
Kimmo Järvinen and Jorma Skyttä, Fast Point Multiplication on Koblitz Curves:
Parallelization Method and Implementations, Microprocessors and Microsystems, in
press, 11 pages.

© 2008 Elsevier Science

Reprinted with permission from Elsevier.

Microprocessors and Microsystems xxx (2008) xxx–xxx

ARTICLE IN PRESS
Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/ locate/micpro
Fast point multiplication on Koblitz curves: Parallelization method
and implementations

Kimmo Järvinen *, Jorma Skyttä
Helsinki University of Technology, Department of Signal Processing and Acoustics, Otakaari 5A, FIN-02150 Espoo, Finland
a r t i c l e i n f o

Keywords:
Elliptic curve cryptography

Field programmable gate array
Koblitz curves
Parallelism
0141-9331/$ - see front matter � 2008 Elsevier B.V. A
doi:10.1016/j.micpro.2008.08.002

* Corresponding author. Tel.: +358 9 451 5176; fax
E-mail addresses: kimmo.jarvinen@tkk.fi (K. Jä

(J. Skyttä).

Please cite this article in press as: K. Järvin
cess. Microsyst. (2008), doi:10.1016/j.micp
a b s t r a c t

Point multiplication is required in every elliptic curve cryptosystem and its efficient implementation is
essential. Koblitz curves are a family of curves defined over F2m allowing notably faster computation.
We discuss implementation of point multiplication on Koblitz curves with parallel field multipliers.
We present a novel parallelization method utilizing point operation interleaving. FPGA implementations
are described showing the practical feasibility of our method. They compute point multiplications on
average in 4.9 ls, 8.1 ls, and 12.1 ls on the standardized curves NIST K-163, K-233, and K-283, respec-
tively, in an Altera Stratix II FPGA.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction research has concentrated on studying effects of parallelization. Fi-
Koblitz [1] and Miller [2] independently suggested using elliptic
curves in public-key cryptography in 1985. Since then elliptic
curve cryptography has attained considerable amount of interest
in the cryptographic research community, and increasingly also
in the industry. The main reason for the attractiveness of elliptic
curves is that shorter keys can be used for attaining similar level
of security than in traditional public-key cryptography schemes
based on the difficulty of integer factorization or discrete loga-
rithm. For example, elliptic curve cryptography achieves approxi-
mately the same level of security with 173 bits than RSA with
1024 bits [3]. Studies have shown that elliptic curve cryptography
is superior to RSA also in terms of speed and area required in
implementation [4–6].

Field programmable gate arrays (FPGAs) offer many advantages
in implementing cryptographic algorithms because they provide
fast performance and flexibility [7]. Hence, numerous studies on
FPGA implementation of elliptic curve cryptography have been
published including [6,8–20]. A comprehensive survey of the field
is presented in [21].

The principal operation required in every elliptic curve crypto-
system is called point multiplication. Much effort has been allo-
cated in developing methods for its efficient computation
because it acts as the bottleneck in elliptic curve cryptosystems.
A comprehensive review can be found in [22], for example. Point
multiplication is commonly known to be an operation which is
hard to parallelize because of data dependencies and much of the
ll rights reserved.

: +358 9 452 3614.
rvinen), jorma.skytta@tkk.fi

en, J. Skyttä, Fast point mul
ro.2008.08.002
nite field multiplication dominates in the cost of point multiplica-
tion and, thus, reducing the number of field multiplications on the
critical path is essential. The fastest method for computing point
multiplication without precomputations, called Montgomery point
multiplication, was presented by López and Dahab in [23]. Cheung
et al. [13] and Rodríguez-Henríquez et al. [18] showed that Mont-
gomery point multiplication can be efficiently computed with four
parallel field multipliers.

In 1991, Koblitz [24] suggested using a special family of elliptic
curves nowadays referred to as Koblitz curves. Point multiplication
is considerably more efficient on them than on general curves. Ko-
blitz curves have been widely studied in the academia and they
have been included also in certain standards, such as [25–27]. Ko-
blitz curves have attained some interest also in the FPGA commu-
nity as they have been considered in [9,14–17].

The problem that we are addressing is that computations on Ko-
blitz curves cannot be parallelized as efficiently as Montgomery
point multiplication. We recently presented a study on paralleliza-
tion of Koblitz curve computations in [14] but the methods pre-
sented are not as effective as those available for Montgomery
point multiplication. Only three parallel field multipliers can be
utilized in Koblitz curve point multiplication with the existing
methods [14] whereas Montgomery point multiplication can effi-
ciently use up to four multipliers [18,13]. Hence, the more multi-
pliers are available the smaller is the benefit of using Koblitz
curves. Koblitz curves are faster than general curves even if parallel
field multipliers are available, but the difference becomes smaller
which makes Koblitz curves less attractive.

The contributions of our paper are twofold:

(1) We present a simple and efficient method for speeding up
Koblitz curve computations when parallel field multipliers
tiplication on Koblitz curves: Parallelization method ..., Micropro-

mailto:kimmo.jarvinen@tkk.fi
mailto:jorma.skytta@tkk.fi
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro

2 K. Järvinen, J. Skyttä / Microprocessors and Microsystems xxx (2008) xxx–xxx

ARTICLE IN PRESS
are available. The method is based on point operation inter-
leaving and it achieves full field multiplier utilization with
two or four field multipliers. Montgomery point multiplica-
tion can be implemented efficiently with two or four multi-
pliers as well [18,13]. Hence, both Koblitz curves and general
curves can achieve their full potential in the same hardware.
Our method implies that Koblitz curves are approximately
three times faster than general curves. Furthermore, our
method can be applied also in point multiplication algo-
rithms requiring precomputations whereas methods pre-
sented in [18,13] cannot which increases the difference
even further.

(2) We describe a highly optimized architecture based on our
method which achieves very fast point multiplication times.
The feasibility of the method and the architecture is demon-
strated by providing several implementations on an Altera
Stratix II FPGA. The implementations achieve average point
multiplication times of only 4.9 ls, 8.1 ls, and 12.1 ls on
K-163, K-233, and K-283, respectively, which are curves rec-
ommended by National Institute of Standards and Technol-
ogy (NIST) [25]. We also study the effects of field basis
selection and conclude that polynomial basis provides faster
results than normal basis.

The remainder of the paper is organized as follows. Section 2
presents the preliminaries of elliptic curve cryptography and dis-
cusses computation of point multiplication and Koblitz curves.
We describe our method in Section 3. Implementations showing
the practical feasibility of the method are presented in Section 4
and implementation results are given and compared to other pub-
lished results in Section 5. We end with conclusions and sugges-
tions for future research in Section 6.

2. Preliminaries

Elliptic curves defined over finite binary fields, denoted by F2m ,
are commonly used in practical cryptosystems. These curves are
called binary curves. We consider binary curves of the following
form:

E : y2 þ xy ¼ x3 þ ax2 þ b; ð1Þ

where a; b 2 F2m with b6¼0. Henceforth, curves of this form are called
general curves.

Let EðF2mÞ denote the set of points on E. A point (x, y) is in EðF2m Þ
if it satisfies Eq. (1). Also a point called the point at infinity, O, is a
point in EðF2m Þ. Points in EðF2m Þ form an additive abelian group
with O as an identity element. The additive operation of the group
is referred to as point addition and it is defined as P3 = P1 + P2

where Pi 2 EðF2mÞ.
Point multiplication, which is a basic component of every ellip-

tic curve cryptosystem, is defined by using point additions as
follows:

Q ¼ kP ¼ P þ P þ � � � þ P|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
k times

ð2Þ

where Q ; P 2 EðF2m Þ and k is an integer. P is called the base point and
Q is the result point. Security of elliptic curve cryptosystems is
based on the difficulty of solving the inverse operation of point mul-
tiplication called elliptic curve discrete logarithm problem (ECDLP),
i.e., the problem of finding k if P and Q are given.

Point multiplication decomposes into three levels of hierarchy
from top to bottom as follows:

� Point multiplication,
� Point operations, and
� Finite field arithmetic.
Please cite this article in press as: K. Järvinen, J. Skyttä, Fast point mul
cess. Microsyst. (2008), doi:10.1016/j.micpro.2008.08.002
These hierarchy levels are discussed in the following sections by
concentrating on the subjects that are most relevant for this paper.
Our contributions target to the two highest levels of the hierarchy,
and they are considered in detail in Sections 2.1 and 2.2. The low-
est level is also considered shortly in Section 2.3. Finally, Koblitz
curves are discussed in Section 2.4.

