Galerkin method performed better in the forward computation
due to the more accurate reproduction of the depolarization-time informa-
tion. This benefit did, however, not reflect to results of [56], in which ATI was
performed on a patient with Wolff–Parkinson–White (WPW) syndrome us-
ing both collocation and Galerkin BEMs and the FEM; all methods produced
very similar activation time maps. The ATI method has been successfully
applied to localization of a WPW accessory pathway [55–57] and of a sur-
face breakthrough of paced data in the right atrium [58] and in the right
ventricle [56]. Activation time maps obtained from healthy volunteers have
been morphologically similar to those obtained earlier from isolated human
hearts [57].

3ECGSIM was used in Publication I for simulating the ischemic electrocardiogram.
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3.2 Epicardial Potential Imaging

In epicardial potential imaging [17, 26, 59–61], the electric potential on the
surface of the heart outside the myocardium is reconstructed from electro-
cardiographic data. Formulating the cardiac inverse problem in terms of
epicardial potential instead of using source models has four kinds of advan-
tages [62]:

1. The solution is unique: if the potential is known over any closed surface
comprising all sources, potential anywhere outside the source region is
uniquely defined.

2. No restrictive assumptions regarding the nature and complexity of
sources are made.

3. Intracardiac blood masses and cardiac anisotropy are taken into ac-
count implicitly—they do not need to be modeled.

4. Inverse solutions can be validated by comparing them to invasively
measured epicardial electrograms.

Although the epicardial potential problem has a unique solution, the problem
is ill-posed, and the inverse problem needs to be solved with help of similar
regularization methods that are used in source-modeling problems [27].

3.2.1 Computational Methods in Epicardial Potential Imaging

The epicardial potential problem was for the first time formulated for a
realistically-shaped geometry in [26] using a collocation BEM approach, in
which the potential was approximated with constant basis functions, but the
collocation points were placed in the nodes instead of the triangle centroids
of the mesh. Other early methods and applications are reviewed in [62], in
which simulations with an eccentric-spheres model are presented as well.

Linear collocation BEM has been applied to the epicardial potential problem
in, e.g., [17,63] and almost all studies of the Rudy research group [64]. In [17],
performances of the constant and linear collocation methods were compared
using simulated data; the constant method was found more accurate. These
results are discussed in more detail in Publication II, in which the same Dal-
housie thorax model as in [17] was used. Second-order basis functions have
recently been applied with the collocation method, leading to encouraging
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results [64]: With a canine heart and a thorax-shaped saline tank, the re-
construction error of the electrograms over the cardiac cycle decreased by
approximately 20 percentage units compared to the linear basis. In a paced
human heart, the quadratic method localized the pacing site more accurately
than the linear method did. In addition to the BEM, also the finite element
method (FEM) [65] and a combined FEM–BEM approach [66] have been
suggested. These methods have not gained popularity yet, but they enable
the important possibility to model anisotropic structures. Thus far such in-
formation is not routinely available, but this may change in the near future
due to the development of diffusion-tensor magnetic resonance imaging.

In Publication II, the Galerkin BEM was applied to the epicardial potential
problem for the first time. In computation of the single-layer element inte-
grals, analytical formulas [22] were used for the first time, eliminating one
often-discussed source of uncertainty. The linear Galerkin (LG) method gave
smaller discretization errors on the epicardium and forward transfer errors
on the body surface than the other tested methods did. These results did,
however, not reflect to the Tikhonov-regularized inverse problems, unless the
error was evaluated as integral over the whole epicardial surface. Overall, the
choice of basis and weight functions had smaller effect on the reconstructed
epicardial potential than the errors due to interpolation and insufficient mod-
eling did.

