
Vassil S. Dimitrov, Kimmo U. Järvinen, Michael J. Jacobson, Jr., Wai Fong (Andy)
Chan and Zhun Huang, Provably Sublinear Point Multiplication on Koblitz Curves and
Its Hardware Implementation, IEEE Transactions on Computers, vol. 57, no. 11, Nov.
2008, pp. 14691481.

© 2008 IEEE

Reprinted with permission.

This material is posted here with permission of the IEEE. Such permission of the IEEE
does not in any way imply IEEE endorsement of any of Helsinki University of
Technology's products or services. Internal or personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution must be
obtained from the IEEE by writing to pubspermissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

mailto:pubs-permissions@ieee.org

Provably Sublinear Point Multiplication
on Koblitz Curves and Its
Hardware Implementation

Vassil S. Dimitrov, Kimmo U. Järvinen, Student Member, IEEE,

Michael J. Jacobson Jr., Member, IEEE, Wai Fong (Andy) Chan, and Zhun Huang

Abstract—We describe algorithms for point multiplication on Koblitz curves using multiple-base expansions of the form

k ¼
P
��að� � 1Þb and k ¼

P
��að� � �Þbð�2 � �� � 1Þc. We prove that the number of terms in the second type is sublinear in the bit

length of k, which leads to the first provably sublinear point multiplication algorithm on Koblitz curves. For the first type, we conjecture

that the number of terms is sublinear and provide numerical evidence demonstrating that the number of terms is significantly less than

that of �-adic nonadjacent form expansions. We present details of an innovative FPGA implementation of our algorithm and

performance data demonstrating the efficiency of our method. We also show that implementations with very low computation latency

are possible with the proposed method because parallel processing can be exploited efficiently.

Index Terms—Elliptic curve cryptography, field-programmable gate arrays, Koblitz curves, multiple-base expansions, parallel

processing, sublinearity.

Ç

1 INTRODUCTION

IN 1985, Koblitz [1] and Miller [2] independently proposed
the use of the additive finite abelian group of points on

elliptic curves defined over a finite field for cryptographic
applications. The Koblitz curves [3], or anomalous binary
curves, are

Ea : y2 þ xy ¼ x3 þ ax2 þ 1; ð1Þ

defined over IF2, where a 2 f0; 1g. The number of points on

these curves when considered over IF2m can be computed

rapidly using a simple recurrence relation, and there are

many prime values of m for which the number of points is

twice a prime (when a ¼ 1) or four times a prime (when

a ¼ 0). Five Koblitz curves are recommended for crypto-

graphic use by NIST [4].
The main advantage of Koblitz curves is that the

Frobenius automorphism of IF2 acts on points via

�ðx; yÞ ¼ ðx2; y2Þ and is essentially free to compute. Because

� satisfies ð�2 þ 2ÞP ¼ ��ðP Þ for all points P 2 EaðIF2mÞ

where � ¼ ð�1Þ1�a, we can consider � as a complex number
satisfying x2 � �xþ 2 ¼ 0, i.e., � ¼ ð�þ

ffiffiffiffiffiffiffi
�7
p

Þ=2. Thus, com-
puting kP , where k 2 ZZ and P 2 EaðIF2mÞ, can be done using
a representation of k involving powers of � instead of the
usual binary representation using powers of 2, yielding a
point multiplication algorithm similar to the binary “double-
and-add” method in which the point doublings are replaced
by applications of the Frobenius [3], [5]. Solinas [5] showed
how the nonadjacent form (NAF) and window-NAF meth-
ods can be extended to �-adic expansions. The resulting point
multiplication algorithms require on average ðlog2 kÞ=3 point
additions or ðlog2 kÞ=ðwþ 1Þ point additions using width-w
window methods requiring precomputations based on P . A
result of Avanzi et al. [6] reduces this to ðlog2 kÞ=4 at the cost
of one additional point halving, but the practicality of this
method has not yet been demonstrated.

Double-base integer representations have been used to
devise efficient point multiplication algorithms [7], [8], [9].
For example, it can be shown that the number of terms of
the form �2a3b required to represent k is bounded by
Oðlog k= log log kÞ. These representations can be computed
efficiently and the resulting point multiplication algorithms
are the only known methods for which the number of
required point additions is sublinear in log k.

In this paper, which is based on a preliminary version
that appeared in CHES 2006 [10], we extend the double-base
idea to �-adic expansions for point multiplication on Koblitz
curves by representing k as a sum of terms ��að� � 1Þb. Our
algorithm requires no precomputations based on the point
P , no point doublings, and fewer point additions than
�-adic NAF ð�-NAFÞ for the five recommended Koblitz
curves from [4]. Our algorithm for computing the double-
base representation of k is very efficient; it requires only the
unsigned �-adic expansion of k plus a few table lookups. A
precomputed table of optimal representations for a small

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 11, NOVEMBER 2008 1469

. V.S. Dimitrov is with the Department of Electrical and Computer
Engineering, University of Calgary, 2500 University Drive NW, Calgary,
AB T2N 1N4, Canada. E-mail: dimitrov@atips.ca.

. K.U. Järvinen is with the Department of Signal Processing and Acoustics,
Helsinki University of Technology, Otakaari 5A, FIN-02150 Espoo,
Finland. E-mail: kimmo.jarvinen@tkk.fi.

. M.J. Jacobson Jr. and W.F. Chan are with the Department of Computer
Science, University of Calgary, 2500 University Drive NW, Calgary,
AB T2N 1N4, Canada. E-mail: {jacobs, chanwf}@cpsc.ucalgary.ca.

. Z. Huang is with VIA Technologies, VIA Building, Tsinghua Science Park,
No. 1 Zhongguancun East Road, Haidian District, Beijing, China.
E-mail: ZhunHuang@viatech.com.cn.

Manuscript received 31 Oct. 2007; revised 28 Feb. 2008; accepted 13 Mar.
2008; published online 4 Apr. 2008.
Recommended for acceptance by R. Steinwandt, W. Geiselmann, and Ç.K. Koç.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-2007-10-0542.
Digital Object Identifier no. 10.1109/TC.2008.65.

0018-9340/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

number of �-adic integers is required, but these are
independent of the multiplier k and the base point P . We
have developed a novel FPGA implementation of both the
conversion and point multiplication algorithms that de-
monstrates the efficiency of our method. This implementa-
tion takes advantage of the naturally arising parallelism in
our point multiplication algorithm in order to further
reduce the latency.

We conjecture that the average density of our represen-
tations is sublinear in log k and provide numerical evidence
showing that the density is lower than that of �-NAF
expansions. Although we do not have a proof that the
number of point additions required by our algorithm is
sublinear, our numerical experiments indicate that the
number of point additions required is within a small
constant multiple of log k=ðlog log kÞ. This constant depends
on the size of the precomputed table and was between 3
and 1, with smaller values occurring for larger table sizes. In
addition, we provide a proof that sublinearity is obtained
using similar expressions involving three bases of the form
��að� � �Þbð�2 � �� � 1Þc. Although this provably sublinear
algorithm is not as well suited for practical applications,
this work is nevertheless of interest, as it represents the first
rigorously proven sublinear point multiplication algorithm
using complex bases.

Avanzi and Sica [11] have independently investigated the
application of the double-base idea to Koblitz curves using
bases � and 3. It is not clear how their algorithm performs in
practice. They include a proof that the density of their
multiplier representations is sublinear under the unproven
but reasonable assumption that the irrationality measure of
log2 3 and argð�Þ=� is 2, but the proof has been shown to
have a gap [12].

The remainder of this paper is organized as follows: In
Section 2, we present our provably sublinear point multi-
plication algorithm. We present a similar algorithm using
only two complex bases in Section 3. Although we cannot
prove sublinearity for this algorithm, we conjecture that the
density of the representations is in fact sublinear, and
provide numerical evidence in Section 3.2 indicating that
the density of our representations is lower than that of
�-NAF representations. A description of our FPGA im-
plementation and numerical data demonstrating its effi-
ciency are presented in Section 4. We show in Section 5 how
parallel processing can be used for reducing computation
latency and demonstrate the efficiency of parallelization
with our FPGA implementation. Finally, we conclude with
an outlook on possible directions for further research.

2 MULTIDIMENSIONAL FROBENIUS EXPANSIONS

We start with the following definitions:

Definition 1. A complex number � of the form eþ f� , where
e; f 2 ZZ, is called a Kleinian integer [13].

Definition 2. A Kleinian integer ! of the form ! ¼ ��xð� � 1Þy,
x; y � 0 is called a f�; � � 1g-Kleinian integer.

Definition 3. A Kleinian integer ! of the form ! ¼
��xð� � �Þyð�2 � �� � 1Þz, x; y; z � 0 is called a f�; � �
�; �2 � �� � 1g-Kleinian integer.