2.1. Point multiplication

Point doubling is a special case of point addition, P3 = P1 + P2,
where P1 = P2 and, henceforth, point addition refers solely to the
operation P3 = P1 + P2 where P16¼P2. Point additions and point dou-
blings can be used in computing Eq. (2) when the integer k is rep-
resented with binary expansion as

k ¼
X‘�1

i¼0

ki2
i; where ki 2 f0;1g: ð3Þ

The simplest point multiplication algorithm is called double-
and-add algorithm and it scans the bits of k in order starting either
from the least significant bit (lsb) or from the most significant bit
(msb). Point doubling is performed for every bit, but point addition
is required only if ki = 1. The length of k is ‘ �m and, thus, the dou-
ble-and-add algorithm requires on average m point doublings and
m/2 point additions.

Because point addition is not needed if ki = 0, it is of interest to
reduce the number of nonzeros. A simple, but effective, option is to
use a signed-bit representation, i.e., ki 2 {0, ± 1}, called non-adja-
cent form (NAF). NAF has the property that adjacent bits are never
both nonzeros, i.e., kiki+1 = 0 for all i. Every k has a unique NAF and
it has the minimum number of nonzeros among all signed-bit rep-
resentations. Let H(k) denote the Hamming weight of k, i.e., the
number of nonzeros in k. When k is in NAF, H(k) �m/3. NAF is
especially useful in point multiplication because point subtraction,
P3 = P1 � P2 = P1 + (�P2), has roughly the same cost as point addi-
tion. When integers are in NAF, a modification of the double-
and-add algorithm is used called double-and-add-or-subtract algo-
rithm. Otherwise it is similar to the double-and-add algorithm, but
point subtraction is computed when ki = � 1. Thus, the average
cost of point multiplication is m point doublings and m/3 point
additions or point subtractions.

Further reductions in computational requirements can be
achieved by allowing precomputations involving the base point
P. Such methods include window methods and combings, for
example, but they are not considered in depth in this paper. How-
ever, the proposed method can be used also for such methods as
will be discussed in Section 3.

Montgomery’s ladder [28] is a point multiplication algorithm
which performs both point addition and point doubling in every
iteration of the algorithm. Hence, it has the cost of m point dou-
blings and m point additions. The efficiency of Montgomery’s lad-
der arises from the fact that point multiplication can be computed
without information of the y-coordinate. Thus, the main loop of the
algorithm operates only on the x-coordinate and the y-coordinate
of the result point is retrieved in the end. This leads to very effi-
cient point addition and point doubling. An adaptation of Mont-
gomery’s idea for binary curves was presented by López and
Dahab in [23] and, henceforth, Montgomery point multiplication
refers to their algorithm.

2.2. Point operations

The traditional point representation with two coordinates as (x,
y) is referred to as the affine coordinate representation, or A for
short. If P = (x, y), point negation is given by �P = (x, x + y). Point
doubling, point addition, and point subtraction all require an inver-
tiplication on Koblitz curves: Parallelization method ..., Micropro-

K. Järvinen, J. Skyttä / Microprocessors and Microsystems xxx (2008) xxx–xxx 3

ARTICLE IN PRESS
sion in F2m . The exact costs are I + 2M + S + 6A, I + 2M + S + 8A, and
I + 2M + S + 9A, respectively, where I, M, S, and A stand for inver-
sion, multiplication, squaring, and addition in F2m . Inversions are
expensive and, thus, it is of interest to trade inversions to other
operations in F2m .

Inversions can be avoided by using projective coordinates
where a point is represented with three coordinates as (X, Y, Z).
Several types of projective coordinates have been introduced (see
[29], for example) and we consider López-Dahab coordinates
[30], or LD for short, where a point (X, Y, Z) represents the point
(X/Z, Y/Z2) in A. The LD coordinates allow an efficient mixed coor-
dinate point addition (and point subtraction). If P1 = (X1, Y1, Z1) is in
LD and P2 = (x2, y2) is in A, point addition P3 = (X3, Y3, Z3) = (X1, Y1,
Z1) + (x2, y2) is given as follows [31]

A ¼ Y1 þ y2Z2
1; B ¼ X1 þ x2Z1; C ¼ BZ1; Z3 ¼ C2; D ¼ x2Z3

X3 ¼ A2 þ CðAþ B2 þ aCÞ; Y3 ¼ ðDþ X3ÞðAC þ Z3Þ þ ðy2 þ x2ÞZ2
3

ð4Þ

which require 9M + 5S + 9A.
The traditional projective coordinates, where a point (X, Y, Z)

represents the affine point (X/Z, Y/Z), are another interesting coor-
dinate system, because they are used in Montgomery point multi-
plication. Both point addition and point doubling are required in
every iteration and together they cost 6M + 4S + 3A [23].

2.3. Finite field arithmetic

The lowest level of the hierarchy composes of arithmetic oper-
ations in a finite field. We consider two different representations of
binary fields; namely, polynomial basis and normal basis.

A binary field F2m with polynomial basis is constructed by rep-
resenting elements as binary polynomials of degree at most m � 1,
i.e., aðxÞ ¼

Pm�1
i¼0 aixi where ai 2 {0,1}. In normal basis elements are

represented as A ¼
Pm�1

i¼0 aib
2 i

with a basis of the form
fb; b2; b22

; . . . ; b2m�1
g with the property that b2m

¼ b. Thus, m bits
are required in representing an element in both bases.

Addition is performed in both bases with a bitwise exclusive-or
(XOR). Field multiplication is more efficient in polynomial basis
where it is computed by multiplying polynomials modulo an irre-
ducible polynomial p(x). Squaring, on the other hand, is cheap in
normal basis where it is a simple rotation of the bit vector. Inver-
sion is the most expensive field operation regardless of the basis.
Inversions can be computed by using Extended Euclidean Algo-
rithm or its modifications or Fermat’s Little Theorem. We use Fer-
mat’s Little Theorem as proposed by Itoh and Tsujii in [32]. An
Itoh–Tsujii inversion has the cost:

I ¼ ðblog2ðm� 1Þc þ Hðm� 1Þ � 1ÞM þ ðm� 1ÞS: ð5Þ
2.4. Koblitz curves

Koblitz curves [24] are a family of curves defined by Eq. (1) with
a 2 {0,1} and b = 1. We denote a Koblitz curve by EK. Koblitz curves
have the appealing feature that if the point P = (x, y) is on EK, so is
the point (x2, y2). This operation is called Frobenius map and we
denote it by /(P). The inexpensiveness of the Frobenius maps can
be exploited efficiently in point multiplication because Frobenius
maps can replace point doublings.

It stands for all points in EKðF2mÞ that /2(P) + 2P = l/(P), where
l = (�1)1�a. Thus, / can be seen as a complex number s satisfying
s2 + 2 = ls which gives s ¼ ðlþ

ffiffiffiffiffiffiffi
�7
p

Þ=2. Frobenius maps replace
point doublings if k is represented with s-adic expansion as

k ¼
X‘�1

i¼0

kisi: ð6Þ
Please cite this article in press as: K. Järvinen, J. Skyttä, Fast point mul
cess. Microsyst. (2008), doi:10.1016/j.micpro.2008.08.002
Solinas presented efficient algorithms for finding s-adic non-
adjacent form (sNAF) in [33]. sNAF is analogous with the NAF dis-
cussed above as it has on average the same length and Hamming
weight.

An algorithm for point multiplication on EK with LD coordi-
nates and k in sNAF is presented in Algorithm 1. On average,
Algorithm 1 requires m � 1 Frobenius maps and m/3 � 1 point
additions or point subtractions, because the first point addition
or point subtraction is simply a substitution. As Frobenius maps
are almost free, point additions, i.e., computations of Eq. (4), de-
fine the performance of Algorithm 1. The cost of Eq. (4) reduces
on Koblitz curves to 8M + 5S + 9A if a = 1 or 8M + 5S + 8A if
a = 0, because aC in the computation of X3 does not require
multiplication.