In choosing the basis functions for boundary element computations, the er-
ror introduced by interpolation of the source data should not be overlooked.
Constant basis and weight functions are spanned according to the triangles,
while their linear counterparts are built around the nodes of the mesh. The
results of computations are thus written in terms of triangle and node poten-
tials, respectively. In the meshing process, nodes are commonly placed into
electrode positions. If constant basis functions are used with such a mesh, the
data measured with the electrodes need to be interpolated from the electrode
positions to the triangles. In Publication II, the effect of such interpolation
on inverse problem was studied: In optimal modeling conditions with simu-
lated data, the interpolation increased the reconstruction error considerably.
In realistic applications, however, the error due to the interpolation is prob-
ably not as large as in the optimal model, because smoothing caused by the
interpolation appears to partially compensate for the modeling errors (see
Figs. 4 and 5 and Section V-E in Publication II). Still, if computations can
be done directly using the data at electrode positions only, there is no reason
for interpolating the measured data before solving the inverse problem.
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Recently, the method of fundamental solutions (MFS) was applied to the
epicardial potential problem [67]. The use of MFS was motivated by listing
problems of the BEM: singular integrals, difficulty of implementation, and
mesh-related artifacts. For all these problems, there is, however, a solution or
a work-around: The singular integral of the G operator can, with flat trian-
gles and polynomial basis functions, be calculated analytically [22, 23]. The
other singularity-related problem, the “auto-solid angle” in the discretization
of the D operator [68], is not an issue in the constant methods or in the linear
Galerkin method, in which the actual field computation points are inside of
smooth triangles instead of being in the sharp nodes (see Publication II).
Compact, general presentation of the mathematics of the epicardial poten-
tial problem (Publications II and III) and the thorough documentation of
the analytical integrals in [22] coupled with the BEM library presented in
Publication I enable the straightforward implementation of the BEM solver.
The use of the linear Galerkin method reduces mesh-related artifacts, be-
cause computations do not need to be performed at sharp-angled nodes of
the mesh.

3.2.2 Volume Conductor Modeling in Epicardial Potential Imag-
ing

The first BEM implementation of the epicardial potential problem [26] was
formulated in a homogeneous volume conductor. A formulation for a piece-
wise homogeneous volume conductor was reported in [69], but it has appar-
ently not been applied to epicardial potential imaging later on. Difficulties
and limitations of [69] are discussed in Publication III, in which a generalized,
operator-based formulation of the problem is presented and validated. Effects
of conductivity inhomogeneities on the forward epicardial potential problem
have—in realistically shaped models—been studied, e.g., in [69–71] and in
Publication II. In the inverse epicardial potential problem, these effects have
been studied in [72,73] and in Publication II.

In [69], epicardial and body surface potential data were measured from an
intact dog. Boundary element models with various simplifications were con-
structed, and computed surface potentials were compared to the measured
ones, using the measured epicardial potentials as input data. Anisotropic tho-
racic muscle was approximated as suggested in [74], replacing the anisotropic
layer with a scaled isotropic layer. The full model comprised the lungs, ster-
num, spine, and thoracic muscle layer. During sinus rhythm, this model lead
to relative error (RE) of 39%. The muscle layer was found to be the most
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important inhomogeneity: removing it increased the RE to 56%, while re-
moving of all inhomogeneities gave the RE of 58%. With anterior pacing,
errors were considerably larger. The effect of lungs was found insignificant.
It is, however, not clear, how well these results are applicable to the human
thorax; especially the structure and size of the muscle layer and the validity
of the used approximation may differ.

An accurate FEM thorax model containing the lungs, anisotropic muscle
layer, various fat pads, and major bones and blood vessels was built in [70].
Body surface potential maps were computed in the model containing all in-
homogeneities, using a measured epicardial potential distribution. These
body surface maps were then compared to corresponding maps obtained
with simplified models using the same epicardial potential distribution. The
anisotropic thorax muscle, subcutaneous fat, and lungs played the largest
roles, causing 12–15% relative errors each.

In [71], a perfused canine heart and a homogeneous torso-shaped saline tank
were used. The heart was paced from various positions, and epicardial and
surface potentials were measured. The solution of the forward problem in
the homogeneous volume conductor was first validated against the measured
data. Then, the model geometry was altered and inhomogeneities were intro-
duced computationally, and the effects of inhomogeneities on the tank surface
potential were compared against each other. The relative difference4 between
the computed surface potentials in homogeneous and inhomogeneous models
was between 7% and 17%. The conclusion was that inhomogeneities have
only minor effects on the electrocardiogram.

In [70,71], the epicardial potential was assumed fixed, and differences between
computed surface solutions were evaluated. Thus, the effect of the volume
conductor variation on the epicardial potential was omitted. This causes
errors regarding the roles of the inhomogeneities, especially those close to
the heart. Overall, the role of the inhomogeneities can not be fully assessed
by studying the forward problem only, because in the inverse problem, small
errors in the computational model or measured data may lead to large errors
in the inverse reconstruction [27].

In [72], the EDL model was used for simulation of realistic epicardial5 and

4Relative difference is mathematically identical to the relative error, presented in Eq.
29 of Publication II

5In [72] and other studies of the van Oosterom group, the term “pericardial potential”
is used instead of “epicardial potential”.
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body surface potentials in a piece-wise homogeneous volume conductor (in-
tracardiac blood masses, lungs). Then, epicardial potentials were recon-
structed utilizing a priori information of the solution. Evaluation of different
volume conductor simplifications was not elaborated, but it was concluded
that, in order to obtain proper results, the lungs need to be included.

