
Kimmo  Järvinen,  Matti  Tommiska  and  Jorma  Skyttä,  Comparative  Survey  of  High
Performance Cryptographic Algorithm Implementations on FPGAs,  IEE Proceedings 
Information Security, vol. 152, no. 1, Oct. 2005, pp. 312.

© 2005 The Institution of Engineering and Technology (IET)

Reprinted with permission.



Comparative survey of high-performance
cryptographic algorithm implementations
on FPGAs

K. Järvinen, M. Tommiska and J. Skyttä

Abstract: The authors present a comparative survey of private-key cryptographic algorithm
implementations on field programmable gate arrays (FPGAs). The performance and
flexibility of FPGAs make them almost ideal implementation platforms for cryptographic
algorithms, and therefore the FPGA-based implementation of cryptographic algorithms has
been widely studied during the past few years. However, a complete analysis of published
implementations has not been presented previously. The authors analyse FPGA-based
implementations of certain widely used cryptographic algorithms in terms of speed, area
and implementation techniques. The algorithms studied in this article include the private-key
cryptographic algorithms advanced encryption standard and international data encryption
algorithm and certain hash algorithms. These algorithm implementations provide a good
overview of the field of private-key cryptographic algorithm implementation.

1 Introduction

This article presents a thorough study of the state of
private-key cryptographic algorithm implementation
on field programmable gate arrays (FPGAs). As
cryptographic algorithms become more widely used,
the need for high-speed implementations of the algo-
rithms increases. Software-based implementations of
cryptographic algorithms fall short in performance in
many applications, e.g. on heavily loaded servers.
Therefore, an obvious need for high-speed implementa-
tions exists.

Reprogrammable hardware is almost ideal for cryp-
tographic implementations because high speed can be
achieved without significant reduction in flexibility.
Flexibility, meaning that the design can be easily
changed or modified, is of especially great importance
in cryptographic implementations for the following
reasons. First, a cryptographic algorithm can be con-
sidered secure only until proven otherwise. If a severe
flaw in an algorithm is found, the algorithm must be
replaced with a more secure one. Second, in many
applications, a large variety of different algorithms are
in use, and, therefore, it must be easy to change from
one algorithm to another.

This article concentrates on implementations of the
advanced encryption standard (AES), the international
data encryption algorithm (IDEA) and certain hash
algorithms. These algorithms represent both private-key
cryptographic algorithms and hash algorithms, thus
giving a good overview of the state of cryptographic
algorithm implementation. All these algorithms have

been implemented by the authors of this article in the
Signal Processing Laboratory at Helsinki University of
Technology, and these designs are here referred to as the
SIG designs, e.g. SIG-AES.

Although FPGA-based cryptographic algorithm
implementation has been widely studied during the
past few years, a thorough comparative study of
published implementations has not been presented, at
least to the authors’ knowledge. The article by Wollinger
et al. [1] included a review of implementations, but
otherwise the article concentrated more on security
questions of FPGAs as implementation platforms. In
this article, implementations of cryptographic algo-
rithms are compared in terms of speed, area and
implementation techniques. Finally, certain conclusions
on cryptographic algorithm implementation on FPGAs
are presented.

2 Private-key cryptographic algorithms

Implementation of private-key cryptographic algo-
rithms on reprogrammable hardware has been widely
studied for several years. Block ciphers are well suited
to hardware implementation, because parallelisation,
unrolling and pipelining can usually be efficiently
exploited.

Throughput can be increased by pipelining an
unrolled design and then calculating a different encryp-
tion in each pipelined stage. Pipelining, unfortunately,
restricts the use of feedback cipher modes which require
the value of the previous ciphertext in the generation of
the next one, e.g. cipher block chaining mode [2].

The data encryption standard (DES) and its variant
3DES were the most popular block ciphers for decades.
Some recent papers on DES implementation have been
published, e.g. [3] and [4]. However DES is currently
being replaced by AES, and the role of DES will be
marginal in the future. Thus, DES is not considered
further.

ª IEE 2005

IEE Proceedings online no. 20055004

doi:10.1049/ip-ifs: 20055004

Paper received 23 June 2005

The authors are with the Signal Processing Laboratory, Helsinki University
of Technology, Otakaari 5A, 02150 Finland

E-mail: kimmo.jarvinen@hut.fi

IEE Proc. Inf. Secur. 3



2.1 Advanced encryption standard (AES)
AES is a NIST (National Institute of Standards and
Technology) standard introduced in 2001 [5]. AES was
developed by two Belgians, Vincent Rijmen and Joan
Daemen, and it was originally named Rijndael. AES
processes a 128-bit data block with a key of either 128,
192 or 256 bits. The different versions of AES are here
referred to as AES-128, AES-192 and AES-256. The
128-bit data block is represented as 4� 4 rectangular
array of bytes called the State. Depending on the key
size, AES consists of either 10, 12 or 14 rounds which
include four transformations: SubBytes, ShiftRows,
MixColumns and AddRoundKey (the last round does
not include MixColumns), where the rows and columns
refer to the rows and columns of the State. Keys for
every round are derived from the original cipher key
using the KeyExpansion routine [5].

The SubBytes operation is the most crucial for both
the speed and area requirements of an AES implementa-
tion [6]. It operates independently on each byte of the
State, and it consists of finding a multiplicative inverse
in the Galois field GF(28) followed by an affine
transformation [5]. Traditionally, these operations are
combined and implemented as a single 256� 8-bit look-
up table (LUT) called the S-box. The inverse transfor-
mation of SubBytes, called InvSubBytes, is utilised in
the AES decryption. It consists of an inverse affine
transformation followed by an inversion in GF(28) [5].

The first FPGA-based implementations of AES (at
that time known only as Rijndael) were published
during the selection process of AES. In the last phase of
the selection, there were five finalist algorithms: Mars,
RC6, Rijndael, Serpent and Twofish. Because all the
algorithms were considered secure, hardware efficiency
was given great importance in selecting Rijndael as the
winning algorithm [7].

During the selection process Dandalis et al. [8], Elbirt
et al. [9], Fischer [10], Gaj and Chodowiec [11] and
Mroczkowski [12] published FPGA implementations on
both Altera and Xilinx devices. Their studies concluded
that Rijndael and Serpent had the highest throughputs
[8, 9, 11], while Twofish and RC6 provided compact
implementations with medium speed [11]. Mars clearly
had the worst hardware characteristics [11].

Since the selection of Rijndael as AES, an enormous
number of FPGA-based implementations have been
published. Certain trends in these publications are
considered next.

Several publications have presented studies of unrol-
ling and pipelining, e.g. [6, 13–19]. The previously
mentioned AES finalist algorithm implementations also
considered unrolling and pipelining [9, 11]. Very high
throughput can be achieved by pipelining unrolled
rounds of the algorithm, but, as mentioned, pipelining
cannot be efficiently used in feedback modes. To the
authors’ knowledge, the fastest published FPGA-based
implementation of AES was presented by Zambreno
et al. in [19]. They used aggressive pipelining and
achieved throughput of 23.57Gbps on a Xilinx Virtex-II
XC2V4000.

SubBytes can be implemented as an S-box (LUT)
which includes precalculated values of the transforma-
tion. One 256� 8-bit S-box is required for each byte of
the State, and therefore 16 parallel S-boxes are required
if SubBytes is performed for the entire State at once.
Thus, the total number of S-boxes, without KeyExpan-
sion, is 16 times the number of unrolled rounds,
and a fully unrolled AES-128 (10 rounds) requires

160 S-boxes. KeyExpansion requires four additional S-
boxes per round, and therefore a total number of 200 S-
boxes are required in a fully unrolled key agile AES-128
implementation. If S-boxes are implemented on Xilinx
FPGAs using BlockRAMs, 100 BlockRAMs are
needed, because one dual-port BlockRAM can imple-
ment two S-boxes. BlockRAM-based S-boxes have been
used in many publications, e.g. [13, 15, 17–23].