Algorithm 1. Double-and-add-or-subtract algorithm in LD coor-
dinates for Koblitz curves

Input: P = (x, y) on EK, integer k ¼
P‘�1

i¼0 kisi where ki 2 {0, ± 1}
and k‘�1 = ±1
Output: Q = kP
tiplica
Q (x, y,1) if k‘�1 = 1 or Q (x, x + y,1) if k‘�1 = � 1
for i = ‘ � 2 downto 0 do

Q /(Q) = (X2, Y2, Z2)
if ki6¼0 then
Q Q + kiP = (X, Y, Z) ± (x, y) /* Computed with Eq.
(4) */

end if
end for
Q (X/Z, Y/Z2)
3. Description of the method

Our new method exploits parallelism on the two highest levels
of the hierarchy (see Section 2) and results in an optimal utilization
of field multipliers. The key idea is that although point operation
requires the result of the previous point operation, parts of it can
be processed with the data that is available before the previous
operation is finished. Thus, it is possible to use resources that are
free due to the inefficiencies of point operations for computing
parts of the next operation. We begin the description of our meth-
od by analyzing the second highest level of the hierarchy from
which we proceed by showing how these results can be used on
the highest level.

Fig. 1 plots the data dependency graph of Eq. (4) and highlights
the operations that are needed for computing different coordinates
of P3. We assume that the point (x2, y2) is always available, which is
the case in Algorithm 1 where it is either P or �P. Obviously, the Z3

computation requiring two multiplications is the simplest opera-
tion. It requires only that Z1 and X1 are available, i.e., Y1 is not
needed. The two multiplications of the X3 computation require
X1, Y1, Z1, and C ¼

ffiffiffiffiffi
Z3
p

. Hence, Z3 must be ready. However, the first
multiplication requires only Z1 and it can be computed before Y1

and C are available. The Y3 computation requires four multiplica-
tions, three of which can be computed if Z3 and Y1 are available
but one of them requires also X3. The above description and
Fig. 1 show that the number of multiplications on the critical path
is five with two multipliers and four with three or more multipli-
ers, as already pointed out in [14].

Next, we redefine Eq. (4) by using eight subcomputations
which all include one multiplication and certain additions and
squarings. We name them Z0, Z1, X0, X 1, Y0, Y1, Y2, and Y3 so
that Z0 includes the first multiplication of the Z3 computation,
Z1 includes the second one, etc. The subcomputations are as
follows:
tion on Koblitz curves: Parallelization method ..., Micropro-

Fig. 1. Data dependency graph of Eq. (4) on Koblitz curves, i.e., a 2 {0,1}. Operations needed for computing X3, Y3, and Z3 are highlighted.

4 K. Järvinen, J. Skyttä / Microprocessors and Microsystems xxx (2008) xxx–xxx

ARTICLE IN PRESS
Z0 : E ¼ x2Z1 ð7Þ

Z1 :

C ¼ Z1ðEþ X1Þ
F ¼ aC þ ðEþ X1Þ2

Z3 ¼ C2

8><
>: ð8Þ

X 0 : G ¼ y2Z2
1 ð9Þ

X 1 : X3 ¼ CðF þ Gþ Y1Þ þ ðGþ Y1Þ2 ð10Þ
Y0 : H ¼ CðGþ Y1Þ þ Z3 ð11Þ
Y1 : D ¼ x2Z3 ð12Þ
Y2 : J ¼ Z2

3ðx2 þ y2Þ ð13Þ
Y3 : Y3 ¼ HðDþ X3Þ þ J ð14Þ

The subcomputations compute Eq. (4) when they are performed
sequentially from Z0 to Y3. When several multipliers are available,
Eq. (4) can be computed as follows.

Two multipliers. First, one computes Z0 by using the first multi-
plier. Second, the same multiplier computes Z1 finishing the Z3

computation and, at the same time, X0 is computed in the sec-
ond multiplier. After this, Y0 and Y2 are computed in the first
multiplier and the second multiplier computes X1, Y1, and Y3.
Thus, five multiplications are on the critical path.
Three multipliers. The first multiplier computes Z0, Z1, and Y0.
The second multiplier computes X 0, X1, and Y2 and it starts
computing when the first multiplier has finished Z0. The third
multiplier computes Y1 and Y3 after the first multiplier has fin-
ished Z1. The critical path becomes four multiplications.
Four multipliers. Point addition can be computed so that Z0 and
Z1 are computed in the first multiplier, X 0 and X1 in the second,
Y0 and Y2 in the third, and Y1 and Y3 in the fourth. The second
multiplier begins computations when the first multiplier has
finished Z0 and the third and the fourth multiplier begin when
Z1 is ready. The critical path is again four multiplications. The
reason for including a four multiplier scheme although the crit-
ical path is not reduced is that it results in a very efficient inter-
leaved computation schedule as will be shown in the following.

The above computation schedules do not change the critical
path bounds described in [14]. However, they allow considerable
improvements on the highest level. These improvements are possi-
ble because Frobenius maps following each point addition can be
Please cite this article in press as: K. Järvinen, J. Skyttä, Fast point mul
cess. Microsyst. (2008), doi:10.1016/j.micpro.2008.08.002
performed so that each coordinate is mapped as soon as it is ready;
i.e., Z3 is mapped after Z1, X3 after X 1 and Y3 after Y3. This allows
interleaving successive point additions so that all multipliers begin
processing the next point addition as soon as they have finished
their part of the previous point addition (and Frobenius maps).

We first consider the case of two multipliers. Because Z0 does
not require Y3, Z0 can be performed simultaneously with Y3 of
the previous point addition. A computation schedule where suc-
cessive point additions are interleaved is shown in Fig. 2a. For sim-
plicity, Frobenius maps following point additions are neglected in
Fig. 2a. The effective critical path of point addition contains only
four multiplications and, hence, the latency of point multiplication
excluding additions and squarings becomes

ð4ðHðkÞ � 1Þ þ 1ÞM þ I: ð15Þ

It is impossible to achieve full multiplier utilization with three mul-
tipliers, but an effective critical path of three multiplications is still
achievable. The first multiplier can compute Z0 simultaneously
while the second and third multiplier process Y2 and Y3 as shown
in Fig. 2b. The third multiplier is idle approximately one-third of
time. The latency of point multiplication is given by

ð3ðHðkÞ � 1Þ þ 1ÞM þ I: ð16Þ

When four multipliers are available, Z0 of the next point addition
can be performed simultaneously with X1, Y0, and Y1. Furthermore,
Z1 and X 0 of the next point addition can be computed in the first
and second multiplier while the third and fourth multiplier process
Y2 and Y3. All multipliers are hence always occupied as can be seen
in Fig. 2c. The effective critical path reduces to only two multiplica-
tions, and the latency of point multiplication is

2HðkÞM þ I: ð17Þ
3.1. Discussion

The method can be used for various point multiplication algo-
rithms on Koblitz curves including algorithms requiring precom-
putations. The only requirement is that the algorithm uses
consecutive mixed coordinate point additions, i.e., Eq. (4). In fact,
the latencies given by Eqs. (15)–(17) are valid also for window
and combing point multiplication algorithms if the latencies of
precomputations are neglected. The method can be used also for
tiplication on Koblitz curves: Parallelization method ..., Micropro-

Table 1
Comparison of the number of multiplications on the critical path of the main loop in
point multiplication on general curves, E, and Koblitz curves, EK

Multipliers E [13,18] EK [14] Speedup EK (This work) Speedup

1 6mM 8
3 mM 2.25 n/a n/a

2 3mM 5
3 mM 1.80 4

3 mM 2.25
3 3mM 4

3 mM 2.25 mM 3.00
4 2mM 4

3 mM 1.50 2
3 mM 3.00

The speedup column indicates how much faster point multiplication on Koblitz
curves is compared to general curves with that particular method.

Fig. 2. Computation schedules with (a) two, (b) three, or (c) four multipliers. Operations connected with a line belong to the same point addition.

K. Järvinen, J. Skyttä / Microprocessors and Microsystems xxx (2008) xxx–xxx 5

ARTICLE IN PRESS
the double-base approach presented in [9] but the benefits are
smaller because also other point operations besides mixed coordi-
nate point additions are on the critical path. Furthermore, our
method can be combined with the parallelization method pre-
sented in [14] which splits point multiplication on Koblitz curves
for several processors yielding further improvements in
performance.