The study [71] was followed by [73], in which the same measured epicardial
potential patterns were used for computational generation of body surface
potential maps in a piece-wise homogeneous model. Then, the inverse po-
tential problem was solved using various model simplifications. The relative
error increased by about 20 and the correlation coefficient decreased by less
than 10 percentage units, when the inhomogeneities were left out. It was
then concluded that modeling of the inhomogeneities can be omitted.

In Publication II, both forward and inverse problem were first solved in a ho-
mogeneous model. Then, inhomogeneities were introduced in the generation
of the reference data, while the inverse reconstruction was performed using
the homogeneous model. In the optimal modeling conditions (both forward
and inverse transfers in identical, homogeneous models), the median relative
error of the inverse reconstruction was approximately 10%. When the for-
ward problem was solved in a model containing the lungs and the inverse
reconstruction was done in a homogeneous model, the corresponding error
was about 30%.

In [71,73], it was discussed that the inclusion of the inhomogeneities increases
the condition number of the forward transfer matrix, leading to a more ill-
posed inverse problem and thus devaluing the advantage of the more accurate
transfer matrix. In Publication III, however, the condition number of the for-
ward transfer matrix for the inhomogeneous model was smaller than that for
the corresponding homogeneous model. In other words, modeling of inho-
mogeneities with the method described in Publication III does not increase
the ill-posedness of the problem. The use of a piece-wise homogeneous tho-
rax model instead of the homogeneous one thus prepares the way for more
accurate reconstruction of epicardial potential.

3.2.3 Validation of Epicardial Potential Imaging

Major part of method development in epicardial potential imaging is based on
data measured with a semi-realistic phantom: a Langendorff-perfused canine
heart placed into a thorax-shaped saline tank that is equipped with surface
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electrodes and electrode rods (see [59]). With this setup, voltages both on
the surface of the tank and close to the epicardium can be recorded syn-
chronously. Such data are ideal for developing and comparing computational
methods, but the role of the inhomogeneous volume conductor and errors due
to simplifications in the volume conductor model can not be directly studied.
Tank studies and other validation approaches to both epicardial potential
imaging and source-modeling have been reviewed, e.g., in [75,76].

Epicardial potential imaging is currently being validated with realistic hu-
man data. So far, epicardial potential imaging has been shown to localize
ventricular pacing sites with accuracy of about 10 mm [64]. In comparison
to electrograms measured invasively from the epicardial surface, epicardial
potential imaging has been able to characterize essential features of depolar-
ization: results in [61] suggest that earliest ventricular activation and areas
of slow conduction can be localized, and that the general excitation pattern
can be captured. In the same study, reconstructed electrograms were in mod-
erately good morphological concordance with measured signals (correlation
coefficient ≈ 0.7); amplitude errors were not reported. Total excitation pat-
terns computed from epicardial potential maps have been similar to those
measured earlier from isolated hearts [60].

The validation results discussed above have been obtained with homogeneous
volume conductor models; inclusion of the lungs in the computational model
will improve the results further.
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4 Detection and Localization of Myocardial

Ischemia

4.1 Myocardial Ischemia and the Electrocardiogram

Coronary artery disease leads to occlusion of coronary arteries. The occlusion
causes reduction of blood supply in myocardium. The reduced blood-flow
leads to disturbed hemodynamics and lack of oxygen that cause changes in
electrophysiological conditions of the cardiac muscle cells. These changes al-
ter the transmembrane potential in the ischemic region, leading thus to ECG
changes. Prolonged ischemia leads to myocardial infarction, in which per-
manent damage for cardiac muscle cells has occurred. Myocardial infarction
increases the risk of possibly lethal ventricular arrhythmias and weakens the
pumping-function of the heart. [77]

Ischemic changes in the electrocardiogram are typically easiest to detect be-
tween depolarization and repolarization of the ventricular myocardium. In
ECG waveforms, this plateau phase is referred to as ST segment; labeling
of the ECG waveform is presented in Fig. 3. During the plateau phase,
the transmembrane potential is larger in healthy myocardium than in the
ischemic region. This potential-difference generates changes in the epicar-
dial potential and electrocardiogram: Transmural ischemia causes epicardial
and electrocardiographic ST potential elevation in the region overlying the
ischemic area, while subendocardial ischemia may cause either ST elevation,
depression, or no ST change at all [78–82]. Overall, the strength and shape
of ischemic ST changes depend on the extent and severity of the ischemia, on
intra- and extracellular conductivities, and on the direction of cardiac muscle
fibers [78–81,83]. The current flow and changes of epicardial potential asso-
ciated with subendocardial ischemia have been characterized and visualized
in [79,80].

