
Kimmo U. Järvinen and Jorma O. Skyttä, HighSpeed Elliptic Curve Cryptography
Accelerator for Koblitz Curves, in Proceedings of the 16th IEEE Symposium on
FieldProgrammable Custom Computing Machines, FCCM 2008, Stanford,
California, USA, Apr. 1415, 2008, in press, 10 pages.

© 2008 IEEE

Reprinted with permission.

This material is posted here with permission of the IEEE. Such permission of the IEEE
does not in any way imply IEEE endorsement of any of Helsinki University of
Technology's products or services. Internal or personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution must be
obtained from the IEEE by writing to pubspermissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

mailto:pubs-permissions@ieee.org

High-Speed Elliptic Curve Cryptography Accelerator for Koblitz Curves

Kimmo U. Järvinen and Jorma O. Skyttä

Helsinki University of Technology
Department of Signal Processing and Acoustics

Otakaari 5A, FIN-02150 Espoo, Finland
E-mail: {kimmo.jarvinen, jorma.skytta}@tkk.fi

Abstract

We present an FPGA-based accelerator for elliptic curve
cryptography on a Koblitz curve targeting for applications
requiring very high speed. The accelerator supports fast
computation of point multiplication by using window meth-
ods as well as multiple point multiplications with joint
sparse form representations. Optimized operation-specific
processing units are used in order to improve performance.
Throughput is increased by pipelining operations. The ac-
celerator was implemented in an Altera Stratix II FPGA and
it computes point multiplication on average in 16.36 μs and
achieves a maximum of 161,290 operations per second. A
3-term multiple point multiplication requires 35.06 μs with
a maximum of 60,603 operations in second.

1 Introduction

Elliptic curve cryptography has been an active area of
research since 1985 when Koblitz [18] and Miller [23] in-
dependently suggested using elliptic curves for public-key
cryptography. Because elliptic curve cryptography offers
the same level of security than, for example, RSA with
considerably shorter keys, it has replaced traditional public-
key cryptosystems, especially, in environments where short
keys are important. Public-key cryptosystems are com-
putationally demanding and, hence, the fact that elliptic
curve cryptography has been shown to be faster than tra-
ditional public-key cryptosystems (see [11], for example) is
of great importance. Speed can be further increased by us-
ing a special class of elliptic curves referred to as Koblitz
curves [19]. These curves are included in many standards;
see [6, 24], for example.

We discuss FPGA-based implementation of elliptic
curve cryptography which has attained considerable inter-

This work was supported in part by the project “Packet Level Authen-
tication” funded by TEKES.

est in both cryptography and FPGA communities. The rea-
son for this interest is that public-key cryptosystems are
computationally demanding which often yields a need for
hardware acceleration. FPGAs are feasible alternatives for
cryptographic implementations because of the combination
of fast performance and flexibility [27]. Furthermore, FP-
GAs allow optimizing designs for certain fixed parameters
because parameter flexibility can be achieved through re-
programmability. This gives a major advantage over ASIC-
based implementations where such optimizations are usu-
ally out of reach. A comprehensive survey of implementing
elliptic curve cryptography is given in [22].

The primary application for our accelerator is the packet
level authentication (PLA) communication scheme [5]
where IP packets are signed and verified by using crypto-
graphic signatures. Because verification is performed from
node to node [5], computational requirements are enor-
mous. Hence, we use Koblitz curves in order to maximize
performance. Previously FPGA-based implementations us-
ing Koblitz curves have been presented in [9, 15–17, 21, 25]
and they are reviewed in Sec. 2.

Traditionally papers discussing elliptic curve cryptogra-
phy in FPGAs have concentrated solely on minimizing the
computation time of a single elliptic curve point multiplica-
tion, the fundamental operation of elliptic curve cryptosys-
tems. The growth in available logic resources in FPGAs has
enabled using large amounts of parallelism. However, the
problem is that elliptic curve point multiplication is hard to
parallelize because of its sequential nature. Although par-
allelism can be used in lower hierarchy levels, using large
amounts of parallelism usually leads to poor latency-area
products [17]. In our recent work, we showed how relaxing
the computation time constraints slightly results in major
enhancements in throughput (operations per second), be-
cause more parallel processing units fit into an FPGA [15].

Our new architecture combines several architectures
from our previous works, [14–17], in a novel way and pro-
vides both short computation times and high throughputs.
Hence, the main contribution of our paper is in the way

how dedicated processing units are used on the top level to
provide fast performance, not in the processing units them-
selves because they have been presented in our earlier pub-
lications. The key idea is to use specialized processing units
for different parts of algorithms and increase throughput
by pipelining their computation. The architecture supports
computations of sums of up to three point multiplications
which are commonly required in many elliptic curve cryp-
tosystems and utilizes window algorithms with precompu-
tations in order to increase speed. High performance and
area efficiency are achieved for these operations by effi-
ciently exploiting their common structure. To the best of
our knowledge, our accelerator outperforms all previously
published implementations.

The remainder of the paper is organized as follows. Re-
lated work is reviewed in Sec. 2. Preliminaries of ellip-
tic curve cryptography and algorithms implemented by the
accelerator are introduced in Sec. 3. Sec. 4 describes the
accelerator architecture in detail and an analysis and opti-
mizations are presented in Sec 5. Results are presented and
compared to existing work in Sec. 6. We end with conclu-
sions and discussion on future work in Sec. 7.

