
Billy Bob Brumley and Kimmo Järvinen, Koblitz Curves and Integer Equivalents of
Frobenius Expansions, in Revised Selected Papers of the 14th Annual Workshop on
Selected Areas in Cryptography, SAC 2007, Ottawa, Ontario, Canada, Aug. 16­17,
2007, Lecture Notes in Computer Science, vol. 4876, Springer, pp. 126­137.

© 2007 Springer Science+Business Media

Reprinted with permission.

Koblitz Curves and Integer Equivalents of

Frobenius Expansions�

Billy Bob Brumley1 and Kimmo Järvinen2

1 Laboratory for Theoretical Computer Science, Helsinki University of Technology,
P.O. Box 5400, FIN-02015 TKK, Finland

billy.brumley@tkk.fi
2 Signal Processing Laboratory, Helsinki University of Technology,

P.O. Box 3000, FIN-02015 TKK, Finland
kimmo.jarvinen@tkk.fi

Abstract. Scalar multiplication on Koblitz curves can be very efficient
due to the elimination of point doublings. Modular reduction of scalars is
commonly performed to reduce the length of expansions, and τ -adic Non-
Adjacent Form (NAF) can be used to reduce the density. However, such
modular reduction can be costly. An alternative to this approach is to
use a random τ -adic NAF, but some cryptosystems (e.g. ECDSA) require
both the integer and the scalar multiple. This paper presents an efficient
method for computing integer equivalents of random τ -adic expansions.
The hardware implications are explored, and an efficient hardware im-
plementation is presented. The results suggest significant computational
efficiency gains over previously documented methods.

Keywords: Koblitz curves, elliptic curve cryptography, digital signa-
tures.

1 Introduction

While compact keys and signatures occur naturally when using elliptic curves,
the computational efficiency of elliptic curve cryptosystems is the subject of
much research. Koblitz [1] showed that scalar multiplication can be done very
fast on a certain family of binary curves now commonly referred to as Koblitz
curves. In the same paper, Koblitz credited Hendrik Lenstra for first suggesting
random base-τ expansions for key agreement protocols using Koblitz curves.

Meier and Staffelbach [2] showed how to significantly reduce the length of τ -
adic expansions by performing modular reduction on scalars. Solinas [3,4] later
built on this idea and additionally reduced the weight by designing a τ -adic
analogue of Non-Adjacent Form (NAF).

Unfortunately, performing suchmodular reduction canbe costly.As futurework,
Solinas suggested a study of the distribution of random τ -adic NAFs. Lange and
Shparlinski [5,6] have studied the distribution of such expansions in depth.
� This work was supported by the project “Packet Level Authentication” funded by

TEKES.

C. Adams, A. Miri, and M. Wiener (Eds.): SAC 2007, LNCS 4876, pp. 126–137, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Koblitz Curves and Integer Equivalents of Frobenius Expansions 127

For key agreement protocols like Diffie-Hellman [7], the integer equivalent of
such a random τ -adic expansion is not needed. However, for ElGamal [8] type
digital signatures like ECDSA [9], both the integer and the scalar multiple are
needed to generate a signature. Lange [10] discussed many of the details of this
approach, as well a straightforward method for recovering the integer equivalent
using a number of multiplications.

In this paper, we present a new method for recovering integer equivalents of
random τ -adic expansions using only additions and one field multiplication. This
method is shown to be very efficient and has significant hardware implications.
A hardware implementation is also presented and studied in depth. The results
are then compared to current similar methods in hardware.

Sec. 2 reviews background information on Koblitz curves and τ -adic expan-
sions. Sec. 3 covers more recent research on random τ -adic expansions, as well
as our new method for efficiently computing integer equivalents of such expan-
sions. Sec. 4 presents an efficient hardware implementation of our new method
on a field programmable gate array (FPGA), as well as a comparison to current
methods. We conclude in Sec. 5.

2 Koblitz Curves

Koblitz curves [1] are non-supersingular elliptic curves defined over F2, i.e.