Although we considered the use of the method only on Koblitz
curves, it can be generalized also for general curves. However,
point doublings are then required instead of Frobenius maps. Point
doubling in LD requires five multiplications [34] with a minimum
critical path of three multiplications. Operations can be interleaved
so that the effective critical path of point doubling is three multi-
plications with two multipliers and two multiplications with three
or more multipliers. Unfortunately, this result has little practical
significance because point doublings alone result in a critical path
of at least 2m multiplications. Montgomery point multiplication
computes the entire point multiplication with 2m multiplications
on the critical path [18,13] and, hence, it is faster. If support for
both general and Koblitz curves is needed, then Montgomery point
multiplication should be used for general curves and our method
for Koblitz curves. They both can be implemented efficiently using
the same hardware. Operation interleaving cannot achieve any
benefits in Montgomery point multiplication because both X and
Z coordinates1 are needed in the first operation.

The speedup of using Koblitz curves instead of general curves is
studied in Table 1 which shows the number of multiplications re-
quired in the main loop of Montgomery point multiplication on
general curves and double-and-add-or-subtract algorithm on Ko-
blitz curves. Only multiplications in the main loop are compared
in Table 1 in order to simplify the analysis. This skews the analysis
only little because multiplications dominate in point multiplica-
tion and the cost of coordinate conversion is negligible compared
to the cost of the main loop.

A direct implication of our method is that point multiplication
on Koblitz curves can be computed roughly three times as fast as
on general curves with equal amount of hardware. This follows
from the fact that both Montgomery point multiplication and our
1 The Y coordinate is not computed in the main loop as it is recovered in the end
(see Section 2.1).

Please cite this article in press as: K. Järvinen, J. Skyttä, Fast point mul
cess. Microsyst. (2008), doi:10.1016/j.micpro.2008.08.002
method require two multiplications per iteration. Montgomery
point multiplication, however, requires m iterations whereas our
method requires on average only m/3 iterations with k in sNAF.

Table 1 also shows that our method is twice as fast as the best
existing method for Koblitz curves. The existing methods also sug-
gest that the more multipliers are in use the less benefit is gained
from using Koblitz curves. However, our method shows that the
case is actually on the contrary: the more multipliers are available
the faster Koblitz curves are compared to general curves.

4. Implementations

Several implementations were designed in order to study the
practical feasibility of our method. We only consider implementa-
tions with four multipliers because we target to the fastest perfor-
mance. Although the method and the following architecture are
not restricted to any particular Koblitz curve, we limit the analysis
to the curves K-163, K-233, and K-283 recommended by NIST [25].
The curves are defined by Eq. (1) so that a = b = 1 for K-163 and
a = 0 and b = 1 for K-233 and K-283 [25]. Even the smallest field
size m = 163 was recently shown to provide high security [35].

The architecture is described in the following. Field multipliers
are discussed in Section 4.1 and coordinate conversion needed in
the end is considered in Section 4.2. Latency formulae for point
multiplication are derived in Section 4.3 and discussion on the
architecture is given in Section 4.4.

As discussed in Section 2.3, a finite field can be constructed
using polynomial or normal basis, and the curves included in
[25] are defined over both bases. The advantages of the bases are
tiplication on Koblitz curves: Parallelization method ..., Micropro-

6 K. Järvinen, J. Skyttä / Microprocessors and Microsystems xxx (2008) xxx–xxx

ARTICLE IN PRESS
fast multiplication in polynomial basis and almost free squaring
(and Frobenius map) in normal basis. We implemented both nor-
mal basis and polynomial basis versions in order to study the ef-
fects of basis selection.

In order to minimize latencies caused by other operations be-
sides multiplications and Frobenius maps, operation-specific pro-
cessing units which compute additions and squarings in parallel
with multiplications were designed and optimized specifically for
X3, Y3 and Z3 computations.

The processing unit computing Z3, called the Z processor, is
optimized for Z0 and Z1 subcomputations, and it is used exclu-
sively for them. The Z processor is built around a multiplier as pre-
sented in Fig. 3a. The Z processor computes the Z coordinate of d
consecutive Frobenius maps by using a squarer designed for suc-
cessive squarings (the FR block in Fig. 3a). In normal basis, this
squarer is a simple shifter and the shifter can perform up to 31 suc-
cessive squarings (Frobenius maps) in one clock cycle. In polyno-
mial basis, each squaring requires one clock cycle and, thus, d
successive Frobenius maps cost d clock cycles. Implementation of
the two squarings also depends on the basis. In normal basis, these
squarings are performed by rearranging the bitvectors and no logic
is required, but a simple circuitry is needed in polynomial basis
(reduction modulo p(x)).

The X processor computes X 0 and X1 and it consists of a multi-
plier, adders and squarers as shown in Fig. 3b. An additional select
Fig. 3. (a) Z processor, (b) X pro

Please cite this article in press as: K. Järvinen, J. Skyttä, Fast point mul
cess. Microsyst. (2008), doi:10.1016/j.micpro.2008.08.002
signal s is needed because one of the multiplier inputs needs to be
squared in X0 but not in X1 as shown in Eqs. (9) and (10).

The Y processor computing Y0–Y3 uses two multipliers as
shown in Fig. 3c and it is the most complex of the three processors.
The upper multiplier in Fig. 3c computes multiplications of Y0 and
Y3 while the lower one is used for Y1 and Y2.

Latencies are equal for all processors. In normal basis all outputs
are available after M + 1 clock cycles. As d Frobenius maps require d
clock cycles in polynomial basis, outFR is available after M + d clock
cycles whereas other outputs are ready in M + 1 clock cycles.

Algorithm 1 is implemented using computation schedule pre-
sented in Fig. 2. First, the base point P = (x, y) is loaded into the pro-
cessor which then computes and stores the y-coordinate of �P = (x,
x + y). The registers holding X3 and Z3 are initialized to X3 = xd and
Z3 = 1 where d is the number of Frobenius maps following the msb
of k. Initialization of the Y3 register depends on the msb of k. If
k‘�1 = 1, Y3 = yd and, if k‘�1 = � 1, Y3 = (x + y)d (See Algorithm 1).

The schedule of Fig. 2c consists of two cycles. When the inputs
and outputs of the processors are connected as shown in Table 2,
the processors compute Algorithm 1 as scheduled in Fig. 2c. In
the beginning and in the end, the processors which are idle are
not enabled. Because the Z processor starts computing the next
point addition immediately after it has finished Frobenius maps
but Z3 is still needed in the X and Y processors, a register is needed
for storing Z3.
cessor, and (c) Y processor.

tiplication on Koblitz curves: Parallelization method ..., Micropro-

Table 2
Inputs and outputs of the processing units

Processor Input/ouput 1st cycle 2nd cycle

Z In0 Z1 Z1

In1 x E
In2 0 X1

Out0 n/a F
Out1 E C
Out2 n/a Z3

OutFR n/a Zd
3

X In0 Y1 0
In1 G 0
In2 F y/x + y
In3 C Z1

s 0 1
Out0 X3 G
OutFR Xd

3 n/a

Y In0 C H
In1 G D
In2 Y1 X3

In3 Z3 Z3

In4 x x + y/y
s 0 1
Out0 H n/a
Out1 n/a Y3

Out2 D n/a
OutFR n/a Yd

3

Point addition is computed, if y is selected for In2 of the X processor and x + y for In4

of the Y processor during the second cycle.
Point subtraction is computed, if the selections are vice versa.

K. Järvinen, J. Skyttä / Microprocessors and Microsystems xxx (2008) xxx–xxx 7

ARTICLE IN PRESS
4.1. Field multipliers

Multiplication in F2m is the critical operation of point multiplica-
tion and much research has been published on its efficient imple-
mentation. Multiplier architectures can be categorized in three
classes: bit-serial, bit-parallel, and digit-serial. A bit-serial multi-
plier computes one result bit in one cycle and, hence, requires m
cycles. A bit-parallel multiplier computes all result bits in one cy-
cle, but as m is large, it requires very large area. A digit-serial mul-
tiplier is a trade-off between these two extremes where D result
bits are computed in one cycle resulting in a multiplication delay
of dm/De cycles. Our point multiplication architecture described
above can use any field multiplier architecture, but we chose to
implement polynomial and normal basis multipliers as follows.

Polynomial basis multipliers are hardware modifications of the
multiplier described in [36]. Instead of using precomputed look-up
tables as in [36], our multiplier computes everything on-the-fly
similarly as in [16,37]. The multiplier computes c(x) = a(x) +
b(x)modp(x) so that, in each iteration, it computes

tjðxÞ ¼ v1ðxÞ þ v2ðxÞ þ v3ðxÞ; where

v1ðxÞ ¼ xD
Xm�D�1

i¼0

tjþ1;ixi

v2ðxÞ ¼ xD
Xm�1

i¼m�D

tjþ1;ixi modpðxÞ; and

v3ðxÞ ¼ aðxÞ
XD�1

i¼0

bjDþixi

 !
modpðxÞ

ð18Þ

where j is the index of the iteration (from dm/De � 1 to 0), bi = 0 for
i P m, and tdm/De = 0. After dm/De iterations, t0(x) contains c(x).