2 Related Work

The first FPGA-based implementation using Koblitz
curves was presented in 2000 by Okada et al. in [25], where
one point multiplication was shown to require 45.6 ms on a
standardized curve NIST K-163 [24] with an Altera Flex
10K FPGA. They concluded that Koblitz curves are ap-
proximately twice as fast as general curves. In 2004, Lutz
and Hasan [21] presented an implementation which com-
putes point multiplication in 75 μs on NIST K-163 in a Xil-
inx Virtex-E FPGA. Neither of the two designs includes
a circuitry for conversions that are mandatory for Koblitz
curves (see Sec. 3.3). In 2006, Dimitrov et al. [9] pro-
posed a double-base expansion which can be used for in-
creasing the speed of Koblitz curve computations and pre-
sented FPGA implementations for both elliptic curve point
multiplication and conversion. Elliptic curve point multipli-
cation was shown to require 35.75 μs on NIST K-163 with
a Xilinx Virtex-II.

Our recent work for Koblitz curves in FPGAs consists
of [14–17]. An efficient circuitry for computing the conver-
sions was presented in [14]. It was shown in [15] that up
to 166,000 signature verifications in the PLA can be com-
puted using a single Stratix II FPGA with parallel process-
ing. More general parallelization studies were presented
in [17] and they resulted in an implementation that com-
putes point multiplication in only 25.81 μs. Recently, we
showed that even shorter computation time of only 4.91 μs
can be achievable on NIST K-163 with interleaved opera-
tions [16].

3 Preliminaries

3.1 Finite Fields

Elliptic curves defined over finite fields Fq are used in
cryptography and only curves over binary fields, where
q = 2m, with polynomial basis are considered in this pa-
per. Polynomial bases are commonly used in elliptic curve
cryptosystems because they provide fast performance on
both software and hardware. Another commonly used basis,
normal basis, provides very efficient squaring but multipli-
cation is more complicated. We base our selection on our
recent study which favored polynomial basis [16].

Elements of F2m with polynomial basis are represented
as binary polynomials with degrees less than m as a(x) =∑m−1

i=0 aix
i. Arithmetic operations in F2m are computed

modulo an irreducible polynomial1 with a degree m. Be-
cause sparse polynomials offer considerable computational
advantages, trinomials (three nonzero terms) or pentanomi-
als (five nonzero terms) are used in practice. The curve,
NIST K-163, considered in this paper is defined over F2163

with the pentanomial p(x) = x163 +x7 +x6 +x3 +1 [24].
Addition, a(x) + b(x), in F2m is a bitwise exclusive-or

(XOR). Multiplication, a(x)b(x), is more involved and it
consists of two steps: ordinary multiplication of polynomi-
als and reduction modulo p(x). If both multiplicands are
the same, the operation is called squaring, a2(x). Squaring
is cheaper than multiplication because the multiplication of
polynomials is performed simply by adding zeros to the bit
vector. Reduction modulo p(x) can be performed with a
small number of XORs if p(x) is sparse and fixed, i.e. the
same p(x) is always used, which is the case in this paper. In-
version, a−1(x), is an operation which finds b(x) such that
a(x)b(x) = 1 when a(x) is given. Inversion is the most
complex operation and it can be computed either with the
Extended Euclidean Algorithm or Fermat’s Little Theorem
that gives a−1(x) = a2m−2(x).

Multiplication has the most crucial effect on perfor-
mance of an elliptic curve cryptosystem. A digit-serial mul-
tiplier computes D bits of the output in one cycle resulting
in a total latency of �m/D� cycles. We use hardware modi-
fications of the multiplier described in [12]. Instead of using
precomputed look-up tables as in [12], our multiplier com-
putes everything on-the-fly similarly as in [16, 21].

3.2 Elliptic Curve Point Multiplication

Let E be an elliptic curve defined over a finite field Fq.
Points on E form an additive Abelian group, E(Fq), to-
gether with a point called the point at infinity, O, which

1A polynomial, f(x) ∈ F[x], with a positive degree is irreducible over
F if it cannot be presented as a product of two polynomials in F[x] with
positive degrees.

acts as a zero element. The group operation is called point
addition.

Elliptic curve point multiplication is defined by

Q = kP = P + P + . . . + P︸ ︷︷ ︸
k times

(1)

where k is a positive integer and P,Q ∈ E(Fq). The secu-
rity of elliptic curve cryptosystems is based on the assump-
tion that it is computationally infeasible to find k if P and
Q are known if E is chosen carefully.

Two basic operations are used in computing (1): point
addition and point doubling. Point addition refers to the
operation P3 = P1 + P2 where Pi ∈ E(Fq) so that P1 �=
P2. Point doubling is the operation P3 = P1 + P1 = 2P1.
Point subtraction is simply P3 = P1+(−P2) where−P2 =
(x2, x2 + y2) for P2 = (x2, y2) in E(F2m).

Arguably, the simplest algorithm for computing (1) is the
double-and-add algorithm (binary algorithm). The algo-
rithm uses k given with binary expansion as k =

∑�−1
i=0 ki2i

where ki ∈ {0, 1} and � ≈ �log2 q�. The algorithm oper-
ates on the bits of k sequentially starting either from the lsb
or the msb of k. Each bit results in a point doubling whereas
a point addition is needed only if ki = 1. The number of
nonzeros in a representation of k is called Hamming weight
and denoted by H(k). Because H(k) ≈ �/2, the double-
and-add algorithm requires � point doublings and, on aver-
age, �/2 point additions.