Different S-boxes are used in SubBytes, and InvSub-
Bytes, which makes the combination of encryption and
decryption difficult without doubling the BlockRAM
need. McLoone and McCanny presented in [20] AES-
128, AES-192 and AES-256 implementations combining
encryption and decryption. They introduced two ROMs
including S-box values for encryption and decryption.
The BlockRAMs implementing SubBytes and InvSub-
Bytes were programmed using values from ROMs every
time encryption was changed to decryption or vice versa
[20]. Another solution was presented by Rodrı́quez-
Henrı́quez et al. in [16]. They combined SubBytes and
InvSubBytes so that the inversion in GF(28) (utilised by
both) was implemented in BlockRAMs, but the affine
transformations were implemented with logic. This
allowed the same BlockRAMs to be utilised in encryp-
tion and decryption.

In addition to (Inv)SubBytes, the (Inv)MixColumns
transformation can also be performed using the LUT
approach. An LUT combining (Inv)SubBytes and
(Inv)MixColumns is called the T-box. Fischer and
Drutarovský studied implementation techniques based
on S-boxes and T-boxes on an Altera FPGA in [24].
They concluded that slightly faster performance was
attained with the T-box approach, but the memory need
increased [24]. In [25], McLoone and McCanny pre-
sented an AES-128 encryption implementation utilising
T-boxes. Their implementation had high throughput
and occupied only a small number of slices, but it
required a very large number of BlockRAMs. A device
with a large amount of embedded memory, e.g. the
Virtex-E Extended Memory [26], is therefore required.

In the above implementations, SubBytes was imple-
mented as an LUT. Another approach is to calculate the
multiplicative inverse and the affine transformation
using combinatorial logic. Inversion in GF(28) can be
reduced into an inversion in GF(24) or in GF(22)
accompanied by Galois field additions and multiplica-
tions. That is, the problem is mapped from GF(28) to
another representation of the field, which in these cases
is either GF((24)2) or GF(((22)2)2). This approach is here
referred to as combinatorial implementation of Sub-
Bytes, and certain implementations using such methods
are considered next.

In [27], we presented a design called SIG-AES which
implements SubBytes combinatorially as suggested in
[28]. Because this approach requires mappings from
GF(28) to GF((24)2) and vice versa, other transforma-
tions were also mapped to GF((24)2) in order to reduce
area and latency. Hodjat and Verbauwhede explored the
optimal number of pipelined stages in the combinato-
rially implemented SubBytes in [15], and they compared
combinatorial implementation with implementation
using BlockRAMs. Zhang and Parhi presented a careful
analysis of the combinatorial implementation of Sub-
Bytes and introduced highly optimised implementations,
one of which exceeds 20Gbps on a Virtex-E FPGA [29].
The high efficiency was attained through detailed
analysis and careful implementation using combinator-
ial SubBytes in GF((24)2).

4 IEE Proc. Inf. Secur.



The largest benefit of the combinatorial implementa-
tion is that the SubBytes can be pipelined and thus
higher throughput can be attained. This does, however,
increase the latency of the implementation. The slice
requirements also increase compared with BlockRAM-
based implementations, because SubBytes is implemen-
ted with logic.

In many applications, it is more important to
minimise area than to maximise throughput. Therefore,
several implementations with small logic requirements
have been published. Pramstaller and Wolkerstorfer
presented a compact implementation of AES encryption
and decryption with all key lengths using a novel State
representation, which solves the problem of accessing
both rows and columns of the State [30]. A very compact
implementation was presented by Chodowiec and Gaj in
[31]. They efficiently exploited the structure of FPGA
and were able to fit AES-128 encryption and decryption
into 222 slices and three BlockRAMs on a low-cost
Xilinx Spartan-II XC2S30-5/6. The design achieved a
throughput of 166Mbps on an XC2S30-6 [31]. At least
to the authors’ knowledge, the most compact AES
implementation published in the literature so far was
presented by Rouvroy et al. in [32]. They were able to fit
AES-128 with KeyExpansion into only 163 slices and
three BlockRAMs on a Xilinx Spartan-3 XC3S50-4 and
achieved a throughput of 208Mbps. They also imple-
mented the same design on a Virtex-II, and it has been
included in the comparison below. The key to lower area
consumption compared with [31] was the combination
of SubBytes and MixColumns transformations [32]. The
throughputs of the designs are not comparable because
different FPGAs were used. Even Gbps-level through-
puts can be achieved with small logic requirements as
was shown by Standaert et al. in [33], where a
throughput of 2.085Gbps was achieved with only 1769
slices. Other compact designs targeting resource-limited
FPGAs include [34] and [35]. Also many of the above-
mentioned papers include implementations requiring a
low area.

The comparison of different AES implementations is
hard for many reasons. First, the large variety of
different target devices makes a fair comparison
difficult. Second, many authors do not specify their
devices well enough to ensure easy comparison, e.g. the
size or the speed grade of the device has not been
provided. Third, comparison of area requirements is
difficult because both slices and embedded memory, i.e.
BlockRAMs in the Xilinx devices, are used.

Xilinx Virtex-family FPGAs (i.e. the Virtex [36],
Virtex-E [37], Virtex-E Extended Memory (Virtex-
EM)[26] and Virtex-II [38]) are clearly the most used
implementation platforms for the published designs.
Therefore, this comparison concentrates on designs
implemented on these devices. Performances on differ-
ent devices should not be compared, because the device
greatly determines the performance of an implementa-
tion. Devices are therefore clearly differentiated in the
tables and figures in this paper.

A summary of open-literature FPGA-based AES
implementations on Xilinx Virtex-family devices is
presented in Table 1, and it includes implementations
published in [6, 8, 9, 11, 13–23, 25, 27, 29, 30, 32, 33, 39,
40]. In order to compare the area requirements of
BlockRAM-based implementations with those of imple-
mentations which use only slices, a method introduced
in [17] is used. Because a dual-port 256� 8-bit Block-
RAM can be replaced by distributed memory consisting

of 256 LUTs, one BlockRAM can be replaced by 128
slices [17]. Thus, the area value in Table 1 was calculated
using the following formula:

area ¼ slicesþ 128� BlockRAMs ð1Þ
The performance–area relationship is studied using

two different metrics. The first one is the traditional
throughput per slice (TPS) value [9]. The other, which
also takes into account the BlockRAM utilisation, is
called the throughput per area (TPA) value and is
calculated using the area value obtained using (1). TPA
offers a better impression of the performance–area
relationship than TPS, which neglects the usage of
BlockRAMs. An extreme example of this is the
implementation presented in [25], which attains an
extremely high TPS value but nonetheless requires a
large target device because of the large number of
BlockRAMs. However, in such extreme cases, the TPA
method yields estimates that are too pessimistic and,
therefore, TPA should be used together with TPS to
ensure fair comparison.

Throughput-slice and throughput-area scatters are
presented in Figs 1 and 2, respectively. There exists only
little correlation between slice usage and throughput in
Fig. 1. In Fig. 2, however, there is a significantly higher
correlation, which again validates the use of TPA.

As stated earlier, the fastest reported AES implemen-
tation achieves a throughput of 23.57Gbps with 16 938
slices on a Virtex-II XC2V4000 [19]. Although it is the
fastest implementation, it is not the most efficient of the
high-throughput implementations, if TPS and TPA are
considered as the efficiency metrics. As can be seen from
Fig. 2, implementations by Hodjat and Verbauwhede
[15] and Zhang and Parhi [29] achieve almost the same
level of throughput with fewer logic resources. Con-
sidering the high TPS and TPA values as well as the
slower Virtex-E device compared with the Virtex-II
devices used in [15] and [19], Zhang’s design can be
considered the most efficient fully unrolled and pipe-
lined AES-128 implementation published so far.