In addition to the ST segment, myocardial ischemia may alter also other
features of the electrocardiogram, especially the QRS complex and T wave;
a recent listing of electrocardiographic abnormalities that may evolve to my-
ocardial infarction is provided in [84]. In addition, ECG markers such as
QRS slope [85] and high-frequency content of the QRS complex [86] have
been reported to add to the value of the ECG in diagnosis of myocardial
ischemia. It has also been reported [87–89] that electrodes outside the stan-
dard 12-lead setup improve the electrocardiographic detection of myocardial
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ischemia. In [87, 88], the optimal unipolar [88] or bipolar leads [87] for de-
tecting ischemia were derived by searching for the largest [87] or statistically
most significant [88] alterations in ST60 (see Fig. 3) body surface potential
maps measured during induced ischemia. The electrode layouts suggested
in [87,88] were applied in Publication IV.

In Publications IV–VI, both ST potentials and other linear ECG markers
are used in detection, localization, and size quantification of myocardial is-
chemia, applying dipole modeling and epicardial potential imaging. To the
author’s knowledge, dipole modeling has not been used before in quantita-
tive analysis of the myocardial ischemia. In Dalhousie university, the ischemic
electrocardiogram has been studied using a measurement system and dataset
very similar to ours; epicardial potential imaging has been applied to char-
acterization of ischemia in, e.g., [63,90].

4.2 Datasets and Preprocessing

The datasets used in Publications IV–VI were collected in Division of Cardiol-
ogy at Helsinki University Central Hospital. Body surface potential mapping
was performed using BioSemi Mark VI and Active Two amplifiers6 and strip
electrodes. The measurement system is described in [91], and the electrode
layout is visualized in Fig. 4a of this text and in Fig. 1 of Publication IV.

In percutaneous transluminal coronary angioplasty (PTCA), a catheter with
an inflatable balloon is inserted into the occluded coronary artery, and the
artery is re-opened by inflating the balloon at the occlusion site [92]. Dur-
ing the inflation, the artery is totally blocked, leading to temporary supply
ischemia. PTCA provides an idealized model of the ischemic myocardium:
the site of the occlusion is known, and the artery is totally blocked.

In the first dataset (“the PTCA set”), the BSPM was measured in the catheter
laboratory during scheduled PTCA operations in 22 patients. The angio-
plasty was performed in left anterior descending (LAD, n = 8), left cir-
cumflex (LCX, n = 7), or right coronary artery (RCA, n = 7). Typical
coronary artery anatomy is visualized in Fig. 2. This dataset was used in
Publications IV and VI. BSPM data measured during PTCA were also used
in [63, 87, 88, 90]; the electrode layout was nearly identical to that in our
studies.

6http://www.biosemi.com
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The second dataset contains BSPM data from 84 healthy volunteers and
79 patients suffering from acute myocardial ischemia (“the acute set”). The
measurements were carried out in the coronary care unit within 12 hours
from the onset of symptoms. The inclusion criteria for the set were chest pain
and either alterations in the 12-lead ECG suggestive of myocardial ischemia
or elevation of myocardial enzymes or both. The patients were grouped
according to the culprit coronary artery and presence of acute myocardial
infarction (AMI). The culprit artery was specified in coronary angiography,
and the AMI grouping was done according to the CK–Mb (creatine kinase–
Mb) mass maximum. This dataset was used in Publication V.

The data were pre-processed semi-automatically: a 50-Hz filter was ap-
plied when necessary, the baseline-wandering was corrected with a third-
order spline function, ectopic beats were rejected, and the data were signal-
averaged [94]. The selective averaging was in the PTCA set computed over
11 beats and in the acute set over the whole measurement. Channels with
bad signal quality were interpolated using the surface Laplacian [95]. A pre-
processed ECG signal is presented in Fig. 3.

The fiducial time-points were detected automatically from the averaged ECG
signals: The QRS onset and offset times were defined from the vector mag-
nitude of the high-pass-filtered signals using envelopes. The apex and end of
the T wave were defined for all signals as described in [94]; in further analy-
sis, the median of these channel-specific time instants was used. On basis of
the averaged data and the fiducial time points, various linear ECG markers
were extracted. The markers contained both instantaneous maps and inte-
gral maps over various parts of the QRS complex, ST segment, and T wave.

