
Kimmo Järvinen and Jorma Skyttä, On Parallelization of High­Speed Processors for
Elliptic Curve Cryptography, IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 16, no. 9, Sep. 2008, pp. 1162­1175.

© 2008 IEEE

Reprinted with permission.

This material is posted here with permission of the IEEE. Such permission of the IEEE
does not in any way imply IEEE endorsement of any of Helsinki University of
Technology's products or services. Internal or personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution must be
obtained from the IEEE by writing to pubs­permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

mailto:pubs-permissions@ieee.org

1162 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 9, SEPTEMBER 2008

On Parallelization of High-Speed Processors for
Elliptic Curve Cryptography
Kimmo Järvinen, Student Member, IEEE, and Jorma Skyttä

Abstract—This paper discusses parallelization of elliptic curve
cryptography hardware accelerators using elliptic curves over bi-
nary fields 2 . Elliptic curve point multiplication, which is the
operation used in every elliptic curve cryptosystem, is hierarchical
in nature, and parallelism can be utilized in different hierarchy
levels as shown in many publications. However, a comprehensive
analysis on the effects of parallelization has not been previously
presented. This paper provides tools for evaluating the use of par-
allelism and shows where it should be used in order to maximize
efficiency. Special attention is given for a family of curves called
Koblitz curves because they offer very efficient point multiplica-
tion. A new method where the latency of point multiplication is re-
duced with parallel field arithmetic processors is introduced. It is
shown to outperform the previously presented multiple field mul-
tiplier techniques in the cases of Koblitz curves and generic curves
with fixed base points. A highly efficient general elliptic curve cryp-
tography processor architecture is presented and analyzed. Based
on this architecture and analysis on the effects of parallelization,
a few designs are implemented on an Altera Stratix II field-pro-
grammable gate array (FPGA).

Index Terms—Elliptic curve cryptography (ECC), field-pro-
grammable gate arrays (FPGAs), Koblitz curves, parallel pro-
cessing, public key cryptography.

I. INTRODUCTION

T HE USE OF elliptic curves in public-key cryptography
was independently proposed by Koblitz [1] and Miller [2]

in 1985 and, since then, an enormous amount of work has been
done on elliptic curve cryptography (ECC). The attractiveness
of using elliptic curves arises from the fact that similar level of
security can be achieved with considerably shorter keys than in
methods based on the difficulties of solving discrete logarithms
over integers or integer factorizations.

Public-key cryptography is computationally intensive, and
hardware acceleration is frequently required in practical appli-
cations. Thus, many publications have considered hardware ac-
celeration of ECC. Some application-specific integrated circuit
(ASIC) implementations have been published such as [3]–[6],
but the majority of designs including [7]–[23] have been imple-
mented on field-programmable gate arrays (FPGAs). A compre-
hensive survey of hardware acceleration of ECC is given in [24].

The research on hardware acceleration has concentrated on
efficient implementation of elliptic curve point multiplication,

Manuscript received February 9, 2007; revised September 22, 2007. Pub-
lished August 20, 2008 (projected). This work was supported in part by TEKES
under Contract 40508/05.

The authors are with the Signal Processing Laboratory, Helsinki University of
Technology, FIN-02015 TKK, Finland (e-mail: kimmo.jarvinen@tkk.fi; jorma.
skytta@tkk.fi).

Digital Object Identifier 10.1109/TVLSI.2008.2000728

the fundamental operation of all elliptic curve cryptosystems.
The elliptic curve point multiplication is computed with point
operations which, further, are computed using finite field arith-
metic. The sequential nature of the point multiplication makes
efficient use of parallelization challenging. However, although
the point multiplication itself is hard to parallelize, it is possible
to efficiently use parallelism in lower hierarchy levels, namely
in point operations [9], [11], [16] and field arithmetic [14], [15],
[25], [26].

Many published articles use parallel computing in both point
operations, e.g., multiple field multipliers, and field arithmetic
operations, e.g., digit-serial multipliers, without making any
analysis of their efficiency. This paper provides tools for eval-
uating the use of parallelism and points out where parallelism
should be used in order to maximize efficiency.

Koblitz curves [27] are a family of curves on which point mul-
tiplication is considerably faster than on generic curves. Thus,
Koblitz curves are included in many standards, e.g., [28], [29].
Despite their efficiency, only few publications on hardware im-
plementation have considered Koblitz curves. To the authors’
knowledge, they have been discussed only in [12], [17], [19],
[20]. Koblitz curves were shown to be fast and easy to imple-
ment in software in [30]. It is shown in this paper that point
multiplication on Koblitz curves can be computed very effi-
ciently also in hardware. In addition to faster point multipli-
cation, Koblitz curves also provide interesting possibilities for
further use of parallelism compared to generic curves as will be
shown in this paper.

The main contributions of this work include the following (in
order of appearance):

• highly efficient general ECC processor architecture is de-
scribed for FPGAs (see Section IV);

• analysis on existing parallelization techniques is presented
(see Section V);

• fair comparison between existing techniques is given
which is possible because different techniques are evalu-
ated on the same architecture (see Section V);

• method for reducing latency by using parallel processors is
presented and analyzed (see Section VI);

• very efficient high-speed FPGA-based implementations
are described (see Section VII).

Emphasis of this work is on studying effects of parallelization
on performance, area, and their tradeoff in high-speed accelera-
tors. Such aspects as side-channel attacks are not considered in
order to keep the work focused.

The remainder of this paper is organized as follows. Section II
presents preliminaries of ECC. Parallelization of point multipli-
cation is discussed and previous work on the subject is reviewed
in Section III. Section IV introduces the processor architecture

1063-8210/$25.00 © 2008 IEEE

JÄRVINEN AND SKYTTÄ: ON PARALLELIZATION OF HIGH-SPEED PROCESSORS FOR ELLIPTIC CURVE CRYPTOGRAPHY 1163

that is used in the analysis. Parallelization techniques are de-
scribed and their effects on the architecture are discussed in
Section V. A new method for reducing latency with parallel field
arithmetic processors is suggested and analyzed in Section VI.
Finally, results on an Altera Stratix II FPGA are presented in
Section VII and conclusions are drawn in Section VIII.

II. ELLIPTIC CURVE CRYPTOGRAPHY (ECC)

This paper considers elliptic curves defined over finite binary
fields . The curves are so-called ordinary curves (see [31],
for example), i.e., they are defined as

(1)

with so that . Let denote the set of
all points on . A pair , where , is a point in

if it satisfies (1). The point at infinity, denoted as , is
also a point in .

A binary field with polynomial basis (PB) is constructed
by representing field elements as polynomials of degree at most

. Addition is performed as an addition of polynomials
modulo 2, i.e., a bitwise exclusive-or (XOR), and multiplica-
tion is performed modulo an irreducible polynomial. In normal
basis (NB), the elements are represented with a basis of the form

with the property that . Ob-
viously, squaring is a cyclic shift and thus very inexpensive but
multiplications cost more than in PB. Inversion of ,
i.e., computing such that , is the most
expensive field operation regardless of the basis, see, e.g., [32].
A method based on Fermat’s Little Theorem suggested by Itoh
and Tsujii in [33] is used in this paper.