Ea(F2m) : y2 + xy = x3 + ax2 + 1 where a ∈ {0, 1} . (1)

These curves have the nice property that if a point P = (x, y) is on the curve,
so is the point (x2, y2). The map σ : Ea(F2m) → Ea(F2m); (x, y) �→ (x2, y2) is
called the Frobenius endomorphism. From the point addition formula, it can be
shown that for all (x, y) ∈ Ea

(x4, y4) + 2(x, y) = μ(x2, y2), where μ = (−1)1−a, equivalently

(σ2 + 2)P = μσP , and hence

σ2 + 2 = μσ as curve endomorphisms. (2)

The last equation also allows us to look at σ as a complex number τ and we can
extend scalar multiplication to scalars d0 + d1τ from Z[τ]. Higher powers of τ
make sense as repeated applications of the endomorphisms.

Koblitz showed how to use use the Frobenius endomorphism very efficiently
in scalar multiplication: A scalar n = d0 + d1τ is expanded using (2) repeatedly,
i.e. put ε0 = d0 (mod 2) and replace n by (d0 − ε0)/2μ + d1 − (d0 − ε0)/2τ
to compute ε1 etc. This iteration leads to a so called τ -adic expansion with
coefficients ε ∈ {0, 1} such that nP =

∑
i=0 εiτ

i(P).
As a result of representing integers as the sum of powers of τ , scalar mul-

tiplication can be accomplished with no point doublings by combining point
additions and applications of σ. Koblitz noted in [1] that such base-τ expansions
unfortunately have twice the length when compared to binary expansions. This
leads to twice the number of point additions on average.

128 B.B. Brumley and K. Järvinen

2.1 Integer Equivalents

To overcome this drawback, Meier and Staffelbach [2] made the following obser-
vation. Given any point P ∈ Ea(F2m), it follows that

P = (x, y) = (x2m

, y2m

) = τmP

O = (τm − 1)P .

Two elements γ, ρ ∈ Z[τ] such that γ ≡ ρ (mod τm−1) are said to be equivalent
with respect to P as γ multiples of P can also be obtained using the element ρ
since for some κ

γP = ρP + κ(τm − 1)P = ρP + κO = ρP .

While this relation holds for all points on the curve, cryptographic operations
are often limited to the main subgroup; that is, the points of large prime order.
Solinas [4] further improved on this. The small subgroup can be excluded since
(τ − 1) divides (τm − 1), and for multiples of points in the main subgroup
scalars can be reduced modulo δ = (τm −1)/(τ −1) to further reduce the length
to a maximum of m + a. For computational reasons, it is often convenient to
have the form δ = c0 + c1τ as well. For reference, the procedure for performing
such modular reduction is presented as Algorithm 1, which calculates ρ′ such
that the probability that ρ′ �= ρ holds is less than 2−(C−5). This probabilistic
approach is used to avoid costly rational divisions, trading them for a number
of multiplications.

Algorithm 1. Partial reduction modulo δ = (τm − 1)/(τ − 1).
Input: Integer n, constants C > 5, s0 = c0 + μc1, s1 = −c1,

Vm = 2m + 1−#Ea(F2m).
Output: n partmod δ.
n′ ← �n/2a−C+(m−9)/2�
for i← 0 to 1 do

g′ ← sin
′

j′ ← Vm�g′/2m�
λi ← �(g′ + j′)/2(m+5)/2 + 1

2
�/2C

end
(q0, q1)← Round(λ0, λ1) /* Using Algorithm 2 */

d0 ← k − (s0 + μs1)q0 − 2s1q1, d1 ← s1q0 − s0q1

return d0 + d1τ

Solinas [4] also developed a τ -adic analogue of Non-Adjacent Form (NAF).
Signed representations are used as point subtraction has roughly the same cost
as point addition; NAF guarantees that no two adjacent coefficients are non-zero.
By reducing elements of Z[τ] modulo δ and using τ -adic NAF, such expansions
have roughly the same length and average density (1/3 when εi ∈ {0, 1,−1}) as
normal NAFs of the same integers.

