
Helsinki University of Technology
Department of Signal Processing and Acoustics

Espoo 2008 Report 5

STUDIES ON HIGH-SPEED HARDWARE IMPLEMENTATION
OF CRYPTOGRAPHIC ALGORITHMS

Kimmo Järvinen

Dissertation for the degree of Doctor of Science in Technology to be presented with
due permission of the Faculty of Electronics, Communications and Automation for
public examination and debate in Auditorium S1 at Helsinki University of Technology
(Espoo, Finland) on the 21st of November, 2008, at 12 noon.

Helsinki University of Technology
Faculty of Electronics, Communications and Automation
Department of Signal Processing and Acoustics

Teknillinen korkeakoulu
Elektroniikan, tietoliikenteen ja automaation tiedekunta
Signaalinkäsittelyn ja akustiikan laitos

Distribution:
Helsinki University of Technology
Department of Signal Processing and Acoustics
P.O. Box 3000
FIN-02015 HUT
Tel. +358-9-451 3211
Fax. +358-9-452 3614
E-mail: Mirja.Lemetyinen@hut.fi

c© Kimmo Järvinen

ISBN 978-951-22-9589-0 (Printed)
ISBN 978-951-22-9590-6 (Electronic)
ISSN 1797-4267

Multiprint Oy
Espoo 2008

AB

ABSTRACT OF DOCTORAL DISSERTATION
HELSINKI UNIVERSITY OF TECHNOLOGY
P.O. BOX 1000, FI-02015 TKK
http://www.tkk.fi

Author

Name of the dissertation

Manuscript submitted Manuscript revised

Date of the defence

 Monograph Article dissertation (summary + original articles)

Faculty
Department
Field of research
Opponent(s)
Supervisor
Instructor

Abstract

Keywords

ISBN (printed) ISSN (printed)

ISBN (pdf) ISSN (pdf)

Language Number of pages

Publisher

Print distribution

 The dissertation can be read at http://lib.tkk.fi/Diss/

VÄITÖSKIRJAN TIIVISTELMÄ
TEKNILLINEN KORKEAKOULU
PL 1000, 02015 TKK
http://www.tkk.fi

AB

Tekijä

Väitöskirjan nimi

Käsikirjoituksen päivämäärä Korjatun käsikirjoituksen päivämäärä

Väitöstilaisuuden ajankohta

 Monografia Yhdistelmäväitöskirja (yhteenveto + erillisartikkelit)

Tiedekunta
Laitos
Tutkimusala
Vastaväittäjä(t)
Työn valvoja
Työn ohjaaja

Tiivistelmä

Asiasanat

ISBN (painettu) ISSN (painettu)

ISBN (pdf) ISSN (pdf)

Kieli Sivumäärä

Julkaisija

Painetun väitöskirjan jakelu

 Luettavissa verkossa osoitteessa http://lib.tkk.fi/Diss/

Acknowledgments

The research work for this thesis was carried out in the Department of
Signal Processing and Acoustics (formerly, Signal Processing Laboratory),

Helsinki University of Technology (TKK). First of all, I would like to thank my
supervisor, Prof. Jorma Skyttä, for the support he gave me during these years.
He always took care of the ever-increasing university bureaucracy and let me
concentrate almost 100 %-ly to my research work, which I greatly appreciate.
Sincere thanks go also to Dr. Matti Tommiska for patient guidance in the early
phases of this work.

The pre-examiners of this thesis, Dr. Panu Hämäläinen and Dr. Toomas P.
Plaks, are greatly acknowledged for insightful comments which, I believe, helped
me to improve the manuscript of this thesis significantly.

I had the privilege of being in the Graduate School of Electronics, Telecom-
munications and Automation (GETA) from 2004 to 2008. I thank former di-
rector of GETA, Prof. Iiro Hartimo, current director, Prof. Ari Sihvola, and
coordinator, Marja Leppäharju, for making GETA such an exemplary graduate
school. Without GETA’s support making of this thesis would have been much
more difficult, or perhaps impossible.

Signal Processing Laboratory was always a nice place to work. The thanks
for that go to everyone who have worked there over the years, but I would like
to thank, especially, Juha Forsten, Antti Hämäläinen, Jaakko Kairus, Esa Kor-
pela, Pekka Korpinen, Keijo Länsikunnas, Dr. Jarno Martikainen, Sampo Ojala,
Taneli Riihonen, Dr. Matti Rintamäki, Kati Tenhonen, and Dr. Matti Tom-
miska. Also, I express my gratitude to the laboratory’s former secretary, Anne
Jääskeläinen, and secretary, Mirja Lemetyinen, because they never hesitated to
help me in various practical problems.