Every elliptic curve cryptosystem requires computation of
an operation called elliptic curve point multiplication. Given a
point , called the base point, and an in-
teger , the point multiplication is defined as

(2)

where is called the result point. Point addition,
with , and point doubling, , are

basic operations in computing (2).
Binary method (or double-and-add method) is probably the

most common way to compute (2). In the binary method, is
represented with binary expansion as and a point
doubling is performed for each bit and a point addition if

. Thus, because , point doublings and
point additions are required on average.

Traditionally points are represented by using two coordinates
as . This representation is henceforth referred to as affine
coordinates, or for short. If points are presented in , point
addition and point doubling both require one inversion in .
Because inversions are expensive, it is commonly preferred to
represent points by using three coordinates as be-
cause then the number of inversions in computation of (2) can
be reduced to one. Such coordinate systems considered in this

paper are projective and López-Dahab coordinates, and
for short. A point in and represents the affine
points and , respectively. The

and mappings are simply and do not re-
quire any operations.

The costs of addition, squaring, multiplication, and inversion
in are denoted as , , , and , respectively. Point oper-
ation costs vary depending on coordinate systems. Table I lists
point operation costs that are relevant in this paper. Considerable
savings can be achieved by computing point addition
in mixed coordinates where and are in different coordi-
nates, e.g., in and in .

The Hamming weight of , denoted as , is the number
of nonzero terms in the representation of . It is of interest to
reduce , because point additions are required only when

. When a signed-bit representation in non-adjacent form
(NAF), i.e., so that , for all , is used,

on average. can be further reduced with
windowing methods, but then certain points need to be precom-
puted (see [32], for example).

An efficient method for computing (2) was presented in [34]
by López and Dahab. The method is called the Montgomery
point multiplication and it computes (2) in with only the -co-
ordinate (and) and the -coordinate is recovered in the end.
Both point doubling and point addition are computed for every

, but they are very efficient to compute because only the -co-
ordinate is considered. The combined recovery of the -coor-
dinate and mapping requires certain additional field
operations as shown in Table I.

Curves for which and in (1) are called
Koblitz curves [27]. They have special attractiveness among el-
liptic curves, because point doublings can be replaced by effi-
ciently computable Frobenius endomorphism [27]. Let be a
Koblitz curve. The Frobenius map
is defined by

(3)

Frobenius maps cost or depending on the coordinate
system. Notice that squaring is cheap. Actually, squaring in
with NB is only a cyclic shift of the bit vector. Thus, the cost of
(2) is only point additions1 with the binary method.
Before the fast Frobenius maps can be utilized, the integer
needs to be converted in -adic expansion as , where

. Algorithms for converting integers
into -adic non-adjacent form were presented in [38].

III. PARALLELISM IN POINT MULTIPLICATION

As presented in [9], for example, the point multiplication de-
composes into three hierarchical levels as shown in Fig. 1(a).
Similar hierarchical levels can be found from the ways of how
parallelism is used inside an accelerator. The hierarchy of par-
allelism is depicted in Fig. 1(b). This hierarchy is studied next
from the bottom to the top.

1The first point addition is considered free as it is simply a substitution.

1164 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 9, SEPTEMBER 2008

Fig. 1. Hierarchical levels of (a) computation of elliptic curve point multiplication [9] and (b) parallelization of hardware implementations. Decisions made in
(a) define which techniques can be used in hierarchical levels of (b). For example, selection of the basis, i.e., PB or NB, on the lowest level of (a) define which
multiplier architectures can be used in the lowest level of (b), etc.

TABLE I
COSTS OF POINT OPERATIONS (SEE [31], FOR EXAMPLE)

Point addition and doubling; only the x-coordinate.
One multiplication saved if a 2 f0; 1g and one addition is saved if a = 0.
Recovery of the y-coordinate and P 7! A mapping.

A. Parallelism in Field Arithmetic Blocks

Parallelism in field arithmetic blocks, mostly in multipliers,2

has been studied in numerous publications. Multiplication is the
operation which has the most crucial effect on the performance
and area of an accelerator. Work on parallelization in field mul-
tipliers includes, e.g., [14], [15], [25], [26] for PB and [39] for
NB. A bit-serial multiplier computes one bit of the output per
cycle with a single processing block resulting in latency of .
In bit-parallel multipliers, all bits of the output are computed
in one cycle. A digit-serial multiplier is a tradeoff where bits
of the output are computed in parallel, thus, resulting in latency
of .

B. Parallelism in Field Arithmetic Processors

Parallelism in point operations is also an efficient way to re-
duce latency of point multiplication as shown, e.g., in [9], [11],
[16], [22], and [40]. Certain field operations can be computed
in parallel depending on the coordinate system. Parallelism that
can be utilized in Montgomery point multiplication [34] and
point addition in mixed coordinates [37] is considered next.
Only multiplications are examined as adding parallel adders or
squarers has only a negligible effect on performance. Let de-
note the number of parallel field multipliers.

Montgomery point multiplication [34] is used for generic
curves because it is the most efficient method which does not

2The term “multiplier” refers exclusively to field multipliers in this paper.
Similarly, “multiplication” always refers to field multiplication and point mul-
tiplication is consistently referred to with its full name.

Fig. 2. Data dependency graph of computing (4). The critical path comprises 8,
5, or 4 multiplications if one, two, or three multipliers are available, respectively.
The optional addition is performed if a = 1 and omitted if a = 0. If a 62 f0;1g,
one additional multiplication, which is not depicted, is required (aC).

involve precomputations [31]. Point addition and doubling
together require six multiplications and parallel multipliers can
be utilized efficiently as shown in [11], [22]. With , the
critical path reduces to three multiplications and, with ,
to only two multiplications [11], [22]. Three or more than four
multipliers do not give any further improvements.

For Koblitz curves point additions are computed with the
mixed coordinate point addition as presented in [37]. The for-
mula for computing are
as follows [37]:

(4)

The data dependency graph of (4) is presented in Fig. 2 which
shows that (4) requires eight multiplications but the critical path
can be reduced to five or four multiplications with or

, respectively. Data dependencies restrict from achieving
further reductions with more than three multipliers.

C. Parallel Processors

Parallel processors can be used for increasing throughput of
an accelerator by simply computing several point multiplica-

JÄRVINEN AND SKYTTÄ: ON PARALLELIZATION OF HIGH-SPEED PROCESSORS FOR ELLIPTIC CURVE CRYPTOGRAPHY 1165

Fig. 3. Block diagram of the FAP.

tions in parallel. Optimizations in parallel processor cases were
recently studied by the authors in [17]. Using parallel processors
for reducing computation latency is hard because of the sequen-
tial nature of the point multiplication and, at least to the authors’
knowledge, the method discussed in Section VI is the first such
method presented in the literature.

IV. ARCHITECTURE OF THE ACCELERATOR

This section presents an accelerator computing elliptic curve
point multiplication which is used for studying the effects of
parallelization. The accelerator comprises field arithmetic pro-
cessor (FAP), FAP control logic and interface logic. A
converter is also required for Koblitz curves. The architecture
itself is generic but the implementations are optimized for Al-
tera Stratix II FPGAs [41].

Montgomery point multiplication is used for generic curves
and the binary method where point additions are computed in
mixed coordinates with in is used for Koblitz curves.
These methods were selected because they are the fastest
methods which do not require precomputations [31].