The main idea of the new point multiplication algorithm
over Koblitz curves is to extend the existing and widely
used �-NAF expansion of the scalar to a new form that will
speed up the computations. The improvements obtained in
this paper are based on the following representation,
which we will call 2D or 3D Frobenius expansions
(or f�; � � 1g-expansion and f�; ���; �2����1g-expansion,
for short):

k ¼
Xd
i¼1

si�
aið� � 1Þbi ; si ¼ �1; ai; bi 2 ZZ�0; ð2Þ

k ¼
Xd
i¼1

si�
aið� � �Þbið�2 � �� � 1Þci ;

si ¼ � 1; ai; bi; ci 2 ZZ�0:

ð3Þ

Such representations are clearly highly redundant. If we
rearrange the summands in the above formula, then, using
two bases, we can represent the scalar k as

k ¼
XmaxðbiÞ

l¼1

ð� � 1Þl
Xmaxðai;lÞ

i¼1

si;l�
ai;l

 !
; ð4Þ

where maxðai;lÞ is the maximal power of � that is
multiplied by ð� � 1Þl in (2). Using three bases, we can
represent k as

k ¼
XmaxðciÞ

l2

ð�2 � �� � 1Þl2
XmaxðbiÞ

l1¼1

ð� � �Þl1

�
Xmaxðai;l1 ;l2 Þ

i¼1

si;l1;l2�
ai;l1 ;l2

0
@

1
A;

ð5Þ

where maxðai;l1;l2Þ is the maximal power of � that is
multiplied by ð� � �Þl1ð�2 � �� � 1Þl2 in (3).

Algorithm 1 computes kP given a f�; � � 1g-expansion

of k. In order to simplify, we denote the terms correspond-

ing to ð� � 1Þl in (4) with rlðkÞ, i.e., rlðkÞ ¼
Pmaxðai;lÞ

i¼1 si;l�
ai;l .

The corresponding algorithm for f�; � � �; �2 � �� �
1g-expansions will be described later, along with a proof

that the number of point additions is sublinear in log k.

Essentially, kP is computed via a succession of 1D �-adic

expansions.

Algorithm 1 Point multiplication using

f�; � � 1g-expansions.

INPUT: k, P

OUTPUT: Q ¼ kP
1: P0 P

2: Q O
3: for l ¼ 0 to maxðbiÞ do

4: S rlðkÞPl {1D �-NAF corresponding to ð� � 1Þl
in (4)}

5: Plþ1 �Pl � Pl
6: Q Qþ S
7: end for

1470 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 11, NOVEMBER 2008

The representation of k given in (4) is the cornerstone of
our algorithm, so some comments on it are in order:

1. The multiplications by � � � (and � � 1) cost one
Frobenius mapping (free in our computational
model) and one point addition or subtraction. The
multiplications by �2 � �� � 1 cost two Frobenius
mappings and two point additions/subtractions.
Therefore, the total number of point additions/
subtractions, ASðkÞ, is given by

ASðkÞ ¼ maxðbiÞ þ d� 1;

in the case of f�; � � 1g-expansions and

ASðkÞ ¼ dþmaxðbiÞmaxðciÞ � 1;

in the case of f�; � � �; �2 � �� � 1g-expansions. The
smallest possible value of maxðbiÞ and maxðciÞ, 0,
corresponds to the classical (1D) �-NAF expansion,
for which it is known that the expected number of
point additions/subtractions is ðlog2 kÞ=3. It is clear
that by allowing larger values for maxðbiÞ and
maxðciÞ one would decrease the corresponding
number of summands, d. Therefore, it is vital to
find out the optimal values for maxðbiÞ as a function
of the size of the scalar.

2. Finding an algorithm that can return a fairly short
decomposition of k as the sum of f�; � � 1g-Kleinian
integers is absolutely essential. The most straightfor-
ward idea seems to be the greedy algorithm
described in Algorithm 2. A greedy algorithm for
computing f�; � � �; �2 � �� � 1g-expansions is an
easy generalization of this algorithm.

Algorithm 2 Greedy algorithm for computing

f�; � � 1g-expansions.
INPUT: A Kleinian integer � ¼ eþ f�
OUTPUT: f!1; . . . ; !dg, a f�; � � 1g-expansion of �

1: i 1

2: while � 6¼ 0 do

3: Find !i ¼ ��aið� � 1Þbi , ai; bi � 0, the closest

f�; � � 1g-Kleinian integer to �.

4: � � � !i
5: i iþ 1

6: end while

The complexity of the greedy algorithm depends
crucially on the time spent to find the closest f�; � � 1g-
Kleinian integer to the current Kleinian integer. Unfortu-
nately, we were not able to find a significantly more
efficient method to do this than precomputing all Kleinian
integers ��xð� � 1Þy for x, y less than certain bounds and
finding the closest one using exhaustive search. In
Section 2.1, we present an efficient algorithm for computing
f�; � � 1g-expansions with slightly more weight than those
produced by the greedy algorithm and an algorithm for
computing f�; � � �; �2 � �� � 1g-expansions with weight
provably sublinear in log k.

2.1 Comparison to Double-Base Number Systems

The similarities between (2) and the double-base number
system (DBNS), in which one represents integers as the sum

or difference of numbers of the form 2a3b, a, b nonnegative
integers (called {2, 3}-integers), are apparent. In the case of
DBNS, one can prove the following result.

Theorem 1. Every positive integer, n, can be written as the sum
of at most Oðlogn= log lognÞ {2, 3}-integers and (one) such
representation can be found by using the greedy algorithm.

The key point in proving this theorem is the following
result of Tijdeman [14].

Theorem 2. Let x and y be two {2, 3}-integers, x > y. Then, there
exist effectively computable constants, c1 and c2, such that

x

ðlogxÞc1
< x� y < x

ðlogxÞc2
:

The proof of Theorem 1 uses only the first inequality.
Theorem 2 provides a very accurate description of the

difference between two consecutive {2, 3}-integers. More to
the point, it can be generalized easily to any set of
fp1; p2; . . . ; psg-integers if ps is fixed. The proof depends on
the main result of Baker [15] from the theory of linear form
in logarithms.

Theorem 3. Let a1; a2; . . . ; ak be nonzero algebraic integers and
b1; b2; . . . ; bk rational integers. Assume ab1

1 a
b2
2 � � � a

bk
k 6¼ 1 and

B ¼ maxðb1; b2; . . . ; bkÞ. Then, the following inequality holds:

ab1
1 a

b2
2 � � � a

bk
k � 1

�� �� � exp �CðkÞ log a1 log a2 � � � log akð Þ;

where CðkÞ ¼ expð4kþ 10k3kþ5Þ.

The constant CðkÞ is huge, even in the case of linear forms in
two logarithms, approximately expð6 � 109Þ. By using some
results aimed specifically at the case of two logarithms [16],
one can reduce CðkÞ to expð107Þ, but this is still enormous.
However, practical simulations suggest that this constant is
likely to be much smaller, perhaps less than 100.

There are two very essential points that are often
overlooked in the formulations of the above theorems [17]:

1. the estimates are correct if the algebraic numbers
used are real,

2. if the algebraic numbers are complex, then the
estimates provided remain unchanged if one of
them, say a1, has an absolute value strictly greater
than the absolute values of the other algebraic
numbers.

The latter point is what prevents us from applying
Tijdeman’s Theorem 2 to the case of a1 ¼ � , a2 ¼ � � 1.
Thus, we are not in position to trivially extend the proof of
Theorem 1 to the case of f�; � � 1g-expansions of Kleinian
integers. Nevertheless, extensive numerical simulations (by
using several attempted optimizations of Algorithm 2) have
led us to the following conjecture.

Conjecture 1. Every Kleinian integer, � ¼ aþ b� , can be
represented as the sum of at most OðlogNð�Þ= log logNð�ÞÞ
f�; � � 1g-Kleinian integers, where Nð�Þ ¼ ðaþ b�Þðaþ b�Þ

is the norm of �.

A paper by Avanzi and Sica [11] contains a proof that
Conjecture 1 is true if one uses f�; 3g-Kleinian integers
under the unproven but reasonable assumption that the

DIMITROV ET AL.: PROVABLY SUBLINEAR POINT MULTIPLICATION ON KOBLITZ CURVES AND ITS HARDWARE IMPLEMENTATION 1471

irrationality measure of log2 3 and argð�Þ=� is 2. Unfortu-

nately, the proof, even with the assumption on irrationality

measures, has a gap [12]. The gap is due to a reasonable but

unproven assumption about the uniform distribution of the

arguments of the complex numbers of the form �a3b [12].