The multipliers are straightforward implementations of Eq. (18)
which are optimized for the specific irreducible polynomials given
in [25], i.e., p(x) is hardwired into the design. The latency of the
multiplier is given by

Mp ¼
m
D

l m
þ 1: ð19Þ
Please cite this article in press as: K. Järvinen, J. Skyttä, Fast point mul
cess. Microsyst. (2008), doi:10.1016/j.micpro.2008.08.002
Normal basis multipliers are implemented as Massey-Omura
multipliers [38]. One bit ci of the result C = A B where A;B;C 2 F2m

is computed from A and B by using a 2m-to-1 bit logic function,
called the F-function. The F-function was constructed by using
the formulae available in the appendices of [25]. It is field specific,
and the same F-function is used for all output bits ci as follows:

C ¼
Xm�1

i¼0

FðAni;BniÞb2i
; ð20Þ

whereni denotes cyclical left shift by i bits. A digit-serial Massey-
Omura multiplier contains D parallel F-function blocks. The maxi-
mum clock frequency can be increased by pipelining the F-function
blocks. As one clock cycle is required in loading the operands into
the shift registers and each pipeline stage increases latency by
one clock cycle, the latency becomes

Mn ¼
m
D

l m
þ c þ 1 ð21Þ

where c is the number of pipeline stages inside the F-function
blocks, i.e., c P 0. We use c = 1.

It follows directly from Eqs. (19) and (21) that, for
m = 163,233,283, D should be chosen from the following sets of
integers:

F163 : f1�15;17;19;21;24;28;33;41;55;82;163g; ð22Þ
F233 : f1�18;20;22;24;26;30;34;39;47;59;78;117;233g; and

ð23Þ
F283 : f1�19;21;22;24;26;29;32;36;41;48;57;71;95;142;283g

ð24Þ

Other values only increase area without decreasing latency.

4.2. Conversion to affine coordinates

The result point Q is mapped from LD to A at the end as shown
on the last line of Algorithm 1. This mapping requires I + 2M + S. An
inverter based on exponentiation (Fermat’s Little Theorem) was
chosen because it allows inversions to be computed with the same
circuitry as other operations in LD7!A conversion; namely, with
squarings and multiplications.

As our architecture is highly optimized for mixed coordinate
point addition, its use in coordinate mapping is troublesome.
Hence, a dedicated block is designed for this purpose. The block
consists of a multiplier, squarer, and registers as presented in
Fig. 4. The multiplier is implemented as discussed in Section 4.1
and the squarer supports successive squarings. The register is used
for storing temporary results. Because an Itoh–Tsujii inversion re-
quires H(m � 1) � 1 temporary variables [32] and two registers are
used for storing the result point (x, y), the register consists of
H(m � 1) + 1 m-bit registers.

We present a coordinate conversion algorithm for m = 163 in
Algorithm 2 as an example of how coordinate conversion is com-
puted with the above architecture. Ti and x, y are registers and t
indicates that the output of the multiplier is connected directly
to the inputs of the squarer and the multiplier without storing
the result to the registers.

Algorithm 2. Coordinate conversion when m = 163

Input: X;Y; Z 2 F2163

Output: x; y 2 F2163 such that (x, y) = (X/Z, Y/Z2)
tiplica
T1 Z2 � Z
t T22

1 � T1

t t24 � t
t t28 � t
T2 t216 � t
tion on Koblitz curves: Parallelization method ..., Micropro-

Fig. 4. Block diagram of the LD7!A converter.

8 K. Järvinen, J. Skyttä / Microprocessors and Microsystems xxx (2008) xxx–xxx

ARTICLE IN PRESS
t T232

2 � T2

t t264 � t
t t232 � T2

T1 t22 � T1

x T2
1 � X

y T22

1 � Y

Latency of coordinate conversion depends on the basis. In nor-
mal basis all squarings can be performed simultaneously and the
latency becomes (blog2(m � 1)c + H(m � 1) + 1)(Mn + 1) clock cy-
cles. In polynomial basis each squaring requires one clock cycle
and the latency is (blog2(m � 1)c + H(m � 1) + 1)(Mp + 1) + m + 1.
The effective latency reduces by 2(M + 1) in both cases because
inversion of Z can be started as soon as the last Z1 is ready. Hence,
coordinate conversion can be interleaved with X1 and Y0–Y3. The
effective latencies of coordinate conversions are as follows:

Ip ¼ ðblog2ðm� 1Þc þ Hðm� 1Þ � 1ÞðMp þ 1Þ þmþ 1; and ð25Þ
In ¼ ðblog2ðm� 1Þc þ Hðm� 1Þ � 1ÞðMn þ 1Þ ð26Þ

for polynomial and normal basis, respectively.

4.3. Latency

The latency of point multiplication over polynomial basis is gi-
ven by the following formula:

Lp ¼ HðkÞð2ðMp þ 1ÞÞ þ Ip þ ‘þ 6 ð27Þ

where Mp and Ip are given by Eqs. (19) and (25), respectively, and ‘

is the length of k. On average, H(k) = m/3 and ‘ = m. The constant de-
lay is caused by interfacing and initialization.

Because successive squarings are performed with simple cycli-
cal shifts in normal basis, all Frobenius maps following point addi-
tion can be performed in one clock cycle. Hence, the latency of
point multiplication in normal basis is given by

Ln ¼ HðkÞð2ðMn þ 1ÞÞ þ In þ 10 ð28Þ

where Mn and In are given by Eqs. (21) and (26), respectively.

4.4. Discussion

Our architecture has several advantages over traditional archi-
tectures2. Table 3 shows a comparison of the traditional architecture
and our architecture in terms of speed, area, and flexibility. Flexibil-
2 By traditional architectures, we mean processor architectures including adder,
squarer, multiplier(s), and storage for temporary variables, and which are controlled
by microcode and/or finite state machine. See for example [9,13,14,16].

Please cite this article in press as: K. Järvinen, J. Skyttä, Fast point mul
cess. Microsyst. (2008), doi:10.1016/j.micpro.2008.08.002
ity means that fields, curves, etc., can be changed without reconfig-
uring the FPGA.

As Table 3 shows, the largest advantage of our architecture is
the very fast performance. The disadvantages are increased area
requirements and reduced flexibility. Hence, our architecture is
superior compared to the traditional architectures in high-speed
applications using Koblitz curves, but it cannot be used in applica-
tions requiring low resource utilization and/or high flexibility.
However, the method presented in Section 3 is more general be-
cause it can be implemented also with traditional architectures
including multiple multipliers.

Circuitry for s-adic conversion was not included in the imple-
mentations. Converters such as the ones presented in [39] should
be used in practical applications. However, randomly generated
s-adic integers can be used in certain cases which removes the
need for a conversion circuitry [40].

The number of operations in second (ops) can be more impor-
tant than the computation time of a single point multiplication
in some applications; see [15], for example. The number of ops
can be increased by pipelining the architecture so that sNAF con-
version, point multiplication, and coordinate conversion are sepa-
rated into different pipeline stages. This approximately triples
ops because all stages process a different point multiplication. In
this case, smaller and slower coordinate conversion circuitry can
be used.

Because our implementations target for high-speed applica-
tions, side-channel attacks are not as serious threat as in many
low-cost environments such as smart cards. Currently, the imple-
mentations are vulnerable to timing attacks, i.e., they leak H(k),
but dummy operations could be easily introduced as a counter-
measure. The use of interleaved point operations is unlikely to
introduce any new side-channel threats compared to successive
point operations. Anyhow side-channel resistivity should be con-
cerned before using the implementations in any practical applica-
tion where side-channel attacks are viable.
5. Results

The architecture described in Section 4 was written in VHDL.
The designs were synthesized for Altera Stratix II EP2S180F1020C3
FPGA [41] by using Quartus II 6.0 SP1 design software and func-
tionality was verified with simulations using ModelSim SE 6.1b
software. We synthesized both polynomial and normal basis ver-
sions with several different multiplier sizes for K-163, and the re-
sults are given in Table 4. Because the superiority of polynomial
basis is evident in Table 4, only polynomial basis versions were
synthesized for K-233 and K-283. The results are given in Tables
5 and 6. The areas and maximum clock frequencies presented in
the tables were given by Quartus II. Fig. 5 depicts the area and
computation time of the implementations in Tables 4–6.