For simplicity, the discussion in the remainder of this paper
is restricted to the smallest field size specified in the
NIST recommended elliptic curves for federal government use
[28]; namely the curves NIST B-163 and NIST K-163 are used.
This does not sacrifice the generality of the architecture, the
methods, or the analysis. Again, to keep discussion clear and
simple, only NB are considered similarly as in [11], for
example. The methods and analysis tools are valid for PB too,
but the results would be different, of course.

A. Field Arithmetic Processor

The FAP consists of adder, squarer, multiplier(s), storage
RAM, and instruction decoder. A block diagram is presented
in Fig. 3.

1) Adder and Squarer: The adder computes an -bit bitwise
XOR in one clock cycle, i.e., . The squarer is a shifter
which can compute successive squarings , where
and . Computation requires one clock cycle, i.e.,

.
2) Multiplier: Multiplication is critical for the overall perfor-

mance. Multiplication in NB is computed with a Massey-Omura
multiplier [39]. One bit of the result , where

is computed from and by using a logic
function called the -function. Formulae for constructing the

-function are publicly available in the appendices of [28], for

example. The -function is field specific, and the same is
used for all output bits as follows: ,
where denotes cyclical left shift by bits. Hence, a bit-se-
rial implementation of the Massey-Omura multiplier requires
three -bit shift registers and one -function block. A bit-par-
allel multiplier requires -function blocks and an -bit reg-
ister for storing the result [28], [39].

In practice, the bit-serial multiplier requiring at least
clock cycles is too slow and the bit-parallel multiplier requires
too much area. A good tradeoff is a digit-serial multiplier, where

bits are computed in parallel with -function blocks. The
-function blocks can be pipelined in order to increase the max-

imum clock frequency. The latency of a digit-serial multiplier is

(5)

where is the number of pipeline stages, i.e., . In this
paper, . One clock cycle is also required in loading the
operands into the shift registers.

FAPs can include several multipliers and the number of mul-
tipliers is denoted with .

3) Others: The storage RAM is used for storing elements
of . It is implemented as a dual-port RAM by using em-
bedded memory, e.g., M4K in Stratix II [41]. The storage RAM
stores up to elements. When Stratix II is used, a logical
choice is because, while in true dual-port mode, the
widest mode that an M4K block can be configured to is 256

18-bits. The width of the storage RAM was selected to be
163 bits in order to minimize writing and reading delays. In
memory constrained environments narrower bus widths could
be used in order to reduce memory requirements at the expense
of longer delays. The storage RAM requires
M4Ks resulting in a storage capacity of 256 163-bits. This
much storage space is rarely needed, but it can be used for ex-
ample for storing precomputed points. Furthermore, selecting a
smaller depth would not reduce M4Ks. Both writing and reading
require one clock cycle. However, the dual-port RAM can be
configured into the read-during-write mode [41] which saves
certain clock cycles, see Section IV-B.

The instruction decoder simply decodes instructions to sig-
nals controlling the FAP blocks.

B. Control Logic

The FAP control logic consists of finite-state machine (FSM)
and ROM containing instruction sequences.

The instruction sequences are carefully hand-optimized in
order to minimize latencies of point operations. As mentioned
in Section IV-A3, the read-during-write mode can be used for
reducing latencies. Operations are ordered so that the result of
the previous operation is used as the operand of the next oper-
ation whenever possible. One clock cycle is saved every time
this can be used, because the operands of the next operation can
be read simultaneously with the writing of the result of the pre-
vious operation.

Inversions are computed with successive multiplications and
squarings as suggested by Itoh and Tsujii in [33]. An Itoh-Tsujii
inversion has the constant cost of

(6)

1166 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 9, SEPTEMBER 2008

TABLE II
INSTRUCTION SEQUENCES AND THEIR LATENCIES

Fig. 4. Top-level view of the accelerator. The accelerator is divided into
three clock domains: all communication with other components is clocked
with clk . The FAP and its control logic operate at clk and the �NAF

converter uses clk . Because the converter is needed only for Koblitz curves,
generic curve implementations only have two clocks, clk and clk .

which results in when [33]. Although the
number of squarings is high, the successive squaring feature of
the squarer (see Section IV-A1) ensures that the cost remains
reasonable.

As mentioned in Sections III and IV-A2, the latencies of point
operations can be reduced with parallel multipliers, i.e., .
Multiplications in the Itoh-Tsujii inversion cannot be computed
in parallel but Montgomery point addition and doubling and
point addition in mixed coordinates benefit from parallel multi-
pliers as shown in Section III. Instruction sequences were opti-
mized for different . Table II lists the latencies of instruction
sequences used in this paper and presents the latencies of com-
puting (2) with different setups.

C. Top-Level and Clocking

When (2) is computed on a Koblitz curve, a converter is re-
quired for converting into -adic expansion. The con-
verter presented by the authors in [42] is used in the designs. The
latency of a conversion is clock cycles on average [42].

TABLE III
AREAS OF THE BLOCKS OF THE ACCELERATOR

Because the converter has a lower maximum clock frequency
than the rest of the circuitry, it is separated into its own clock
domain as shown in Fig. 4. The accelerator has an interface
clock , the FAP, and its control logic operate with the clock

, and the converter operates with the clock .
The clock domains are separated by first-in, first-out (FIFO)
buffers implemented in embedded memory, i.e., in M512 and
M4K in Stratix II.

Table III presents the areas of different blocks in the archi-
tecture which are used in Section V for analyzing the effects
of parallelization. The areas are averages from the values re-
ceived from the synthesis for Stratix II FPGA because the exact
values varied slightly after the place&route. The areas are given
as the number of occupied adaptive logic modules (ALMs). It
is assumed that the total area depends linearly on the number of
blocks. Hence, an estimate for the area of an implementation on
Stratix II is given by

(7)

where , , , and are the numbers of parallel FAPs,
converters, field multipliers, and -function blocks, respec-
tively, and the areas are as in Table III.

V. PARALLELISM IN ELLIPTIC CURVE ACCELERATORS

This section discusses effects of parallelization in different
parts of the ECC processor presented in Section IV. It is as-
sumed in the following analysis that the complexity of the de-
sign does not have an effect on the quality of place&route re-
sults, i.e., on area or timings. Thus, the area of an accelerator is
assumed to be given by (7). The clock frequency is assumed to
be constant for all implementations because the same -func-
tion block determines the critical path, see Section IV-A2. These
assumptions are necessary in order to provide an analytic ap-
proach to parallelization. However, in reality the more difficult
place&route becomes the more area it usually has to consume
in order to meet the given timing constraints and the more prob-
able it becomes that these constraints are not met at all. Hence,
it is probable that the estimates given in the analysis are too op-
timistic for the most complex designs. Inaccuracies caused by
the assumptions are analyzed in Section VII.

First, metrics for evaluating designs are defined. Let denote
the parameters which define the degrees of parallelism used in
the accelerator, i.e., .

Performance is rated by three metrics, namely latency, point
multiplication time, and throughput. Latency is the average
number of clock cycles required to compute point multiplica-
tion. Point multiplication time, hereafter referred to as pm-time,
is the average time in seconds required in point multiplication.
Throughput is the maximum number of point multiplications

JÄRVINEN AND SKYTTÄ: ON PARALLELIZATION OF HIGH-SPEED PROCESSORS FOR ELLIPTIC CURVE CRYPTOGRAPHY 1167

computed in a given time frame on average. Throughput is
measured with operations per second (ops).