If points are represented traditionally with two coordi-
nates as (x, y), both point addition and doubling require an
inversion in F2m . This coordinate system is referred to as
affine coordinates, or A for short. Inversions are expen-
sive and, thus, projective coordinates of the form (X,Y,Z)
are commonly used in practical implementations, because
then point addition and point doubling are computed with
only multiplications, squarings, and additions. However,
because the result point is needed in A, the point must be
converted in the end. In this paper, we use the so-called
López-Dahab coordinates, or LD for short, where a point
(X,Y,Z) represents the affine point [20]

(x, y) = (X/Z, Y/Z2) . (2)

Very efficient point addition formulae exist when P1 is in
LD and P2 is in A [1].The formulae for (X3, Y3, Z3) =
(X1, Y1, Z1) + (x2, y2) are as follows [1]:

A = Y1 + y2Z
2
1 ; B = X1 + x2Z1

C = BZ1; Z3 = C2; D = x2Z3

X3 = A2 + C(A + B2 + aC)

Y3 = (D + X3)(AC + Z3) + (y2 + x2)Z2
3

(3)

where a is a curve paramater; see Sec. 3.3.

3.3 Koblitz Curves

Koblitz curves [19] are a family of elliptic curves defined
over F2m by the following equation:

EK : y2 + xy = x3 + ax2 + 1 (4)

where a ∈ {0, 1}. Koblitz curves are appealing because
they offer considerable computational advantages over gen-
eral curves. These advantages are based on the fact that an
algorithm, similar to double-and-add, can be devised so that
point doublings are replaced by Frobenius endomorphisms.
The Frobenius endomorphism, φ, for a point P = (x, y) is
a map such that

φ : (x, y) �→ (x2, y2) and O �→ O . (5)

Obviously, Frobenius endomorphism is very cheap: only
two or three squarings depending on the coordinate system.

Replacing point doublings with Frobenius endomor-
phisms is not straightforward, but requires manipulations
on k. It stands for all points in EK(F2m) that μφ(P) −
φ2(P) = 2P where μ = (−1)1−a. Thus, φ can be seen as
a complex number, τ , satisfying μτ − τ2 = 2 which gives
τ = (μ +

√−7)/2. Moving from a bit to another in a rep-
resentation of k corresponds to an application of φ if k is
given in a τ -adic representation as k =

∑�−1
i=0 kiτ

i. Hence
in order to utilize fast Frobenius endomorphisms, k must be
converted into a τ -adic representation. [19]

A thorough study of the conversion and efficient con-
version algorithms were presented by Solinas in [26]. The
basic algorithm returns the so-called τ -adic non-adjacent
form (τNAF) where k is represented with the signed-binary
format, i.e. ki ∈ {0,±1}. Henceforth, we denote 1̄ = −1.
The average length of τNAF is the same as the binary length
of k, i.e. �. τNAF has H(k) ≈ �/3 and one of two adjacent
digits is always zero. Because � ≈ m, (1) with k in τNAF
requires on average m/3 point additions or subtractions and
m applications of φ.

3.4 Window Methods

If enough storage space is available, point multiplication
can be sped up with window methods which involve pre-
computations with P and process w bits of k at a time. We
consider window methods only on Koblitz curves in order
to keep discussion focused, although analogous algorithms
exist also for general curves.

Solinas presented an algorithm for producing width-w
τNAF in [26]. Instead of using that algorithm, we use the
τNAF algorithm which is simpler to implement in hardware
and interpret its results as width-w τNAF by replacing cer-
tain strings of 0, 1, and 1̄’s with window values. The re-
sulting representation has an average weight of H(k) =
�/(w + 1).

We use w = 4 and replace 101̄ by 3, 1̄01 by 3̄, 101 by 5,
1̄01̄ by 5̄, 1̄001̄ by 7, and 1001 by 7̄. For instance, the width-
4 τNAF for the τNAF 101̄010001001 is 3010000007̄, and
H(k) has reduced from 5 to 3. Precomputed points, P3, P5,
and P7, are computed as P3 = φ2(P)− P , etc [26].

PLA signature generation requires computation of a
point multiplication [3] which is computed efficiently with
window methods.

An algorithm for width-w window point multiplication
on Koblitz curves is given in Alg. 1.

3.5 Multiple Point Multiplication

Several algorithms require computation of sums of two
or more elliptic curve point multiplications. A sum of n
elliptic curve point multiplications is called multiple point
multiplication and it is defined by

Q =
n∑

i=1

k(i)P (i) (6)

where k(i)P (i) are point multiplications as defined by (1).
Naturally, (6) can be computed with n applications of (1)

and n − 1 point additions combining them. However, all
n point multiplications can be computed simultaneously
with the so-called Shamir’s trick [10]. Consider the case
n = 2. The integers are represented as a table with k(1)

and k(2) as rows. First, P (1) +P (2) is precomputed. Analo-
gously with the double-and-add algorithm, point multiplica-
tion proceeds column by column so that P (1) is added if the
column is 1

0 , the point P (2) if 0
1 , and the precomputed point

if 1
1 . Generalization of Shamir’s trick for n point multiplica-

tions is straightforward but requires more precomputations.
Because zero columns do not require point additions, it is

possible to reduce computational cost by representing k(i)

with signed-binary representations and choosing the repre-
sentations which maximize the number of zero columns. A
representation maximizing the number of zero columns is

Algorithm 1 Window algorithm
Input: Integer k, point P
Output: Result point Q = kP
〈k�−1k�−2 . . . k1k0〉 ← w-τNAF(k)
P1, P3, . . . , P2w−1−1 ← Precompute(P)
Q← O
for i = �− 1 down to 0 do

Q← φ(Q)
if ki �= 0 then

Q← Q + sign(ki)P|ki|
end if

end for
Q← xy(Q)

Table 1. Average Hamming weights H(k) for
n 163-bit integers with different representa-
tions

n Binary τNAF Width-4 τNAF τJSF
1 81.50 54.33 32.60 54.33
2 122.25 90.56 — 81.50
3 142.63 114.70 — 96.13

called τ -adic joint sparse form (τJSF). An algorithm for
computing τJSF for n = 2 was presented in [8] and it was
generalized for n > 2 in [4]. Table 1 lists Hamming weights
for representations relevant in this paper. They were com-
puted from probabilities given in [4]. PLA signature verifi-
cation requires a 3-term point multiplication [3].