Combinatorial implementation of SubBytes results in
higher TPA values than LUT-based implementation.
This is due to the fact that SubBytes can be pipelined,
and therefore very high throughput can be achieved.
Combinatorial SubBytes also results in moderate
area requirements. This can be seen in Fig. 2, where
the combinatorial implementations, i.e. [15, 27, 29], are
situated in the upper left corner.

If embedded memory can be used, a considerable
reduction in slice requirements can be achieved by using
BlockRAM-based S-boxes. Also the latency of S-boxes
is shorter than that of the combinatorial SubBytes. The
T-box approach seems infeasible if TPA is considered,
but a very high TPS can be achieved. T-boxes are
therefore very inviting if the slice requirement needs to
be minimised in a high-throughput design. The approach
presented in [25],however, requiresaVirtex-EMXCV812E
FPGA because, with the exception of the new Virtex-4
FPGAs [41], no other device in the Xilinx Virtex family
contains enough BlockRAMs (244) [26, 36–38].

Many implementations with an area in the range
1600–2000 have been published [17–19, 33, 40]. These
compact implementations achieve relatively high
throughputs of >1Gbps on Virtex-E and Virtex-II
FPGAs. The implementation by Standaert et al. [33]
has the highest TPA and throughput among these
implementations, as it achieves throughput of
2.085Gbps with only 1769 slices and no BlockRAMs

IEE Proc. Inf. Secur. 5



on a Virtex-E XCV3200E-8, and thus has a TPA (and
TPS) of 1.179Mbps/area. If even smaller area
consumption is required, one most tolerate a large
slowdown in throughput. The smallest implementations
have throughputs measured in hundreds of Mbps; e.g.
Rouvroy et al. achieved 358Mbps with only 146
slices and three BlockRAMs (area 530) on a Virtex-II
XC2V40-6 [32].

This survey has shown that various different methods
have been presented to implement AES. It is impossible
to point out the absolutely best method, because all

methods have their advantages and disadvantages. As a
conclusions to the AES study it is stated that AES can
be efficiently implemented on FPGAs for applications
with various requirements. Both very high performance
and low area requirements can be efficiently achieved
using the methods presented in the literature.

2.2 International Data Encryption Algorithm
IDEA was introduced by Lai and Massay in 1990 [42]
and modified the following year [43]. IDEA is
considered highly secure, and no published attack

Table 1: AES implementations on Xilinx Virtex-family FPGAs

Authors Key Device Slices BRAM Area Throughput
(Gbps)

TPS
(Mbps/slice)

TPA
(Mbps/area)

Chodowiec and coworkers [13, 14] [Cho] Virtex 1000-6 12 600 80 22 840 12.16 0.965 0.532

Chodowiec et al. [13] [Cho] Virtex 1000-6 2 057 8 3 081 1.265 0.615 0.411

Chodowiec and coworkers [13, 14] [Cho] Virtex 1000-6 2 507 0 2 507 0.414 0.165 0.165

Dandalis et al. [8] [Dan] Virtex -6 5 673 0 5 673 0.353 0.062 0.062

Elbirt et al. [6, 9] [Elb] Virtex 1000-4 10 992 0 10 992 1.938 0.176 0.176

Elbirt et al. [6, 9] [Elb] Virtex 1000-4 4 871 0 4 871 0.949 0.195 0.195

Gaj and Chodowiec [11] [Gaj] Virtex 1000-6 2 902 0 2 902 0.332 0.114 0.114

Hodjat and Verbauwhede [15] [Hod] Virtex-II VP20-7 9 446 0 9 446 21.64 2.291 2.291

Hodjat and Verbauwhede [15] [Hod] Virtex-II VP20-7 5 177 84 15 929 21.54 4.161 1.352

Järvinen et al. [27] [Jär] Virtex-II 2000-5 10 750 0 10 750 17.8 1.656 1.656

Järvinen et al. [27] [Jär] Virtex-E 1000-8 11 719 0 11 719 16.54 1.411 1.411

Labbé and Pérez [39] [Lab] Virtex 1000-4 2 151 4 2 663 0.394 0.183 0.148

Labbé and Pérez [39] [Lab] Virtex 1000-4 3 543 4 4 055 0.796 0.225 0.196

Labbé and Pérez [39] [Lab] Virtex 1000-4 8 767 4 9 279 1.911 0.218 0.206

McLoone and McCanny [20] [ML1] Virtex-E 3200-8 2 222 100 15 022 6.956 3.131 0.463

McLoone and McCanny [25] [ML2] Virtex-EM 812-8 2 000 244 33 232 12.02 6.010 0.362

McLoone and McCanny [21] [ML3] Virtex-EM 812-8 2 679 82 13 175 6.956 2.596 0.528

Pramstaller and Wolkerstrofer [30] [Pra] Virtex-E 1000-8 1 125 0 1 125 0.215 0.191 0.191

Rodrı́quez-H et al. [16] [Rod] Virtex-E 2600 5 677 80 15 917 4.121 0.726 0.259

Rouvroy et al. [32] [Rou] Virtex-II 40-6 146 3 530 0.358 2.452 0.675

Saggese et al. [17] [Sag] Virtex-E 2000-8 2 778 100 15 578 8.9 3.204 0.571

Saggese et al. [17] [Sag] Virtex-E 2000-8 446 10 1 726 1 2.242 0.579

Saggese et al. [17] [Sag] Virtex-E 2000-8 5 810 100 18 610 20.3 3.494 1.091

Saggese et al. [17] [Sag] Virtex-E 2000-8 648 10 1 928 1.82 2.809 0.944

Saqib et al. [22] [Saq] Virtex-EM 812 2 744 0 2 744 0.259 0.094 0.094

Saqib et al. [22] [Saq] Virtex-EM 812 2 136 100 14 936 2.868 1.343 0.192

Standaert et al. [18] [St1] Virtex 1000-6 2 257 0 2 257 1.563 0.693 0.693

Standaert et al. [18] [St1] Virtex-E 3200-8 2 784 100 15 584 11.776 4.230 0.756

Standaert et al. [18] [St1] Virtex-E 3200-8 542 10 1 822 1.45 2.675 0.796

Standaert et al. [33] [St2] Virtex-E 3200-8 1 769 0 1 769 2.085 1.179 1.179

Standaert et al. [33] [St2] Virtex-E 3200-8 15 112 0 15 112 18.560 1.228 1.228

Wang and Ni [40] [Wan] Virtex-E 1000-8 1 857 0 1 857 1.604 0.864 0.864

Weaver and Wawrzynek [23] [Wea] Virtex-E 600-8 770 10 2 050 1.75 2.273 0.854

Zambreno et al. [19] [Zam] Virtex-II 4000 1 254 20 3 814 4.44 3.541 1.164

Zambreno et al. [19] [Zam] Virtex-II 4000 16 938 0 16 938 23.57 1.392 1.392

Zambreno et al. [19] [Zam] Virtex-II 4000 2 206 50 8 606 10.88 4.932 1.264

Zambreno et al. [19] [Zam] Virtex-II 4000 3 766 100 16 566 22.93 6.089 1.384

Zambreno et al. [19] [Zam] Virtex-II 4000 387 10 1 667 1.41 3.643 0.846

Zhang and Parhi [29] [Zha] Virtex 1000-6 11 014 0 11 014 16.032 1.456 1.456

Zhang and Parhi [29] [Zha] Virtex 800-6 9 406 0 9 406 9.184 0.976 0.976

Zhang and Parhi [29] [Zha] Virtex-E 1000-8 11 022 0 11 022 21.556 1.956 1.956

Zhang and Parhi [29] [Zha] Virtex-EM 812-8 9 406 0 9 406 11.965 1.272 1.272

The authors have selected the most relevant implementations (in their opinion) from those publications which include several different
implementations. Keys are used in Figs 1 and 2.