GETA, Prof. Graham Jullien, and Prof. Vassil Dimitrov arranged me an
opportunity to visit the ATIPS Lab at the University of Calgary, Canada, for
three months period in autumn 2005. It is hard to exaggerate the importance of
this visit for my thesis work, and I am therefore most grateful for this wonderful
opportunity that I had. Especially, I would like to thank Prof. Dimitrov, Prof.
Michael Jacobson, Jr., Dr. Laurent Imbert, Dr. Zhun Huang, and Andy Chan,
with whom I had the pleasure of working during my short stay in Calgary.

Since June 2008, I have been affiliated with the Department of Information
and Computer Science at TKK. I would like to thank everyone there for warmly
welcoming me. In particular, I thank my new boss, Prof. Kaisa Nyberg, for

— i —

giving me time to finalize this thesis, and Billy Bob Brumley for fruitful cooper-
ation that started already long before I joined the department. He also deserves
thanks for commenting the manuscript of this thesis.

The research work was financed by GETA and two projects: GO-SEC (2003–
2005), financed by Tekes and several Finnish telecommunication companies, and
PLA (2006–2008), financed entirely by Tekes. My doctoral thesis work was fi-
nancially supported also by the Nokia Foundation, Emil Aaltosen säätiö, Tek-
niikan edistämissäätiö (TES), and Elektroniikkainsinöörien säätiö, and I greatly
appreciate their generosity.

Finally, I would like to thank those who, although without having a direct
effect on my research work, have influenced the outcome of this work in many
other ways. Therefore, I thank my parents, brothers, and sister for providing
me a solid background and always supporting me in everything I have chosen
to do in my life. My warmest thanks go to Hanna for love, encouragement, and
support she has given me over the years.

Espoo, October 2008

Kimmo Järvinen

— ii —

Table of Contents

Acknowledgments i

Table of Contents iii

List of Publications vii

List of Abbreviations ix

List of Symbols xi

1 Introduction 1
1.1 Motivation for the Thesis . 1
1.2 Scope of the Thesis . 2
1.3 Contributions of the Thesis . 3
1.4 Structure of the Thesis . 5
1.5 Summary of Publications and Author’s Contribution 5

2 Overview of Cryptography 9
2.1 Secret-key Cryptography . 11

2.1.1 Data Encryption Standard (DES) 11
2.1.2 Advanced Encryption Standard (AES) 12

2.2 Public-key Cryptography . 12
2.2.1 Diffie-Hellman Key Exchange 13
2.2.2 RSA Cryptosystems . 13
2.2.3 ElGamal Cryptosystems 14
2.2.4 Digital Signature Algorithm (DSA) 15
2.2.5 Elliptic Curve Cryptosystems 15
2.2.6 On Difficulties of the Hard Problems 17

2.3 Cryptographic Hash Algorithms 17

3 Hardware Implementation of Cryptographic Algorithms 21
3.1 Implementation Platforms . 22

3.1.1 General-Purpose Processors 23
3.1.2 Application Specific Integrated Circuits (ASICs) 24
3.1.3 Low-Cost Environments 24

— iii —

3.2 Field Programmable Gate Arrays (FPGAs) 24
3.2.1 Modern FPGAs and Recent Trends 26
3.2.2 FPGA Design Flow . 27
3.2.3 Cryptographic Algorithms in FPGAs 28
3.2.4 Comparisons . 31

3.3 Metrics for Evaluating Implementations 31
3.4 Side-Channel Attacks . 32

4 Finite Fields 35
4.1 Preliminaries . 35
4.2 Prime Fields . 37
4.3 Binary Fields . 38

4.3.1 Polynomial Basis . 39
4.3.2 Normal Basis . 41

4.4 Inversion . 42
4.5 Notes on Implementations . 43

5 Advanced Encryption Standard 47
5.1 Description of AES . 47

5.1.1 Decryption . 49
5.2 Implementation of AES . 49

5.2.1 Memory-based Implementations 51
5.2.2 Combinatorial Implementations 52

5.3 Literature Review of AES Implementations 54
5.3.1 ASIC Implementations . 55
5.3.2 FPGA Implementations 57
5.3.3 Comparisons . 58