The use of two complex bases, used in this paper, increases

the theoretical difficulties in proving the conjecture but

provides much more practical algorithms.
However, in the case of three bases, we can prove without

any assumptions the following:

Theorem 4. Every Kleinian integer � ¼ aþ b� can be represented

as the sum of at most OðlogNð�Þ= ðlog logNð�ÞÞÞ f�; � �
�; �2 � �� � 1g-Kleinian integers, such that the largest power

of both � � � and �2 � �� � 1 is Oðlog� Nð�ÞÞ for any real

constant � where 0 < � < 1=2.

Proof. We assume that b ¼ 0; otherwise, one applies the

same proof for the real and imaginary parts of �, which

leads to doubling the implicit constant hidden in the

big-O notation.

Let � be a real constant, where 0 < � < 1=2. We

determine the �-adic representation of a, the real part

of �, using digits 0 and 1. The length of this expansion

is OðlogNð�ÞÞ. We break this representation into
dlog1�� Nð�Þe blocks, where each block contains

Oðlog� Nð�ÞÞ digits. Each of these blocks corresponds

to a Kleinian integer ci þ di� , i ¼ 0; 1; . . . ; dlog1�� Nð�Þe,
where the size of both ci and di is Oðlog� Nð�ÞÞ. Now,

we represent each integer ci and di in double-base

representation using bases 2 and 3. According to

Theorem 1, these numbers will require at most

O
log� Nð�Þ

log log� Nð�Þ

� �
¼ O log� Nð�Þ

log logNð�Þ

� �
;

summands of the form 2x3y, where x; y � 0 and

x; y 2 Oðlog� Nð�ÞÞ. Using the fact that 2 ¼ �ð�� �Þ
and 3 ¼ 1þ �� � �2, we substitute the 2’s and 3’s in

the {2, 3}-expansions of ci and di to obtain f�; � � �; �2 �
�� � 1g-Kleinian integer expansions of each ci þ di� , i ¼
0; 1; . . . ; dlog1�� Nð�Þe. To obtain the expansion of

� ¼ aþ b� , we multiply each term of the form ��xð� �
�Þyð�2 � �� � 1Þz by �i, where i is the index of the

corresponding block. Note that x; y; z 2 Oðlog� Nð�ÞÞ.
Since the number of blocks is dlog1�� Nð�Þe and each

block requires Oðlog� Nð�Þ=ðlog logNð�ÞÞ f�; � � �; �2 �
�� � 1g-Kleinian integers, we conclude that the overall

number of Kleinian integers used to represent � is

O
log� Nð�Þ

log logNð�Þ log1�� Nð�Þ
� �

¼ O logNð�Þ
log logNð�Þ

� �
:

The exponents of � � � and �2 � �� � 1 are bounded by

Oðlog� Nð�ÞÞ. tu
Theorem 4 is, in fact, constructive and leads to the

following sublinear point multiplication algorithm

(Algorithm 3).

Algorithm 3 Point multiplication algorithm using
f�; � � �; �2 � �� � 1g-expansions.

INPUT: A Kleinian integer �, a point P on a Koblitz curve, a

real constant � with 0 < � < 1=2

OUTPUT: Q ¼ �P
1: Compute in succession for i ¼ 0; 1; . . . ; dlog� Nð�Þe the

points P
ð1Þ
i ¼ ð� � �ÞP

ð1Þ
i�1 and P

ð2Þ
i ¼ ð�2 � �� � 1ÞP ð2Þi�1,

where P
ð1Þ
0 ¼ P ð2Þ0 ¼ P .

2: Compute the points Qi1;i2 ¼ P
ð1Þ
i1
þ P ð2Þi2

for

ii; i2 ¼ 0; 1; . . . ; dlog� Nð�Þe.
3: Compute a f�; � � �; �2 � �� � 1g-expansion of the

form (5) using Theorem 4.

4: Apply in succession �-NAF based point multiplications

based on (5) to compute Q.

The analysis of Algorithm 3 is simple. Step 1 requires
Oðlog� Nð�ÞÞ point additions and step 2 requires
Oðlog2� Nð�ÞÞ point additions. Because � < 1=2, the total
number of point additions for steps 1 and 2 is oðlogNð�ÞÞ.
According to Theorem 4, step 3 requires OðlogNð�Þ=
ðlog logNð�ÞÞÞ point additions. The total number of point
additions for Algorithm 3 is therefore OðlogNð�Þ=
ðlog logNð�ÞÞÞ. Thus, one can compute kP in Oðlog k=
ðlog log kÞ point additions by computing ��kðmodð�m�1Þ=
ð� � 1ÞÞ and applying Algorithm 3 to compute �P .

Note that the first two steps of Algorithm 3 are
independent of k. If a fixed base point P is to be used, the
points Qi1;i2 may be precomputed.

The parameter � can be chosen in a variety of ways. The
total number of point additions required by all three steps is
roughly log� Nð�Þ þ log2� Nð�Þ þ 2 logNð�Þ=ð� log logNð�ÞÞ;
for 163 < Nð�Þ < 571, taking � such that 0:365 < � < 0:368
minimizes this quantity. Smaller values of � reduce the
number of points Qi1;i2 that must be precomputed and
stored at the cost of increasing the number of point
additions that must be performed in step 3. On the other
hand, larger values of � decrease the number of point
additions in step 3 at the cost of having to precompute and
store more points.

3 A PRACTICAL BLOCKING ALGORITHM

Although, as proved in Theorem 4, using f�; � � �; �2 �
�� � 1g-expansions does lead to a sublinear point multi-
plication algorithm, the resulting algorithm is likely not
suitable for practical purposes. Nevertheless, assuming the
truth of Conjecture 1, we can devise an efficient algorithm
that computes f�; � � 1g-expansions with sublinear density
of Kleinian integers. This algorithm is based on the
following theorem.

Theorem 5. Assuming Conjecture 1, every Kleinian integer
� ¼ aþ b� can be represented as the sum of at most
OðlogNð�Þ= log logNð�ÞÞ f�; � � 1g-Kleinian integers such
that the largest power of � � 1 is OðlogNð�Þ= log logNð�ÞÞ.

Proof. We shall assume that b ¼ 0; otherwise, one applies
the same proof for the real and imaginary parts of �,
which leads to doubling the implicit constant hidden
in the big-O notation. Next, we represent a, the real
part of �, in base-� expansion with digits 0 and 1. The
length of this expansion is OðlogNð�ÞÞ. Now, we break
this representation into log logNð�Þ blocks, each of
length OðlogNð�Þ= log logNð�ÞÞ. Every block of digits

1472 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 11, NOVEMBER 2008

corresponds to a Kleinian integer and, if Conjecture 1

is true, then every block can be represented as the sum
at most

O
logNð�Þ= log logNð�Þ

log logNð�Þ= log logNð�Þð Þ

� �

¼ O logNð�Þ
log2 logNð�Þ � log logNð�Þ log log logNð�Þ

� �

¼ O logNð�Þ
log2 logNð�Þ

� �

f�; � � 1g-Kleinian integers. As the number of blocks is

log logNð�Þ, we conclude that this representation consists
of at most OðlogNð�Þ= log logNð�ÞÞ f�; � � 1g-Kleinian

integers. The highest power of � � 1 that can occur in
such a representation is governed by the highest power

that can occur in every block and it is at most

OðlogNð�Þ= log logNð�ÞÞ. tu
This theorem leads to an efficient method to compute

f�; � � 1g-expansions with sublinear density under Conjec-

ture 1. The idea, described in Algorithm 4, is to apply the
blocking strategy described in the proof and compute

optimal f�; � � 1g-expansions for each block.

Algorithm 4 Blocking algorithm for computing

f�; � � 1g-expansions.

INPUT: A Kleinian integer � ¼ eþ f� , block size w,

precomputed table of the minimal f�; � � 1g-expansion

of every Kleinian integer
Pw�1

i¼0 di�
i, di 2 f0; 1g

OUTPUT: List L of f�; � � 1g-Kleinian integers representing

f�; � � 1g-expansion of �

1: L ¼ ;
2: Compute the �-adic expansion of

� ¼
Pl

i¼0 di�
i, di 2 f0; 1g

3: for j ¼ 0 to dl=we do

4: {Process blocks of length w}

5: Find minimal f�; � � 1g-expansion of
Pw�1

i¼0 diþjw�
i

from the precomputed table

6: Multiply each term of the expansion by �jw and

add to L

7: end for

There are four important points regarding the imple-
mentation of Algorithm 4:

1. All powers of � can be reduced modulo m, as
ð�mÞP ¼ P for all P 2 EaðIF2mÞ.

2. The bit-string dw�1 . . . d1d0 corresponding to any
block can be used as an index into the table of
minimal f�; � � 1g-expansions.

3. One can choose the size of the blocks based on
available memory. The larger the block size, the lower
the density of the f�; � � 1g-expansions produced.