6 IEE Proc. Inf. Secur.



0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

5

10

15

20

25

slices

th
ro

ug
hp

ut
 (

G
bp

s)

[Dan]

[Elb]

[Elb]
[Lab]

[Lab]

[Lab]

[Cho]

[Cho]

[Gaj]

[St1]

[Zha]

[Zha]

[Jär]

[ML1]

[ML2]

[ML3]

[Pra]

[Rod]

[Sag]

[Sag]

[Sag]

[Sag] [Saq]

[Saq]

[St1]

[St1]
[St2]

[St2]

[Wan]

[Wea]

[Zha]

[Zha]

[Hod][Hod]

[Jär]

[Rou]

[Zam]

[Zam]

[Zam]

[Zam]

[Zam]
Virtex –4
Virtex –6
Virtex –E8
Virtex –II

Fig. 1 Throughput–slice chart of FPGA-based AES implementations

0 5000 10000 15000 20000 25000 30000 35000
0

5

10

15

20

25

area (slices + BlockRAMs)

th
ro

ug
hp

ut
 (

G
bp

s)

[Dan]

[Elb]

[Elb]

[Lab] [Lab]

[Cho]

[Cho]

[Gaj]

[St1]

[Zha]

[Zha]

[Jär]

[ML1]

[ML2]

[ML3]

[Pra]

[Rod]

[Sag]

[Sag]

[Sag]

[Sag]
[Saq]

[Saq]

[St1]

[St1]
[St2]

[St2]

[Wan]

[Wea]

[Zha]

[Zha]

[Hod] [Hod]

[Jär]

[Rou]

[Zam]

[Zam]

[Zam]

[Zam]

[Zam]

Virtex –4
Virtex –6
Virtex –E8
Virtex –II

[Lab]

Fig. 2 Throughput–area chart of FPGA-based AES implementations

IEE Proc. Inf. Secur. 7



(with the exception of attacks on weak keys) is better
than an exhaustive search on the 128-bit key space,
which is computationally infeasible. The security of
IDEA appears to be bounded only by the weaknesses
arising from the relatively small (compared with its
keylength) blocklength of 64 bits [44]. It has been stated
that before the introduction of the AES, IDEA may
have been the most secure private-key cryptographic
algorithm available to the public [2].

IDEA encrypts 64-bit plaintext blocks into 64-bit
ciphertext blocks using a 128-bit input key K. The
algorithm consists of eight identical rounds followed by
an output transformation. Each round uses six 16-bit
subkeys K

ðrÞ
i , 14 i4 6, to transform a 64-bit input X

into an output of four 16-bit blocks, which are then
input to the next round. All subkeys are derived from
the 128-bit input key K. The subkey derivation process is
different in decryption mode from the encryption mode,
but otherwise encryption and decryption are performed
using identical hardware.

IDEA uses only three operations on 16-bit sub-blocks
a and b: bitwise XOR, unsigned addition mod (216) and
modulo (216þ 1) multiplication. All three operations are
derived from different algebraic groups of 216 elements,
which is crucial to the algorithmic strength of IDEA. Of
the three arithmetic operations, bitwise XOR and
unsigned addition mod (216) are trivial to implement,
whereas an implementation of modulo (216þ 1) multi-
plication that is both area efficient and fast requires
careful design and bit-level optimisation.

Two early FPGA-based IDEA implementations were
published by Mencer et al. [45] and Mosanya et al. [46]
in 1998 and 1999, respectively. Mencer et al. studied the
benefits and limitations of FPGA systems compared
with processors and application-specific integrated
circuits (ASICs) using IDEA encryption as a bench-
mark. Their IDEA implementation had a throughput of
528Mbps, and it covered four Xilinx XC4020 FPGAs
(3200 CLBs) [45]. Mosanya et al. presented a reconfi-
gurable cryptoprocessor called CryptoBooster in [46].
They did not present any exact performance figures for
their implementation but they estimated that through-
puts of 200–1500Mbps could be achieved on a state-of-
the-art FPGA of that time [46].

Representative compact and high-speed FPGA-based
implementations of IDEA include a bit-serial imple-
mentation described by Leong et al. in [47], with a
throughput of 500Mbps on a Xilinx Virtex XCV300-6,
and the bit-parallel implementation described by
Cheung et al. in [48], which achieved throughput of
5.25Gbps on a Virtex XCV1000-6. The bit-parallel
implementation also included bespoke software to
customise the FPGA reprogramming bitstream for
different key schedules.

In 2002, the SIG-IDEA implementation was
described in [49], and, at 6.78Gbps, its throughput
represented the fastest published FPGA-based imple-
mentation of IDEA at that time. Other contributions of
SIG-IDEA include implementing a fully pipelined
algorithm with both inner and outer loop pipelining
on a single Xilinx Virtex-E XCV1000E-6 device, the
efficient usage of the diminished-one number system and
an area-efficient implementation of the modulo (216)
multiplication.

Currently, the fastest FPGA-based implementation of
IDEA is probably [50], where Gonzalez et al. achieved a
throughput of 8.3Gbps on a Xilinx Virtex XCV600-6
device. The key to high throughput was replacing all
the operational units involving the key with its constant-
operand equivalents by partial reconfiguration, the over-
head for which was 4ms. However, only a few devices
support partial reconfiguration, and the scheme requires
a controlling microprocessor. Another recent IDEA
implementation by Pan et al. achieved a throughput of
6Gbps by utilising the embedded multipliers for the
modulo (216þ 1) multiplication algorithm [51].

The FPGA-based IDEA implementations mentioned
above are summarised in Table 2.

3 Hash algorithms

Commonly used hash algorithms, e.g. MD5 [52] and
the secure hash algorithm (SHA) [53], are not as well
suited to high-speed hardware implementations as most
of the private-key or public-key algorithms, mainly
because parallelisation cannot be used as efficiently.
Hash algorithms can be implemented efficiently on
software as they use common modulo (232) additions,
which are easy and fast to perform with traditional
microprocessors. However, significant accelerations
from 25 to 31 times for SHA-1 and SHA-512 have
been reported [54].

There are certain applications which greatly benefit
from hardware acceleration. For example, if a crypto-
graphic scheme requiring hash calculations, e.g. the
digital signature algorithm [55], is implemented on an
FPGA, it is well-grounded to implement a hash module
on the chip too. Certain very demanding hash calcula-
tions, e.g. long chains of hash rounds, benefit from
hardware acceleration [56]. Hash algorithm implemen-
tations presented in [54, 56–69] are considered here.

A throughput of several hundred Mbps can be
achieved with small logic requirements using a basic
iterative architecture [54, 56, 57, 63, 65, 67, 69].
However, the throughput and efficiency of an imple-
mentation can be increased considerably by partially
unrolling the algorithm rounds [54, 58, 66]. This is
because the structure of hash algorithms favours

Table 2: IDEA implementations on Xilinx FPGAs

Authors Device Slices Throughput (Gbps) TPS (Mbps/slice)

Cheung et al. [48] Virtex 1000-6 11 602 5.24 0.452

Gonzalez et al. [50] Virtex 600-6 6 078 8.3 1.366

Hämäläinen et al. [49] Virtex-E 1000-6 9 855a 6.78 0.688

Leong et al. [47] Virtex 300-6 2 801 0.5 0.179

Mencer et al. [45] XC4000 n.a. (3 200 CLBs) 0.528 n.a.