An algorithm for n-term multiple point multiplication on
Koblitz curves is given in Alg. 2.

4 Architecture of the Accelerator

The objective for the accelerator is to provide very high
throughput while maintaining low computation times for
single operations. Because the motivation for designing
the accelerator arises from the PLA, it must support both
1-term and 3-term (multiple) point multiplications which
are used in signing and verifying packets, respectively. 2-
term point multiplications are naturally supported too be-
cause they are a special case of 3-term point multiplications
where k(3) = 0. Algs. 1 and 2 share a common structure,
i.e. both require conversions for integer(s) and precomputa-
tions, have the same for-loop, and convert the point Q back
to A in the end. We utilize this common structure in imple-
menting the algorithms and use operation-specific process-
ing units in order to increase efficiency.

A simplified top-level view of the accelerator is pre-
sented in Fig. 1. The accelerator operates as follows. First,

Algorithm 2 Multiple point multiplication algorithm

Input: n integers k(1), . . . , k(n), n points P (1), . . . , P (n)

Output: Result point Q =
∑n

i=1 k(i)P (i)

〈k�−1k�−2 . . . k1k0〉 ← τJSF(k(1), . . . , k(n))
P1, P2, . . . , P 3n−1

2
← Precompute(P (1), . . . , P (n))

Q← O
for i = �− 1 down to 0 do

Q← φ(Q)
if ki �= 0 then

Q← Q + sign(ki)P|ki|
end if

end for
Q← xy(Q)

FIFO Buffer

Regs

1

1

22 1

P1...13 P|ki|
Main

Processor

1

Q = (x, y)

Postprocessor

1

(X, Y, Z)

Control

1

P (i)

k(i)

datain

2nd stage 3rd stage

dataout

Preprocessor

1

1st stage

τNAF/JSF
Converter

2

(ki, fi)

|ki|
sign(ki) fi

Figure 1. Top-level view of the accelerator. The accelerator includes four main components:
τNAF/JSF converter, preprocessor, main processor, and postprocessor. The accelerator uses two
clocks which are differentiated with a number in the figure. Operations form a pipeline with three
stages as depicted in the bottom of the figure.

integer(s) k(i) and point(s) P (i) are sent to the τNAF/JSF
converter and preprocessor, respectively. The converter
converts integer(s) to either width-4 τNAF or τJSF and
saves the result into a buffer. Simultaneously, the prepro-
cessor performs precomputations and stores points into the
registers. When both converter and preprocessor are ready,
the main processor executes the for-loop of Algs. 1 and 2.
The control logic selects one of the precomputed points ac-
cording to the current ki and the main processor adds or
subtracts it to or from a temporary value Q = (X,Y,Z)
and performs the following fi Frobenius endomorphisms.
When the for-loop has been executed, the control logic en-
ables the postprocessor which computes the affine represen-
tation of the point Q.

The accelerator comprises a three-stage pipeline and is
capable of processing three different (multiple) point mul-
tiplications at a time. The converter and the preprocessor
form the first stage, the main processor the second stage,
and the postprocessor is the third stage as depicted in Fig. 1.

4.1 τNAF/JSF Converter

The τNAF/JSF converter consists of five subcomponents
as depicted in Fig. 2. It supports computation of three rep-
resentations: width-4 τNAF, 2-term τJSF, and 3-term τJSF.
The 2-term and 3-term τJSF conversions are essentially the
same operation, but k(3) is set to 0 in the 2-term τJSF.

The converter first converts all integers into τNAF si-
multaneously with three τNAF converters which are im-
plemented as presented in [14]. In the width-4 τNAF and
2-term τJSF conversions one or two τNAF converters are
idle. Parallel processing was used in order to minimize to-
tal computation time.

The converters output τNAF representations one signed-

τNAF

τNAF

τNAF

Width-4

τJSF
Coder

k(1)

k(2)

k(3)

τNAF

Figure 2. τNAF/JSF converter.

bit per clock cycle starting from the lsb. The signed-bits are
fed into three 4-signed-bit shift registers which are used in
producing width-4 τNAF and τJSF representations. The
conversion to width-4 τNAF from τNAF is trivial. The
values of the shift registers are simply replaced by width-
4 values as discussed in Sec. 3.4. The conversion to τJSF
is slightly more complex. The algorithm from [4] is imple-
mented so that the values of the shift registers are input into
a circuit which determines whether the values are reducible
or not. If they are and there are no all-zero columns, then
the shift registers are updated with reduced values.

Finally, a width-4 τNAF or τJSF representation is coded
into a form that is easily interpreted by the main proces-
sor. The code represents the original representation requir-
ing approximately m symbols with H(k) symbols. The
code uses symbols (ki, fi) where ki is a nonzero and fi is
the number of following zeros plus one. However for the
lsb symbol, fi is only the number of zeros. For instance,
1̄0030005̄00 is coded as (1̄, 3)(3, 4)(5̄, 2). When used start-
ing from the msb symbol, each symbol interprets so that ki

gives the precomputed point used in point addition and fi

gives the number of Frobenius endomorphisms following
that point addition. Because the τNAF/JSF converter out-
puts the code starting from the lsb but the main processor
operates starting from the msb, the code is read from the
buffer in an inverter order.