Figure 2: Coronary anatomy, modified from [93]
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Figure 3: A preprocessed ECG signal with fiducial time-points, ST60 time-
instant, and various integral markers. The QRS complex is the period between
the QRS onset and offset, and the ST segment starts from the QRS offset
and continues as the T wave. The T wave onset-point was not defined or
used in this study.

The fiducial time points and some of these markers are illustrated in Fig. 3.
For the PTCA set, delta maps [87] were generated by subtracting the map
before the balloon inflation from the map with maximal ST changes. The
delta maps thus represent only the ECG alterations caused by the balloon.

4.3 Dipole Modeling

In Publications IV and V, dipole modeling is applied in spatial characteriza-
tion of measured electrocardiograms. While both studies deal with ischemic
hearts, aims and methods are different: In Publication IV, the aim is to
classify the ischemic electrocardiogram according to the coronary artery ex-
periencing reduced flow, and the classification is based on angles between
dipoles. In Publication V, it is studied, whether simple parameters derived
from dipoles are able to discriminate patients from controls and predict the
extent of the resulting infarction as measured by creatine kinase–Mb enzyme.
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These discriminating or predicting parameters include, e.g., amplitudes of or-
thogonal components or projections of the dipole.

The dipole hypothesis in these studies originated from dipolar patterns ob-
served in body surface potential maps (see Fig. 2 in Publication IV). The
aim was not to localize the source of the abnormal cardiac electrical activity
with help of the dipolar source model. Instead, the dipole was used as a tool
for characterizing the morphology of the body surface potential distribution
(see also Section 3.1.2).

4.3.1 PTCA Set (Publication IV)

In the PTCA delta maps presented in [87], the population-average maps
of the ST60 potential7 show dipolar morphology, and the map orientation
depends on the occluded artery. In our PTCA set, the corresponding maps
were very similar to those in [87]. In Publication IV it was studied, whether
the map orientation can be characterized with a dipole model, and whether
the resulting dipoles can be used for discriminating between culprit arteries.
The ST60 population-average maps and corresponding dipoles of our PTCA
set are visualized in Figs. 2 and 3 of Publication IV.

Computation of the equivalent current dipoles was performed as described in
Publications IV and V using the development version of the BEM library pre-
sented in Publication I. The dipole position was either optimized for the best
reconstruction of the measured data in each patient (“best-reconstructing”),
pre-fixed, or defined from the population average maps (“artery-specific”).

In all patients, the Dalhousie thorax model [17] was used; variation in patient
anatomy and electrode positioning was omitted. The thorax model was as-
sumed otherwise homogeneous, but the anisotropic thoracic muscle layer was
approximated as suggested in [1, 74], replacing the anisotropic layer with a
scaled isotropic layer. When this volume expansion method was applied, the
dipoles fitted to the dataset had, according to visual inspection, smaller vari-
ation than in the fully homogeneous model. In the first classification tests,
the volume-expanded model also performed better than the homogeneous
one. All further analysis was thus done with the expanded model.

In addition to the full BSPM set, five reduced electrode-sets were applied:
those of the 12- and 18-lead [89] ECGs, a custom set modified from the 12-

7ST60 potential = potential 60 ms after the QRS offset
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Figure 4: Electrode setups used for ischemia classification. a) BSPM, b) 12-
lead, c) modified 12-lead, d) 18-lead [89], e) Horáček [87], and f) Kornreich
[88].

lead set (“modified 12-lead”), and the 5-electrode sets proposed in [87, 88].
Although the datasets and principles of discrimination in [87,88] were similar
to those used in this Thesis, there is an essential difference: in [87, 88], the
best electrode positions for a given ECG marker were sought for, whereas
in the dipole studies of this Thesis, the main spatial features of potential
distribution sampled by a given electrode-set are distilled into one dipole,
which is then used for classification.

The electrode layouts of the applied electrode-sets are visualized in Fig. 4.
The reduced-set data were generated from the BSPM markers; to enable field
calculation in the 12- and 18-lead sets, the limb electrodes were positioned
on shoulders and left hip and the chest electrodes were placed in the best-
matching nodes of the thorax model. ECG markers at positions that did
not match with the electrodes of the BSPM set were interpolated using the
surface Laplacian [95].

Patients were classified by comparing the dipole moment computed from
the test case (“test dipole”) to the corresponding dipole moments computed
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from the population average maps of other patients in leave-one-out manner:
the test dipole was always independent on the data used for obtaining the
population average maps. The cosine of the angle between the dipoles was
chosen as the classification parameter. When reduced electrode-sets were
used, the population average maps were constructed with both BSPM and
the set in question. After preliminary testing, only the ST60 potential was
used in classification.