Let , , and denote latency, pm-time, and
throughput with parallelism parameters , respectively. Par-
allelism may also have an impact on the maximum clock
frequency and, therefore, the frequency, , must be con-
sidered as well. Latency, pm-time, and throughput are related
through the following formula:

(8)

(9)

where is the maximum number of point multiplications that
can be computed in parallel. Because in this section each FAP
computes a single point multiplication at a time, .

Let denote the area of the accelerator with . In the
following analysis, is given by (7). Important evaluation
metrics are the latency-area , time-area , and
throughput-area ratios defined as

(10)

(11)

(12)

The higher the ratios are the better the implementation
can be considered by that metric. Notice that, if the accel-
erator computes only one point multiplication at a time,

. However, if an accelerator is
capable of computing several point multiplications simultane-
ously, i.e., , .

Two designs with parallelism parameters and can be
compared with speedup ratios as follows:

(13)

(14)

(15)

for latencies, pm-times, and throughputs, respectively. All ratios
describe how much faster is compared to .

A. Parallelism in Field Multipliers

This section studies parallelization of the digit-serial Massey-
Omura multiplier, see Section IV-A-2. The free parallelism pa-
rameter is the number of -function blocks, .

Because the -function blocks are the same for all bits of the
result, the critical path of the multiplier is constant regardless of

. Thus, it is assumed that the maximum clock frequency does
not depend on and a normalized frequency can be
used in the analysis. It suffices to consider only latency and area
of the multiplier. The area of the multiplier consists of the area of

-function blocks and constant area of the shift registers. Thus,
latency and area are given by the following formula:

(16)

(17)

where and are as given in Table III.
Because of the round up in (16), only certain values of are

feasible. Because , should be chosen from the set

Fig. 5. Latency-area ratio R (�) of the digit-serial Massey-Omura multiplier
when with c = 1, A = 407, and A = 177 on a Stratix II FPGA. The
possible values of � are denoted with�, the feasible values are circled and the
filled circle denotes the optimal value � = 15.

{1–15, 17, 19, 21, 24, 28, 33, 41, 55, 82, 163}. These values are
henceforth referred to as the feasible values of . Other values
only add area but do not reduce latency. Furthermore, latency
reduces by each step when increases if , but several
additional -function blocks are needed to decrease latency if

. Hence, reductions in latency become more expensive
when grows. It is not obvious which value of optimizes
latency-area ratio . Fig. 5 depicts and shows that
the optimal value is .

B. Parallelism in FAPs

This section studies parallelism in FAPs. Multipliers domi-
nate in performance and area cost. Because parallel adders and
squarers do not give any major performance benefits, the anal-
ysis is restricted to the number of multipliers, , and it is as-
sumed that there is only one adder and squarer. The area of an
FAP obtained from (7), is given by

(18)

where includes adder, squarer, and control logic.
Two questions are studied. First, what setup gives

the best latency-area ratio and, second, how to determine
whether one should use one fast multiplier or multiple slower
ones? The first question is relevant when throughput is being
maximized with parallel FAPs, because then one should use
FAPs that give the best area efficiency. The second question
has importance when one targets to certain latency and wants
to achieve it with minimal area.

Fig. 6(a) and (b) plot for generic and Koblitz curves, re-
spectively. The best is received when and for
both generic and Koblitz curves. The similarity is not surprising
considering that the ratio of multiplications and other operations
is almost the same in both cases, see Table II, and re-
ceives a high also in the analysis of Section V-A, see Fig. 5.
For Koblitz curves, has a significantly higher than

1168 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 9, SEPTEMBER 2008

Fig. 6. Latency-area ratios R (�; �) of the FAPs. In (a), the combined point addition and doubling [11] of the Montgomery point multiplication [34] is used and,
in (b), L(�; �) the mixed coordinate point addition algorithm [37] is used.

Fig. 7. Latency-area plots of the FAPs. In (a),L(�; �) is the latency of the combined point addition and doubling [34] and, in (b), it is the latency of mixed coordinate
point addition [37]. In (a), � 2 f15; 17; 19; 21;24; 28; 33;41;55;82;163g when � = 1, � 2 f7;8; 9; 10; 11;12;13;14;15;17;19;21;24;28;33;41;55g
when � = 2 and � 2 f5;6; 7; 8; 9; 10;11;12;13;14;15;17;19;21;24;28;33g when � = 4. In (b), � 2 f41;55;82;163g when � = 1,
� 2 f24;28;33;41;55;82g when � = 2 and � 2 f19;21;24;28;33;41;55g when � = 3 so that the smallest � is on the left.

. Both and receive high for generic
curves, but reduces considerably.

When an implementation targets for low latency, the smaller
number of multiplications on the critical path offered by parallel
multipliers seems attractive. However, it is not obvious which
one is the most efficient solution: several slow parallel multi-
pliers or one fast multiplier with large . This question is studied
in Fig. 7(a) and (b). As shown in Fig. 7(a), parallel multipliers
offer a large benefit on generic curves. Fig. 7(a) shows that with
loose latency constraints, one multiplier with should be
used. If lower latency is needed, one should select two multi-
pliers with . If even they are too slow, then one
should switch to four multipliers with . Fig. 7(b) shows
that, for Koblitz curves, one should use one multiplier up to the
point where . If even lower latency is needed, then one

should use either two or three parallel multipliers. However,
it will be shown in Section VI that even lower latency can be
achieved with smaller area by using parallel FAPs with
and, therefore, one multiplier is the only feasible solution for
Koblitz curves.

C. Parallel FAPs

Let be the number of parallel processors implemented as
presented in Section IV each of which is computing different
point multiplications independently of each other, i.e., .

One FAP has latency and throughput
. When parallel FAPs compute different point multipli-

cations simultaneously, average latency remains the same, i.e.,
, but the throughput increases,

i.e., , . In order to maximize

JÄRVINEN AND SKYTTÄ: ON PARALLELIZATION OF HIGH-SPEED PROCESSORS FOR ELLIPTIC CURVE CRYPTOGRAPHY 1169

Fig. 8. Algorithm for computing kP with ' parallel FAPs.

throughput-area ratio of a multi-FAP design,
one should replicate FAPs with maximum , i.e.,
based on the analysis of Section V-B, one should use FAPs with
parameters and .

When (2) is computed on Koblitz curves, a converter is re-
quired as discussed in Section IV-C and it must be considered in
throughput calculations. Instead of attaching a converter to each
FAP, it is preferable to let one converter serve several FAPs be-
cause the conversion time is much shorter than the point multi-
plication time, i.e., . However, it should be guaranteed
that the converter(s) do not become a bottleneck and the number
of converters, , must satisfy

(19)

where , , , , , , and denote
throughput, pm-time, latency, and clock frequency of the
FAP(s) and the converter(s), respectively.

VI. REDUCING LATENCY WITH PARALLEL PROCESSORS

This section presents how the latency of point multiplication
can be reduced with parallel FAPs. In other words, parallel FAPs
compute a single point multiplication, i.e. but . It
is assumed that the FAPs can exchange data with each others.