4. If the block size is not too big, one can precompute
the minimal f�; � � 1g-expansion of every Kleinian
integer of the form

Pw�1
i¼0 di�

i, di 2 f0; 1g, thereby
ensuring as low a density as possible. This pre-
computation can be done using exhaustive search
and needs to be done once per elliptic curve, as it
does not depend on k nor the base point P .

3.1 Example

Consider the representation of 6,465 into a f�; � � 1g-
expansion by using the two different algorithms we have
described. Assume that we intend to compute ð6;465ÞP
for some point P 2 E1ðIF217Þ, so � ¼ ð1þ

ffiffiffiffiffiffiffi
�7
p

Þ=2. As in
the case of computing the �-NAF expansion, we first do a
partial reduction of 6,465 modulo ð�17 � 1Þ=ð� � 1Þ as in
[5], yielding � ¼ �104þ 50� . The greedy algorithm,
Algorithm 2, returns

� ¼ �8ð� � 1Þ þ �2ð� � 1Þ2 þ �8ð� � 1Þ6:

The blocking algorithm, Algorithm 4, using a block size
w ¼ 7 returns the same representation.

Fig. 1 illustrates the idea behind the blocking algorithm.
The �-adic expansion of � is �2 þ �5 þ �9 þ �11 þ �12 þ �13.
This 14-bit expansion of � is broken into two 7-bit blocks. The
right block corresponds to �2 þ �5, and �2ð� � 1Þ2 is its
optimal f�; � � 1g-expansion. The left block corresponds to
�2 þ �4 þ �5 þ �6, and �ð� � 1Þ þ �ð� � 1Þ6 is its optimal
expansion. Finally, multiplying the expression for the left
block by �7 yields the f�; � � 1g-expansion of �.

The usefulness of this idea is perhaps clearly visible if
one uses a geometric representation of the f�; � � 1g-
expansion. Table 1 shows the 2D representation of the
f�; � � 1g-expansion computed above. The expansion is
very sparse—of the 63 possible terms that could occur,
assuming �8 is the maximum power of � and ð� � 1Þ6 is the

DIMITROV ET AL.: PROVABLY SUBLINEAR POINT MULTIPLICATION ON KOBLITZ CURVES AND ITS HARDWARE IMPLEMENTATION 1473

Fig. 1. Expansion of �104þ 50� using Algorithm 4.

TABLE 1
The 2D Pictorial Representation of the f�; � � 1g-Expansion

of 6,465 Obtained by Both Algorithms 2 and 4

maximum power of � � 1, only three actually occur in the
expansion. Furthermore, note that when computing kP
using this representation, each row in the table represents a
1D �-adic expansion, and that these are very sparse.

3.2 Numerical Evidence

In this section, we present results from software imple-

mentations of Algorithms 2 and 4, the greedy and blocking-

based f�; � � 1g-expansion algorithms. The objective is to

compare the density of the f�; � � 1g-expansions computed

by our algorithms with �-NAF expansions. Our algorithms

and the algorithm for computing the �-NAF [5] of k were

implemented in C, using the GMP library for multiprecision

integer arithmetic. Tests were run on an Intel Xeon 2.8-GHz

CPU running Linux.
In Table 2, we present the average time required to

compute the f�; � � 1g-expansion of k compared with the

time to compute the �-NAF of k for the sizes of k

corresponding to the five Koblitz curves recommended by

NIST [4]. We used the blocking algorithm, Algorithm 4,

with w ¼ 10 and maxðbiÞ ¼ 6 to compute the ð�; � � 1Þ-
expansions, and 500,000 random values of k for each size.

Our implementation of Algorithm 4 is faster than that for
computing the �-NAF, by a factor of up to 20 percent.

Theorem 5 states that our conversion algorithm outputs
expansions of k with sublinear density even if the
maximum power of � � 1 is bounded by some constant
maxðbiÞ as long as any sublinear expansion exists. For
practical purposes, we need to know what value of maxðbiÞ
gives us minimal weight expansions on average.

In Fig. 2, we plot the average number of point additions
required to compute kP using a f�; � � 1g-expansion of k,
i.e., the number of nonzero terms in the expansion plus
maxðbiÞ � 1, as a function of maxðbiÞ. These average values
were computed using 1,000 random values of k of each size.
This graph illustrates that each size of k has an optimal value
of maxðbiÞ ranging from 4 to 12. The precise value of maxðbiÞ
to use corresponds to minimizing the overall time required
to compute kP given a f�; � � 1g-expansion. As shown in
Section 4.4, maxðbiÞ ¼ 3 turns out to be optimal for our FPGA
implementation of point multiplication on E1ðIF2163Þ.

In Table 3, we list the average number of point additions
required to compute kP on the five NIST-recommended
Koblitz curves [4] when using �-NAF, our greedy f�; � �
1g-expansion algorithm (Algorithm 2), and our blocking-
based Algorithm 4 using block lengths of w ¼ 5; 10; 16 and
maxðbiÞ ¼ 6. In all cases, the data are taken as the average
over 500,000 random values of k. Our algorithm requires
significantly fewer point additions than �-NAF in all cases.
In addition, the number of point additions required is
within a small constant multiple of log k=ðlog log kÞ, for
some constant depending on w, providing evidence in
support of Conjecture 1. It is interesting to note that this
constant appears to be small, between 3 and 1 according to
our data, with smaller values occurring for larger table

1474 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 11, NOVEMBER 2008

TABLE 2
Average Time (in �s) to Compute Representations of k

Fig. 2. Average number of point additions to compute kP as a function of maxðbiÞ with different bit lengths of k.

sizes. Unfortunately, a proof of this observation is currently
beyond our reach.

4 HARDWARE IMPLEMENTATION

An FPGA implementation was designed in order to
investigate the performance of the new algorithm in practice.
The design implements kP on the NIST curve K-163 defined
by (1), where a ¼ 1, over IF2163 [4].

As the number of zero coefficients in a f�; � � 1g-
expansion is large, a normal basis was selected for IF2m . In a
normal basis, an element A 2 IF2m is represented as
A ¼

Pm�1
i¼0 ai�

2i , where ai 2 f0; 1g and �2i 6¼ �2j for all i 6¼ j
and�2m ¼ �. Thus, it is obvious that the squaring operation is
a cyclic right shift of the bit vector, i.e., A2 ¼ ðam�1; a0;
a1; . . . ; am�2Þ, which is fast if implemented in hardware.

Affine coordinates, A, and López-Dahab coordinates,
LD [18], are used for representing points on EaðIF2mÞ. In A,
a point is represented with two coordinates as ðx; yÞ and, in
LD, with three coordinates as ðX;Y ; ZÞ. The LD triple
represents the point ðX=Z; Y =Z2Þ in A [18]. When P ¼ ðx; yÞ
in A, �P ¼ ðx; xþ yÞ. Point addition in A is performed as
presented, e.g., in [19], and it costs Iþ 2Mþ Sþ 8A, where I,
M, S, and A denote inversion, multiplication, squaring, and
addition in IF2m , respectively. Point addition in LD is
performed as presented in [20], and it requires
13Mþ 4Sþ 9A. A mixed coordinate point addition Qþ P ,
whereQ is inLD andP inA, requires only 9Mþ 5Sþ 9A [21].
This cost reduces by M on Koblitz curves and by A if both P
and�P are available. Because our implementation stores also
�P , the cost is 8Mþ 5Sþ 8A. The cost would reduce by one
further A if a ¼ 0. Point subtraction is simply a point addition
with �P , i.e., Q� P ¼ Qþ ð�P Þ. The A 7! LD mapping
does not require any operations in IF2m while LD 7! A costs
Iþ 2Mþ S. The cost of a Frobenius mapping is 3S in LD and
2S in A. An inversion in IF2m is computed using the Itoh-
Tsujii inversion requiring m� 1 squarings and blog2ðm�
1Þc þHwðm� 1Þ � 1 multiplications, where Hwðm� 1Þ is
the Hamming weight of m� 1 [22]. Hence, I ¼ 9Mþ 162S
when m ¼ 163.

Different coordinates are used in Algorithm 1 as
follows: Point addition in A is used in computing Pl so
that mixed coordinate point addition can be used in S
S � Pl computations (row 4 in Algorithm 1). Because the
results of row multiplications are in LD, Q Qþ S is
computed in LD.

The design in [10] was implemented in Xilinx Virtex-II, but
here, we implemented the design in Altera Stratix II FPGAs
[23] so that Altera Stratix II EP2S180 DSP Development Board

[24] could be used for prototyping. The implementation
includes a field arithmetic processor (FAP) for arithmetic in
IF2m , control logic for controlling the FAP, and a converter for
converting k to a f�; � � 1g-expansion. The FAP is considered
in Section 4.1 and the control logic in Section 4.2. Section 4.3
discusses the conversion unit, i.e., the implementation of the
blocking algorithm, Algorithm 4.