With the BSPM set, 21 of the 22 patients were classified correctly using any
dipole positioning. When reduced sets were used, the pre-fixed or artery-
specific dipole positions performed better than the best-reconstructing dipole
did. The modified 12-lead set performed as well as the BSPM, and the 5-
electrode set of [87] was able to classify 20 patients correctly. The 12-lead set
provided the correct classification in 18 cases, while the 18-lead set succeeded
in either 19 or 20 cases. The 5-electrode system suggested in [88] seems to
be badly suitable for use with dipole modeling. With reduced electrode-sets
and artery-specific dipoles, the positions defined according to the BSPM data
performed better than those defined with the set being tested.

These results show that dipole modeling is a powerful tool for characterizing
the orientation of body surface potential maps. The method presented here
is applicable also with reduced electrode-sets, especially when the dipole
positions are pre-fixed according to prior BSPM results. In addition to the
quantitative information obtained from the dipoles, the use of the dipole
model provides a way for visualizing the heart vector, thus facilitating the
manual interpretation of the electrocardiogram.

4.3.2 Acute Set (Publication V)

In Publication V, dipole modeling was used for detection of myocardial is-
chemia and size quantification of the resulting myocardial infarction. The
dataset was subdivided according to the culprit coronary artery and presence
of myocardial infarction, resulting in eight patient categories (see Table 2 in
Publication V). The field computation was done with the same model as
in Publication IV, and the dipole position was either the pre-fixed or best-
reconstructing one.

First, dipoles were fitted to all BPSM markers resulting from the preprocess-
ing, using either the full BSPM set or the electrode set of the reconstructed
12-lead ECG. Next, 10 parameters were extracted from each dipole. Then,
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Figure 5: The Dalhousie thorax model, its principal axes, and projection
surfaces. In addition, transversal θt and sagittal θs projection angles are
presented.

the ability of each dipole parameter to discriminate between patient groups
and controls was assessed in leave-one-out manner, resulting in estimates of
sensitivity and specificity. The size quantification was carried out by finding
the best correlation coefficient between the dipole markers and CK-Mb mass
maximum [96]. The statistical reliability of the correlations was assessed
with confidence interval (CI), computed non-parametrically using the bias-
corrected accelerated bootstrap [97,98]. The dipole parameters are described
in Section 2.4 of Publication V, and the projection planes and angles used in
the parameter definitions are illustrated in Fig. 5.

When the best-reconstructing dipoles and BSPM were used, the first and sec-
ond QRS-quarter integrals performed best with left coronary arteries, while
the T apex potential was the best-discriminating ECG marker in artery-
unspecific patient categories (see Table 2 in Publication V). When the pre-
fixed dipole position was used with the BSPM set, the discrimination perfor-
mance was slightly better than in case of the best-reconstructing dipoles.
With the 12-lead set, only the pre-fixed dipole position was used. The
first QRS-quarter integral discriminated best with LAD infarctions; in other
groups, the best performance was obtained with repolarization-characterizing
markers (see Table 3 in Publication V). All dipole parameter categories ex-
cept the total dipole amplitude were represented in the results; in general,
the amplitudes and directional cosines of the dipole projections stand above
the crowd. Overall, the discrimination performance of the 12-lead set was
slightly better than that of the BSPM set. These results are discussed further
in Section 4 of Publication V.
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Table 3: Best parameters for the size quantification of myocardial infarction
using the 12-lead electrode set with the pre-fixed dipole position; R is the
correlation coefficient and CI its confidence interval, “int.” labels integral
markers, “T apex” is the median amplitude of the T wave, and “QRS 2 / 4”
is the second quarter of the QRS.

Group n Marker D. Para R CI
All12 79 QRS 2 / 4 int. cos θt −0.59 [−0.79,−0.27]

LAD12 32 QRS 2 / 4 int. cos θt −0.91 [−0.95,−0.83]
LCX12 10 QRST int. cos θt −0.85 [−0.98,−0.57]
RCA12 26 T apex. Qy −0.38 [−0.69,−0.03]
AMI12 68 QRS 2 / 4 int. cos θt −0.57 [−0.78,−0.23]

AMI12LAD 28 QRS 2 / 4 int. cos θt −0.90 [−0.95,−0.81]
AMI12LCX 8 QRST int cos θt −0.79 [−0.96, 0.02]
AMI12RCA 22 S40 int. cos θs −0.43 [−0.66,−0.10]

The correlations presented in Publication V were calculated from the BSPM
set using the best-reconstructing dipoles. Corresponding parameters for the
12-lead electrode set with the pre-fixed dipole position are presented in Table
3. In artery-unspecific and LAD patient groups, the cosine of the transversal
projection angle calculated from the integral over the second QRS-quarter
shows a strong correlation with the CK-Mb.

