
Kimmo Järvinen, Juha Forsten and Jorma Skyttä, Efficient Circuitry for Computing
­adic Non­Adjacent Form, in Proceedings of the 13th IEEE International Conference

on Electronics, Circuits and Systems, ICECS 2006, Nice, France, Dec. 10­13, 2006,
pp. 232­235.

© 2006 IEEE

Reprinted with permission.

This material is posted here with permission of the IEEE. Such permission of the IEEE
does not in any way imply IEEE endorsement of any of Helsinki University of
Technology's products or services. Internal or personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution must be
obtained from the IEEE by writing to pubs­permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

mailto:pubs-permissions@ieee.org

Efficient Circuitry for Computing τ -adic Non-Adjacent Form

Kimmo Järvinen, Juha Forsten and Jorma Skyttä
Helsinki University of Technology, Signal Processing Laboratory

Otakaari 5A, 02150 Espoo, Finland
Email: {Kimmo.Jarvinen, Juha.Forsten, Jorma.Skytta}@tkk.fi

Abstract— Elliptic curve point multiplication kP on an elliptic curve
is required in every elliptic curve cryptosystem. The operation can be
significantly accelerated by using a special type of elliptic curves called
the Koblitz curves and by representing the integer k in τ -adic non-
adjacent form (τNAF). Hardware-friendly modifications of existing τNAF
conversion algorithms are presented and an efficient circuitry for the
τNAF conversion is described with performance characteristics on an
Altera Stratix-II S60C4 FPGA. To the authors’ knowledge, this is the
first published hardware implementation of the τNAF conversion.

I. INTRODUCTION

Koblitz [1] and Miller [2] independently proposed the use of
elliptic curves in cryptography in 1985. Elliptic curve cryptography
(ECC) is a public-key cryptography method which offers a similar
level of security than traditional public-key cryptography methods,
such as RSA, with considerably shorter keys [3]. Hence, ECC has
been studied much in the research community during the recent years.

The computational complexity of ECC computations can be con-
siderably reduced by using a special type of elliptic curves called
the Koblitz curves [4] and the τ -adic non-adjacent form (τNAF)
representation for integers.

ECC, as public-key cryptography in general, is computationally
expensive, and it commonly needs to be accelerated with dedicated
hardware in order to meet the high requirements of modern commu-
nication systems. Hardware acceleration of ECC has been extensively
studied in the community and many efficient accelerator architectures
have been published. However, only few publications have considered
the Koblitz curves and the τNAF method although it is one of the
most efficient methods published so far. Lutz and Hasan [5] described
an implementation for field programmable gate arrays (FPGAs) which
used the τNAF method, but they calculated τNAF conversions with
a C-program not a specific circuitry [6].

This paper considers the binary to τNAF conversion. The conver-
sion algorithm was suggested by Solinas [7]. In addition to the actual
conversion, also a reduction algorithm needs to be used in order
to utilize the full potential of the method. Instead of the original
reduction algorithm [7], an algorithm presented by Lutz in [6] is
considered in this paper. Existing algorithms are modified in order to
guarantee efficient hardware-based implementation and architectures
for the τNAF conversion and reduction are described with analysis on
their performance on FPGAs. To the best of the authors’ knowledge,
hardware-based implementations of the τNAF conversion have not
been previously presented in the literature.

Performance characteristics and resource requirements are pro-
vided for an Altera Stratix-II EP2S60F1020C4 FPGA [8], which was
used for prototyping. Although the prototyping was performed with
FPGAs, VHDL (Very high-speed integrated circuit Hardware De-
scription Language) describing the design is fully portable and could
be used, e.g., for application specific integrated circuits (ASICs), too.

The remainder of the paper is organized as follows. The basics of
ECC and the τNAF conversion are considered in Sec. II. Algorithm
modifications and implementations are described in Sec. III. Finally,
results are presented in Sec. IV and conclusions are drawn in Sec. V.