5.1. Discussion

The fastest implementations in Tables 4–6 compute point mul-
tiplication in 4.9 ls, 8.1 ls, and 12.1 ls on K-163, K-233, and K-
283, respectively. The fastest implementations require large
amounts of area, but only slightly longer point multiplication times
are achievable with smaller area requirements.

Fig. 5 shows that the achieved computation time flattens when
the area grows. Large amounts of additional area are needed in or-
der to reduce the computation time even slightly and even slower
performance can be achieved with a larger area. This is caused by
the difficulty of place and route. When the complexities of the de-
signs grow, the place and route becomes more difficult which de-
grades the results (maximum clock frequencies). Thus,
tiplication on Koblitz curves: Parallelization method ..., Micropro-

Table 3
Comparison of our architecture and traditional architectures in terms of speed, area, and flexibility

Characteristic Traditional architecture Our architecture

Speed Slow to fast. Designer can implement both slow (and small) and fast designs
by trading compactness and flexibility for speed. However, sequentiality
and memory write and read delays easily become bottlenecks.

Very fast. The architecture is inherently very fast because the new method
shortens the critical path. Computation time shortens also because
additions and squarings are computed in parallel with multiplications.

Area Small to large. Designer has large influence on area requirements. Control
logic usually consumes more area than in our architecture.

Medium to large. Uses four multipliers which makes it unsuitable for low-
cost applications. Multiple adders and squarers cause a small area
overhead. Very simple and small control logic.

Flexibility Low to high. The designer can affect flexibility on all levels. Flexible designs
are slower and larger than fixed desings. The same architecture can be
easily used for general and Koblitz curves.

Low. Field flexibility can be achieved by using flexible field multipliers and
squarers but the point operation algorithm is fixed. The architecture is for
Koblitz curves only.

Table 4
Results for K-163 with sNAF (H(k) = 163/3) on Stratix II S180C3

D Basis ALUTs Regs. ALMs Latency Clock (MHz) Time (ls)

14 PB 14,960 7876 8696 1980 238.95 8.29
15 PB 15,374 7899 9192 1863 236.63 7.87
17 PB 16,265 7908 9964 1745 232.23 7.51
19 PB 17,177 7927 10,711 1627 230.47 7.06
21 PB 18,063 7908 11,550 1510 229.83 6.57
24 PB 19,596 7879 12,320 1392 215.24 6.47
28 PB 21,789 7928 14,758 1274 218.53 5.83
33 PB 23,971 7916 16,508 1157 217.53 5.32
41 PB 27,686 7937 20,525 1039 203.87 5.10
55 PB 34,604 7986 26,148 921 187.48 4.91
82 PB 47,302 7967 36,852 804 156.20 5.15

9 NB 19,258 14,024 13,708 2599 186.15 13.96
10 NB 20,602 14,855 15,079 2363 178.38 13.25
11 NB 21,871 15,644 16,454 2128 184.37 11.54
12 NB 23,022 16,464 17,238 2010 183.28 10.97
13 NB 24,230 17,329 18,259 1893 176.77 10.71
14 NB 25,325 18,139 19,174 1775 181.69 9.77
15 NB 24,587 18.937 21,457 1657 169.06 9.80
17 NB 26,647 20,575 23,580 1540 162.42 9.48
19 NB 28,666 22,218 25,366 1422 164.61 8.64
21 NB 30,755 23,834 27,139 1304 163.27 7.99
24 NB 33,680 26,294 29,922 1187 149.34 7.95

Table 5
Results for K-233 with sNAF (H(k) = 233/3) on Stratix II S180C3

D Basis ALUTs Regs. ALMs Latency Clock (MHz) Time (ls)

13 PB 19,923 11,173 12,551 3780 221.78 17.04
14 PB 20,625 11,183 12,749 3614 220.22 16.41
15 PB 21,174 11,201 13,366 3449 215.70 15.99
16 PB 21,832 11,202 13,817 3284 208.33 15.76
17 PB 22,469 11,203 14,496 3118 222.07 14.04
18 PB 23,054 11,186 14,783 2953 212.86 13.87
20 PB 24,339 11,215 15,954 2788 209.21 13.32
22 PB 25,340 11,259 17,412 2622 212.13 12.36
24 PB 27,366 11,233 18,570 2457 206.23 11.91
26 PB 28,363 11,189 19,968 2292 202.51 11.32
30 PB 31,567 11,295 22,688 2126 205.72 10.34
34 PB 33,978 11,296 25,601 1961 204.04 9.61
39 PB 37,524 11,284 28,911 1796 190.19 9.44
47 PB 42,609 11,344 32,024 1630 187.48 8.70
59 PB 50,889 11,369 38,056 1465 181.06 8.09

Table 6
Results for K-283 with sNAF (H(k) = 283/3) on Stratix II S180C3

D Basis ALUTs Regs. ALMs Latency Clock (MHz) Time (ls)

13 PB 24,607 13,541 15,607 5365 202.51 26.49
14 PB 25,818 13,603 16,502 5165 204.54 25.25
15 PB 26,490 13,607 17,248 4766 197.75 24.10
16 PB 27,297 13,580 17,484 4566 204.16 22.37
17 PB 28,053 13,594 18,544 4367 203.75 21.43
18 PB 28,741 13,560 18,815 4167 196.39 21.22
19 PB 29,453 13,550 19,665 3967 189.54 20.93
21 PB 31,013 13,642 21,278 3768 201.65 18.68
22 PB 31,723 13,541 21,848 3568 191.75 18.61
24 PB 33,949 13,656 23,809 3368 196.77 17.12
26 PB 35,284 13,614 25,151 3169 184.60 17.17
29 PB 38,005 13,604 27,484 2969 184.37 16.10
32 PB 40,453 13,615 29,746 2769 186.19 14.87
36 PB 43,416 13,644 33,039 2570 178.67 14.38
41 PB 47,506 13,581 36,838 2370 178.16 13.30
48 PB 53,344 13,752 39,862 2170 179.63 12.08

0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 104

0

5

10

15

20

25

30

Fig. 5. Plot of areas and computation times of the implementations presented in
Tables 4–6. Four multipliers are used in all implementations.

K. Järvinen, J. Skyttä / Microprocessors and Microsystems xxx (2008) xxx–xxx 9

ARTICLE IN PRESS
computation times can increase even though latencies decrease.
The notable variation in clock frequencies (see D = 16 � 18 in Table
5, for example) is also caused by the unpredictable behavior of the
place and route.

Table 4 shows that polynomial basis clearly outperforms nor-
mal basis. Although normal basis are clearly inferior in our archi-
tecture, this result cannot be generalized for other architectures,
because our architecture has certain features which favor polyno-
mial basis. First, the architecture includes four multipliers which
quadruples the cost of the more complex multiplication in normal
Please cite this article in press as: K. Järvinen, J. Skyttä, Fast point mul
cess. Microsyst. (2008), doi:10.1016/j.micpro.2008.08.002
basis. Second, Frobenius maps are computed in parallel for the
three coordinates which lessens the benefit of fast squaring in nor-
mal basis. The critical path of computing all Frobenius maps in
polynomial basis is approximately m clock cycles. If only one
squarer was available, Frobenius maps would require approxi-
mately 3m clock cycles. Hence, it is impossible to generalize our
bases comparison results to an architecture which includes only
one multiplier and squarer. More research on the subject is needed
before drawing any general conclusions.
tiplication on Koblitz curves: Parallelization method ..., Micropro-

Table 7
Comparison of published FPGA-based implementations using Koblitz curve, K-163

Ref. Device Area Time (ls) Notes

[9] Virtex-II 6494 slices, 6 B-RAM 35.75 NB; double-base s-adic expansion
[14] Stratix II 23,346 ALMs, several M512 and M4K

memory blocks
28.95 NB; the fastest traditional architecture; includes three multipliers; includes a sNAF

converter (approx. 930 ALMs)
[14] Stratix II 13,472 ALMs, several M512 and M4K

memory blocks
20.28 NB; four parallel processors compute a single point multiplication; includes a sNAF

converter (approx. 930 ALMs)
[15] Stratix II 67,467 ALMs, 240 M512, 305 M4K 114.2 NB; 3-term point multiplication; achieves 166,000 ops with parallel processors
[16] Virtex-E 10,017 LUTs, 1930 FFs 75 PB
[17] Flex 10K n/a 45600 NB; the first Koblitz curve implementation