4.2 Preprocessor

The preprocessor is based on the architecture presented
in [17], but it uses polynomial basis instead of normal basis.
Fig. 3 depicts the preprocessor. The storage RAM is used
for storing temporary variables during precomputations and
it is implemented with embedded memory. The prepro-
cessor is controlled by a finite state machine and hand-
optimized microcode which is stored in embedded memory.

Points that are precomputed in the preprocessor are listed
in Table 2. The points are represented in A so that (3)
can be used in the for-loop. Precomputatations utilize uni-
fied point addition and subtraction formulae which compute
both P1 +P2 and P1−P2 with only one inversion [15]. The
number of inversions are further reduced by using the so-
called Montgomery’s trick which trades inversions to multi-
plications (see [15], for example). The precomputations for
n = 3 are computed with Alg. 1 from [15]. If n = 2, only
two points need to be precomputed.

Storage
RAM

Instruction
Decoder

datain

dataout

XOR MULT SQR

instr

Figure 3. Preprocessor.

4.3 Main Processor

The main processor implements the for-loop of Algs. 1
and 2. This for-loop dominates the computational require-
ments and, hence, its efficient computation is necessary.
The sequential nature of the loop forbids computing point
operations in parallel. Parallelism can be used in Frobenius
endomorphisms (squarings for all coordinates computed in
parallel) and point additions. However, data dependencies
usually prevent efficient use of parallelism in point addi-
tions and cause poor latency-area products. For example,
(3) has critical paths of 8, 5, and 4 multiplications with one,
two, and three multipliers, respectively, and further reduc-
tions are not possible [17]. Hence, three multipliers must

be used for halving the number of multiplications on the
critical path thus degrading latency-area product by 50 %.

The following method circumvents this problem in the
case of Koblitz curves and point additions using (3). De-
tails of the method are available in an at the moment un-
published article [16]. The method computes consecutive
point additions and Frobenius endomorphisms efficiently
with parallel field multipliers by interleaving successive op-
erations [16]. The key observation is that the computation
of Z3 in (3) does not require Y1. Hence, the Z coordinate
of the next point addition can be computed simultaneously
with the Y coordinate of the previous point addition. This
allows reducing the effective critical path to only 2 multipli-
cations with four multipliers without degrading the latency-
area product [16].

The method redefines (3) so that the computation is
performed with eight subcomputations each including one
multiplication. They are defined as follows [16]:

Z0 : E = x2Z1 (7)

Z1 :

⎧⎪⎨
⎪⎩

C = Z1(E + X1)
F = aC + (E + X1)2

Z3 = C2

(8)

X0 : G = y2Z
2
1 (9)

X1 : X3 = C(F + G + Y1) + (G + Y1)2 (10)

Y0 : H = C(G + Y1) + Z3 (11)

Y1 : D = x2Z3 (12)

Y2 : J = Z2
3 (x2 + y2) (13)

Y3 : Y3 = H(D + X3) + J . (14)

The subcomputations allow successive point additions with
effective critical paths of 4, 3, or 2 multiplications per
point addition with two, three, or four multipliers, respec-
tively [16]. We use four multipliers so that one of them is
devoted for the Z coordinate computations, (7)–(8), one for

Table 2. Precomputed points
Point Operation Point Operation
Window, w = 4
P1 P P5 φ2(P) + P
P3 φ2(P)− P P7 −φ3(P)− P
Multiple, n = 2, 3
P1 P (1) P8 P3 + P2

†

P2 P (2) P9 P3 − P2
†

P3 P (3) † P10 P8 + P1
†

P4 P2 + P1 P11 P8 − P1
†

P5 P2 − P1 P12 P9 + P1
†

P6 P3 + P1
† P13 P9 − P1

†

P7 P3 − P1
†

† Computed only if n = 3

Z0 Z1 Z0 Z1

X0 X1

Z0 Z1

X0 X1 X0 X1

Y0 Y2 Y0 Y2

Y1 Y3 Y1 Y3Y1 Y3

Y0 Y2

X0 X1

Z0 Z1

Y0 Y2

Y1 Y3

2:
1:

3:
4:

Figure 4. Computation schedule of the main
processor [16]. Operations connected with a
line belong to the same point addition.

the X coordinate computations, (9)–(10), and two for the
Y coordinate computations, (11)–(14). The computation
schedule, given in Fig. 4, clearly shows that the effective
critical path is 2 multiplications per point addition.

Because each multiplier is used for only two subcom-
putations, specialized processing units optimized for these
subcomputations were designed. The processing units con-
sist of a multiplier and several adders and squarers as shown
in Fig. 5. The processing units compute the subcomputa-
tions so that their latency is the latency of multiplication
plus one clock cycle. When a result coordinate is ready
(after Z1, X1, and Y2/3), a squarer is used for computing
Frobenius endomorphisms for that coordinate. Each Frobe-
nius endomorphism requires one clock cycle. This architec-
ture is presented in more detail in [16].

The main processor does not differentiate between
width-4 τNAF, 2-term τJSF, and 3-term τJSF computa-
tions. It simply adds or subtracts a precomputed point se-
lected by the control logic to or from Q and performs the
following fi Frobenius endomorphisms.