II. ELLIPTIC CURVES AND τNAF CONVERSION

Elliptic curve point multiplication (ECPM) on an elliptic curve is
the basic operation of any elliptic curve cryptosystem. Let E(F2m)
be an elliptic curve defined over a finite extension field F2m . ECPM
is defined on E(F2m) as follows:

Q = kP = P + P + . . . P︸ ︷︷ ︸
k times

(1)

where Q, P ∈ E(F2m) and k is a large integer. The binary expansion
of k is given by k =

∑�−1
i=0 ki2

i, where ki ∈ {0, 1}. The length of k,
�, satisfies � ≤ m. ECPM can be calculated with the binary method
using consecutive elliptic curve point additions and doublings. A
point doubling, 2P , is performed for every ki and a point addition,
P1 + P2, is performed if ki = 1. The average density of ones in k
is 1/2 and thus (1) requires � point doublings and, on average, �/2
point additions. [3]

The density of non-zero coefficients in k can be reduced to 1/3 by
representing k in non-adjacent form (NAF) by using the signed bit
representation, i.e. ki ∈ {0, 1, 1̄}, where 1̄ = −1 [3]. For example, if
k = 7 = 111b, its NAF is 1001̄NAF. As the name suggests, there are
no adjacent non-zero values in the NAF of k, i.e., |ki|+ |ki+1| ≤ 1.
If k is represented in NAF, only �/3 point additions or subtractions,
P1 ± P2, and � point doublings are required in (1) on average [3].

The computational complexity of a point doubling is smaller than
the complexity of a point addition. Nevertheless, because more point
doublings than point additions are required in computing (1), perfor-
mance can be dramatically increased by replacing point doublings
with less expensive operations. Methods replacing doublings with
cheaper operations include point halving techniques and Frobenius
maps on the Koblitz curves [3]. This paper considers the latter one.

The Koblitz curves are a special type of curves for which the
Frobenius endomorphism can be used for improving the performance
of computing (1). The Koblitz curves are defined over F2 as follows:

Ea : y2 + xy = x3 + ax2 + 1 (2)

where a ∈ {0, 1} [4]. The Frobenius map τ : Ea(F2m) �→ Ea(F2m)
for a point P = (x, y) on Ea(F2m) is defined by

τ(x, y) = (x2, y2), τ(O) = O (3)

where O is the point at infinity [3]. It stands that (τ2+2)P = µτ(P)
for all P ∈ Ea(F2m), where µ = (−1)1−a. Thus, it follows that the
Frobenius map can be considered as a multiplication with a complex
number τ = µ+

√−7
2

. [7]
It can be seen in (3) that only two squarings in F2m are required

in computation of τP . If projective coordinates are used in order
to reduce expensive inversions in F2m , three squarings in F2m are
required. Squarings are cheap to perform, and they are practically
free in hardware if a normal basis is used for F2m . [3]

Point doublings can be replaced by Frobenius maps if the integer
k is represented with τ -adic expansion, i.e. k =

∑�u−1
i=0 uiτ

i, where

1-4244-0395-2/06/$20.00 ©2006 IEEE. 232

ui ∈ {0, 1}. In analogy with the binary expansion, the density of
non-zero bits can be reduced to 1/3 by using a NAF representation,
where ui ∈ {0, 1, 1̄}. An algorithm for computing τ -adic non-
adjacent form (τNAF) for κ = r0 + r1τ ∈ Z[τ], where Z[τ] is
the ring of polynomials in τ with integer coefficients, was suggested
by Solinas [7] and it is presented in Alg. 1. [3]

Algorithm 1 Computing the τNAF of an element in Z[τ] [7]

INPUT: κ = r0 + r1τ ∈ Z[τ]
OUTPUT: u = τNAF(κ)

i← 0
while r0 �= 0 and r1 �= 0 do

if r0 is odd then
ui ← 2− (r0 − 2r1 mod 4)
r0 ← r0 − ui

else
ui ← 0

t← r0; r0 ← r1 + µr0/2; r1 ← −t/2; i← i + 1
Return (ui−1, ui−2, . . . , u1, u0)