Our Stratix II 23,580 ALMs 9.48 NB; comparable with [14]
Our Stratix II 26,148 ALMs 4.91 PB

10 K. Järvinen, J. Skyttä / Microprocessors and Microsystems xxx (2008) xxx–xxx

ARTICLE IN PRESS
5.2. Comparisons

This comparison discusses FPGA-based implementations of
point multiplication on Koblitz curves only, because our imple-
mentations are specifically designed for Koblitz curves. Hence,
comparison to general curves would not be fair. FPGA implemen-
tations on Koblitz curves have been presented in [9,14–17]. Table
7 summarizes their best results. Only K-163 has been considered
in the papers and, thus, we restrict this comparison to K-163. The
first implementation was presented by Okada et al. [17] in 2000.
Lutz and Hasan [16] presented an implementation in a Xilinx Vir-
tex-E FPGA. Dimitrov et al. [9] presented a double-base s-adic
expansion for k and they provided experimental results in a Vir-
tex-II FPGA. Our recent work on Koblitz curves includes [14,15].
An analysis on parallelization of point multiplication on both gen-
eral and Koblitz curves was given in [14] and it was demonstrated
that point multiplication can be computed efficiently with a
method that splits computation for parallel processors. In [15]
we studied the computation of 3-term point multiplications, i.e.,
Q = k1P1 + k2P2 + k3P3. The target was in maximizing the number
of operations in second with parallel processing.

Fair comparison is troublesome because of the large variety of
FPGAs. Comparing two designs implemented on different FPGAs
is difficult because both area requirements and maximum clock
frequencies depend on the FPGA. However, fair comparison to
[14,15] can be performed because they use the same device. Some
estimates of how Stratix II and Virtex-II compare can be given
based on other contributions. A very recent work continuing the
work of [9] implements the design of [9] in Stratix II where point
multiplication requires 35.04 ls [42]. Hence, the speed difference
of Stratix II and Virtex-II is only about 2%. Furthermore, Virtex-E
has been shown to be about 10% slower than Virtex-II in imple-
mentations of elliptic curve cryptography [13]. Based on the above
reasonings and Table 7 it is clear that our implementation achiev-
ing 4.91 ls is faster than any previously reported implementation.
The superiority of our architecture compared to a traditional archi-
tecture (from [14]) is evident because it achieves three times faster
point multiplication with a comparable amount of resources even
in normal basis.

6. Conclusions and future work

We discussed point multiplication on Koblitz curves with paral-
lel field multipliers. A novel method based on interleaved point
additions was presented. It was shown to provide twice as fast
point multiplication as previously presented parallel multiplier
methods for Koblitz curves. The method achieves full multiplier
utilization with two or four multipliers. Because also Montgomery
point multiplication can be implemented efficiently with two or
four multipliers, support for both general and Koblitz curves can
be efficiently implemented with the same hardware. This was
not possible with the existing methods.
Please cite this article in press as: K. Järvinen, J. Skyttä, Fast point mul
cess. Microsyst. (2008), doi:10.1016/j.micpro.2008.08.002
Our new method shows that point multiplication can be com-
puted on Koblitz curves approximately three times as fast as on
general curves. With the existing methods, the benefit of using Ko-
blitz curves decreases if several multipliers are available. However,
we showed that the more multipliers are available the faster Ko-
blitz curves are compared to general curves. Hence, our method in-
creases the attractiveness of using Koblitz curves in high-speed
applications.

We provided an extensive number of implementations support-
ing the practical feasibility of our method. The implementations
are based on a highly optimized architecture built around four
multipliers, each of which is specialized for computing certain
operations. Standardized curves recommended by NIST [25] were
used in the implementations; namely, the curves K-163, K-233,
and K-283. We studied the suitability of polynomial basis and nor-
mal basis and concluded that polynomial basis is clearly superior
to normal basis. Point multiplication times of 4.9 ls, 8.1 ls, and
12.1 ls on K-163, K-233, and K-283, respectively, were demon-
strated in a Stratix II S180C3 FPGA.

The very fast point multiplication times set new challenges for
designing s-adic converters. Previously conversion times have
been much shorter than any reported point multiplication times,
but now conversions require approximately as long as point mul-
tiplication; see [39,40]. Hence, there is an obvious need for faster
s-adic converters.

As discussed in Section 4.4, point operation interleaving is not
possible in Montgomery point multiplication. However, similar ap-
proaches may be possible in point operations on elliptic curves
over Fp. If an efficient method is found, considerable performance
increases could occur and, hence, point operation interleaving re-
quires more research.
References

[1] N. Koblitz, Elliptic curve cryptosystems, Math. Comput 48 (1987) 203–209.
[2] V. Miller, Use of elliptic curves in cryptography, in: Advances in Cryptology,

CRYPTO’85, Lecture Notes in Computer Science, vol. 218, Springer, 1985, pp.
417–426.

[3] I. Blake, G. Seroussi, N. Smart, Elliptic Curves in Cryptography, London
Mathematical Society Lecture Notes Series, vol. 265, Cambridge University
Press, 1999.

[4] H. Eberle, N. Gura, S. Chang Shantz, V. Gupta, L. Rarick, S. Sundaram, A public-
key cryptographic processor for RSA and ECC, in: Proceedings of the IEEE
International Conference Application-Specific Systems, Architectures and
Processors, ASAP’04, Galveston, TX, USA, 2004, pp. 98–110.

[5] J. Goodman, A. Chandrakasan, An energy-efficient reconfigurable public-key
cryptography processor, IEEE J. Solid-State Circuits 36 (11) (2001) 1808–1820.

[6] F. Sozzani, G. Bertoni, S. Turcato, L. Breveglieri, A parallelized design for an
elliptic curve cryptosystem coprocessor, in: Proceedings of the International
Conference Information Technology: Coding and Computing, ITCC 2005, vol. 1,
Las Vegas, NV, USA, 2005, pp. 626–630.

[7] T. Wollinger, J. Guajardo, C. Paar, Security on FPGAs: state-of-the-art
implementations and attacks, ACM Trans. Embed. Comput. Syst. 3 (3) (2004)
534–574.

[8] B. Ansari, M.A. Hasan, High performance architecture of elliptic curve scalar
multiplication, Tech. Rep. CORR 2006-01, University of Waterloo, Canada,
2006.
tiplication on Koblitz curves: Parallelization method ..., Micropro-

K. Järvinen, J. Skyttä / Microprocessors and Microsystems xxx (2008) xxx–xxx 11

ARTICLE IN PRESS
[9] V.S. Dimitrov, K.U. Järvinen, M.J. Jacobson, W.F. Chan, Z. Huang, FPGA
implementation of point multiplication on Koblitz curves using Kleinian
integers, in: Cryptographic Hardware and Embedded Systems, CHES 2006,
Lecture Notes in Computer Science, vol. 4249, Springer, 2006, pp. 445–459.

[10] H. Eberle, N. Gura, S. Chang-Shantz, A cryptographic processor for arbitrary
elliptic curves over GF(2m), in: Proceedings of the IEEE International
Conference Application-Specific Systems, Architectures, and Processors,
ASAP’03, The Hague, The Netherlands, 2003, pp. 444–454.

[11] M. Bednara, M. Daldrup, J. von zur Gathen, J. Shokrollahi, J. Teich,
Reconfigurable implementation of elliptic curve crypto algorithms, in:
Proceedings of the International Parallel and Distributed Processing
Symposium, IPDPS 2002, Reconfigurable Architectures Workshop, RAW
2002, Ft. Lauderdale, FL, USA, 2002, pp. 157–164.

[12] M. Bednara, M. Daldrup, J. Teich, J. von zur Gathen, J. Shokrollahi, Tradeoff
analysis of FPGA based elliptic curve cryptography, in: Proceedings of the IEEE
International Symposium Circuits and Systems, ISCAS 2002, vol. 5, Phoenix-
Scottdale, AZ, USA, 2002, pp. 797–800.

[13] R.C.C. Cheung, N.J. Telle, W. Luk, P.Y.K. Cheung, Customizable elliptic curve
cryptosystem, IEEE Trans. VLSI Syst. 13 (2005) 1048–1059.