Koblitz Curves and Integer Equivalents of Frobenius Expansions 129

Algorithm 2. Rounding off in Z[τ].
Input: Rational numbers λ0 and λ1.
Output: Integers q0, q1 such that q0 + q1τ is close to λ0 + λ1τ .
for i← 0 to 1 do

fi ← �λi + 1
2
�

ηi ← λi − fi, hi ← 0
end
η ← 2η0 + μη1

if η ≥ 1 then
if η0 − 3μη1 < −1 then h1 ← μ
else h0 ← 1

end
else

if η0 + 4μη1 ≥ 2 then h1 ← μ
if η < −1 then

if η0 − 3μη1 ≥ 1 then h1 ← −μ
else h0 ← −1

end
else

if η0 + 4μη1 < −2 then h1 ← −μ
q0 ← f0 + h0, q1 ← f1 + h1

return q0, q1

3 Random τ -adic Expansions

Instead of performing such non-trivial modular reduction, Solinas [4] suggested
(an adaptation of an idea credited to Hendrik Lenstra in Koblitz’s paper [1])
producing a random τ -adic NAF; that is, to build an expansion by generating
digits with Pr(−1) = 1/4, Pr(1) = 1/4, Pr(0) = 1/2, and following each non-zero
digit with a zero. Lange and Shparlinski [5] proved that such expansions with
length 	 = m − 1 are well-distributed and virtually collision-free.

This gives an efficient way of obtaining random multiples of a point (for exam-
ple, a generator). For some cryptosystems (e.g. Diffie-Hellman [7]), the integer
equivalent of the random τ -adic NAF is not needed. The expansion is simply
applied to the generator, then to the other party’s public point. However, for
generating digital signatures (e.g. ECDSA [9]), the equivalent integer is needed.

Lange [10] covered much of the theory of this approach, as well as a method
for recovering the integer. Given a generator G of prime order r and a group
automorphism σ, there is a unique integer s modulo r which satisfies σ(G) = sG,
and s (fixed per-curve) is obtained using (T − s) = gcd((T m − 1)/(T − 1), T 2 −
μT + 2) in Fr[T]. We note that s also satisfies s = (−c0)(c1)−1 (mod r). Values
of s for standard Koblitz curves are listed in Table 1 for convenience.

Given some τ -adic expansion
∑�−1

i=0 εiτ
i with εi ∈ {0, 1,−1}, it follows that

the equivalent integer can be recovered deterministically as
∑�−1

i=0 εis
i using at

most 	 − 2 multiplications and some additions for non-zero coefficient values,
all modulo r [10]. Our approach improves on these computation requirements

130 B.B. Brumley and K. Järvinen

Table 1. Integer s such that σP = sP modulo r on Ea(F2m)

Curve a s

K-163 1 00000003 81afd9e3 493dccbf c2faf1d2 84e6d34e bd67a6da

K-233 0 00000060 6590ef0a

0a0abf8d 755a2be3 1f5449df ff5b4307 33472d49 10444625

K-283 0 00d5d05a 1b6c5ace e76b8ee3

f925a572 19bcb952 12945154 588d0415 a5b4bb50 57f69216

K-409 0 0024ef90

54eb3a6c f4bdc6ed 021f6e5c b8da0c79 5f913c52 ebaa9239

8d1b7d3d 0adb8a34 add81800 acf7e302 a7d25095 1701d7a4

K-571 0 01cc6c27 e62f3e0d df5ea7eb 1ab1cc4d 0da631c0 d70a969a

a14b0350 85b31511 f5a97455 20cba528 e2d1e647 f4f708d3

9fba0c3b e4e35543 821344d1 662727bd 2d59dbc0 5e6853b1

to recover the integer equivalent. Solinas [4] showed that given the recurrence
relation

Ui+1 = μUi − 2Ui−1 where U0 = 0, U1 = 1 ,

it is true that
τ i = τUi − 2Ui−1 for all i > 0 .

Solinas noted that this equation can be used for computing the order of the curve.
In addition to the aforementioned application, it is clear that this equation can
also be directly applied to compute the equivalent element d0 + d1τ ∈ Z[τ] of a
τ -adic expansion. Once d0 + d1τ is computed, the equivalent integer n modulo
r is easily obtained using n = d0 + d1s (mod r).