Pan et al. [51] Virtex-II 1000-6 4 221 6.0 1.421

a The value is not available in the original publication. Received from the design files.

8 IEE Proc. Inf. Secur.



unrolling; i.e. if k rounds are unrolled, the critical path
increases for fewer than k times [54]. Pipelining,
however, cannot be used for increasing throughput as
efficiently as for block ciphers [56]. Unrolling was used
in the fastest published SHA-1 implementations, where
Lien et al. reported a throughput of 1024Mbps on a
Virtex XCV1000-6 [54] and Sklavos et al. achieved a
throughput of 1339Mbps on a Virtex-II XC2V500 with
their combined SHA-1 and RIPEMD design [66].

Because many of the commonly used hash algorithms
share resources and have a similar kind of structure,
many implementations combining several hash algo-
rithms have been proposed. Dominikus presented a
general hash processor architecture which can be used
for MD5, SHA-1, SHA-256 and RIPEMD calculations
in [59]. A general processor architecture naturally
achieves slower performance than algorithm-specific
implementations, such as [54, 56–58, 67], but algorithm
flexibility may be an essential feature in certain
applications. A sufficient balance between speed and
algorithm flexibility may be achieved by implementing
an algorithm-specific design of two or more commonly
used algorithms. Implementations combining certain
algorithms have been published; e.g. MD5 and SHA-1
were combined in [61, 62, 68], different SHA algorithms
were combined in [63] and MD5 was combined with
RIPEMD in [64]. Algorithm support of published
FPGA-based implementations is presented in Table 3.

The performance and area requirements of FPGA-
based open-literature hash algorithm implementations
are presented in Table 4. Hash algorithm implementa-
tions achieving throughputs of several hundred Mbps
require only a minimal amount of logic resources. Hash
algorithms with different cryptographic strengths, e.g.
SHA-1 and SHA-512, have almost similar throughputs,
but stronger algorithms have larger logic requirements
[54, 60].

Increasing throughput to several Gbps is difficult
because of the structures of commonly used hash
algorithms. In high-speed implementations of the AES,

for example, aggressive parallelisation, unrolling and
pipelining can be used efficiently, whereas the structures
of hash algorithms usually make the efficient use of such
methods difficult [56]. Even for hash algorithms, parallel
hash blocks or unrolling and pipelining can be used for
increasing throughput, as we have shown in [56].
However, very high-speed implementations of hash
algorithms require considerably more area than imple-
mentations of block ciphers, e.g. the AES, of the same
speed [56]. This can be verified, for example, by
comparing the SIG-MD5 implementation of four
parallel MD5 blocks [56] with the AES implementation
by Standaert et al. [33]. Both have a similar level of
throughput (2395 and 2085Mbps), but the MD5
implementation consumes a lot more area (5732 slices)
than the AES implementation (1769 slices).

MD5, RIPEMD and SHA-1 were recently compro-
mised so that finding collisions is possible with much
less effort than exhaustive searching [70, 71]; therefore
these algorithms can no longer be considered secure.
Although finding collisions is not a problem in every
application using hash algorithms, e.g. HMAC (the
keyed-hash message authentication code), these algo-
rithms will certainly be replaced with stronger ones in
the future. Hardware implementation of hash algo-
rithms will probably be studied actively when MD5 and
SHA-1 are replaced with new algorithms.

4 Conclusions and future work

We have shown that FPGAs can be used very efficiently
for high-speed implementations of cryptographic algo-
rithms. The field has been studied extensively for the
past few years and very efficient implementations have
been presented regardless of the implemented algorithm.

Similar design methodologies apply to all algorithms
studied in this survey. The key to a high-speed
implementation is to identify the critical operation, e.g.
SubBytes in the AES, and implement it efficiently. In
general, operations, or at least the critical operation,

Table 3: Algorithm support of published FPGA-based implementations of hash algorithms

Authors MD5 SHA-1 SHA-256 SHA-384 SHA-512 RIPEMD HAS-160

Deepakumara et al. [57] �

Diez et al. [58] �

Diez et al. [58] �

Dominikus [59] � � � �

Grembowski et al. [60] �

Grembowski et al. [60] �

Järvinen et al. [56] �

Järvinen et al. [61] � �

Kang et al. [62] � � �

Lien et al. [54] �

Lien et al. [54] �

McLoone and McCanny [63] � �

Ng et al. [64] � �

Selimis et al. [65] �

Sklavos et al. [66] � �

Ting et al. [67] �

Wang et al. [68] � �

Zibin and Ning [69] �

IEE Proc. Inf. Secur. 9



should be implemented on as low a level as possible in
order to guarantee maximum performance with mini-
mum resources.

Although all the designs considered here were
implemented on FPGAs, only a small number of them
specifically target FPGAs as they are merely general
hardware implementations which could be implemented
on ASICs as well. Exploiting the special properties of
FPGAs has not yet been thoroughly studied, with the
exception of embedded memory usage. However, partial
reconfigurability was used in an IDEA implementation
[50] as discussed in Section 2.2. Certain implementations
which have been optimised especially for the slice
structure have been published, e.g. [18].

Many cryptographic algorithms use similar kinds of
operations, so it may be possible to combine several
algorithms into a single design efficiently by exploiting
these similarities. Such combinations of cryptographic
algorithms have not been studied extensively, except in
the case of hash algorithms.

There exist dedicated embedded blocks for certain
commonly used operations in modern FPGAs, e.g. the
Altera Stratix-II architecture includes dedicated blocks
for digital signal processing (DSP) [73]. Dedicated

blocks for cryptography do not yet exist on any device,
but if such blocks were implemented they could speed up
the performance of cryptographic algorithms substan-
tially. The question of how these blocks should be
arranged and which operations should be implemented
is an open research problem.

Based on our observations, certain possible research
topics in the future include

� architectures for constrained environments
� an increase of generality, general cryptographic

architectures implementing several cryptographic
algorithms in a single design (cf. MD5/SHA-1
implementations)
� dedicated blocks for cryptographic operations into

FPGAs (cf. DSP blocks)
� efficient utilisation of the special abilities of FPGAs

(e.g. partial reconfiguration)
� efficient implementations of strong hash algorithms.

It was concluded that regardless of the algorithm,
very efficient implementations have been published in
terms of both speed and logic requirements. Although
cryptographic algorithm implementation has been
widely studied, certain open problems remain.

Table 4: Performance and area requirements of published FPGA-based implementations of hash algorithms

Authors Device Algorithm Slices BlockRAMs Throughput (Mbps)