6 Elliptic Curve Cryptography 61
6.1 Preliminaries . 61
6.2 Arithmetic on Elliptic Curves . 63

6.2.1 Affine Coordinates . 64
6.2.2 Standard Projective Coordinates 64
6.2.3 López-Dahab Coordinates 65

6.3 Elliptic Curve Point Multiplication 66
6.3.1 Methods with Precomputations 69
6.3.2 Multiple Point Multiplication 70

6.4 Koblitz Curves . 71
6.5 Literature Review of ECC Implementations 74

6.5.1 Typical Structure of ECC Processors 79
6.5.2 Parallelism in ECC Processors 80
6.5.3 Flexibility of ECC Processors 81
6.5.4 Optimizations for Specific Curves or Algorithms 82
6.5.5 Comparisons . 83

7 Results 85
7.1 AES-related Contributions . 85

7.1.1 AES Surveys . 85
7.1.2 Fast AES Implementation 86

7.2 ECC-related Contributions . 86

— iv —

7.2.1 ECC Implementations for General Curves 86
7.2.2 Utilizing Parallelism with Koblitz Curves 87
7.2.3 Efficient Converters for Koblitz Curves 87
7.2.4 Adaptation of the DBNS to Koblitz Curves 88

8 Conclusions 89

Bibliography 93

Errata of Publications 121

— v —

— vi —

List of Publications

This thesis consists of an overview and of the following publications which are
referred to in the text by their Roman numerals.

I. Kimmo Järvinen, Matti Tommiska and Jorma Skyttä, “Comparative Sur-
vey of High-Performance Cryptographic Algorithm Implementations on
FPGAs,” IEE Proceedings: Information Security, vol. 152, no. 1, Oct.
2005, pp. 3–12.

II. Kimmo U. Järvinen, Matti T. Tommiska and Jorma O. Skyttä, “A Fully
Pipelined Memoryless 17.8 Gbps AES-128 Encryptor,” in Proceedings of
the 11th ACM International Symposium on Field-Programmable Gate Ar-
rays, FPGA 2003, Monterey, California, USA, Feb. 23–25, 2003, pp.
207-215.

III. Kimmo Järvinen, Matti Tommiska and Jorma Skyttä, “A Scalable Ar-
chitecture for Elliptic Curve Point Multiplication,” in Proceedings of the
2004 IEEE International Conference on Field-Programmable Technology,
FPT 2004, Brisbane, Queensland, Australia, Dec. 6–8, 2004, pp. 303-306.

IV. Kimmo Järvinen and Jorma Skyttä, “On Parallelization of High-Speed
Processors for Elliptic Curve Cryptography,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 16, no. 9, Sep. 2008, pp.
1162–1175.

V. Kimmo Järvinen, Juha Forsten and Jorma Skyttä, “FPGA Design of
Self-certified Signature Verification on Koblitz Curves,” in Proceedings of
the Workshop on Cryptographic Hardware and Embedded Systems, CHES
2007, Vienna, Austria, Sep. 10–13, 2007, Lecture Notes in Computer Sci-
ence, vol. 4727, Springer, pp. 256-271.

VI. Kimmo Järvinen and Jorma Skyttä, “Fast Point Multiplication on Koblitz
Curves: Parallelization Method and Implementations,” Microprocessors
and Microsystems, in press, 11 pages.

VII. Kimmo U. Järvinen and Jorma O. Skyttä, “High-Speed Elliptic Curve
Cryptography Accelerator for Koblitz Curves,” in Proceedings of IEEE

— vii —

International Symposium on Field-programmable Custom Computing Ma-
chines, FCCM 2008, Stanford, California, USA, Apr. 14–15, 2008, in
press, 10 pages.

VIII. Kimmo Järvinen, Juha Forsten and Jorma Skyttä, “Efficient Circuitry for
Computing τ -adic Non-Adjacent Form,” in Proceedings of the 13th IEEE
International Conference on Electronics, Circuits and Systems, ICECS
2006, Nice, France, Dec. 10–13, 2006, pp. 232-235.

IX. Billy Bob Brumley and Kimmo Järvinen, “Koblitz Curves and Integer
Equivalents of Frobenius Expansions” in Revised Selected Papers of the
14th Annual Workshop on Selected Areas in Cryptography, SAC 2007,
Ottawa, Ontario, Canada, Aug. 16–17, 2007, Lecture Notes in Computer
Science, vol. 4876, Springer, pp. 126-137.