We present an efficient algorithm to compute d0 and d1 as Algorithm 3.
Note that the values d0 and d1 are built up in a right-to-left fashion. Clearly it
makes sense to generate the fixed U sequence right-to-left. So if the coefficients
are generated left-to-right and are not stored then U should be precomputed
and stored and given as input to Algorithm 3, which is then modified to run

Algorithm 3. Integer equivalents of τ -adic expansions.
Input: �-bit τ -adic expansion ε, curve constants r, s, μ
Output: Integer equivalent n
d0 ← ε0, d1 ← ε1 /* accumulators */

j ← 1, k← 0 /* j = Ui−1, k = Ui−2 */

for i← 2 to �− 1 do
u← μj − 2k /* u = Ui */

d0 ← d0 − 2jεi

d1 ← d1 + uεi

k← j, j ← u /* setup for next round */

end
n← d0 + d1s mod r /* integer equivalent */

return n

Koblitz Curves and Integer Equivalents of Frobenius Expansions 131

left-to-right. The storage of ε is small; indeed it can be stored in 	-bits if ze-
ros inserted to preserve non-adjacency are omitted. Either way, the choice of
which direction to implement Algorithm 3 is dependent on many factors, includ-
ing storage capacity and direction of the scalar multiplication algorithm. In any
case, the main advantage we are concerned with in this paper is the ability to
compute the integer equivalent in parallel to the scalar multiple, and hence in
our implementations ε is assumed to be stored. Thus, we omit any analysis of
generating coefficients of ε one at a time, and concentrate on the scenario of
having two separate devices, each with access to the coefficients of ε: one for
computing the integer equivalent, and one for computing the scalar multiple.

As s is a per-curve constant, it is clear that the integer equivalent n can be
computed using one field multiplication and one field addition. This excludes
the cost of building up d0 + d1τ from the τ -adic expansion, done as shown in
Algorithm 3 using the U sequence with only additions.

For the sake of simplicity, only width-2 τ -adic NAFs are considered here (all
εi ∈ {0, 1,−1}). Since generators are fixed and precomputation can be done
offline, it is natural to consider arbitrary window width as well; we defer this to
future work.

Following this reasoning, our method can be summarized as follows.

1. Generate a random τ -adic NAF of length m − 1. (After this, the scalar
multiple can be computed in parallel to the remaining steps.)

2. Build up d0 + d1τ from the expansion using the U sequence as shown in
Algorithm 3.

3. Calculate the integer equivalent n = d0 + d1s (mod r).

4 Hardware Implementation

If scalar multiplication is computed with a random integer, the integer is typically
first reduced modulo δ. The τ -adic NAF then usually needs to be computed before
scalar multiplication because algorithms for producing the τ -adic NAF presented
in [4] produce them from right-to-left1, whereas scalar multiplication is typically
more efficient when computed from left-to-right. In either case, the end-to-end
computation time is Tτ + Tsm where Tτ is the conversion time (including reduc-
ing modulo δ and generating the τ -adic NAF) and Tsm is the scalar multiplication
time. However, when scalar multiplication is computed on hardware with a ran-
dom τ -adic NAF of length 	, the calculation of an integer equivalent can be per-
formed simultaneously with scalar multiplication (assuming separate dedicated
hardware) thus resulting in an end-to-end time of only max(Tτ , Tsm) = Tsm with
the reasonable assumption that Tsm > Tτ . In this case, Tτ denotes the time needed
to generate a random τ -adic NAF and calculate the integer equivalent. We assume
storage for the coefficients εi exists. This parallelization implies that our method
is especially well-suited for hardware implementations.
1 There are alternatives which produce an expansion with similar weight from right-

to-left, but this does not change the arguments that follow.

132 B.B. Brumley and K. Järvinen

s

≪

A

B

A ± B

A

B

A ± B di

en

do

d1

A ≥ r

A

r

A < 0

A ≥ r

A

r

A < 0

n

r

r

ctrl

r

r

εi

di

en

do

d0

start
dodi

s

LSBUi

≫

≪

dodi
2Ui−1

OR

U sequence

start

ROM

addr

data Ui

cntr

μUi

2Ui−1

A

B

A − B Uidi do

Fig. 1. Block diagram of the design. All registers are reset to zero at the beginning of
a conversion, except the 2Ui−1 register which is initialized to −1. Shifts to the left and
to the right are denoted as ≪ and ≫, respectively.

An FPGA design was implemented in order to investigate the practical fea-
sibility of our method on hardware. The implementation consists of two adders,
two comparators, a U sequence block and certain control logic. The structure
of the implementation is shown in Fig. 1. An integer equivalent is computed so
that, first, d0 and d1 are built up using the U sequence and, second, n = d0 +d1s
is calculated as shown in Sec. 3. The design operates in two modes.