Deepakumara et al. [57] Virtex 1000-6 MD5 880 2 165

Deepakumara et al. [57] Virtex 1000-6 MD5 4 763 0 354

Diez et al. [58] Virtex-II 3000 MD5 1 369 0 467.3

Diez et al. [58] Virtex-II 3000 SHA-1 1 550 0 899.8

Dominikus [59] Virtex-E 300 MD5 1 004 0 146

Dominikus [59] Virtex-E 300 RIPEMD 1 004 0 89

Dominikus [59] Virtex-E 300 SHA-1 1 004 0 119

Dominikus [59] Virtex-E 300 SHA-256 1 004 0 77

Grembowski et al. [60] Virtex 1000-6 SHA-1 1 475
a

0
a

462

Grembowski et al. [60] Virtex 1000-6 SHA-512 2 826
a

2
a

616

Järvinen et al. [56] Virtex-II 4000-6 MD5 1 325 0 607

Järvinen et al. [56] Virtex-II 4000-6 MD5 5 732 0 2 395

Järvinen et al. [56] Virtex-II 4000-6 MD5 11 498 10 5 857

Järvinen et al. [61] Virtex-II 2000-6 MD5 1 882 0 602

Järvinen et al. [61] Virtex-II 2000-6 SHA-1 1 882 0 485

Kang et al. [62] Apex 20K 1000-3 MD5 10 573 (LE) 0 142

Kang et al. [62] Apex 20K 1000-3 SHA-1 10 573 (LE) 0 114

Kang et al. [62] Apex 20K 1000-3 HAS-160 10 573 (LE) 0 160

Lien et al. [54] Virtex 1000-6 SHA-1 480 0 544

Lien et al. [54] Virtex 1000-6 SHA-1 1 480 0 1 024

Lien et al. [54] Virtex 1000-6 SHA-512 2 384 0 717

Lien et al. [54] Virtex 1000-6 SHA-512 3 521 0 929

McLoone and McCanny [63] Virtex-E 600-8 SHA-384/512 2 914 2 479

Ng et al. [64] Flex 50-1 MD5 1 964 (LE) 0 206

Ng et al. [64] Flex 50-1 RIPEMD 1 964 (LE) 0 84

Selimis et al. [65] Virtex 150 SHA-1 518 0 518

Sklavos et al. [66] Virtex-II 500 SHA-1 2 245 0 1 339

Sklavos et al. [66] Virtex-II 500 RIPEMD 2 245 0 1 656

Ting et al. [67] Virtex-E 300-8 SHA-256 1 261 0 693

Wang et al. [68] Apex 20K 1000-3 MD5 3 040 (LE) 1 (ESB) 178.6

Wang et al. [68] Apex 20K 1000-3 SHA-1 3 040 (LE) 1 (ESB) 143.3

Zibin and Ning [69] Acex 100-1 SHA-1 1 622 (LE) 0 268.99

Notice that 1 slice� 2 logic elements (LEs), 1 BlockRAM¼ 4096 bits [36, 37, 26] and 1 embedded system block (ESB)¼ 2048 bits [72].
a Calculated from the percentages presented in the paper.

10 IEE Proc. Inf. Secur.



5 Acknowledgments

This paper was written as part of the GO-SEC project at
Helsinki University of Technology. GO-SEC is financed
by the National Technology Agency of Finland and
several Finnish telecommunications companies. Finally,
we would like to thank the anonymous reviewers for
their helpful comments and proposals for improvement.

6 References

1 Wollinger, T., Guajardo, J., and Paar, C.: ‘Security on FPGAs:
state of the art implementations and attacks’, ACM Trans.
Embed. Comput. Syst., 2004, 3, pp. 534–574

2 Schneier, B.: ‘Applied cryptography’ (John Wiley & Sons, 2nd ed.
1996)

3 McLoone, M., and McCanny, J.V.: ‘High-performance FPGA
implementation of DES using novel method for implementing
the key schedule’, IEE Proc. Circ. Dev. Syst., 2003, 150 (5),
pp. 373–378

4 Rouvroy, G., Standaert, F.-X., Quisquater, J.-J., and
Legat, J.-D.: ‘Efficient uses of FPGAs for implementations of
DES and its experimental linear cryptanalysis’, IEEE Trans.
Comput., 2003, 52 (4), pp. 473–482

5 National Institute of Standards and Technology.: ‘Advanced
Encryption Standard (AES)’. Federal Information Processing
Standards Publication (FIPS PUB) 197, 26 November 2001,
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf,
accessed June 2005

6 Elbirt, A.J., Yip, W., Chetwynd, B., and Paar, C.: ‘An FPGA-
based performance evaluation of the AES block cipher candidate
algorithm finalists’, IEEE Trans. VLSI Syst., 2001, 9 (4),
pp. 545–557

7 Nechvatal, J., Barker, E., Bassham, L., Burr, W., Dworkin, M.,
Foti, J., and Roback, E.: ‘Report on the development of the
Advanced Encryption Standard (AES)’, 2 October 2000, http://
csrc.nist.gov/Cryptotoolkit/aes/round2/r2report.pdf, accessed
June 2005

8 Dandalis, A., Prasanna, V.K, and Rolim, J.D.P.: ‘A comparative
study of performance of AES final candidates using FPGAs’.
Proc. Workshop on Cryptographic Hardware and Embedded
Systems, CHES 2000, Worcester, MA, USA, August 2000,
pp. 125–140

9 Elbirt, A.J., Yip, W., Chetwynd, B., and Paar, C.: ‘An FPGA
implementation and performance evaluation of the AES block
cipher candidate algorithm finalists’. Proc. Third Advanced
Encryption Conf., AES3, New York, NY, USA, April 2000,
pp. 13–27

10 Fischer, V.: ‘Realization of the round 2 AES candidates using
Altera FPGA.’ Proc. 3rd Advanced Encryption Standard
Candidate Conf., AES3, New York, NY, USA, April 2000,
http://csrc.nist. gov/CryptoToolkit/aes/round2/conf3/papers/
24-vfischer.pdf, accessed June 2005

11 Gaj, K., and Chodowiec, P.: ‘Comparison of the hardware
performance of the AES candidates using reconfigurable
hardware’. Proc. 3rd Advanced Encryption Standard Candidate
Conf., AES3, New York, NY, USA, April 2000, pp. 40–54,
http://csrc.nist.gov/CryptoToolkit/aes/round2/conf3/papers/
AES3Proceedings.pdf accessed June 2005

12 Mroczkowski, P.: ‘Implementation of the block cipher Rijndael
using altera FPGA’. Public Comments on AES Candidate
Algorithms—Round 2, May 2000, http://csrc.nist.gov/Crypto-
Toolkit/aes/round2/pubcmnts.htm, accessed June 2005

13 Chodowiec, P., Khuon, P., and Gaj, K.: ‘Fast implementation of
secret-key block ciphers using mixed inner- and outer-round
pipelining’. Proc. 2001 ACM/SIGDA 9th Int. Symp. on Field
Programmable Gate Arrays, FPGA 2001, Monterey CA, USA,
February 2001, pp. 94–102

14 Gaj, K., and Chodowiec, P.: ‘Fast implementation and fair
comparison of the final candidates for advanced encryption
standard using field programmable gate arrays’. Proc. Topics in
Cryptology—CT-RSA 2001, The Cryptographer’s Track at RSA
Conf. 2001, San Francisco, CA, USA, April 2001 pp. 84–99

15 Hodjat, A., and Verbauwhede, I.: ‘A 21.54Gbits/s fully pipelined
AES processor on FPGA’. Proc. 12th Annual IEEE Symp. Field-
Programmable Custom Computing Machines, FCCM’04, Napa,
CA, USA, April 2004, pp. 308–309

16 Rodrı́quez-Henrı́quez, F., Saqib, N.A., and Dı́az-Pérez, A.:
‘4.2Gbit/s single-chip FPGA implementation of AES algorithm’,
Electr. Lett., 2003, 39 (15), pp. 1115–1116

17 Saggese, G.P., Mazzeo, A., Mazzocca, N., and Strollo, A.G.M.:
‘An FPGA-based performance analysis of the unrolling, tiling,
and pipelining of the AES algorithm’. Proc. 13th Int. Conf. Field
Programmable Logic and Applications, FPL 2003, Lisbon,
Portugal, September 2003, pp. 292–302

18 Standaert, F.-X., Rouvroy, G., Quisquater, J.-J., and
Legat, J.-D.: ‘A methodology to implement block ciphers in
reconfigurable hardware and its application to fast and compact
AES RIJNDAEL’. Proc. ACM/SIGDA 11th ACM Int. Symp.
Field-Programmable Gate Arrays, FPGA 2003, Monterey, CA,
USA, February 2003, pp. 216–224