4.4 Epicardial Potential Imaging

In Publication VI, epicardial potential imaging was applied in localization of
the ischemic region from body surface potential maps. The localization was
done by searching for the ischemia-characteristic region of altered epicardial
potential in the ST60 delta maps of the PTCA dataset. The same dataset
was used in Publication IV for classification of the ischemia according to the
culprit artery with help of dipole models; see Section 4.3.1.

While the aim in these two PTCA applications is partially the same, the
methodologies are different: In Publication IV, the dipole-hypothesis was
based on geometrical differences of the body surface maps, and the classi-
fication was done by comparing each patient to all patient groups, without
any reference to cardiac anatomy. In Publication VI, the hypothesis was
based on known features of typical ischemic epicardial potentials and elec-
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trocardiograms, and the results were visualized on an anatomical model of
the epicardium; no quantitative classification was done. The PTCA dipole
study is thus a combination of feature extraction and classification, while this
epicardial potential imaging study essentially deals with functional imaging
with simple a priori conditions.

Epicardial potential imaging was carried out using the homogeneous Dal-
housie thorax model that was used also in most of the computations of Pub-
lication II. Field computations were carried out with the constant collocation
(CC) method, and the single-layer integrals were computed numerically—
these were for the authors the only methods implemented at that time. Reg-
ularization was done with Tikhonov’s second-order method, following guide-
lines of [17]. In order to use this “traditional method”, the delta maps had to
be interpolated from nodal electrode positions to the centroids of all triangles.
The interpolation was carried out with the surface Laplacian method [95].

First, the traditional method was applied to the dataset. The regulariza-
tion parameter was chosen manually so that the goodness of fit8between the
source data and the reconstructed surface potential was approximately 0.96.
The resulting epicardial potential maps, presented in Figs. 3a–5a of Publi-
cation VI, were not satisfactory: instead of showing a well-defined positive
region above the ischemic region, the maps were fragmented, containing many
positive and negative regions and strong gradients.

To provide for smoother solutions and a more compact transfer matrix, a
nodal approach was developed. In this approach, unit potentials defined in
nodes were first interpolated to triangle centroids using the surface Lapla-
cian. Then, the transfer matrix for these interpolated unit potentials was
constructed by applying CC-discretized Eq. 42, and the resulting body sur-
face potentials were interpolated to nodes. The use of interpolation provides
for spatially smoother basis for the epicardial potential: instead of the stan-
dard constant basis functions (non-overlapping, defined in single triangles),
each basis function in the nodal approach spans over several triangles. The
inverse reconstructions obtained with this “lead-field” method were—at the
same goodness of fit—considerably smoother than those obtained with the
traditional method (see Figs. 3–5 in Publication VI).

In [63], the volume conductor model consisted of the Dalhousie thorax surface
and an epicardial surface that was more coarse than the one used in our study.
Field computations were done with linear collocation method, and the inverse

8See Eq. 7 of Publication V; in Eq. 8 of Publication VI there is an error.
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transfer matrix was constructed with help of the Tikhonov regularization, in
which the regularization parameter was set with help of simulated data. The
analysis was carried out using delta maps constructed from ST integral maps.
Results were, according to visual comparison, slightly more detailed than
those obtained with the lead-field method in our study, but much smoother
than those resulting from the traditional method.

While the lead-field method and the method applied in [63] are able to yield
smooth epicardial potential maps that reflect geometrical features of the body
surface potential maps, they may, due to modeling errors or under- or over-
regularization, fail in giving a clear estimate on the location and extent of
the ischemic region. In order to provide for an easy-to-interpret, robust tool
for localization of the ischemic region, another method was developed. In
this “template method”, the epicardial potential around each node of the epi-
cardial mesh is modeled with help of a pre-specified neighborhood function.
From these template epicardial potential maps, corresponding body surface
potential maps are computed and used for iterative searching of the template
that best fits the measured data.

Results obtained with the template method are, for representative cases, dis-
played in Figs. 3c–5c and Fig. 6 of Publication VI. The template method
produced morphologically simple maps, in which the elevated epicardial po-
tential was close to the location of the map maximum suggested by the lead-
field method. In the whole patient set, the localizations suggested by the
best-fitting templates were anatomically logical: they were always in the re-
gion that is typically perfused by the same coronary artery that was blocked
during the BSPM measurement, with only a slight overlap between different
patient categories.