In [43] Okeya et al. presented a method for reducing memory
requirements of windowing methods on Koblitz curves by ex-
ploiting the inexpensiveness of the Frobenius maps. The same
feature can be exploited for reducing the computation latency
as will be shown in this section. The method is not restricted to
Koblitz curves but the base point needs to be fixed before the
method operates efficiently on a generic curve because of pre-
computations involving . The new method can be combined
with other techniques such as parallel multipliers or windowing
methods.

Obviously, (2) can be expressed in the following manner by
using the binary expansion of

(20)

Assume that parallel FAPs are available. Then (20) can be
divided for these FAPs as follows:

(21)

where for some and , for all ,
if , and , for all , if , i.e., terms
can be divided for the FAPs arbitrarily as long as each term
is processed in one and only in one FAP. Obviously, there are

different ways to choose . Point multiplication defined
by (21) is computed so that each FAP computes

, where is the index of that particular FAP
and, in the end, the results, , are combined by computing

.
The number of point doublings can be reduced if is fixed.

Let and be the smallest and the largest for which
. Then, one can precompute , and com-

pute (21) as follows:

(22)

The number of point doublings in the FAP has now reduced
by .

In order to minimize the number of Montgomery point ad-
ditions and doublings on the critical path, one should choose
which minimizes . The problem is, how-
ever, that one would require a priori information about in
order to precompute . As this information is not
available in practice, one must split into words by using
fixed values, i.e., and are fixed. This method is used
in Section VI-A1.

On Koblitz curves zeros in lose their significance because
Frobenius maps are almost free. Thus, it is assumed that the
complexity is defined solely by the number of ones in , and one
should find which minimizes , i.e., the maximum
number of nonzeros processed in any FAP. Precomputations are
also almost free and they can be computed on-the-fly. Thus, base
points need not to be fixed.

An algorithm for computing by using parallel FAPs is
shown in Fig. 8. Derivation of from is referred to as split-
ting. It is performed with one of the two splitting algorithms
discussed in Section VI-A. Both splitting algorithms, ,
return and exponents for computing base points
or . The parallel computations can be performed
independently of each other by using any point multiplication
method, e.g., windowing methods can be used. Combining par-
allel computations, i.e., , requires point
additions, but the critical path consists of only point
additions because parallelism can be utilized.

A. Splitting Algorithms

In order to achieve the best possible performance with parallel
FAPs, the computational load must be divided for the FAPs as
evenly as possible. The problem is, however, that the compu-
tational cost depends on . Moreover, the way in which de-
termines the computational cost depends on various parameters
such as the curve, the coordinate system, etc.

Because of the reasons mentioned before, finding a splitting
algorithm resulting in the optimal splitting result every time
proved to be a difficult task. Thus, two different splitting al-
gorithms are suggested, both having advantages and disadvan-

1170 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 9, SEPTEMBER 2008

TABLE IV
SPLITTING EXAMPLES (' = 4)

tages. The splitting algorithms considered in the following are
called fixed window and cyclic splitting algorithms.

1) Fixed Window: The integer is split into words using
predefined windows with a size of . A logical choice for is

. Now, is constructed so that consists of the
least significant bits (LSBs) of , contains the next bits,

etc. The base points can be precomputed because the window
sizes are fixed, and they are given by

(23)

for generic and Koblitz curves, respectively, i.e., . The
longest precomputation requires point doublings or
Frobenius maps.

2) Cyclic: Starting either from the LSB or MSB of , each
nonzero bit of is split cyclically so that the first nonzero is
processed in the first FAP, the second nonzero in the second FAP,
etc. The th nonzero is again processed in the first FAP,
the th in the second FAP, etc. Each bit results in either a
zero or nonzero bit in and, therefore, the length of the longest

is . The base points are simply given by

(24)

i.e., , for all and there are no precomputations. The
cyclic splitting algorithm always results in the minimum number
of nonzeros, i.e., .

B. Examples and Comparison of the Splitting Algorithms

Splitting examples are given in Table IV with four FAPs
. The fixed window splitting results in the shortest but the

number of nonzeros is suboptimal. The critical path of compu-
tation of a Montgomery point multiplication is 15 Montgomery
point additions and doublings and point additions
with instead of 63 point additions and doublings if .
The longest precomputation requires 48 point doublings. The
cyclic splitting results in with minimal , i.e., only
9 instead of the original 35. Thus, the critical path for Koblitz
curves consists of only point additions
instead of 34 with 1 FAP.

Performance of the splitting algorithms was tested by se-
lecting 10 000 random 163-bit integers and evaluating them for
both Koblitz and generic curves. When Koblitz curves were
considered, the 163-bit was first converted to . Frobe-
nius maps were ignored. The Montgomery point multiplication

Fig. 9. Expected speedups of the splittings for generic and Koblitz curves.

was used for generic curves and the computational cost of pre-
computations required in the fixed window algorithm was ne-
glected because a fixed was assumed. Both one and zero bits
have the same cost and, therefore, only the length of has
significance. The results are presented in Fig. 9 which depicts
speedups versus the one FAP case. Fig. 9 shows that the cyclic
splitting results in the best speedups for Koblitz curves. On the
other hand, the fixed window splitting algorithm is, expectedly,
the only one performing well for generic curves. Notice that,
although the speedups versus the one FAP case are smaller for
Koblitz curves than for generic curves, the actual point multi-
plication is still considerably faster on Koblitz curves. Further-
more, Koblitz curves do not require any precomputations or they
are very cheap.

C. Multiple FAPs Versus Multiple Multipliers

This section presents comparisons of implementations having
multiple FAPs, i.e., , and implementations having a single
FAP with multiple multipliers, i.e., and .

As presented in Section V-B, optimizes latency-area
ratio of an FAP for both generic and Koblitz curves. In that
case, (18) gives the area of 3084 ALMs for the FAP of which
the multiplier occupies 2354 ALMs (76.3%). This percentage
is in line with other designs reported in the literature, see, e.g.,
[9], [13], and [14]. Let denote the area of an FAP with .
Because the area of a multiplier is 0.763 , FAPs with ,

JÄRVINEN AND SKYTTÄ: ON PARALLELIZATION OF HIGH-SPEED PROCESSORS FOR ELLIPTIC CURVE CRYPTOGRAPHY 1171

TABLE V
COMPARISON OF MULTIPLE FAP AND MULTIPLE MULTIPLIER METHODS ON K ()

TABLE VI
COMPARISON OF MULTIPLE FAP AND MULTIPLE MULTIPLIER METHODS ON E()

, and have areas 1.763 , 2.526 , and 3.289
, respectively. On the other hand, implementations having

FAPs with have the areas of .
Only the number of multiplications on the critical path is con-

sidered in the following comparison in order to keep compar-
ison simple. This does not skew the results considerably because
multiplications dominate in the overall cost. Koblitz curves are
considered first with the cyclic splitting algorithm. A point addi-
tion is required when and , see Section II.
A point addition has a critical path of 8, 5, or 4 multiplications
with , , or , respectively, see Section III-B.
Combination of is computed with point additions in re-
quiring 11 multiplications (including Itoh-Tsujii inversion). The

mapping also requires 11 multiplications (including
Itoh-Tsujii inversion), but the critical path reduces to 10 multi-
plications if . Based on the previously mentioned facts,
estimates of area, speedup, and speedup per area ratio were de-
rived as presented in Table V.