X. V.S. Dimitrov, K.U. Järvinen, M.J. Jacobson, Jr., W.F. Chan, and Z.
Huang, “FPGA Implementation of Point Multiplication on Koblitz Curves
Using Kleinian Integers,” in Proceedings of the Workshop on Cryptographic
Hardware and Embedded Systems, CHES 2006, Yokohama, Japan, Oct.
10–13, 2006, Lecture Notes in Computer Science, vol. 4249, Springer, pp.
445-459.

XI. Vassil S. Dimitrov, Kimmo U. Järvinen, Michael J. Jacobson, Jr., Wai
Fong (Andy) Chan and Zhun Huang, “Provably Sublinear Point Multi-
plication on Koblitz Curves and Its Hardware Implementation,” IEEE
Transactions on Computers, vol. 57, no. 11, Nov. 2008, pp. 1469–1481.

— viii —

List of Abbreviations

3DES Triple-DES
AES Advanced Encryption Standard
AES-128 AES with a 128-bit key
AES-192 AES with a 192-bit key
AES-256 AES with a 256-bit key
ALM Adaptive Logic Module
ALU Arithmetic Logic Unit
ALUT Adaptive Look-Up Table
ANSI American National Standards Institute
ASIC Application Specific Integrated Circuit
CBC Cipher Block Chaining
CHES Cryptographic Hardware and Embedded Systems
CLB Configurable Logic Block
CMOS Complementary Metal Oxide Semiconductor
CPLD Complex Programmable Logic Device
CTR CounTeR
DBNS Double-Base Number System
DES Data Encryption Standard
DLP Discrete Logarithm Problem
DoS Denial-of-Service
DPA Differential Power Analysis
DSA Digital Signature Algorithm
DSP Digital Signal Processing / Processor
ECB Electronic Code Book
ECC Elliptic Curve Cryptography
ECDLP Elliptic Curve Discrete Logarithm Problem
ECDSA Elliptic Curve Digital Signature Algorithm
FAP Field Arithmetic Processor
FCCM Field-programmable Custom Computing Machines
FIPS Federal Information Processing Standard
FPGA Field Programmable Gate Array
FSM Finite State Machine
gcd Greatest Common Divisor
GCM Galois Counter Mode
GLV Gallant, Lambert, and Vanstone

— ix —

GNB Gaussian Normal Basis
HDL Hardware Description Language
HECC Hyper-Elliptic Curve Cryptography
IDEA International Data Encryption Algorithm
IEEE Institute of Electrical and Electronics Engineers
IFP Integer Factorization Problem
JSF Joint Sparse Form
LAB Logic Array Block
lsb Least Significant Bit
LUT Look-Up Table
MD Message Digest
msb Most Significant Bit
NAF Non-Adjacent Form
NAFw Width-w Non-Adjacent Form
NBS National Bureau of Standards
NIST National Institute of Standards and Technology
NSA National Security Agency
ONB Optimal Normal Basis
PAL Programmable Array Logic
PLA Packet Level Authentication / Programmable Logic Array
RACE Research and development in Advanced Communications

technologies in Europe
RAM Random Access Memory
RFID Radio Frequency IDentification
RIPEMD RACE Integrity Primitives Evaluation MD
RISC Reduced Instruction Set Computer
ROM Read-Only Memory
RSA Rivest, Shamir, and Adleman
SHA Secure Hash Algorithm
SPA Simple Power Analysis
SPN Substitution-Permutation Network
SSL Secure Sockets Layer
VHDL Very high speed integrated circuit HDL
XOR eXclusive-OR
τJSF τ -adic Joint Sparse Form
τNAF τ -adic Non-Adjacent Form
τNAFw Width-w τ -adic Non-Adjacent Form