[14] K. Järvinen, J. Skyttä, On parallelization of high-speed processors for elliptic
curve cryptography, IEEE Trans. VLSI Syst. 16 (2008) 1162–1175.

[15] K. Järvinen, J. Forsten, J. Skyttä, FPGA design of self-certified signature
verification on Koblitz curves, in: Cryptographic Hardware and Embedded
Systems, CHES 2007, Lecture Notes in Computer Science, vol. 4727, Springer,
2007, pp. 256–271.

[16] J. Lutz, A. Hasan, High performance FPGA based elliptic curve cryptographic
co-processor, in: Proceedings of the International Conference Information
Technology: Coding and Computing, ITCC 2004, vol. 2, Las Vegas, NV, USA,
2004, pp. 486–492.

[17] S. Okada, N. Torii, K. Itoh, M. Takenaka, Implementation of elliptic curve
cryptographic coprocessor over GF(2m) on an FPGA, in: Cryptographic
Hardware and Embedded Systems, CHES 2000, Lecture Notes in Computer
Science, vol. 1965, Springer, 2000, pp. 25–40.

[18] F. Rodríguez-Henríquez, N.A. Saqib, A. Díaz-Pérez, A fast parallel
implementation of elliptic curve point multiplication over GF(2m),
Microprocess. Microsy 28 (5–6) (2004) 329–339.

[19] K. Sakiyama, L. Batina, B. Preneel, I. Verbauwhede, Superscalar coprocessor for
high-speed curve-based cryptography, in: Cryptographic Hardware and
Embedded Systems, CHES 2006, Lecture Notes in Computer Science, vol.
4249, Springer, 2006, pp. 415–429.

[20] C. Shu, K. Gaj, T. El-Ghazawi, Low latency elliptic curve cryptography
accelerators for NIST curves over binary fields, in: Proceedings of the IEEE
International Conference Field Programmable Technology, FPT 2005,
Singapore, 2005, pp. 309–310.

[21] G. Meurice de Dormale, J.-J. Quisquater, High-speed hardware
implementations of elliptic curve cryptography: a survey, J. Syst. Architect.
53 (2–3) (2007) 72–84.

[22] D. Hankerson, A. Menezes, S. Vanstone, Guide to Elliptic Curve Cryptography,
Springer, 2004.

[23] J. López, R. Dahab, Fast multiplication on elliptic curves over GF(2m) without
precomputation, in: Cryptographic Hardware and Embedded Systems, CHES
1999, Lecture Notes in Computer Science, vol. 1717, Springer, 1999, pp. 316–
317.

[24] N. Koblitz, CM-curves with good cryptographic properties, in: Advances in
Cryptology, CRYPTO’91, Lecture Notes in Computer Science, vol. 576, Springer,
1991, pp. 279–287.

[25] National Institute of Standards and Technology (NIST), Digital signature
standard (DSS), Federal Information Processing Standard, FIPS PUB 186-2,
January 27, 2000.

[26] Certicom Research, SEC 1: Elliptic curve cryptography, Standards for Efficient
Cryptography, September 20, 2000.

[27] Certicom Research, SEC 2: Recommended elliptic curve domain parameters,
Standards for Efficient Cryptography, September 20, 2000.

[28] P.L. Montgomery, Speeding the Pollard and elliptic curve methods of
factorization, Math. Comput. 48 (177) (1987) 243–264.

[29] C. Doche, T. Lange, Arithmetic of elliptic curves, in: H. Cohen, G. Frey (Eds.),
Handbook of Elliptic and Hyperelliptic Curve Cryptography, Chapman & Hall/
CRC, 2006, pp. 267–302. Ch. 13.
Please cite this article in press as: K. Järvinen, J. Skyttä, Fast point mul
cess. Microsyst. (2008), doi:10.1016/j.micpro.2008.08.002
[30] J. López, R. Dahab, Improved algorithms for elliptic curve arithmetic in GF(2n),
in: Selected Areas in Cryptography, SAC’98, Lecture Notes in Computer Science,
vol. 1556, Springer, 1998, pp. 201–212.

[31] E. Al-Daoud, R. Mahmod, M. Rushdan, A. Kilicman, A new addition formula for
elliptic curves over GF(2n), IEEE Trans. Comput. 51 (8) (2002) 972–975.

[32] T. Itoh, S. Tsujii, A fast algorithm for computing multiplicative inverses in
GF(2m) using normal bases, Inform. Comput. 78 (3) (1988) 171–177.

[33] J.A. Solinas, Efficient arithmetic on Koblitz curves, Des. Codes Cryptogr. 19 (2–
3) (2000) 195–249.

[34] T. Lange, A note on López-Dahab coordinates, Cryptology ePrint Archive,
Report 2004/323, <http://eprint.iacr.org/>, 2004.

[35] G. Meurice de Dormale, P. Bulens, J.-J. Quisquater, Collision search for elliptic
curve discrete logarithm over GF(2m) with FPGA, in: Cryptographic Hardware
and Embedded Systems, CHES 2007, Lecture Notes in Computer Science, vol.
4727, Springer, 2007, pp. 378–393.

[36] M.A. Hasan, Look-up table-based large finite field multiplication in memory
constrained cryptosystems, IEEE Trans. Comput. 49 (7) (2000) 749–758.

[37] J. Lutz, High performance elliptic curve cryptographic co-processor, Master’s
Thesis, University of Waterloo, 2003.

[38] C.C. Wang, T.K. Troung, H.M. Shao, L.J. Deutsch, J.K. Omura, I.S. Reed, VLSI
architectures for computing multiplications and inverses in GF(2m), IEEE
Trans. Comput. 34 (8) (1985) 709–717.

[39] K. Järvinen, J. Forsten, J. Skyttä, Efficient circuitry for computing s-adic non-
adjacent form, in: Proceedings of the IEEE International Conference
Electronics, Circuits and Systems, ICECS 2006, Nice, France, 2006, pp. 232–235.

[40] B.B. Brumley, K. Järvinen, Koblitz curves and integer equivalents of Frobenius
expansions, in: Selected Areas in Cryptography, SAC 2007, Lecture Notes in
Computer Science, vol. 4876, Springer, 2007, pp. 126–137.

[41] Altera, Stratix II Device Handbook, vol. 1–2, ver.4.1, <http://www.altera.com/
literature/hb/stx2/stratix2_handbook.pdf>, April 2006.

[42] V.S. Dimitrov, K.U. Järvinen, M.J. Jacobson, W.F. Chan, Z. Huang, Provably
sublinear point multiplication on Koblitz curves and its hardware
implementation, IEEE Trans. Comput., in press, doi:10.1109/TC.2008.65.

Kimmo Järvinen was born in Turku, Finland, in 1979.
He received M.Sc. (Tech.) in Electrical Engineering
degree from the Helsinki University of Technology
(TKK) in 2003. He has been with the Signal Processing
Laboratory at TKK since 2002 and in the Graduate
School in Electronics, Telecommunications and Auto-
mation (GETA) since 2004. He is currently pursuing
D.Sc. (Tech.) degree. His research interests include
hardware realization of cryptographic algorithms,
secret-key and public-key cryptographic algorithms,
especially elliptic curve cryptography, and FPGAs.
Jorma Skyttä was born in Helsinki, Finland, in 1957. He

received M.Sc. (Tech.), Lic. Tech., and D.Sc. (Tech.)
degrees from the Helsinki University of Technology
(TKK) in 1981, 1984, and 1985, respectively. He has
been with the Signal Processing Laboratory at TKK since
1989 as Associate Professor and Professor since 1998.
His research interest includes realization of digital
computation, especially digital signal processing appli-
cations and implementation of cryptographic systems
utilizing FPGAs, and FPGA-based computational
architectures.
tiplication on Koblitz curves: Parallelization method ..., Micropro-

http://eprint.iacr.org/
http://www.altera.com/literature/hb/stx2/stratix2_handbook.pdf
http://www.altera.com/literature/hb/stx2/stratix2_handbook.pdf
http://dx.doi.org/10.1109/TC.2008.65

	pub_6.pdf
	Fast point multiplication on Koblitz curves: Parallelization method and implementations
	Introduction
	Preliminaries
	Point multiplication
	Point operations
	Finite field arithmetic
	Koblitz curves

	Description of the method
	Discussion

	Implementations
	Field multipliers
	Conversion to affine coordinates
	Latency
	Discussion

	Results
	Discussion
	Comparisons

	Conclusions and future work
	References