19 Zambreno, J., Nguyen, D., and Choudhary, A.: ‘Exploring area/
delay tradeoffs in an AES FPGA implementation’. Proc. 14th
Int. Conf. Field-Programmable Logic and its Applications,
FPL 2004, Antwerp, Belgium, August–September 2004,
pp. 575–585

20 McLoone, M., and McCanny, J.V.: ‘High performance single-
chip FPGA Rijndael algorithm implementation’. Proc. Work-
shop on Cryptographic Hardware and Embedded Systems,
CHES 2001, Paris, France, May 2001, pp. 65–76

21 McLoone, M., and McCanny, J.V.: ‘Single-chip FPGA imple-
mentation of the advanced encryption standard algorithm’. Proc.
11th Int. Conf. Field-Programmable Logic and Applications,
FPL 2001, Belfast, Northern Ireland, UK, August 2001,
pp. 152–161

22 Saqib, N.A., Rodrı́quez-Henrı́quez, F., and Dı́az-Pérez, A.: ‘AES
algorithm implementation—an efficient approach for sequential
and pipeline architectures’. Proc. 4th Mexican Int. Computer
Science, ENC 2003, Tlaxcala, Mexico, September 2003,
pp. 126–130

23 Weaver, N., and Wawrzynek, J.: ‘High performance, compact
AES implementations in Xilinx FPGAs’, 27 September 2002,
http://www.cs.berkeley.edu/nweaver/sfra/rijndael.pdf, accessed
June 2005

24 Fischer, V., and Drutarovský, M.: ‘Two methods of Rijndael
implementation in reconfigurable hardware’. Proc. Workshop on
Cryptographic Hardware and Embedded Systems, CHES 2001,
Paris, France, May 2001, pp. 77–92

25 McLoone, M., and McCanny, J.V.: ‘Rijndael FPGA implemen-
tation utilizing look-up tables’. Proc. 2001 IEEE Workshop
on Signal Processing Systems, SIPS’01, Antwerp, Belgium,
September 2001, pp. 349–360

26 Xilinx, Inc.: ‘Virtex-E 1.8 V extended memory field program-
mable gate arrays’, 17 July 2002, http://www.xilinx.com/bvdocs/
publications/ds025.pdf, accessed June 2005

27 Järvinen, K., Tommiska, M., and Skyttä, J.: ‘A fully pipelined
memoryless 17.8Gbps AES-128 encryptor’. Proc. ACM/SIGDA
11th ACM Int. Symp. on Field-Programmable Gate Arrays,
FPGA 2003, Monterey, CA, USA, February 2003, pp. 207–215

28 Daemen, J., and Rijmen, V.: ‘The design of Rijndael’ (Springer-
Verlag, 2002)

29 Zhang, X., and Parhi, K.K.: ‘High-Speed VLSI architectures for
the AES algorithm’, IEEE Trans. VLSI Syst., 2004, 12 (9),
pp. 957–967

30 Pramstaller, N., and Wolkerstorfer, J.: ‘A universal and efficient
AES co-processor for field programmable logic arrays’. Proc.
14th Int. Conf. Field-Programmable Logic and its Applications,
FPL 2004, Antwerp, Belgium, August–September 2004,
pp. 565–574

31 Chodowiec, P., and Gaj, K.: ‘Very compact FPGA implementa-
tion of the AES algorithm’. Proc. Workshop on Cryptographic
Hardware and Embedded Systems, CHES 2003, Cologne,
Germany, September 2003, pp. 319–333

32 Rouvroy, G., Standaert, F.-X., Quisquater, J.-J., and
Legat, J.-D.: ‘Compact and efficient encryption/decryption
module for FPGA implementation of the AES Rijndael very
well suited for small embedded applications’. Proc. Int. Conf.
Information Technology: Coding and Computing, ITCC’04, Las
Vegas, NV, USA, April 2004, Vol. 2, pp. 583–587

33 Standaert, F.-X., Rouvroy, G., Quisquater, J.-J., and
Legat, J.-D.: ‘Efficient implementation of Rijndael encryption
in reconfigurable hardware: improvements and design tradeoffs’.
Proc. Workshop on Cryptographic Hardware and Embedded
Systems, CHES 2003, Cologne, Germany, September 2003,
pp. 334–350

34 Caltagirone, C., and Anantha, K.: ‘High throughput, parallelized
128-bit AES encryption in a resource-limited FPGA’. Proc. 15th
Annual ACM Symp. Parallel Algorithms and Architectures,
SPAA’03, San Diego, CA, USA, June 2003, pp. 240–241

35 Zigiotto, A.C., and d’Amore, R.: ‘A low-cost FPGA implemen-
tation of the Advanced Encryption Standard algorithm’. Proc.
15th Symp. Integrated Circuits and Systems Design, SBCCI’02,
Porto Alegre, Brazil, September 2002, pp. 181–186

IEE Proc. Inf. Secur. 11



36 Xilinx, Inc.: ‘Virtex 2.5 V field programmable gate arrays’,
2 April 2001, http://www.xilinx.com/bvdocs/publications/
ds003.pdf, accessed June, 2005

37 Xilinx, Inc.: ‘Virtex-E 1.8 V field programmable gate arrays’,
17 July 2002, http://www.xilinx.com/bvdocs/publications/
ds022.pdf, accessed June 2005

38 Xilinx, Inc.: ‘Virtex-II platform FPGAs: complete data sheet’,
1 March 2005, http://www.xilinx.com/bvdocs/publications/
ds031.pdf, accessed June 2005

39 Labbé, A., and Pérez, A.: ‘AES implementation on FPGA:
time—flexibility tradeoff’. Proc. 12th Int. Conf. Field-
Programmable Logic and its Applications, FPL 2002,
Montpellier, France, September 2002, pp. 836–844

40 Wang, S.-S., and Ni, W.-S.: ‘An efficient FPGA implementation
of Advanced Encryption Standard algorithm’. Proc. 2004 IEEE
Int. Symp. on Circuits and Systems, ISCAS’04, Vancouver,
British Columbia, Canada, May 2004, pp. 597–600

41 Xilinx, Inc.: ‘Virtex-4 family overview’, 17 June 2005, http://
www.xilinx.com/bvdocs/publications/ds112.pdf, accessed June
2005

42 Lai, X., and Massey, J.L.: ‘A proposal for a new block encryption
standard’. Proc. Advances in Cryptology—EUROCRYPT 90
pp. 389–404

43 Lai, X., Massey, J.L., and Murphy, S.: ‘Markov ciphers and
differential cryptanalysis’. Proc. Advances in Cryptology—
EUROCRYPT 91, pp. 17–38

44 Menezes, A.J., van Oorschot, P.C., and Vanstone, S.A.:
‘Handbook of applied cryptography’ (CRC Press Ltd., 1997)

45 Mencer, O., Morf, M., and Flynn, M.J.: ‘Hardware software tri-
design of encryption for mobile communication units’. Proc. 1998
IEEE Int. Acoustics, Speech, and Signal Processing, ICASSP ’98,
Seattle, WA, USA, May 1998, Vol. 5, pp. 3045–3048

46 Mosanya, E., Teuscher, C., Restrepo, H.F., Galley, P., and
Sanchez, E.: ‘CryptoBooster: a reconfigurable and modular
cryptographic coprocessor’. Proc. Workshop on Cryptographic
Hardware and Embedded Systems, CHES 1999, Worcester, MA,
USA, August 1999, pp. 246–256

47 Leong, M.P., Cheung, O.Y.H., Tsoi, K.H., and Leong, P.H.W.:
‘A bit-serial implementation of the international data encryption
algorithm IDEA’. Proc. IEEE Symp. Field-Programmable
Custom Computing Machines (FCCM’00), Napa Valley, CA,
USA, April 2000, pp. 122–131