The fixed window splitting was selected for generic curves
because it was the only one of the two algorithms that offers sig-
nificant speedups, see Section VI-B. The critical path consists of
6, 3, or 2 multiplications when , , or , respec-
tively, see Section III-B. The mapping and the recovery
of the -coordinate have the critical path of 19, 15, or 13 multi-
plications (including Itoh-Tsujii inversion) when , ,
or , respectively. Combining is performed similarly
as for Koblitz curves. The precomputations require multiplica-
tions on generic curves, because one needs to compute .
Because point doubling in is expensive, it is faster to perform
doublings in and then map the result point to . Thus, the
longest precomputation requires multi-
plications (including Itoh-Tsujii inversion). Estimates for area,
speedup, and speedup per area ratio are presented in Table VI.

Tables V and VI show that the multiple FAP method can be
efficiently used for speeding up computation on Koblitz curves
and, if is fixed, also on generic curves. The method allows
speedups beyond the limitations of the multiple multiplier

methods and, moreover, even outperforms multiple multiplier
methods in achieved speedup per area on Koblitz curves.

VII. IMPLEMENTATIONS

Several designs were implemented on an FPGA with dif-
ferent parameters in order to investigate the validity of the
analysis and methods presented in Sections V and VI. The de-
signs were written in VHDL and synthesized for Altera Stratix
II EP2S180F1020C3 FPGA, henceforth referred to as S180C3,
by using Altera Quartus II 6.0 SP1 design software. Function-
ality of the designs was verified with ModelSim SE 6.1b. Stratix
II S180C3 has 71 760 ALMs, 930 M512s, and 768 M4Ks [41].
Modular design style was used in VHDL and field multipliers
were generated with automated designs tools written specifi-
cally for this purpose. Hence, implementing multiple designs
could be done with moderate amount of work, but all designs
required some hand optimization.

Parameters and were selected for the FAPs in
parallel FAP implementations presented in Sections V-C and VI
because they offer the best latency-area ratio based on the
analysis in Section V-B. The performance of the method pre-
sented in Section VI was demonstrated only on Koblitz curves
because the base point would need to be fixed on generic curves.
The cyclic splitting was used, because it performs better than the
fixed window method as shown in Section VI-B.

A. Results

The results are shown in Tables VII and VIII for generic
and Koblitz curves, respectively. The parameters of the designs
are given on the left. The number of converters is al-
ways in Table VIII. The number of point multiplica-
tions that can be computed simultaneously is denoted with in
Table VIII. The results obtained from Quartus II are given in
the middle so that the area of the design is given in the ALMs
column followed by the maximum clock frequencies for the

converter, , and for the FAP, . Multiplication
latency, , is given by (5) and the average point multiplication

1172 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 9, SEPTEMBER 2008

TABLE VII
RESULTS ON STRATIX II S180C3 ON GENERIC CURVE E()

latency, , is computed as in Table II. conversions
require clock cycles on average [42] and the
latency was omitted from Table VIII. The computation times
in microseconds are computed by using the maximum clock
frequencies. The average pm-time is denoted by and the
average conversion time by . The end-to-end time is
simply . For generic curves, it only consists of
and Table VII, therefore, includes only . Throughput, , is de-
fined solely by also for Koblitz curves because for the next
point multiplication can be converted simultaneously while the
FAP computes a point multiplication.

The results presented in Tables VII and VIII were obtained by
synthesizing each design once. Different constraints were used
for generic and Koblitz curves. However, the same constraints
were used for all designs with the same curve. Fig. 10 plots the
pm-times of the designs with presented in Tables VII and
VIII as functions of areas.

Fig. 10. Results of the implementations on Stratix II EP2S180F1020C3 FPGA
presented in Tables VII and VIII. The plot includes designs for which '̂ = 1,
i.e., they compute a single point multiplication at a time.

Fig. 11. Comparison of estimated and actual areas of the implementations pre-
sented in Tables VII and VIII. The designs follow the same order as in the tables
and a design that is on the top in the table is on the left-hand side of this figure.

B. Discussion and Comparisons

Fig. 10 shows that is always the best choice for Koblitz
curves as estimated in Section V-B. For generic curves, how-
ever, multiple multipliers are feasible in practice, too. Actu-
ally, multiple multipliers perform even better than expected, be-
cause when grows, clock frequency decreases thus resulting in
slower performance. This favors the use of multiple multipliers
because multiple multipliers with small operate on a higher
clock frequency than one with large .

The superiority of Koblitz curves is obvious in Fig. 10. Al-
though needs to be converted to , they are clearly faster
and more area efficient than generic curves. Pm-time on Koblitz
curves can be reduced with minor additional area to approxi-
mately 40 s. Further reductions in pm-time result in consid-
erable increase in area with traditional parallelization methods.

JÄRVINEN AND SKYTTÄ: ON PARALLELIZATION OF HIGH-SPEED PROCESSORS FOR ELLIPTIC CURVE CRYPTOGRAPHY 1173

TABLE VIII
RESULTS ON STRATIX II S180C3 ON KOBLITZ CURVE K (). FOR ALL DESIGNS = 1

However, the new method presented in Section VI offers faster
pm-times with smaller area (circled points in Fig. 10).

The synthesization results vary slightly from run to run which
is one reason for the variation of maximum clock frequencies
in Tables VII and VIII. On the other hand, when the size of
the design grows, maximum clock frequencies start to decrease
dramatically because the place&route becomes harder. Hence,
the assumptions that the area grows linearly and the clock fre-
quencies are constant are not valid for large designs as was con-
jectured in Section V. However, the assumptions hold well for
smaller designs.

The size of the multiplier, , has a considerably larger effect
on clock frequencies than or which is not surprising con-
sidering that the critical path is in the multiplier. Differences
of estimated and actual areas are investigated in Fig. 11 which

shows that estimates hold well if . However, when several
multipliers are used, i.e. , area estimates are too optimistic
with large . Again, this was expected because the place&route
becomes hard when the size of an FAP grows.

A large number of FPGA-based implementations have been
published in the literature. Fair comparison of these implemen-
tations is difficult—if not impossible—because of the variety
of different FPGAs, elliptic curves, fields, coordinate systems,
etc. Arguably, the largest problem for fair comparison is the va-
riety of FPGAs, because it is hard to map area requirements and
timings between different FPGA architectures without synthe-
sizing the design for all them. A valuable effort for evaluating
designs on different families of Xilinx FPGAs was made in [11],
where estimates of the effect of the FPGA families were given
by synthesizing the designs for different families. However, as

1174 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 9, SEPTEMBER 2008

TABLE IX
PUBLISHED FPGA-BASED IMPLEMENTATIONS

the VHDL describing the architecture of Section IV was written
specifically for Stratix II FPGAs, this approach could not be
used.

Table IX summaries FPGA implementations presented in the
literature. When a publication presents many implementations,
Table IX presents the one which is the most comparable with the
designs presented in this article. The implementations presented
in this paper are clearly among the fastest ones. However, as
mentioned before, it is impossible to say which portion of the
differences is caused by the different implementation platform.