If the length of τNAF(κ), �u, is greater than 30, it satisfies

log2(N(κ))− 0.55 < �u < log2(N(κ)) + 3.52 (4)

where N(κ) is the norm of κ which is given by

N(r0 + r1τ) = r2
0 + µr0r1 + 2r2

1. (5)

The average length of τNAF(κ) is log2(N(κ)). Hence, the length
of τNAF(k) is approximately 2 log2(k) and �u ≈ 2�. Although the
density of u is 1/3, (1) would require as many as �u/3 ≈ 2�/3 point
additions and �u ≈ 2� Frobenius maps. It is, however, possible to
reduce the length to approximately � because, if n ≡ k mod (τm−
1), then kP = nP , because (τm − 1)P = O. It can be also shown
that, if ρ ≡ k mod δ, where δ = τm−1

τ−1
, then kP = ρP . [7]

There are two different approaches to reduce the length of
τNAF(k). The first one is to find ρ = s0 + s1τ with a minimum
norm N(ρ), and then apply Alg. 1 to ρ for finding u with length
�u ≈ �. This approach is here referred to as the pre-processing
method. In the second approach, Alg. 1 is applied directly to k and the
result is then processed so that the length reduces approximately to �.
This method is referred to as the post-processing method. This paper
concentrates on the post-processing method, but the pre-processing
method is shortly considered as well.

Pre-processing can be done by performing a modular division
in Z[τ] [7]. This method always results in ρ with N(ρ) as small
as possible but requires computation of two multiprecision integer
divisions, which makes it very difficult and slow to implement on
many platforms [3]. In order to circumvent this problem, a partial
reduction algorithm was developed [7]. This algorithm does not
require any multiprecision divisions but may result in sub-optimal
results, i.e. N(ρ) not as small as possible. The partial reduction
requires several integer multiplications [7].

Post-processing introduced in [6] is presented in Alg. 2, which
combines two algorithms from [6]. The post-processing is performed
in two phases. First, a reduction, where the �u-bit result of u =
τNAF(k) is reduced into an m-bit v, takes place. Second, NAF,
which was lost in the reduction, is recovered in a regeneration.
The reduction takes advantage of the fact that any τ -adic integer,
u, can be reduced modulo (τm − 1) without changing the result
of uP . Thus, τm can be factored out from u [6]. The result of
the reduction, v, is no longer in NAF but NAF can be regenerated

by applying Alg. 1 to each (vi + vi+1τ)τ i starting from i = 0 [6]
(while-loop in Alg. 2). The length of the result of a regeneration is m
bits, on average [6]. This method does not require any multiprecision
divisions or multiplications, and it is easily implementable on various
platforms. The downside of the post-processing method is that Alg. 1
requires on average 2m cycles while it requires only m cycles on
average if the pre-processing is utilized. Post-processing may also
result in sub-optimal representations similarly as the partial reduction.

Algorithm 2 Reduction and regeneration algorithm [6]

INPUT: u =
∑�u−1

i=0 uiτ
i, ui ∈ {0, 1, 1̄}, m

OUTPUT: w =
∑�w−1

i=0 wiτ
i, wi ∈ {0, 1, 1̄}

(vm−1, vm−2, . . . , v1, v0)← (0, 0, . . . , 0, 0)
if �u > 2m then

(vm−1, . . . , v0)← (0, 0, . . . , 0, u�u−1, . . . , u2m)
if �u > m then

(vm−1, . . . , v0)← (vm−1, . . . , v0) + (u2m−1, . . . , um)
(vm−1, . . . , v0)← (vm−1, . . . , v0) + (um−1, . . . , u0)
i← 0
while vj �= 0 for some j > i do

if vi = 0 then
i← i + 1

else
(t1, t0)← (vi+1, vi); (vi+1, vi)← (0, 0)
v ← v + τNAF(t0 + t1τ); wi ← vi; i← i + 1

Return (wi−1, wi−2, . . . , w1, w0)

III. HARDWARE ARCHITECTURE

An efficient hardware architecture for the τNAF conversion is
presented in this section. The architecture implements Algs. 1 and 2,
but both of the algorithms are modified in order to guarantee efficient
hardware-based implementation. The architectures for Algs. 1 and 2
are presented in Secs. III-A and III-B, respectively.