4.1 Field Arithmetic Processor (FAP)

The FAP includes a multiplier, a squarer, an adder, a
storage element, and a control logic. A storage element for
163-bit elements of IF2163 is required in order to store points
and temporary variables during computation of kP . As
Stratix II offers embedded memory blocks that can be used
without consuming logic resources, the storage element is
implemented in M4K RAM blocks. One dual-port RAM
can be configured into a 256 � 18-bit mode in M4K. All
163 bits of an element must be accessed in parallel in the
FAP architecture. Hence, 163

18

� �
¼ 10 M4Ks are required.

Write and read operations require both one clock cycle,
i.e., W ¼ R ¼ 1.

The squarer is a shifter that performs A2d , where A 2
IF2163 and 0 � d � dmax ¼ 25 � 1. Thus, A2d operations can be
performed with a cost of S. We denote these consecutive
squaring by S	. The ability to perform successive squarings
in one clock cycle decreases the latencies of inversions and
consecutive Frobenius maps significantly. For example, the
cost of an inversions reduces from 9M þ 162S to 9Mþ 14S	.
Addition in IF2163 is simply a bitwise exclusive-OR (XOR).
Both addition and (successive) squarings are performed in
one clock cycle, i.e., A ¼ S ¼ S	 ¼ 1.

Field multiplication is critical for the overall perfor-
mance. The multiplier is a digit-serial implementation of
the Massey-Omura multiplier [25]. In a bit-serial Massey-
Omura multiplier, one bit of the output is calculated in
one clock cycle, and hence, m cycles are required in total.
One bit ci of the result C ¼ A�B is computed from A and
B by using an F -function. The F -function is field specific,
and the same F is used for all output bits ci as follows:
ci ¼ F ðA
<i; B
<iÞ, where
< i denotes cyclical left shift by
i bits [25].

In a digit-serial implementation, D bits are computed in
parallel. Hence, m

D

� �
cycles are required in one multi-

plication. In this FAP, D ¼ 24. The F -function is pipelined in
order to increase the maximum clock frequency by adding
one register stage. As loading the operands into the shift
registers requires one clock cycle and pipelining increases
latency by one clock cycle, the latency is M ¼ 163

24

� �
þ 2 ¼ 9.

4.2 Control Logic

Logic controlling the FAP consists of a storage for k, a control
finite state machine (FSM), and a ROM for control sequences.

The implementation handles k in a coded form. The
coding is performed using � : fs; dg symbols, where s 2
f0; �0; 1; �1g and 0 � d � dmax. �0 is a symbol reserved for a row
change. Coding is started from the most significant bit of
the first row and it proceeds as follows: s is the signed bit
starting a symbol and d is the number of Frobenius
mappings following s, i.e., the number of consecutive zeros
plus one (the Frobenius mapping associated with the start
bit of the next symbol). If the run of consecutive Frobenius

DIMITROV ET AL.: PROVABLY SUBLINEAR POINT MULTIPLICATION ON KOBLITZ CURVES AND ITS HARDWARE IMPLEMENTATION 1475

TABLE 3
The Average Number of Point Additions Required
to Compute kP for the Five Koblitz Curves in [4]

mappings is longer than dmax, the run must be divided into
two symbols and s ¼ 0, for the latter one. Each �, with the
exception of the row change symbol, transforms into an
operation S �dðS þ sP Þ on EaðIF2mÞ. Let ZðkÞ denote the
maximum number of consecutive Frobenius mappings
required by k. Then, the number of �-symbols, e, required
to represent k, is given by e � HwkþmaxðbiÞ, with equality
if and only if dmax � ZðkÞ.

The control FSM takes �-symbols as input, and accord-
ing to s and d of �, it sets addresses of the control
sequence ROM. The control sequences consist of succes-
sive FAP instructions directly controlling the FAP. There
are control sequences for Plþ1 �Pl � Pl (Frobenius
mapping and point addition in A), point addition and
subtraction (mixed coordinate point addition), Frobenius
mapping, row change (point addition in LD), and LD 7! A
mapping. They are all stored in a ROM implemented in an
M4K block.

If implemented so that, for each operation, the operands
would be first read from the memory, then the operation
calculated and finally the result saved to the memory, the
latency would be the latency of the operation (M, S, or A)
plus two clock cycles (R þ W). The no-change read mode
of Xilinx BlockRAMs was used in [10] for reducing the
latency of control sequences. Stratix II devices do not
support such read mode, but the latency can be reduced
also with read-during-write mode supported by Stratix II
memory blocks [23]. The reduction is, however, slightly
smaller. When the control sequences were carefully hand-
optimized, different operations have the following latencies
in clock cycles: the mixed coordinate point addition,
LM ¼ 112, the Frobenius mapping, LF ¼ 7, row change
(point addition in LD), LLD ¼ 167, the computation of Pl,
LPl ¼ 171, and the LD 7! A mapping, LLD 7! A ¼ 145. The
first point addition of each row is simply S �Pl and the
first row change operation is given by Q S. Both of these
operations have a latency of LC ¼ 6. In the beginning, an
initialization is performed including, e.g., the transferring
of P into the FAP. The latency of the initialization is
LI ¼ 11. Thus, it follows that the latency of the kP
computation becomes

LkP ¼ HwðkÞ � maxðbiÞþ1ð Þð ÞLMþ maxðbiÞþ2ð ÞLCþLI

þ e�maxðbiÞð ÞLFþmaxðbiÞ LLDþLPlð ÞþLLD 7! A;

ð6Þ

and by assuming that dmax � ZðkÞ, i.e., e ¼ HwðkÞ þmaxðbiÞ,
(6) simplifies to

LkP ¼ 119HwðkÞ þ 232 maxðbiÞ þ 56: ð7Þ

4.3 Conversion Unit

The conversion unit, which converts an integer k into a
f�; � � 1g-expansion, is a straightforward implementation of
Algorithm 4, our blocking-based method.

The main part of this unit is an ALU, which has two integer
multipliers, each of which makes use of one 18-bit � 18-bit
embedded multiplier to create 102-bit� 102-bit products. The
ALU also includes adders, shifters, and the rounding
function required by the partial reduction algorithm [5].
The conversion unit uses the ALU and two intermediate
registers for reducing every integer k to an equivalent
r0 þ r1� , then gets the �-adic expansion by a shift-and-add

circuit, which produces one bit per cycle, from the least
significant bit to the most significant bit.

For our implementation, we selected the block size
w ¼ 10, so every 10 bits of the �-adic expansion are used
as an index into a lookup table. This table has one entry
for each possible index ðb9b8 . . . b0Þ, bi 2 f0; 1g, where each
entry is the optimal f�; � � 1g-expansion of

P9
i¼0 bi�

i

allowing a maximum exponent of 6 for � � 1. At most
three terms of the form ��að� � 1Þb are required for each
representation, so each entry in the table consists of three
tuples of the form ðdn; in; jnÞ representing dn�

inð� � 1Þjn .
Hence, each entry requires 27 bits and the whole lookup
table requires a 27-Kbit RAM. Note that, according to the
data in Section 3.2, using a block size of 5 would still give
us a significant improvement over �-NAF, and in this
case, the table would require less than 1 Kbit.

Because integer operations are slower than the IF2m

operations in the FAP, the conversion unit will be the
bottleneck if the two units use the same clock. So dual-port
RAMs are used in order to separate these units into
different clock domains. The lookup results are written
into the dual-port RAMs using one port, and the FAP will
read them out from the other port later.

4.4 Results

The design was written in VHDL and implemented in an
Altera Stratix II EP2S180F1020C3 FPGA [23], which is on
the Altera Stratix II EP2S180 DSP Development Board. The
design was synthesized with Quartus II 6.0 SP1. In total,
the design requires 8,799 Adaptive Logic Modules (ALMs)
and 20 M512 and 36 M4K memory blocks including logic
for interfacing and buffers separating clock domains. The
FAP and its control logic require 6,084 ALMs and 16 M4Ks,
and they operate at the maximum clock frequency of
152.28 MHz. The converter requires 1,947 ALMs, 8 M4Ks,
and 4 DSP blocks and operates at 93.54 MHz. It takes
335 clock cycles, or 3.58 �s, to convert one 163-bit integer.

Average timings of the design are presented in Table 4.
The latency LkP is given by (7), and timings are calculated
using a clock of 152 MHz. The time consumed in the
conversion is neglected because the f�; � � 1g-expansion for
the next kP can be computed simultaneously while the FAP
processes the previous kP . Table 4 shows that the best
performance is achieved when maxðbiÞ ¼ 3, which is
smaller than estimated in Section 3.2, because the latencies
of point additions differ. In Section 3.2, all point additions
were assumed equal.