The first mode computes d0 and d1 in parallel using the adders. A τ -adic
expansion is input into the design in serial starting from ε0 and the U sequence
is either read from ROM or computed on-the-fly. As shown in Sec. 3, Ui can
be directly applied in computing d1 by simply adding or subtracting Ui to d1

according to εi. In d0 calculation, 2Ui−1 is received by shifting Ui to the left
and delaying it by one clock cycle. Because the least significant bit (LSB) ε0
is handled similarly, an additional value U−1 = −0.5 is introduced into the U
sequence in order to get d0 = ε0.

Koblitz Curves and Integer Equivalents of Frobenius Expansions 133

Table 2. ROM sizes for the NIST curves

Curve m Depth Width Bits

K-163 163 163 83 13,529
K-233 233 233 118 27,494
K-283 283 283 143 40,469
K-409 409 409 204 83,436
K-571 571 571 287 163,877

If the U sequence is precomputed and stored in ROM, the required size of the
ROMdepends onm. The depth of theROMism and thewidth is determinedby the
longest Ui in the sequence. ROM sizes for the NIST curves [9] are listed in Table 2.
It makes sense not to reduce the sequence U modulo r, as r > 1+2

∑m−3
i=0 |Ui| and

hence U modulo r requires significantly more storage space than U alone.
If the amount of memory is an issue, the U sequence can be computed on-the-

fly by using an adder as shown in Algorithm 3. This implies that extra storage
for the coefficients εi is also needed for performing the scalar multiplication
simultaneously. The width of the adder is also determined by the longest Ui. As
shown in Table 2, the size of the ROM grows rapidly with m and in practice
ROMs can be used only when m is small. However, the on-the-fly computation
is also a viable approach for large m.

The second mode computes n = d0 +d1s in two phases which are repeated for
all bits of s. In the first phase, the first adder accumulates d0 with d1 according
to the LSB of s and, at the same time, d1 is shifted to the left resulting in 2d1

and s is shifted to the right. In the second phase, r is either added to d0,1 if
d0,1 < 0 or subtracted from d0,1 if d0,1 ≥ r. This ensures that both d0 and d1 are
in the interval [0, r[. When all bits of s have been processed, the register d0 holds
n. In order to guarantee that the procedure results in n ∈ [0, r[, r must fulfill
r > 1+2

∑m−3
i=0 |Ui| which is the maximum value of d0 after the first mode. This

ensures that d0,1 ∈]−r, r[in the end of the first mode for all τ -adic expansions
with 	 ≤ m − 1 and εi ∈ {0, 1,−1}. It is easy to check that all r listed in [9]
fulfill this condition.

The first mode requires 	 + 1 clock cycles. Because both phases in the second
mode require one clock cycle and the length of s is m bits, the latency of the
second phase is 2m clock cycles. Thus, the latency of a conversion is exactly
	+2m+1 clock cycles where 	 is the length of the τ -adic expansion. As 	 = m−1,
the conversion requires 3m clock cycles. The design is inherently resistant against
side-channel attacks based on timing because its latency is constant.

If the U sequence is stored in ROM, it would be possible to reduce the latency
by on average 2

3m clock cycles by skipping all zeros in random τ -adic NAFs
in the first mode. This could also be helpful in thwarting side-channel attacks
based on power or electromagnetic measurements. Unfortunately, latency would
not be constant anymore making the design potentially insecure against timing
attacks. Reductions based on zero skippings are not possible if the U sequence is
computed on-the-fly because that computation always requires m clock cycles.

134 B.B. Brumley and K. Järvinen

4.1 Results

The design presented in Sec. 4 was written in VHDL and simulated in ModelSim
SE 6.1b. To the best of our knowledge, the only published hardware implemen-
tation of the integer to τ -adic NAF conversion was presented in [11] where the
converter was implemented on an Altera Stratix II EP2S60F1020C4 FPGA. In
order to ensure fair comparison, we synthesized our design for the same device
using Altera Quartus II 6.0 SP1 design software. Two curve-specific variations
of the design were implemented for the NIST curves K-163 and K-233.