A. τNAF Conversion

Implementation of Alg. 1 is straightforward. However, certain
observations result in very efficient implementations. First, r0 ←
r0 − ui can be moved out from the if-statement because, if r0 is
even, ui = 0 resulting r0 − ui = r0. Furthermore, the if-statement
can be removed entirely by computing ui as presented next.

The computation of ui can be performed very efficiently by
observing the two least significant bits (LSBs) of r0 and r1. If
r0 is odd in Alg. 1, then r0 − 2r1 mod 4 is also odd, i.e. either
1 or 3, which gives ui = ±1. Furthermore, if r0 is even, then
r0 − 2r1 mod 4 is also even, i.e. either 0 or 2 resulting ui = 2
or ui = 0, respectively. By setting that ui is the two LSBs of
the result of r0 − 2r1 considered as a 2-bit signed integer, the
operation of Alg. 1 does not change if the exception case ui = 2
is handled correctly. Let rij denote the jth bit of ri. Obviously,
(r01 , r00)− (r10 , 0) = (r01 ⊕ r10 , r00), where ⊕ denotes exclusive-
or (XOR). One additional AND-operation, denoted by ⊗, must be
introduced in order to force ui to zero if r0 is even, i.e., if r00 = 0.
Thus, the sign-bit of ui is given by (r01 ⊕ r10)⊗ r00 .

A modification of Alg. 1 which is especially suitable for hardware
implementations is presented in Alg. 3. A block diagram implement-
ing Alg. 3 is given in Fig. 1. The adders and the registers are D + 1
bits wide, where D must satisfy D ≥ max(�) = m. The two’s
complement representation is used for r0 and r1. The implementation
outputs one ui starting from u0 in one clock cycle, and τNAF(k)
requires on average 2m clock cycles if � = m.

233

Algorithm 3 Modification of Alg. 1

INPUT: κ = r0 + r1τ ∈ Z[τ]
OUTPUT: u = τNAF(κ)

i← 0
while r0 �= 0 and r1 �= 0 do

ui ← ((r01 ⊕ r10)⊗ r00 , r00)
r0 ← r0 − ui

t← r0; r0 ← r1 + µr0/2; r1 ← −t/2; i← i + 1
Return (ui−1, ui−2, . . . , u1, u0)

r0

r1

µ

k

ui

r1

r0
0

1

load

≫ -()

1

1̄

Fig. 1. Circuitry for the τNAF conversion, i.e., an implementation of Alg. 3.
The widths of r0 and r1 are D+1 bits and ui is a 2-bit signed integer, whose
sign-bit is the output of the AND-gate and the magnitude bit is r00 . Division
by 2 is a shift to the right (≫). The inputs of the XOR-gate are the LSB
of r1 and the second LSB of r0. The second input for the AND-gate is the
LSB of r0. The load signal loads k into r0 and clears r1, i.e. r0 = k and
r1 = 0. Also comparators for r0 and r1, which are not depicted, are required
in order to determine when the conversion is ready.

B. Reduction and Regeneration

The key idea in implementing Alg. 2 is to perform τNAF(t0+t1τ)
by using a fixed look-up table (LUT). This way the τNAF(t0 + t1τ)
operation can be done entirely in one clock cycle while, if also this
would be performed by using the circuitry presented in Sec. III-A,
each τNAF(t0+t1τ) computation would require as many clock cycles
as is the length of that particular τNAF(t0 + t1τ).

The construction of the LUT is considered in Sec. III-B.1 and the
implementation of the rest of the reduction and regeneration circuitry
is presented in Sec. III-B.2.