1476 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 11, NOVEMBER 2008

TABLE 4
Performance Calculations of the FPGA Implementation on an

Altera Stratix II EP2S180F1020C3 with Different Values of
maxðbiÞ When the Clock Frequency Is 152 MHz

HwðkÞ for maxðbiÞ > 0 are averages from 10,000 random 163-bit
integers converted with Algorithm 4 when w ¼ 10. The numbers of point
additions in the mixed coordinates, in A, and in LD are denoted asM,
A, and LD, respectively.

The implementation on Xilinx Virtex-II computes kP in
35.75 �s [10], which shows that the longer latency caused by
the lack of the no-change read mode in Stratix II is
compensated by a higher clock frequency and the designs
run slightly faster on Stratix II. Numerous publications
considering implementation of elliptic curve cryptography
on FPGAs have been published, e.g., in [26], [27], [28], [29],
[30], [31], [32], [33], [34], [35], [36], [37], and [38]. To the
authors’ knowledge, the only published FPGA-based
implementations using �-NAF expansions were presented
in [32], [34], and [35], and they all use the NIST K-163 curve,
E1ðIF2163Þ. Okada et al. [35] published an implementation
that computes a kP operation in 45.6 ms with an Altera
EPF10K250AGC599-2, and Lutz and Hasan [34] presented a
design that computes kP in 75 �s on a Xilinx Virtex-E
XCV2000E. Järvinen et al. [32] presented an implementation
using parallel processing blocks that can compute up to
166,000 three-term point multiplications per second with an
average computation time of 114.2 �s on a Stratix II S180C3
FPGA. Comparing designs implemented on different
FPGAs is difficult because it is hard to tell which portion
of a performance difference is caused by different im-
plementation platforms and which by some novel imple-
mentation technique. Anyhow, the design we have
presented is faster than any of the above-mentioned
designs. Moreover, it will be shown in Section 5 how our
method can be further accelerated with parallel processing.

5 PARALLEL IMPLEMENTATION

This section presents an efficient method for reducing the
latency of kP by using parallel processing. It is well
known that reducing the latency of kP with parallelism is
hard because of limited intrinsic parallelism in the
operation if it is computed with traditional methods such
as the binary double-and-add method. However, when k is
a f�; � � 1g-integer, parallelism can be efficiently used for
reducing the latency of our algorithm because rows of the
table representing k can be computed in parallel.

Parallel computation is performed as follows: The
implementation consists of p identical processing blocks
(FAP and control logic), which can exchange data with
each other. Processing blocks compute their subcomputa-
tions independently and the results of the subcomputations
are combined with p� 1 point additions resulting in kP .
The critical path consists of the most expensive subcom-
putation and dlog2 pe point additions because parallelism
can be utilized also in combining the subcomputations.

Let the area of a single processing block be A0. Because
identical parallel processing blocks are used, the area of
p processing blocks is approximately1 pA0. Area efficiency
of parallel implementations is measured via the latency-
area product R ¼ CA, where C is the critical path and A is
the area. The best area efficiency is obtained with a setup
that minimizes R.

The maximum number of parallel processing blocks is
pmax ¼ maxðbiÞ þ 1, i.e., the number of rows. Because the
rows corresponding to ð� � 1Þl with small l have a higher
average number of nonzero terms than the rows with

large l as can be seen in Fig. 3, using pmax parallel

processing blocks leads to an inefficient R although C is

small. In practice, selecting p < pmax and assigning rows to

processing blocks by their computational cost leads to

both small C and R.
When a row is computed, the base point Pl ¼ ð� � 1ÞlP

needs to be computed first. If the base point is computed

with sequential ð� � 1ÞP computations, in total l point

subtractions and Frobenius mappings are required. This is

not a problem if p ¼ 1 because all rows are computed in the

same processing block, but when p > 1, one would need to

compute also the base points that are not needed in order to

get Pl with high l. For example, in order to get

P4 ¼ ð� � 1Þ4P , four point subtractions and Frobenius

mappings are required, i.e., P1, P2, and P3 need to be

computed, although they may not be needed.
The cost of base point computations can be reduced by

utilizing the fact that �2 þ �� þ 2 ¼ 0. For E1ðIF2mÞ, � ¼ �1

and �2 þ 2 ¼ � give the following nonsequential formulas

for ð� � 1Þl, where 2 � l � 4:

ð� � 1Þ2 ¼ �2 � 2� þ 1

¼ �2 þ 2� 2� 2� þ 1

¼ � � 2� � 1

¼ �� � 1;

ð8Þ

ð� � 1Þ3 ¼ð� � 1Þð�� � 1Þ
¼ ��2 � � þ � þ 1

¼ ��2 þ 1;

ð9Þ

ð� � 1Þ4 ¼ð� � 1Þð��2 þ 1Þ
¼ ð�2 þ 1Þð��2 þ 1Þ
¼ ��4 þ �2 � �2 þ 1

¼ ��4 þ 1:

ð10Þ

DIMITROV ET AL.: PROVABLY SUBLINEAR POINT MULTIPLICATION ON KOBLITZ CURVES AND ITS HARDWARE IMPLEMENTATION 1477

1. Some of the interface logic can be shared, but some extra logic is
required in order to connect the processing blocks.

Fig. 3. The average distribution of nonzero terms in 10,000 randomly

selected f�; � � 1g-integers, where maxðbiÞ 2 ½2; 10�, obtained by the

blocking algorithm with the block size w ¼ 10.

Nonsequential formulas including only one point addition

or subtraction cannot be found for l > 4, but (8)-(10) can be

still used for reducing the computational cost. For example,

ð� � 1Þ11P ¼ ð� � 1Þ4ðð� � 1Þ4ðð� � 1Þ3P ÞÞ
¼ ð��4 þ 1Þ ð��4 þ 1Þ ð��2 þ 1ÞP

� 	� 	
;

which requires only three point subtractions instead of 11.

Generally, ð� � 1ÞlP requires dl=4e point subtractions.

Similar equations cannot be found for f�; � � 1g-Kleinian

integers and E0ðIF2mÞ, where � ¼ 1 and �2 þ 2 ¼ �� , but

for f�; � þ 1g-Kleinian integers, similar formulas are given

as follows:

ð� þ 1Þ2 ¼ � � 1;

ð� þ 1Þ3 ¼ �2 � 1;

ð� þ 1Þ4 ¼ ��4 þ 1:

Analogously, there are no formulas for f�; � þ 1g-Kleinian

integers and E1ðIF2mÞ.
The assignment of rows is performed as presented in

Algorithm 5, which produces a computation schedule

including the indices of the rows. Cost of the row l is

HwðrlðkÞÞ � 1þ dl=4e, where HwðrlðkÞÞ is the number of

nonzero terms in the row. An example of scheduling is

presented in Fig. 4. The example shows that, in that particular

case, the critical path can be reduced from 36� 1þ 6 ¼ 41 to

14� 1þ dlog2 3e ¼ 15 point additions by using three parallel

processing blocks instead of one.

Algorithm 5 Greedy scheduling algorithm
INPUT: Costs of rows, maxðbiÞ, p
OUTPUT: Computation schedule

1: for i ¼ 0 to maxðbiÞ do

2: Find the processing block with the smallest assigned

cost (if more than one, select the one with the

smallest index)

3: Find the nonassigned row with the highest cost

(if more than one, select the one with the smallest
index)

4: Assign the row to the processing block

5: Add the cost of the row to the assigned cost of the

block and remove the row from the list of

nonassigned rows

6: If the assigned row is not the first row computed in

the block, add the cost of combining rows to the

assigned cost of the block
7: end for

It is not obvious which are the optimal choices for
maxðbiÞ and p when C and R are both considered. Hence,
Algorithm 5 was performed for 10,000 random 163-bit
integers converted with Algorithm 4 ðw ¼ 10Þ and different
maxðbiÞ and p. The resulted critical paths and latency-area
products are shown in Table 5. The critical path C is the
number of point additions. All point additions are assumed
to have a cost of one, reflecting the situation where only A is
used for representing points on EaðIF2mÞ. The best possible
critical paths and latency-area products with different p
(bold values in Table 5) are plotted in Fig. 5, which clearly
shows that the critical path shortens considerably when
p > 1. However, major reductions are not achievable with
p > 4 because the most expensive row becomes a bottle-
neck. Latency-area product always increases when p grows,
but the increase is moderate when p � 4. The most
expensive row bounds the critical path, and as can be seen
in Fig. 3 in Section 5, the cost of the most expensive row
decreases very slowly when maxðbiÞ grows. Thus, the
technique yields efficient results only with small p. This is
not a major concern in practice as large p are often
unreachable anyhow because of area constraints.