FPGA implementations of Koblitz curves have been pre-
sented in [12], [17], [19], and [20]. The fastest implementation
in this paper computes point multiplication in 25.81 s
including the conversion and it outperforms all previous im-
plementations. The designs presented in [19] and [20] do not
include a converter. The significant difference in their pm-times
is caused by different FPGAs and design architectures. Fast
performance presented in [12] was achieved by representing

with a double-base expansion. The implementation in [17]
computes a multiple point multiplication and targets for max-
imum throughput which makes it incomparable with other
implementations.

VIII. CONCLUSION

Parallelization of high-speed ECC accelerators was studied.
A generic accelerator architecture was presented in Section IV
and it was used in studying the effects of parallelization. The
analysis concerned both generic and Koblitz curves.

Analytic tools were provided for estimating efficiency of dif-
ferent parallelism parameters. The accuracy of the tools was
studied by implementing several designs on Stratix II S180C3.
These implementations are among the fastest ones published in
the literature. The tools were shown to provide accurate esti-
mates although accuracy decreases when designs become large
because the place&route is harder. Anyhow, the tools provide
valuable information on how and where parallelism should be
used in ECC implementations.

When parallel multipliers in an FAP are used for reducing
latency, the optimal setup depends on the curve. Only one

multiplier should be always used for Koblitz curves, but mul-
tiple multipliers offer considerable improvements for generic
curves. For them, the optimal setup depends on various aspects,
such as available area and pm-time constraints, as discussed in
Section V-B.

Koblitz curves were shown to offer considerably faster point
multiplication than generic curves with equal amount of area
even when the converter was included. Furthermore, the
new method utilizing parallel FAPs presented in Section VI can
be used efficiently for Koblitz curves. If base points are fixed
or changed infrequently, the method is useful also on generic
curves but precomputations prevent its use if base point flexi-
bility is essential. The method can be combined with existing
techniques such as windowing methods. The implementations
of the method have very high latency-area efficiencies which
prove the usability of the new method.

REFERENCES

[1] N. Koblitz, “Elliptic curve cryptosystems,” Math. Comput., vol. 48, pp.
203–209, 1987.

[2] V. Miller, “Use of elliptic curves in cryptography,” in Advances
in Cryptology (CRYPTO), ser. Lecture Notes in Computer Sci-
ence. New York: Springer, 1986, vol. 218, pp. 417–426.

[3] G. B. Agnew, R. C. Mullin, and S. A. Vanstone, “An implementation of
elliptic curve cryptosystems overF ,” IEEE J. Sel. Areas Commun.,
vol. 11, no. 5, pp. 804–813, Jun. 1993.

[4] J. Goodman and A. Chandrakasan, “An energy effcient reconfigurable
public-key cryptography processor architecture,” in Cryptographic
Hardware and Embedded Systems (CHES), ser. Lecture Notes in Com-
puter Science. New York: Springer, 2000, vol. 1965, pp. 175–190.

[5] A. Satoh and K. Takano, “A scalable dual-field elliptic curve crypto-
graphic processor,” IEEE Trans. Comput., vol. 52, no. 4, pp. 449–460,
Apr. 2003.

[6] F. Sozzani, G. Bertoni, S. Turcato, and L. Breveglieri, “A parallelized
design for an elliptic curve cryptosystem coprocessor,” in Proc. Int.
Conf. Inf. Technol.: Coding Comput. (ITCC), Las Vegas, NV, Apr.
2005, vol. 1, pp. 626–630.

[7] B. Ansari and M. A. Hasan, “High performance architecture of el-
liptic curve scalar multiplication,” Centre for Applied Cryptographic
Research, Univ. Waterloo, Waterloo, ON, Canada, Tech. Rep. CACR
2006-1, 2006.

[8] S. Bajracharya, C. Shu, K. Gaj, and T. El-Ghazawi, “Implementation
of Elliptic Curve Cryptosystems Over GF (2) in Optimal Normal
Basis on a Reconfigurable Computer,” in Proc. Int. Conf. Field Pro-
grammable Logic and Application (FPL), ser. Lecture Notes in Com-
puter Science. New York: Springer, 2004, vol. 3203, pp. 1001–1005.

[9] M. Bednara, M. Daldrup, J. von zur Gathen, J. Shokrollahi, and J.
Teich, “Reconfigurable implementation of elliptic curve crypto algo-
rithms,” in Proc. Int. Parallel Distrib. Process. Symp., (IPDPS, RAW),
Ft. Lauderdale, FL, Apr. 2002, pp. 157–164.

[10] M. Benaissa and W. M. Lim, “Design of flexible GF (2) elliptic
curve cryptography processors,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 14, no. 6, pp. 659–662, Jun. 2006.

[11] R. C. C. Cheung, N. J. Telle, W. Luk, and P. Y. K. Cheung, “Customiz-
able elliptic curve cryptosystem,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 13, no. 9, pp. 1048–1059, Sep. 2005.

[12] V. S. Dimitrov, K. U. Järvinen, M. J. Jacobson, W. F. Chan, and Z.
Huang, “FPGA implementation of point multiplication on Koblitz
curves using Kleinian integers,” in Cryptographic Hardware and
Embedded Systems (CHES), ser. Lecture Notes in Computer Sci-
ence. New York: Springer, 2006, vol. 4249, pp. 445–459.

[13] H. Eberle, N. Gura, and S. Chang-Shantz, “A cryptographic processor
for arbitrary elliptic curves over GF (2),” in Proc. IEEE Int. Conf.
Appl.-Specific Syst., Arch., Process., (ASAP), The Hague, The Nether-
lands, Jun. 2003, pp. 444–454.

[14] N. Gura, S. C. Shantz, H. Eberle, S. Gupta, V. Gupta, D. Finchelstein,
E. Goupy, and D. Stebila, “An end-to-end systems approach to elliptic
curve cryptography,” in Cryptographic Hardware and Embedded Sys-
tems (CHES), ser. Lecture Notes in Computer Science. New York:
Springer, 2002, vol. 2523, pp. 349–365.

JÄRVINEN AND SKYTTÄ: ON PARALLELIZATION OF HIGH-SPEED PROCESSORS FOR ELLIPTIC CURVE CRYPTOGRAPHY 1175

[15] N. Gura, H. Eberle, and S. C. Shantz, “Generic implementations of el-
liptic curve cryptography using partial reduction,” in Proc. ACM Conf.
Comput. Commun. Security (CCS), Washington, DC, Nov. 2002, vol.
1, pp. 108–116.

[16] K. Järvinen, M. Tommiska, and J. Skyttä, “A scalable architecture for
elliptic curve point multiplication,” in Proc. IEEE Int. Conf. Field-Pro-
gram. Technol. (FPT), Brisbane, Australia, Dec. 2004, pp. 303–306.

[17] K. Järvinen, J. Forsten, and J. Skyttä, “FPGA design of self-certified
signature verification on Koblitz curves,” in Cryptographic Hardware
and Embedded Systems (CHES), ser. Lecture Notes in Computer Sci-
ence. New York: Springer, 2007, vol. 4727, pp. 256–271.

[18] P. H. W. Leong and K. H. Leung, “A microcoded elliptic curve pro-
cessor using FPGA Technology,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 10, no. 5, pp. 550–559, Oct. 2002.

[19] J. Lutz and A. Hasan, “High performance FPGA based elliptic curve
cryptographic co-processor,” in Proc. Int. Conf. Inf. Technol.: Coding
Comput. (ITCC), Las Vegas, NV, Apr. 2004, vol. 2, pp. 486–492.