1) Look-Up Table for τNAF: All possible values of t0 and t1
must be known in order to construct a LUT for τNAF(t0 + t1τ). It
is known based on the definition of τNAF that ui ∈ {0, 1, 1̄} and
|ui| + |ui+1| ≤ 1. Because log2(k) < m, it follows from (4) that
�u ≤ 2m + 3. Thus, vi ∈ {0,±1,±2,±3}, if 0 ≤ i < 3, and, if
i ≥ 3, vi ∈ {0,±1,±2}. Because of the non-adjacency of u, it also
follows that |vi| + |vi+1| ≤ 3, if 0 ≤ i < 3, and |vi| + |vi+1| ≤ 2,
if i ≥ 3. These are referred to as the initial condition of v.

Let h denote the result of τNAF(t0 + t1τ). It can be easily
checked that, for v satisfying the initial condition, the maximum
length of h is 7. Adding h to v sometimes results in values
which do not fulfill the initial condition. All possible values of vi

and vi+1 can be determined as follows. Take all v of length L
satisfying the initial condition and pad them with zeros to infinity
resulting a = (. . . , 0, 0, 0, vL−1, vL−2, . . . , v1, v0). Let A denote
the set including all possible a. Run regeneration for the first
L − 1 coefficients of each a. Coefficients ai where i > L − 1
may now have non-zero values. Let B be the set of all different
b = (. . . , aL+2, aL+1, aL, aL−1) resulted by the regenerations.
Define A′ to include all a′ = (. . . , 0, 0, 0, v2L−1, v2L−2, . . . , vL, 0)
satisfying the initial condition. Notice that A′ ⊂ A. Now, for each
element of B, compute c = b + a′ for all elements of A′ and

perform the regeneration for the first L − 1 coefficients of c. If the
result (. . . , cL+2, cL+1, cL, cL−1) is not included in B, add it there.
Continue this process until the entire B has been processed. The
above process goes through all possible combinations of v during
a regeneration. When the process with L = 9 was run by using
a C-program, it was verified that ti ∈ {0,±1,±2,±3,±4} and
|t0 + t1| ≤ 4 for all possible v satisfying the initial condition. The
maximum length of h is 7 also in this case.

The construction of the LUT is straightforward when all possible
values of t0 and t1 are known. The LUT is presented in Fig. 2. It
can be seen that τNAF(t0 + t1τ) = −τNAF(−t0− t1τ) and, based
on this symmetry, the size of the LUT can be halved. Let σ denote
the sign of t1. Then, h = τNAF(t0 + t1τ) can be calculated with a
LUT having half the size of the original one by setting

h = σ · τNAF(σt0 + |t1|τ). (6)

Certain additional logic needs to be implemented in order to compute
|t1| and multiplications with σ but, still, the overall area requirement
of the τNAF(t0 + t1τ) computation reduces.