The K-163 design with ROM requires 929 ALUTs (Adaptive Look-Up Ta-
bles) and 599 registers in 507 ALMs (Adaptive Logic Modules) and 13,529 bits
of ROM which were implemented by using 6 M4K memory blocks. The maxi-
mum clock frequency is 56.14MHz which yields the conversion time of 8.7μs.
The K-233 design with ROM has the following characteristics: 1,311 ALUTs and
838 registers in 713 ALMs, 27,612 memory bits in 7 M4Ks and 42.67MHz re-
sulting in 16.4μs. Implementations where the U sequence is computed on-the-fly
require 1,057 and 1,637 ALUTs and 654 and 934 registers in 592 and 894 ALMs
for K-163 or K-233, respectively. They operate at the maximum clock frequencies
of 55.17 and 43.94MHz resulting in the computation times of 8.9μs and 15.9μs.
The differences in computation times compared to the ROM-based implementa-
tions are caused by small variations in place&route results which yield slightly
different maximum clock frequencies. The latencies in clock cycles are the same
for both ROM-based and memory-free implementations, i.e. 489 for K-163 and
699 for K-233. As the required resources are small and the conversion times are
much shorter than any reported scalar multiplication time, our method is clearly
suitable for hardware implementations.

4.2 Comparisons

The implementation presented in [11] computes τ -adic NAF mod (τm − 1) so
that it first converts the integer to τ -adic NAF with an algorithm from [3], then
reduces it modulo (τm−1) and finally reconstructs the NAF which was lost in the
reduction. This was claimed to be more efficient in terms of required resources
than reductions modulo δ presented in [3] because their implementation is prob-
lematic on hardware as they require computations of several multiplications, and
hence either a lot of resources or computation time.

Table 3 summarizes the implementations presented here and in [11]. Com-
paring the implementations is straightforward because FPGAs are the same. It
should be noted that the converter in [11] has a wider scope of possible applica-
tions since our approach is only for taking random multiples of a point (this is
not useful in signature verifications, for example). Obviously, the computation
of an integer equivalent can be performed with fewer resources. The reductions
are 35% in ALUTs and 39% in registers for K-163 and 27% and 30% for K-233
when the U sequence is stored in the ROM. However, it should be noted that the
implementations presented in [11] do not require such additional memory. When
the U sequence is computed with logic and no ROM is needed, the reductions in

Koblitz Curves and Integer Equivalents of Frobenius Expansions 135

Table 3. Comparison of the published designs on Stratix II FPGA

Design m ALUTs Regs. M4Ks Clock (MHz) Tτ (μs) Total time

[11]a 163 1,433 988 0 80.44 6.1 Tsm + Tτ

233 1,800 1,198 0 58.89 11.9 Tsm + Tτ

This workb 163 929 (-35%) 599 (-39%) 6 56.14 8.7 Tsm

163 1,057 (-26%) 654 (-34%) 0 55.17 8.9 Tsm

233 1,311 (-27%) 838 (-30%) 7 42.67 16.4 Tsm

233 1,637 (-9%) 934 (-22%) 0 43.94 15.9 Tsm
a Integer to τ -adic NAF conversion.
b τ -adic expansion to integer conversion.

ALUTs and registers are 26% and 34% for K-163 and 9% and 22% for K-233
and so it is obvious that our converter is more compact.

The average latencies of both converters are approximately the same. The
difference is that the latency of our converter is always exactly 489 or 699 clock
cycles whereas the converter in [11] has an average latency of 491 or 701 clock
cycles for K-163 and K-233, respectively. The maximum clock frequencies of our
converters are lower and, thus, the implementations of [11] can compute con-
versions faster. However, an integer equivalent can be computed in parallel with
scalar multiplication and, thus, it can be claimed that the effective conversion
time is 0 μs.

To support the argument that the effective elimination of the conversion time
Tτ is significant, there are several implementations existing in the literature
computing scalar multiplications on K-163 in less than 100μs. For example, [12]
reports a time of 44.8μs, and [13] a time of 75μs. Hence conversions requiring
several μs are obviously significant when considering the overall time.