4.4 Postprocessor

The postprocessor maps the output of the main processor
from LD to A, i.e. it computes (2), the last line of Algs. 1
and 2. The computation requires one inversion, one squar-
ing, and two multiplications, of which the inversion is the
most complex operation by far. As discussed in Sec. 3.1, in-
versions can be computed with the Extended Euclidean Al-
gorithm or Fermat’s Little Theorem. We selected Fermat’s
Little Theorem as suggested by Itoh and Tsujii [13] because
it uses successive squarings and multiplications which al-
lows reusing the same hardware for inversion and other op-
erations required by (2). The architecture of the postproces-
sor was presented in [16] and it is depicted in Fig. 6.

The computation of (2) requires 11 multiplications and
163 squarings in F2163 because an inversion in F2m is com-
puted with log2(m− 1)�+ H(m− 1)− 1 multiplications
and m− 1 squarings [13].

out2

MULT
SQRin0

in2

XOR SQRin1 out0
XOR

out1

Z
SQR

(a)

out0

in3

s

0

1

in0

in1

in2

XOR

XOR

SQR

MULT

SQR

XOR

SQR
X

(b)

in1
out0

in3

in2

s

0

1

in0

in4

out1

XOR

SQR

MULT

MULT

XOR

XOR SQR
Y

(c)

Figure 5. Processing units for (a) Z0 and Z1,
(b) X0 and X1, and (c) Y0, Y1, Y2, and Y3.

X
Y

MULT

Z

0

3

1

2

0

1

s1

s0 s2

0

1

s3

x
y

0

1

s4

REG

SQR

s5

Figure 6. Postprocessor.

5 Analysis and Optimizations

The latencies of operations needed in Algs. 1 and 2 are
listed in Table 3. The latencies of precomputations, fop-
loop, and coordinate conversion depend on the latency of
multiplication in F2m denoted by M . Digit-serial multipli-
ers are used as discussed in Sec. 3.1 and their latencies are
given by

M = �m/D�+ 1 . (15)

The digit size, D, defines both the latency and the size of a
multiplier. Because of the round up in (15), only certain val-
ues of D are feasible, and other values only add area without
decreasing latency. Different D can be used for multipliers
in different parts of the accelerator with the exception that
all multipliers of the main processor must have the same D.

The latencies of the preprocessor, the main processor,
and the postprocessor are plotted as functions of D in
Fig. 7. The figure also plots the normalized latency of the
τNAF/JSF converter (185/85·499 ≈ 1086) assuming clock
frequencies of 85 MHz and 185 MHz for the converter and
the rest of the accelerator, respectively; see Fig. 1. If fast
multipliers (large D) are used, the constant latency of the
τNAF/JSF converter becomes a bottleneck. In order to
avoid this, we optimized the accelerator for 1-term point
multiplication by choosing D so that τNAF/JSF conver-
sions are computed slightly faster than the other operations
of window point multiplications. Hence, we selected D = 4
for the preprocessor, D = 13 for the main processor, and
D = 3 for the postprocessor. The postprocessor was se-
lected to be faster than the τNAF/JSF converter in order to
ensure that inversions do not become the bottleneck.

6 Results and Comparisons

The architecture was described in VHDL and synthe-
sized for Stratix II EP2S180F1020C3 [2] with Quartus II
6.0 SP1 design software. The synthesis was constrained
by clocks of 85 MHz and 185 MHz for the τNAF/JSF con-
verter and the rest of the accelerator, respectively, and the
constraints were met.

Table 3. Latencies
Operation Latency (clock cycles)
Conversion, w-τNAF 499
Conversion, τJSF 499
Precomputation, w = 4 18M + 314
Precomputation, n = 2 13M + 338
Precomputation, n = 3 46M + 665
For-loop 2H(k)(M + 1) + � + 6
Affine coordinates 11M + 175

Table 4. Area consumptions
Component ALUTs Regs. ALMs M4Ks
Converter 4,906 2,862 2,862 7
Preprocessor 2,037 1,546 1,332 14
Main processor 16,642 10,045 10,930 0
Postprocessor 2,874 2,336 1,953 0
Total 26,616 16,966 16,930 21

Table 4 presents the area consumption of the accelerator
and its components as given by the design software. The
main processor expectedly dominates in the area consump-
tion. Notice that the total value is not a sum of compo-
nents because the toplevel includes interface logic and some
ALMs share parts from different components. Stratix II
S180C3 includes 143,520 ALUTs in 71,760 ALMs and 768
M4K memory blocks [2]. Hence, the accelerator occupies
only 23.6 % of the device resources (ALMs) and four paral-
lel accelerators would fit into a Stratix II S180.

Computation times and maximum throughputs are pre-
sented in Table 5. The computation time is the time in which
the accelerator computes a single operation with an average
H(k) when the pipeline is empty, i.e. when no wait delays
occur. In all cases throughput is bounded by the main pro-
cessor. Because four accelerators would fit into a Stratix II
S180, we estimate that throughputs of 645 kops, 283 kops,
and 242 kops are achievable with one device for n = 1,
n = 2, and n = 3, respectively. Notice, however, that these
values are highly approximative because we neglect possi-
ble decreases in maximum clock frequencies that may occur
when place&route becomes more difficult.