00001̄01
001001̄0

−4
−3

t0
t1

−2
−1

0
1
2
3
4

−4 −3 −2 −1 0 1 2 3 4

000004̄0 000003̄0 000002̄0 000001̄0 0000000 0000010 0000020 0000030 0000040

−4
−3

t0
t1

−2
−1

0
1
2
3
4

−4 −3 −2 −1 0 1 2 3 4

000004̄0 000003̄0 000002̄0 000001̄0 0000000 0000010 0000020 0000030 0000040

µ = 1

µ = −1

0000001
0001̄01̄0
0100101̄

0000001̄
0001010
01̄001̄01

0100100

01̄001̄00

0001̄000
0001̄001̄

0000101
0000100
0000101̄
01̄01̄01̄0

0001̄010
001̄01̄01

001̄01̄01̄
001̄001̄0
01̄01̄001

0001̄001

1010101̄

001̄0001
001̄0000

1001001̄

0101010
0101001̄ 00001̄01

00001̄00
00001̄01̄

0001001

0010000

0001000
0010101̄

0001001̄

0010010
0010101

000101̄0

0010001̄1̄001̄001

1001̄001

001̄0001

1010101̄
1010100

001̄0010
001̄01̄01̄

001̄01̄01
000101̄0
1010001̄

0000101̄
0000100
0000101

0001001̄
0001000
0001001
1010010

01001̄00
01001̄01
0001̄01̄0
0000001̄

0000001
0001010
01̄00101̄
01̄00100

1̄01̄001̄0
0001̄001̄
0001̄000
0001̄001

00001̄01̄
00001̄00

1̄01̄0001
0001̄010
0010101̄

0010101

1̄01̄01̄00
1̄01̄01̄01

0010001̄

1̄001001̄

1̄01̄01̄01

Fig. 2. Look-up table for h = τNAF(t0 + t1τ) calculation. The values are
presented as h6h5h4h3h2h1h0. Dark grey areas are never used and need
not to be implemented. Light grey areas can be reduced from the LUT based
on symmetry. Notice that the row t0 = 0 is not τNAF(t1τ) because in that
case no changes in v should occur (see Alg. 2).

2) Circuitry: Because the τNAF conversion block outputs ui in
serial, the reduction is modified to take ui in serial instead of in
parallel as in Alg. 2. This way the reduction of Alg. 2 can be
performed concurrently with the execution of Alg. 3. When ui are
input in serial starting from u0, v can be calculated by first setting
v to zero and then by adding ui to v(i mod m).

An efficient algorithm for performing the reduction and regenera-
tion in hardware is presented in Alg. 4. Notice that all operations are

Algorithm 4 Modification of Alg. 2

INPUT: u =
∑�u−1

i=0 uiτ
i, ui ∈ {0, 1, 1̄}, m, µ

OUTPUT: w =
∑�w−1

i=0 wiτ
i, wi ∈ {0, 1, 1̄}

(vm−1, vm−2, . . . , v1, v0)← (0, 0, . . . , 0, 0)
for i = 0 to �u − 1 do

v(i mod m) ← v(i mod m) + ui

i← 0
while i < m or vj �= 0 for some j < 7 do

(h6, . . . , h0)← τNAFLUT(v0 + v1τ)
(v6, . . . , v2)← (v6, . . . , v2) + (h6, . . . , h2); v1 ← h1

wi ← h0; v ← ShiftRight(v); i← i + 1
Return (wi−1, wi−2, . . . , w1, w0)

234

ui

eD−1

s 10

0

TYPE A TYPE A

s

TYPE A

10

e6eD−3

s 10s

10 s

e1

0

1

s

h2

TYPE B TYPE B

e0

10s

h1

µ LUT

TYPE B
TYPE A

eD−2

TYPE A

10

10 s

e4

0

1

s

h5

10 s

e5

0

1

s

h6

h2
h1

h3
h4
h5
h6

wi

Fig. 3. Circuitry for the reduction and regeneration, i.e., an implementation of Alg. 4. If the mode select signal s = 1, the circuit performs the reduction
of Alg. 4 and, if s = 0, the register chain acts as a shift register and the regeneration is performed. The enable signals ej operate as follows: during the
reduction (s = 1), ej = 1 for j = i mod m and ej = 0 otherwise and, during the regeneration (s = 0), ej = 1 for all j. Type A registers are 3 bits wide,
excluding the register for v0 which is a 4-bit register. All Type B registers are 4 bits wide. In total, D − 5 Type A and 5 Type B registers are required.

directed to v and, therefore, both reduction and regeneration can be
performed with only one register chain.

The reduction requires registers and circuitry for v(i mod m) + ui

computations. The regeneration requires a shift register, adders for
v+h, and the LUT. Both of the operations can be performed with the
circuitry shown in Fig. 3. It consists mainly of two kind of register
blocks called Type A and Type B registers. The Type A registers
have a register for storing vi and logic for saving a new value to the
register and for accumulating the value of the register. The Type B
registers also have a register for storing vi but, in them, the value
to be stored is a sum of two values selected from four by using
two multiplexors. Both Type A and Type B registers are arranged so
that they perform similarly during the reduction. On the other hand,
during the regeneration, Type A registers act as a shift register while
Type B registers both shift v and compute and store the result of
v + h. The circuitry outputs wi in serial starting from w0.