[20] S. Okada, N. Torii, K. Itoh, and M. Takenaka, “Implementation of el-
liptic curve cryptographic coprocessor over GF (2) on an FPGA,”
in Cryptographic Hardware and Embedded Systems, CHES 2000, ser.
Lecture Notes in Computer Science. New York: Springer, 2000, vol.
1965, pp. 25–40.

[21] G. Orlando and C. Paar, “A high-performance reconfigurable elliptic
curve processor for GF (2),” in Cryptographic Hardware and Em-
bedded Systems (CHES), ser. Lecture Notes in Computer Science.
New York: Springer, 2000, vol. 1965, pp. 41–56.

[22] F. Rodríguez-Henríquez, N. A. Saqib, and A. Díaz-Pérez, “A fast
parallel implementation of elliptic curve point multiplication over
GF (2),” Microprocess. Microsyst., vol. 28, no. 5–6, pp. 329–339,
Aug. 2004.

[23] C. Shu, K. Gaj, and T. El-Ghazawi, “Low latency elliptic curve cryp-
tography accelerators for NIST curves over binary fields,” in Proc.
IEEE Int. Conf. Field-Program. Technol. (FPT), Singapore, Dec. 2005,
pp. 309–310.

[24] G. Meurice de Dormale and J.-J. Quisquater, “High-speed hardware
implementations of elliptic curve cryptography: A survey,” J. Syst. Ar-
chitect., vol. 53, no. 2–3, pp. 72–84, Feb./Mar. 2007.

[25] G. Orlando and C. Paar, “A super-serial Galois fields multiplier for
FPGAs and its application to public-key algorithms,” in Proc. IEEE
Symp. Field-Programmable Custom Computing Machines (FCCM),
Napa Valley, CA, Apr. 1999, pp. 232–239.

[26] L. Song and K. K. Parhi, “Low-energy digit-serial/parallel finite field
multipliers,” J. VLSI Signal Process., vol. 19, no. 2, pp. 149–166, Jul.
1998.

[27] N. Koblitz, “CM-curves with good cryptographic properties,” in
Adv. Cryptology (CRYPTO), ser. Lecture Notes in Computer Sci-
ence. New York: Springer, 1991, vol. 576, pp. 279–287.

[28] Digital Signature Standard (DSS), FIPS PUB 186-2, Federal Informa-
tion Processing Standard, National Institute of Standards and Tech-
nology (NIST), Computer Security, Jan. 27, 2000.

[29] SEC 2: Recommended Elliptic Curve Domain Parameters, ,
Standards for Efficient Cryptography, Certicom Research Std.,
Sep. 20, 2000 [Online]. Available: http://www.secg.org/down-
load/aid-386/sec2_final.pdf

[30] D. Hankerson, J. L. Hernandez, and A. Menezes, “Software imple-
mentation of elliptic curve cryptography over binary fields,” in Crypto-
graphic Hardware and Embedded Systems (CHES), ser. Lecture Notes
in Computer Science. New York: Springer, 2000, vol. 1965, pp. 1–24.

[31] C. Doche and T. Lange, “Arithmetic of elliptic curves,” in Handbook
of Elliptic and Hyperelliptic Curve Cryptography, H. Cohen and G.
Frey, Eds. Boca Raton, FL: Chapman & Hall/CRC, 2006, ch. 13, pp.
267–302.

[32] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve
Cryptography. New York: Springer, 2004.

[33] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative
inverses in GF (2) using normal bases,” Inform. Comput., vol. 78,
no. 3, pp. 171–177, Sep. 1988.

[34] J. López and R. Dahab, “Fast multiplication on elliptic curves over
GF (2) without precomputation,” in Cryptographic Hardware
and Embedded Systems (CHES), ser. Lecture Notes in Computer
Science. New York: Springer, 1999, vol. 1717, pp. 316–317.

[35] A. Higuchi and N. Takagi, “A fast addition algorithm for elliptic curve
arithmetic inGF (2) using projective coordinates,” Inf. Process. Lett.,
vol. 76, no. 3, pp. 101–103, Dec. 15, 2000.

[36] T. Lange, “A note on López-Dahab coordinates,” Cryptology ePrint
Archive, Tech. Rep. 2004/323, 2004 [Online]. Available: http://eprint.
iacr.org/

[37] E. Al-Daoud, R. Mahmod, M. Rushdan, and A. Kilicman, “A new addi-
tion formula for elliptic curves over GF (2),” IEEE Trans. Comput.,
vol. 51, no. 8, pp. 972–975, Aug. 2002.

[38] J. A. Solinas, “Efficient arithmetic on Koblitz curves,” Des. Codes
Cryptography, vol. 19, no. 2–3, pp. 195–249, 2000.

[39] C. C. Wang, T. K. Troung, H. M. Shao, L. J. Deutsch, J. K. Omura, and
I. S. Reed, “VLSI architectures for computing multiplications and in-
verses inGF (2),” IEEE Trans. Comput., vol. 34, no. 8, pp. 709–717,
Aug. 1985.

[40] T. Izu and T. Takagi, “Fast elliptic curve multiplications with SIMD
operations,” in Proc. Int. Conf. Inf. Commun. Sec. (ICICS), ser. Lecture
Notes in Computer Science. New York: Springer, 2002, vol. 2513, pp.
217–230.

[41] “Stratix II Device Handbook” ver. 4.1, Altera, San Jose, CA,
Apr. 2006 [Online]. Available: http://www.altera.com/litera-
ture/hb/stx2/stratix2_handbook.pdf, vol. 1–2

[42] K. Järvinen, J. Forsten, and J. Skyttä, “Efficient circuitry for computing
� -adic non-adjacent form,” in Proc. IEEE Int. Conf. Electron., Circuits
Syst. (ICECS), Nice, France, Dec. 2006, pp. 232–235.

[43] K. Okeya, T. Takagi, and C. Vuillaume, “Short memory scalar multipli-
cation on Koblitz curves,” in Cryptographic Hardware and Embedded
Systems (CHES), ser. Lecture Notes in Computer Science. New York:
Springer, 2005, vol. 3659, pp. 91–105.

Kimmo Järvinen (S’06) was born in Turku, Finland,
in 1979. He received the M.Sc. (Tech.) degree in
electrical engineering from the Helsinki University
of Technology (TKK), Espoo, Finland, in 2003,
where he is currently pursuing the D.Sc. (Tech.)
degree in electrical engineering.

He has been with the Signal Processing Labora-
tory, TKK, since 2002 and in the Graduate School in
Electronics, Telecommunications, and Automation
(GETA) since 2004. His research interests include
hardware realization of cryptographic algorithms,

secret-key and public-key cryptographic algorithms, especially elliptic curve
cryptography, and FPGAs.

Jorma Skyttä was born in Helsinki, Finland, in
1957. He received the M.Sc. (Tech.), Lic. Tech., and
D.Sc. (Tech.) degrees from Helsinki University of
Technology (TKK), Espoo, Finland, in 1981, 1984,
and 1985, respectively.

He has been with the Signal Processing Labora-
tory, TKK, since 1989 as an Associate Professor and
Professor since 1998. His research interests include
realization of digital computation, especially digital
signal processing applications and implementation of
cryptographic systems utilizing FPGA, and FPGA-

based computational architectures.