5.1 Hardware Implementation

The efficiency of the parallelization technique was studied

in practice by designing an FPGA implementation based on

the design described in Section 4. Because the design uses

both A and LD , the analysis of optimal p and maxðbiÞ
performed in Section 5 is not valid.

The design computes kP so that, when the integer is

converted with the converter described in Section 4.3, the

scheduling algorithm, Algorithm 5, is performed for the

f�; � � 1g-expansion. It was implemented so that it assumes

that point additions in A and LD cost 1.5 times as much as a

mixed coordinate point addition. The correct values are 1.53

and 1.49, respectively, so the error of this assumption is

negligible, but the implementation is easier and the result

more area efficient. The scheduling increases the latency of

the conversion by 16 clock cycles resulting in 351 clock cycles.

After the conversions, the subcomputations are performed

independently in parallel FAPs. The computations are

1478 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 11, NOVEMBER 2008

Fig. 4. Scheduling example for p ¼ 3. The scheduling is performed for
a 163-bit integer k ¼ 1902cd968f45b3c58932fdb63eea875b2884b3d35x,
which is converted using the blocking algorithm, Algorithm 4, with
w ¼ 10 and maxðbiÞ ¼ 6. The most expensive computation is performed
in the second processing block and it has a critical path of 14 point
additions. The cost of the first processing block reduces by one
because base point computations for P5 and P6 can be combined
resulting in a reduction of one point subtraction.

performed as discussed in Section 4 with the exception that

Pi are computed using (8)-(10). In the end, the results of the

subcomputations are combined with point additions in A,

each requiring 171 clock cycles.

Latencies for the above-described design with different p

and maxðbiÞ are presented in Table 6. Fig. 6 depicts the

shortest latencies and the smallest latency-area products for

all p. Comparisons of Tables 5 and 6 and Figs. 5 and 6 show

that the parallelization technique gives similar results than

in Section 5 also for our FPGA design. Also, in this case,

p ¼ 4 is the highest number of parallel processing blocks

that result in any significant reductions in latency. How-

ever, the values of maxðbiÞ that result in the shortest

latencies differ from the analysis of Section 5. The speedups

are also slightly smaller than in Section 5. Based on Table 6,

we selected the parameters p ¼ 4 and maxðbiÞ ¼ 6 for the

FPGA implementation.

5.2 Results

The parallel implementation was also written in VHDL and

synthesized for Stratix II S180C3 with Quartus II. The

design requires 28,328 ALMs, which is 39 percent of the

device resources, 52 M512s, and 66 M4Ks. The design

operates with 152- and 93-MHz clocks similarly as the one

processor implementation that was expected because the

critical path determining the maximum clock frequency is

the same in both cases. The average kP latency is 2,033 clock

cycles as in Table 6. Thus, a kP computation requires on

average only 13.38 �s. Conversions including schedulings

require 3.77 �s.
The speedup compared to the single processing block

implementation presented in Section 4.4 is 35:04=13:38 ¼ 2:61

(excluding the conversion) or 38:62=17:15 ¼ 2:25 (including

the conversion). The increase in area is 28;328=8;799 ¼ 3:21

(including the converter). This shows that very high speed-

ups are achievable with moderate area increase by using

parallel processing. Furthermore, the resulted implementa-

tion computing kP on average in 17.15 �s (including the

conversion) is the fastest published FPGA-based implemen-

tation, at least to the authors’ knowledge.

6 CONCLUSIONS AND FURTHER WORK

Our results have demonstrated that f�; � � 1g-expansions

lead to a competitive point multiplication algorithm for

Koblitz curves when the base point P is not fixed.

Nevertheless, there are a number of aspects we are

continuing to explore.

Alternative choices of the bases, or even using three bases,

may lead to further improvements. For example, using

f�; � þ 1g may be advantageous in our implementation

because computing ð� þ 1ÞlP from ð� þ 1Þl�1P requires a

point addition as opposed to a point subtraction when using

bases � and � � 1, and subtraction is slightly more expensive

than addition. f�; � þ 1g-expansions may also be useful in

parallel implementations because ð� þ 1ÞlP can be com-

puted efficiently on E0ðIF2mÞ but ð� � 1ÞlP cannot.

Our point multiplication algorithm does not require any

precomputations involving the base point P nor storage of

additional points and, hence, is well suited to applications

where P is random. We are investigating the possibility of

generalizing window methods, using 2D windows, to our

algorithm in order to obtain further improvements when

precomputations involving P are permitted.

DIMITROV ET AL.: PROVABLY SUBLINEAR POINT MULTIPLICATION ON KOBLITZ CURVES AND ITS HARDWARE IMPLEMENTATION 1479

Fig. 5. The (solid line) best critical paths C and (dotted line) latency-area

products R, i.e., the bold values in Table 5, with p 2 ½1; 6�.

TABLE 5
Critical Paths and Latency-Area Products with p 2 ½1; 6� and maxðbiÞ 2 ½2; 10�

Critical path C is given as the number of point additions including cost of combining subcomputations, and latency-area product is R ¼ pC. The best
values for all p are in bold.

It is also possible to augment our conversion algorithm

using a sliding window analog, in which we slide the blocks

along the �-adic expansion of the scalar so that the low-

order bit is always one. Experiments indicate that this does

not significantly reduce the required number of point

additions, but it does have the advantage that the size of

the lookup table is cut in half.
Although our numerical data suggests that the density of

the f�; � � 1g-expansions obtained by our conversion algo-

rithm is sublinear in the bit length of k, we do not yet have a

proof of this fact. In addition, our conversion algorithm

requires a modest amount of storage. These precomputed

quantities are independent of both the base point P and

multiplier k and can be viewed as part of the domain

parameters. Nevertheless, we continue to search for an

efficient memory-free conversion algorithm.

ACKNOWLEDGMENTS

Vassil S. Dimitrov and Michael J. Jacobson Jr. were

supported in part by NSERC of Canada.

REFERENCES

[1] N. Koblitz, “Elliptic Curve Cryptosystems,” Math. Computation,
vol. 48, pp. 203-209, 1987.

[2] V. Miller, “Use of Elliptic Curves in Cryptography,” Advances in
Cryptology—CRYPTO ’85, pp. 417-426, 1986.

[3] N. Koblitz, “CM-Curves with Good Cryptographic Properties,”
Advances in Cryptology—CRYPTO ’91, pp. 279-287, 1992.

[4] Digital Signature Standard (DSS), Fed. Information Processing
Standard, FIPS PUB 186-2, Nat’l Inst. of Standards and Technol-
ogy (NIST) Computer Security FIPS PUB 186-2, Jan. 2000.

[5] J. Solinas, “Efficient Arithmetic on Koblitz Curves,” Designs, Codes
and Cryptography, vol. 19, pp. 195-249, 2000.

[6] R. Avanzi, C. Heuberger, and H. Prodinger, “Minimality of the
Hamming Weight of the �-NAF for Koblitz Curves and Improved
Combination with Point Halving,” Selected Areas in Cryptography—
SAC ’05, pp. 332-344, 2005.

[7] V. Dimitrov, G. Jullien, and W. Miller, “An Algorithm for Modular
Exponentiation,” Information Processing Letters, vol. 66, no. 3,
pp. 155-159, 1998.

[8] M. Ciet and F. Sica, “An Analysis of Double Base Number
Systems and a Sublinear Scalar Multiplication Algorithm,”
Progress in Cryptology—Mycrypt ’05, pp. 171-182, 2005.

[9] V. Dimitrov, L. Imbert, and P. Mishra, “Efficient and Secure
Elliptic Curve Point Multiplication Using Double-Base Chains,”
Advances in Cryptology—ASIACRYPT ’05, pp. 59-78, 2005.

[10] V.S. Dimitrov, K.U. Järvinen, M.J. Jacobson Jr., W.F. Chan, and
Z. Huang, “FPGA Implementation of Point Multiplication on
Koblitz Curves Using Kleinian Integers,” Cryptographic Hard-
ware and Embedded Systems—CHES ’06, pp. 445-459, 2006.

[11] R. Avanzi and F. Sica, “Scalar Multiplication on Koblitz Curves
Using Double Bases,” Progress in Cryptology—VIETCRYPT ’06,
pp. 131-146, 2006.

[12] F. Sica, Scalar Multiplication on Koblitz Curves Using Double Bases.
Univ. of Calgary, invited talk, Apr. 2006.

[13] J. Conway and D. Smith, On Quaternions and Octonions. AK Peters,
2003.

[14] R. Tijdeman, “On Integers with Many Small Prime Factors,”
Composition Math., vol. 26, no. 3, pp. 319-330, 1973.

[15] A. Baker, “Linear Forms in the Logarithms of Algebraic
Numbers IV,” Math., vol. 15, pp. 204-216, 1968.