The latency of the reduction is approximately 2m clock cycles.
However, the reduction can be performed concurrently with the
τNAF(k) computation and its effective latency reduces to one clock
cycle. Once the reduction is performed, the regeneration takes m
clock cycles on average. Thus, the average latency of computing and
reducing the length of τNAF(k) becomes 3m + 2 clock cycles on
the given circuitry, including loading k into the circuit.

IV. RESULTS

The designs were described in VHDL and synthesized by using
Altera Quartus-II 5.1 SP1 design software. Results of the implementa-
tions on an Altera Stratix-II EP2S60F1020C4 FPGA [8] are presented
in Table I. The maximum clock frequencies fmax and resource
requirements, presented as the number of consumed adaptive look-up
tables (ALUTs) [8] and registers, were given by Quartus-II. A generic
implementation capable of performing conversions for any Koblitz
curve Ea(F2m), where m ≤ 256, and curve specific implementations
for E1(F2163) and E0(F2233) are included in Table I. The curves
E1(F2163) and E0(F2233) are included in the NIST recommended
elliptic curves for federal government use [9]. Fixing the curve

TABLE I
IMPLEMENTATION RESULTS ON A STRATIX-II S60C4

Curve D ALUTs Regs. fmax (MHz)

Ea(F2m) 256 2,285 1,564 55.72

E0(F2233) 233 1,800 1,198 58.89

E1(F2163) 163 1,433 988 80.44

reduces area and increases fmax because smaller adders and fewer
registers are needed and the size of the LUT can be halved, i.e., only
µ = 1 or µ = −1 needs to be implemented. In all cases, the critical
path determining fmax consists of the computation of τNAF(k) as
presented in Sec. III-A.

V. CONCLUSIONS

An efficient hardware circuitry for converting integers to τNAF
was presented. The circuitry suits well for implementations on various
platforms including constrained environments, because it is compact
and does not require any large multiplications or divisions. To the best
of the authors’ knowledge, this was the first hardware-based τNAF
implementation presented in the literature so far.

It is concluded that the τNAF conversion, including the reduction
of the length, can be efficiently computed with a small amount of
resources by using the circuitry presented in this paper.

ACKNOWLEDGEMENTS

This research was conducted within the Packet Level Authentica-
tion (PLA) project at the Helsinki University of Technology. The PLA
project is funded by Tekes — Finnish funding agency for technology
and innovation.

REFERENCES

[1] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation,
vol. 48, pp. 203–209, 1987.

[2] V. Miller, “Use of elliptic curves in cryptography,” in Advances in
Cryptology — CRYPTO ’85, ser. Lecture Notes in Computer Science, vol.
218, Santa Barbara, California, USA, Aug. 18–22, 1985, pp. 417–426.

[3] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve
Cryptography. New York, USA: Springer-Verlag, 2004.

[4] N. Koblitz, “CM-curves with good cryptographic properties,” in Advances
in Cryptology — CRYPTO ’91, ser. Lecture Notes in Computer Science,
vol. 576, Santa Barbara, California, USA, Aug. 11–15, 1991, pp. 279–
287.

[5] J. Lutz and A. Hasan, “High performance FPGA based elliptic curve cryp-
tographic co-processor,” in Proceedings of the International Conference
on Information Technology: Coding and Computing (ITCC 2004), vol. 2,
Las Vegas, Nevada, USA, Apr. 5–7, 2004, pp. 486–492.

[6] J. Lutz, “High performance elliptic curve cryptographic co-processor,”
Master’s thesis, University of Waterloo, Canada, 2003.

[7] J. Solinas, “Efficient arithmetic on Koblitz curves,” Designs, Codes and
Cryptography, vol. 19, no. 2–3, pp. 195–249, Mar. 2000.

[8] “Stratix II device handbook,” vol. 1–2, ver. 4.1, Altera Corporation,
Apr. 2006. [Online]. Available: http://www.altera.com/literature/hb/stx2/
stratix2_handbook.pdf

[9] National Institute of Standards and Technology (NIST), Digital
Signature Standard (DSS), Federal Information Processing Standard,
Std. FIPS PUB 186-2, Jan. 27, 2000. [Online]. Available: http:
//csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf

235