After implementing the linear collocation (LC) and Galerkin (LG) methods
and analytical integrals for the epicardial potential problem, they were also
tested with the PTCA set—also with lungs included in the model. In visual
comparison, reconstructions obtained with the homogeneous model and LC
or LG methods were morphologically similar to, while slightly more detailed
than, those obtained with the lead-field method. Correlation coefficients for
the LG and lead-field reconstructions were between 97% and 99%. The lead
field method thus reconstructed the main spatial characteristics of the my-
ocardial ischemia as well as the LC and LG methods did. Relative differences
ranged between 16% and 37%.

Next, the role of the lungs in reconstruction of the epicardial potential was
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LAD LCX

RCA

Figure 6: Epicardial potentials map reconstructed from PTCA difference
maps using the linear Galerkin method in a volume conductor model con-
taining the lungs; contour step is 50 μV, and positive contours are marked
with dashed line.

assessed with the LG method. The inclusion of the lungs in the model in-
creased the amplitudes and added some detail to the maps, but main spatial
features did not change; correlation coefficients were between 93% and 98%
and relative differences between 25% and 39%. Epicardial potential maps of
the representative cases obtained with the lungs included in the model are
visualized in Fig. 6.

Finally, the template method was applied with the LG transfer matrices.
In the homogeneous model, the results similar to those in Publication VI
were obtained; in some of the patients the localizations changed, but the
general pattern remained the same. When the lungs were included, localiza-
tions moved, on average, slightly further away from the apical tip, and the
separation between the patient categories was improved. The new template
localizations are displayed in Fig. 7. These results suggest that inclusion of
the lungs improves the results also in applications, in which patient-specific
models are not used or the inverse problem is solved with simple, coarse
methods.
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Figure 7: Centers of ischemic regions for all LAD, LCX, and RCA patients
marked with dark, medium, and light gray circles, respectively
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5 Summary and Outlook

In this Thesis, methods for solving the forward and inverse problems of elec-
trocardiography were developed and applied to characterization of acute my-
ocardial ischemia.

Basic methods for solving quasi-static potential-problems using the BEM
were collected to a Matlab toolbox. This Helsinki BEM library has been suc-
cesful; it is currently in use in over 20 foreign research groups. In addition to
electrocardiographic problems, the methods in the library can be applied di-
rectly to, e.g., electro- and magnetoencephalography, magnetocardiography,
and electrostatic scattering. For the author, structures and routines of the
library have given a solid foundation for further method development.

Compared to conventionally used collocation methods, the linear Galerkin
(LG) method was found to produce smaller forward-transfer and discretiza-
tion errors in the epicardial potential problem. A good inverse solution needs
an accurate forward solution as prerequisite; the use of the linear Galerkin
method instead of the collocation method is thus, in general, recommended.
But, when the inverse problem was solved using the traditional Tikhonov
regularization, the LG method was, overall, not better than the other meth-
ods. In most applications of epicardial potential imaging, the lungs have
been omitted from the thoracic volume conductor model. If such a simpli-
fication is done, the choice of basis and weighting functions is insignificant.
The transfer matrix derived in this Thesis enables the inclusion of lungs in
an easy-to-implement manner, without increasing the ill-posedness of the
problem. The quest for the accurate reconstruction of the epicardial poten-
tial should thus head towards more accurate volume conductor models and
more advanced regularization techniques. The methodology developed in this
Thesis can also be applied to reconstruction of cortical potential distribution
from electroencephalographic data.

In the practical part of this Thesis, dipole modeling and epicardial potential
imaging were applied to detection, quantification, and localization of acute
myocardial ischemia. The results show that dipole modeling is an effective
tool for extracting main geometrical features from the body surface potential
maps or from conventional ECG recordings: 21 of the 22 PTCA patients were
classified correctly using the BSPM set, and 20 patients with a 5-electrode
set described elsewhere. Dipole-markers gave also encouraging results in de-
tection and quantification of acute ischemia in a set of 79 patients and 84
controls. Epicardial potential imaging characterized effectively the morpho-
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logical features of the PTCA delta maps. The simple and robust template
method, developed in this Thesis, was able to localize the ischemic regions
anatomically correctly, although patient-specific volume conductor models
were not used.

The method development carried out in this Thesis prepares the way for more
accurate inverse reconstructions of epicardial potential. The results obtained
with clinical datasets show that the modeling-approach can provide valuable
information also without patient-specific models and complicated protocols.
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