[16] M. Mignotte and M. Waldshmidt, “Linear Forms in Two
Logarithms and Schneider’s Method III,” Annales de la Faculté des
Sciences de Toulouse, pp. 43-75, 1990.

[17] R. Tijdeman, personal communication, 2006.
[18] J. López and R. Dahab, “Improved Algorithms for Elliptic Curve

Arithmetic in GF ð2nÞ,” Selected Areas in Cryptography—SAC ’98,
pp. 201-212, 1998.

[19] C. Doche and T. Lange, “Arithmetic of Elliptic Curves,” Handbook
of Elliptic and Hyperelliptic Curve Cryptography, Chapman and
Hall/CRC, H. Cohen and G. Frey, eds., chapter 13, pp. 267-302,
2006.

[20] A. Higuchi and N. Takagi, “A Fast Addition Algorithm for Elliptic
Curve Arithmetic in GF ð2nÞ Using Projective Coordinates,”
Information Processing Letters, vol. 76, no. 3, pp. 101-103, 2000.

1480 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 11, NOVEMBER 2008

TABLE 6
Critical Path and Latency-Area Product Estimates with p 2 ½1; 6� and maxðbiÞ 2 ½2; 10� for the FPGA Implementation

Critical path is given as the number of clock cycles including cost of combining subcomputations, and latency-area product is R ¼ pC. The best
values for all p are in bold.

Fig. 6. The (solid line) best critical path C and (dotted line) latency-area

product R estimates for the FPGA implementation, i.e., the bold values

in Table 6, with p 2 ½1; 6�.

[21] E. Al-Daoud, R. Mahmod, M. Rushdan, and A. Kilicman, “A New
Addition Formula for Elliptic Curves over GF ð2nÞ,” IEEE Trans.
Computers, vol. 51, no. 8, pp. 972-975, Aug. 2002.

[22] T. Itoh and S. Tsujii, “A Fast Algorithm for Computing Multi-
plicative Inverses in GF ð2mÞ Using Normal Bases,” Information
and Computation, vol. 78, no. 3, pp. 171-177, Sept. 1988.

[23] Stratix II Device Handbook, Altera, http://www.altera.com/
literature/hb/stx2/stratix2_handbook.pdf, May 2007.

[24] Stratix II EP2S180 DSP Development Board—Reference Manual,
Altera, http://www.altera.com/literature/manual/mnl_SII_
DSP_RM_11Aug06.pdf, Aug. 2006.

[25] C. Wang, T. Troung, H. Shao, L. Deutsch, J. Omura, and I. Reed,
“VLSI Architectures for Computing Multiplications and Inverses
in GF ð2mÞ,” IEEE Trans. Computers, vol. 34, no. 8, pp. 709-717,
Aug. 1985.

[26] B. Ansari and M.A. Hasan, “High Performance Architecture of
Elliptic Curve Scalar Multiplication,” Technical Report CACR
2006-1, Univ. of Waterloo, 2006.

[27] S. Bajracharya, C. Shu, K. Gaj, and T. El-Ghazawi, “Implementa-
tion of Elliptic Curve Cryptosystems over GF ð2nÞ in Optimal
Normal Basis on a Reconfigurable Computer,” Proc. Int’l Conf.
Field Programmable Logic and Application (FPL ’04), pp. 1098-1100,
2004.

[28] M. Bednara, M. Daldrup, J. von zur Gathen, J. Shokrollahi, and
J. Teich, “Reconfigurable Implementation of Elliptic Curve
Crypto Algorithms,” Proc. Reconfigurable Architectures Workshop,
Int’l Parallel and Distributed Processing Symp. (IPDPS ’02),
pp. 157-164, Apr. 2002.

[29] M. Benaissa and W. Lim, “Design of Flexible GF ð2mÞ Elliptic
Curve Cryptography Processors,” IEEE Trans. Very Large Scale
Integration Systems, vol. 14, no. 6, pp. 659-662, June 2006.

[30] R. Cheung, N. Telle, W. Luk, and P. Cheung, “Customizable
Elliptic Curve Cryptosystem,” IEEE Trans. Very Large Scale
Integration Systems, vol. 13, pp. 1048-1059, Sept. 2005.

[31] H. Eberle, N. Gura, S. Shantz, and V. Gupta, “A Cryptographic
Processor for Arbitrary Elliptic Curves over GF ð2mÞ,” Technical
Report SMLI TR-2003-123, Sun Microsystems, May 2003.

[32] K. Järvinen, J. Forsten, and J. Skyttä, “FPGA Design of Self-
Certified Signature Verification on Koblitz Curves,” Cryptographic
Hardware and Embedded Systems—CHES ’07, pp. 256-271, 2007.

[33] P. Leong and K. Leung, “A Microcoded Elliptic Curve Processor
Using FPGA Technology,” IEEE Trans. Very Large Scale Integration
Systems, vol. 10, no. 5, pp. 550-559, Oct. 2002.

[34] J. Lutz and A. Hasan, “High Performance FPGA Based Elliptic
Curve Cryptographic Co-Processor,” Proc. Int’l Conf. Information
Technology: Coding and Computing (ITCC ’04), vol. 2, pp. 486-492,
Apr. 2004.

[35] S. Okada, N. Torii, K. Itoh, and M. Takenaka, “Implementation of
Elliptic Curve Cryptographic Coprocessor over GF ð2mÞ on an
FPGA,” Cryptographic Hardware and Embedded Systems—CHES ’00,
pp. 25-40, 2000.

[36] G. Orlando and C. Paar, “A High-Performance Reconfigurable
Elliptic Curve Processor for GF ð2mÞ,” Cryptographic Hardware and
Embedded Systems—CHES ’00, pp. 41-56, 2000.

[37] F. Rodrı́guez-Henrı́quez, N. Saqib, and A. Dı́az-Pérez, “A Fast
Parallel Implementation of Elliptic Curve Point Multiplication
over GF ð2mÞ,” Microprocessors and Microsystems, vol. 28, nos. 5-6,
pp. 329-339, Aug. 2004.

[38] C. Shu, K. Gaj, and T. El-Ghazawi, “Low Latency Elliptic Curve
Cryptography Accelerators for NIST Curves over Binary Fields,”
Proc. IEEE Int’l Conf. Field-Programmable Technology (FPT ’05),
pp. 309-310, Dec. 2005.

Vassil S. Dimitrov received the PhD degree in
applied mathematics from the Bulgarian Acad-
emy of Sciences in 1995. Since 1995, he has
held postdoctoral positions at the University of
Windsor, Ontario (1996-1998) and Helsinki
University of Technology (1999-2000). During
the period 1998-1999, he worked as a research
scientist for Cigital, Dulles, Virginia (formerly
known as Reliable Software Technology), where
he conducted research work on different crypta-

nalysis problems. Since 2001, he has been an associate professor in the
Department of Electrical and Computer Engineering, University of
Calgary, Alberta. His main research areas include implementation of
cryptographic protocols, number-theoretic algorithms, computational
complexity, image processing and compression, and related topics.

Kimmo U. Järvinen received the MSc (Tech)
degree in electrical engineering in 2003 from
Helsinki University of Technology (TKK), where
he is currently working toward the DSc (Tech)
degree. He has been with the Department of
Signal Processing and Acoustics (formerly Sig-
nal Processing Laboratory) at TKK since 2002
and in the Graduate School in Electronics,
Telecommunications and Automation (GETA)
since 2004. In autumn 2005, he was on a

research visit at the University of Calgary. His research interests include
FPGA implementations of cryptographic algorithms, especially elliptic
curve cryptography. He is a student member of the IEEE.

Michael J. Jacobson Jr. received the BSc (Hon)
and MSc degrees from the University of Manito-
ba and the Dr rer nat degree from the Technical
University of Darmstadt in 1999. He is an
associate professor in the Department of Com-
puter Science, University of Calgary, and a
member of the Centre for Information Security
and Cryptography. His research interests are
cryptography and related applications of compu-
tational number theory, especially as applied to

algebraic number fields and function fields. He is a member of the IEEE
and the ACM.

Wai Fong (Andy) Chan is currently working
toward the master’s degree in computer science
in the Department of Computer Science, Uni-
versity of Calgary, Alberta. He is also working for
Symantec on antivirus software projects. His
previous industrial experience includes 10 years
as a computer engineer for Samsung.

Zhun Huang received the PhD degree in
electronics from Tsinghua University, Beijing,
in 2005. He was with the Department of
Electrical and Computer Engineering, Univer-
sity of Calgary, Canada, from 2005 to 2006.
In 2007, he joined VIA Technologies, Beijing.
His research interests include cryptographic
VLSI, random number generator, and compu-
ter arithmetic.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

DIMITROV ET AL.: PROVABLY SUBLINEAR POINT MULTIPLICATION ON KOBLITZ CURVES AND ITS HARDWARE IMPLEMENTATION 1481