To summarize, computing the integer equivalent of a random τ -adic expansion
offers the following two major advantages from the hardware implementation
point-of-view compared to computing the τ -adic NAF of a random integer:

– Conversions can be computed in parallel with scalar multiplications.
– Computing the integer equivalent can be implemented with fewer resources.

As a downside, the calculation of an integer equivalent has a longer latency;
however, this is insignificant since the conversion is not on the critical path.

5 Conclusion

As shown, our new method for computing integer equivalents of random τ -adic
expansions is very computationally efficient. This has been demonstrated with an
implementation in hardware, where the parallelization of computing the integer
equivalent and the scalar multiple yields significant efficiency gains. It seems
unlikely that such gains are possible with this approach in software.

136 B.B. Brumley and K. Järvinen

Future Work

Side-channel attacks based on timing, power, or electromagnetic measurements
are a serious threat to many implementations; not only on smart cards, but on
FPGAs [14] as well. Our converter provides inherent resistance against timing
attacks because its latency is constant. Side-channel countermeasures against
other attacks are beyond the scope of this paper. However, before the suggested
implementation can be introduced in any practical application where these at-
tacks are viable, it must be protected against such attacks. This will be an
important research topic in the future.

As mentioned, only width-2 τ -adic NAFs have been considered here (all εi ∈
{0, 1,−1}). Arbitrary window width would clearly be more efficient for the scalar
multiplication. We are currently researching efficient methods for scanning ε
multiple bits at once, as well as simple alternatives to using the U sequence.

Acknowledgements

We thank Tanja Lange for useful discussions and comments during the prepara-
tion of this paper. We also thank the anonymous reviewers for comments on the
manuscript.

References

1. Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J.
(ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992)

2. Meier, W., Staffelbach, O.: Efficient multiplication on certain nonsupersingular
elliptic curves. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 333–
344. Springer, Heidelberg (1993)

3. Solinas, J.A.: An improved algorithm for arithmetic on a family of elliptic curves.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 357–371. Springer,
Heidelberg (1997)

4. Solinas, J.A.: Efficient arithmetic on Koblitz curves. Des. Codes Cryptogr. 19(2-3),
195–249 (2000)

5. Lange, T., Shparlinski, I.: Collisions in fast generation of ideal classes and points
on hyperelliptic and elliptic curves. Appl. Algebra Engrg. Comm. Comput. 15(5),
329–337 (2005)

6. Lange, T., Shparlinski, I.E.: Certain exponential sums and random walks on elliptic
curves. Canad. J. Math. 57(2), 338–350 (2005)

7. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Informa-
tion Theory IT-22(6), 644–654 (1976)

8. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

9. National Institute of Standards and Technology (NIST): Digital signature standard
(DSS). Federal Information Processing Standard, FIPS PUB 186-2 (2000)

10. Lange, T.: Koblitz curve cryptosystems. Finite Fields Appl. 11(2), 200–229 (2005)

Koblitz Curves and Integer Equivalents of Frobenius Expansions 137

11. Järvinen, K., Forsten, J., Skyttä, J.: Efficient circuitry for computing τ -adic non-
adjacent form. In: ICECS 2006. Proc. of the IEEE Int’l. Conf. on Electronics,
Circuits and Systems, Nice, France, pp. 232–235 (2006)

12. Dimitrov, V.S., Järvinen, K.U., Jacobson, J.M.J., Chan, W.F., Huang, Z.: FPGA
implementation of point multiplication on Koblitz curves using Kleinian integers.
In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 445–459.
Springer, Heidelberg (2006)

13. Lutz, J., Hasan, M.A.: High performance FPGA based elliptic curve cryptographic
co-processor. In: Goubin, L., Matsui, M. (eds.) ITCC 2004. International Confer-
ence on Information Technology: Coding and Computing, vol. 02, pp. 486–492.
IEEE Computer Society Press, Los Alamitos (2004)

14. Standaert, F.X., Peeters, E., Rouvroy, G., Quisquater, J.J.: An overview of power
analysis attacks against field programmable gate arrays. Proc. IEEE 94(2), 383–394
(2006)

	pub_9.pdf
	Koblitz Curves and Integer Equivalents of Frobenius Expansions
	Introduction
	Koblitz Curves
	Integer Equivalents

	Random τ-adic Expansions
	Hardware Implementation
	Results
	Comparisons

	Conclusion