Table 6 presents a comparison to other publications. The
τ -adic column indicates whether the implementation in-
cludes a τ -adic converter. Our accelerator is clearly faster
than most published implementations, although compar-
isons are difficult between different FPGAs. However,
Stratix II, Virtex-E, and Virtex-II are roughly at the same
performance levels (see [16], for example). The closest
counterparts of our accelerator are our previous works pre-
sented in [15, 16]. Higher throughput for 3-term point mul-
tiplications is achieved in [15], but our accelerator occupies
only one-fourth of the area compared to [15]. If four par-
allel accelerators were used, our accelerator would achieve

Table 5. Performance with clocks of 85 MHz
and 185 MHz in a Stratix II S180C3

Operation Time (μs) Throughput (ops)
Alg. 1, w = 4 16.36 161,290
Alg. 2, n = 2 24.28 70,773
Alg. 2, n = 3 35.06 60,603

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 19 21 24 28 33 41 55 82163
0

500

1000

1500

2000

2500

3000

3500

4000

Window, w = 4
Multiple, n = 2
Multiple, n = 3
τNAF/JSF

L
at

en
cy

Digit-size, D

(a)

3 4 5 6 7 8 9 10 11 12 13 14 15 17 19 21 24 28 33 41 55 82163
0

500

1000

1500

2000

2500

3000

3500

4000

Window, w = 4
Multiple, n = 2
Multiple, n = 3
τNAF/JSF

L
at

en
cy

Digit-size, D

(b)

1 2 3 4 5 6 7 8 9 10 11
0

500

1000

1500

2000

2500

3000

3500

4000

LD �→ A
τNAF/JSF

L
at

en
cy

Digit-size, D

(c)

Figure 7. Latencies as functions of the multiplier digit size, D, for (a) the preprocessor, (b) the main
processor, and (c) the postprocessor. Values of D = 4, D = 13, and D = 3 were selected for the
implementation and the corresponding latencies are circled in the figure.

Table 6. Comparison of published FPGA-based implementations using Koblitz curve, NIST K-163
Ref. n Device Area τ -adic Time (μs) Throughput (ops)
Dimitrov [9] 1 Virtex-II 6,494 slices, 6 B-RAMs Yes 35.75 27,972
Järvinen [15] 3 Stratix II 67,467 ALMs, 240 M512s, 305 M4Ks Yes 114.2 166,000
Järvinen [16] 1 Stratix II 26,148 ALMs No 4.91 203,670
Järvinen [17] 1 Stratix II 13,472 ALMs, several M512s and M4Ks Yes 25.81 49,318
Lutz [21] 1 Virtex-E 10,017 LUTs, 1,930 FFs No 75 13,333
Okada [25] 1 Flex 10K —— No 45600 22
This work 1 Stratix II 16,930 ALMs, 21 M4Ks Yes 16.36 161,290
This work 3 Stratix II 16,930 ALMs, 21 M4Ks Yes 35.06 60,603

242,000 ops which outperforms [15] by 46 %. Comparisons
to [16] are unnecessary because our accelerator includes the
same architecture as a subcomponent (the main processor).

The superiority of Koblitz curves over general curves is
evident. The fastest general curve implementation using the
same field size (m = 163) was recently presented in [7]
and it achieves computation time 19.55 μs and throughput
51,120 ops in a Virtex-4 FPGA. Both of these values are
inferior to our accelerator, even though they were achieved
in a newer and faster FPGA.

7 Conclusions and Future Work

We described an FPGA-based accelerator for elliptic
curve operations on NIST K-163 Koblitz curve. The ac-
celerator utilizes window methods for point multiplications
and supports computation of sums of up to three point mul-
tiplications. The accelerator is capable of computing up
to 161,290 ops while still maintaining short computation
times. This was achieved because the accelerator uses ded-
icated processing units for different parts of the algorithms
and supports pipelined computation of up to three simul-
taneous (multiple) point multiplications. The use of dedi-
cated processing units for precomputations (the preproces-

sor), for-loop (the main processor), and the coordinate con-
version (the postprocessor) was shown to offer considerable
performance increases with only minor area costs. An im-
portant feature that improved speed-area efficiency was the
use of six small multipliers instead of one large multiplier
as in most publications. To the best of our knowledge, the
accelerator outperforms all previously published implemen-
tations in computation time and throughput. As expected,
Koblitz curves proved to be faster than general curves.

The results demonstrate that modern FPGAs contain
enough resources and are fast enough to implement very
high performance public-key cryptosystems. Even very de-
manding communication schemes, such as the PLA, could
be feasible in practice if they were accelerated with FPGAs.

We will continue the development of our accelerator. An
obvious problem is the fact that τ -adic conversions easily
become a bottleneck, as stated already in [16]. Other parts
of the circuitry can be made faster at the expense of using
more area, but the converter architecture of [14] does not
scale up easily. Hence, we are currently searching for both
faster and more scalable architectures for the τ -adic conver-
sion. This paper discussed only one specific Koblitz curve,
but standards include Koblitz curves over other field sizes as
well; see [6,24], for example. The main processor architec-

ture scales up easily to larger field sizes [16] and, hence, it
is likely that our accelerator performs well also with larger
field sizes. Nevertheless, this will be studied in the future.
In this paper, we focused on optimizing a single accelera-
tor unit, but if several accelerators are operating in parallel,
it is likely that higher throughput is achieved by optimiz-
ing the architecture similarly as in [15]. Some performance
increases could also occur by using combings, larger win-
dows, e.g. w = 5, or by introducing more precomputations
when n = 2, i.e. by using width-w τNAFs for producing a
variation of τJSF.

References

[1] E. Al-Daoud, R. Mahmod, M. Rushdan, and A. Kilicman. A
new addition formula for elliptic curves over GF (2n). IEEE
Trans. Comput., 51(8):972–975, Aug. 2002.

[2] Altera. Stratix II device handbook. Datasheet, vol. 1–2, ver.
4.1, Apr. 2006.

[3] B. B. Brumley. Efficient three-term simultaneous elliptic
scalar multiplication with applications. In Proc. 11th Nordic
Workshop Secure IT Systems, NordSec 2006, pages 105–
116, Linköping, Sweden, Oct. 19–20, 2006.