48 Cheung, O.Y.H., Tsoi, K.H., Wai Leong, P.H., and Leong, M.P.:
‘Tradeoffs in parallel and serial implementations of the interna-
tional data encryption algorithm IDEA’. Proc. Third Int.
Workshop on Cryptographic Hardware and Embedded Systems,
CHES 2001, Paris, France, May 2001, pp. 333–347

49 Hämäläinen, A., Tommiska, M., and Skyttä, J.: ‘8 Gigabits per
second implementation of the IDEA cryptographic algorithm’.
Proc. 12th Int. Conf. Field-Programmable Logic and its
Applications, FPL 2002, Montpellier, France, September 2002,
pp. 760–769

50 Gonzalez, I., López-Buedo, S., Gómez, F.J., and Martı́nez, J.:
‘Using partial reconfiguration in cryptographic applications: an
implementation of the IDEA algorithm’. Proc. 13th International
Workshop on Field-Programmable Logic and Applications
(FPL’03), Lisbon, Portugal, September 2003, pp. 194–203

51 Pan, Z., Venkateshwaran, S., Gurumani, S.T., and Wells, B.E.:
‘Exploiting fine-grain parallelism of IDEA using Xilinx FPGA’.
Proc. 16th Int. Conf. Parallel and Distributed Computing
Systems (PDCS-2003), Reno, NV, USA, August 2003,
pp. 122–131

52 Rivest, R.L.: ‘The MD5 message-digest algorithm’, RFC 1321
(MIT Laboratory for Computer Science and RSA Data Security,
Inc., 1992)

53 National Institute of Standards and Technology.: ‘Secure hash
standard’. Federal Information Processing Standards Publication
(FIPS PUB) 180-2, 1 August 2002, with changes, 25 February
2004, http://www.csrc.nist.gov/publications/fips/fips180-2/
fips180-2withchangenotice.pdf, accessed June 2005

54 Lien, R., Grembowski, T., and Gaj, K.: ‘A 1Gbit/s partially
unrolled architecture of hash functions SHA-1 and SHA-512’.
Proc. Topics in Cryptology, CT-RSA 2004, The Cryptographers’
Track at the RSA Conf. 2004, San Francisco, CA, USA,
February 2004, pp. 324–338

55 National Institute of Standards and Technology.: ‘Digital
signature standard (DSS), ‘Federal Information Processing
Standards Publication (FIPS PUB) 186-2’, 27 January 2000,

http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-
change1.pdf, accessed June2005

56 Järvinen, K., Tommiska, M., and Skyttä, J.: ‘Hardware
implementation analysis of the MD5 hash algorithm’. Proc.
38th Hawai’i Int. Conf. System Sciences HICSS-38, Big Island,
HI, USA, January 2005, p. 298 (abstract)

57 Deepakumara, J., Heys, H.M., and Venkatesan, R.: ‘FPGA
implementation of MD5 hash algorithm’. Proc. Canadian Conf.
Electrical and Computer Engineering, CCECE 2001, Toronto,
Canada, May 2001, Vol. 2, pp. 919–924

58 Diez, J.M., Bojanić, S., Stanimirovicć, Lj., Carreras, C., and
Nieto-Taladriz, O.: ‘Hash algorithms for cryptographic
protocols: FPGA implementations’. Proc. 10th Telecommunica-
tions Forum, TELFOR’2002, Belgrade, Yugoslavia, November
2002,

59 Dominikus, S.: ‘A hardware implementation of MD4-family
hash algorithms’. Proc. 9th IEEE Int. Conf. Electronics, Circuits
and Systems, ICECS 2002, Dubrovnik, Croatia, September 2002,
Vol. 3, pp. 1143–1146

60 Grembowski, T., Lien, R., Gaj, K., Nguyen, N., Bellows, P.,
Flidr, J., Lehman, T., and Schott, B.: ‘Comparative analysis of
the hardware implementations of hash functions SHA-1 and
SHA-512’. Proc. 5th Int. Conf. Information Security, ISC 2002,
Sao Paulo, Brazil, September–October 2002, pp. 75–89

61 Järvinen, K., Tommiska, M., and Skyttä, J.: ‘A compact
MD5 and SHA-1 co-implementation utilizing algorithm simila-
rities’. Proc. Int. Conf. Engineering of Reconfigurable Systems
and Algorithms, ERSA’05, Las Vegas, NV, USA, June 2005,
pp. 48–54

62 Kang, Y.K., Kim, D.W., Kwon, T.W., and Choi, J.R.: ‘An
efficient implementation of hash function processor for IPSEC’.
Proc. IEEE Asia-Pacific Conf. on ASIC, AP-ASIC 2002, Taipei,
Taiwan, August 2002, pp. 93–96

63 McLoone, M., and McCanny, J.V.: ‘Efficient single-chip
implementation of SHA-384 and SHA-512’. Proc. 2002 Int.
Conf. Field-Programmable Technology, FPT 2002, Hong Kong,
China, December 2002, pp. 311–314

64 Ng, C.-W., Ng, T.-S., and Yip, K.-W.: ‘A uninified
architecture of MD5 and RIPEMD-160 hash algorithms’. Proc.
2004 IEEE Int. Symp. on Circuits and Systems, ISCAS’04,
Vancouver, British Columbia, Canada, May 2004, Vol. 2,
pp. 889–892

65 Selimis, G., Sklavos, N., and Koufopavlou, O.: ‘VLSI
implementation of the keyed-hash message authentication
code for the wireless application protocol’. Proc. 2003 10th
IEEE Int. Conf. Electronics, Circuits and Systems, ICECS
2003, Sharjah, United Arab Emirates, December 2003, Vol. 1,
pp. 24–27

66 Sklavos, N., Dimitroulakos, G., and Koufopavlou, O.: ‘An ultra
high speed architecture for VLSI implementation of hash
functions’. Proc. 2003 10th IEEE Int. Conf. Electronics, Circuits
and Systems, ICECS 2003, Sharjah, United Arab Emirates,
December 2003, Vol. 3, pp. 990–993

67 Ting, K.K., Yuen, S.C.L., Lee, K.H., and Leong, P.H.W.: ‘An
FPGA based SHA-256 processor’. Proc. 12th Int. Conf.
Field-Programmable Logic and its Applications, FPL 2002,
Montpellier, France, September 2002, pp. 577–585

68 Wang, M.-Y., Su, C.-P., Huang, C.-T., and Wu, C.-W.: ‘An
HMAC processor with integrated SHA-1 and MD5 algorithms’.
Proc. Asia and South Pacific Design Automation Conf. 2004,
Yokohama, Japan, January 2004, pp. 456–458

69 Zibin, D., and Ning, Z.: ‘FPGA Implementation of SHA-1
algorithm’. Proc. 2003 5th Int. Conf. ASIC, ASICON 2003,
Beijing, China, October 2003, Vol. 2, pp. 1321–1324

70 Wang, X., Yin, Y.L., and Yu, H.: ‘Collision search attacks on
SHA1’, 13 February 2005, http://theory.csail.mit.edu/�yiqun/
shanote.pdf, accessed June 2005

71 Wang, X., and Yu, H.: ‘How to break MD5 and other hash
functions’. Proc. Advances in Cryptology—EUROCRYPT
2005: 24th Annual Int. Conf. the Theory and Applications of
Cryptographic Techniques, Aarhus, Denmark, May 2005,
pp. 19–35

72 Altera Corporation: ‘APEX 20K Programmable logic device
family datasheet’, http://www.altera.com/literature/ds/apex.pdf,
March 2004 accessed June 2005

73 Altera Corporation: ‘Stratix II device handbook, volume 2’,
http://www.altera.com/literature/hb/stx2/stratix2_handbook.pdf,
May 2005 accessed June 2005

12 IEE Proc. Inf. Secur.