[4] B. B. Brumley. Left-to-right signed-bit τ -adic representa-
tions of n integers. In Proc. 8th Int. Conf. Information
and Communications Security, ICICS 2006, volume 4307
of Lecture Notes in Comput. Sci., pages 469–478. Springer,
2006.

[5] C. Candolin, J. Lundberg, and H. Kari. Packet level authen-
tication in military networks. In Proc. 6th Australian In-
formation Warfare & IT Security Conf., Geelong, Australia,
Nov. 2005.

[6] Certicom Research. SEC 2: Recommended elliptic curve
domain parameters. Standards for Efficient Cryptography,
Sept. 20, 2000.

[7] W. N. Chelton and M. Benaissa. Fast elliptic curve cryptog-
raphy on FPGA. IEEE Trans. VLSI Syst., 16(2):198–205,
Feb. 2008.

[8] M. Ciet, T. Lange, F. Sica, and J.-J. Quisquater. Improved al-
gorithms for efficient arithmetic on elliptic curves using fast
endomorphisms. In Advances in Cryptology, EUROCRYPT
2003, volume 2656 of Lecture Notes in Comput. Sci., pages
388–400. Springer, 2003.

[9] V. S. Dimitrov, K. U. Järvinen, M. J. Jacobson, W. F. Chan,
and Z. Huang. FPGA implementation of point multiplica-
tion on Koblitz curves using Kleinian integers. In Cryp-
tographic Hardware and Embedded Systems, CHES 2006,
volume 4249 of Lecture Notes in Comput. Sci., pages 445–
459. Springer, 2006.

[10] T. ElGamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. IEEE Trans. Inform.
Theory, 31(4):469–472, July 1985.

[11] J. Goodman and A. Chandrakasan. An energy-efficient re-
configurable public-key cryptography processor. IEEE J.
Solid-State Circuits, 36(11):1808–1820, Nov. 2001.

[12] M. A. Hasan. Look-up table-based large finite field multipli-
cation in memory constrained cryptosystems. IEEE Trans.
Comput., 49(7):749–758, July 2000.

[13] T. Itoh and S. Tsujii. A fast algorithm for computing mul-
tiplicative inverses in GF (2m) using normal bases. Inform.
Comput., 78(3):171–177, Sept. 1988.

[14] K. Järvinen, J. Forsten, and J. Skyttä. Efficient circuitry for
computing τ -adic non-adjacent form. In Proc. 13th IEEE
Int. Conf. Electronics, Circuits and Systems, ICECS 2006,
pages 232–235, Nice, France, Dec. 10–13, 2006.

[15] K. Järvinen, J. Forsten, and J. Skyttä. FPGA design of self-
certified signature verification on Koblitz curves. In Cryp-
tographic Hardware and Embedded Systems, CHES 2007,
volume 4727 of Lecture Notes in Comput. Sci., pages 256–
271. Springer, 2007.

[16] K. Järvinen and J. Skyttä. Fast point multiplication on
Koblitz curves: Parallelization method and implementa-
tions. Microproc. Microsyst. submitted.

[17] K. Järvinen and J. Skyttä. On parallelization of high-speed
processors for elliptic curve cryptography. IEEE Trans. VLSI
Syst. in press.

[18] N. Koblitz. Elliptic curve cryptosystems. Math. Comput.,
48:203–209, 1987.

[19] N. Koblitz. CM-curves with good cryptographic proper-
ties. In Advances in Cryptology, CRYPTO ’91, volume 576
of Lecture Notes in Comput. Sci., pages 279–287. Springer,
1991.

[20] J. López and R. Dahab. Improved algorithms for elliptic
curve arithmetic in GF (2n). In Selected Areas in Cryptog-
raphy, SAC’98, volume 1556 of Lecture Notes in Comput.
Sci., pages 201–212. Springer, 1999.

[21] J. Lutz and A. Hasan. High performance FPGA based ellip-
tic curve cryptographic co-processor. In Proc. Int. Conf. In-
formation Technology: Coding and Computing, ITCC 2004,
volume 2, pages 486–492, Las Vegas, NV, USA, Apr. 5–7,
2004.

[22] G. Meurice de Dormale and J.-J. Quisquater. High-speed
hardware implementations of elliptic curve cryptography: A
survey. J. Syst. Architect., 53(2-3):72–84, Feb.-Mar. 2007.

[23] V. Miller. Use of elliptic curves in cryptography. In Ad-
vances in Cryptology, CRYPTO 1985, volume 218 of Lec-
ture Notes in Comput. Sci., pages 417–426. Springer, 1986.

[24] National Institute of Standards and Technology (NIST).
Digital signature standard (DSS). Federal Information Pro-
cessing Standard, FIPS PUB 186-2, Jan. 27, 2000.

[25] S. Okada, N. Torii, K. Itoh, and M. Takenaka. Imple-
mentation of elliptic curve cryptographic coprocessor over
GF (2m) on an FPGA. In Cryptographic Hardware and
Embedded Systems, CHES 2000, volume 1965 of Lecture
Notes in Comput. Sci., pages 25–40. Springer, 2000.

[26] J. A. Solinas. Efficient arithmetic on Koblitz curves. Des.
Codes Cryptography, 19(2–3):195–249, 2000.

[27] T. Wollinger, J. Guajardo, and C. Paar. Security on FPGAs:
State-of-the-art implementations and attacks. ACM Trans.
Embed. Comput. Syst., 3(3):534–574, Aug. 2004.