— x —

List of Symbols

∗ Binary operation
⊗ Bitwise logical and operation (AND)
⊕ Bitwise logical exclusive-or operation (XOR)
b·c The largest smaller or equal integer
d·e The smallest larger or equal integer
(·)−1 Inverse
〈·〉 Bit string notation
〈·〉x Hexadecimal notation
a, . . . , e Elements of groups, rings, fields, and vector spaces
a1, a2, a3, a4, a6 Curve parameters
a(x), . . . , d(x) Elements of F2m with polynomial basis
A, . . . , J Temporary variables of point operations in P and LD
A Addition
A Affine coordinates
AddRoundKey(·, ·) Round key mixing transformation of the AES
C Ciphertext
d Exponent used in decryption
dN Number of ones in a multiplication matrix
dK(·) Decryption function with a key K
D Multiplier digit-size
Di Data after round i in block ciphers
deg(·) Degree of
e Exponent used in encryption
eK(·) Encryption function with a key K
E Elliptic curve
Ea2 Koblitz curve (a2 ∈ {0, 1})
E(Fq) Group of points on an elliptic curve E over Fq
F Field
Fq Finite field with q elements
F∗q Multiplicative group of Fq
Fp Prime field
F2m Binary field
Fq[x] Ring of polynomials over Fq
f Clock frequency

— xi —

f(x) Binary polynomial of x ∈ F
f(·, ·) Round function of a block cipher
F (·, ·) F -function of normal basis multiplication
g Generator of Fq
G Group
gcd(·, ·) Greatest common divisor
h Hash
H(·) Hamming weight, the number of nonzero terms
Hn(·) Joint Hamming weight of n expansions
Hash(·) Cryptographic hash algorithm
i, j, n, r, . . . , u Positive integers
I Inversion
l Latency
` Bit length
k Positive (random) integer
k An array of binary expansions
K Key
Ki Round key for the ith round
Ke Encryption key
Kd Decryption key
KeySchedule(·) Key schedule of the AES
LD López-Dahab coordinates
m Dimension of an extension field
M Message, plain text
M Multiplication
MixColumns(·) Column transformation of the AES
Nr Number of rounds
ord(·) Order of
O The point at infinity
p Prime number
p The number of parallel operations
p(x) Irreducible polynomial
P Point on an elliptic curve, the base point
P Projective coordinates
q Order of a finite field
Q Point on an elliptic curve, the result point
R Ring
RoundKeys Round keys of the AES
S Squaring
S(·) S-box
ShiftRows(·) Row permutation transformation of the AES
State State in the AES
SubBytes(·) Substitution transformation of the AES
t Computation time
T Throughput
Ti(·) T-box i
TN Multiplication matrix of normal basis
V Vector space
w Window size
x, y Coordinates of a point in A

— xii —

X,Y, Z Coordinates of a point in P or LD
α Normal element of F2m

δ, µ Auxiliary variables for Koblitz curves
∆ Temporary variable of composite field inversion
λ Temporary variable of point operations in A
ξ Element of a multiplication matrix TN

σ Field isomorphism
τ Complex root
ϕ(·) Euler’s totient function
φ(·) Frobenius endomorphism
ψ, ω Coefficients of irreducible polynomials

— xiii —

— xiv —

Chapter 1

Introduction

Information security is a fundamental requirement for an operational in-
formation society. Although issues considered as information security, such

as privacy of communication and reliable authentication, have been important
throughout history, developments in digital computing and information tech-
nology have set new requirements and challenges for them. The importance of
information security has grown because new technologies have made accessing
and misusing confidential information easier and more profitable. Hence, infor-
mation security, previously considered mostly by militaries and governments,
has become an issue having relevance even for an average person living in a
modern information society because of its significance in commerce, telecom-
munication, etc.

Cryptography, the art and science of hiding data, plays a central role in
achieving information security. It has become a fundamental part of commu-
nication and commercial applications in the Internet as well as in many other
digital applications. Cryptography is deployed with cryptographic algorithms,
mathematical functions for hiding messages and retrieving hidden messages.
This thesis studies and proposes methods to efficiently implement certain cryp-
tographic algorithms.

1.1 Motivation for the Thesis

The motivation for this thesis, as perhaps for all engineering, arises from the
classic utilitarian view which was well captured by Cilardo et al. [67] who stated,

“A mathematical construction with practical applications, such as
a cryptographic algorithm, has no real interest, in an engineering
sense, as long as methods for feasible implementation are not avail-
able.”

In other words, efficient implementation techniques for cryptographic algorithms
are necessary in order to use them in practice.

Applications using cryptographic algorithms often set very tight require-
ments for implementations. Low-cost applications, such as mobile hand-held

— 1 —

devices, sensor networks, or smart cards, to name a few, often set strict con-
straints on available resources, such as logic, memory, or power [90]. On the
other hand, high-speed applications, such as high-speed network servers, re-
quire very high computation speeds in order to prevent cryptography from be-
coming the bottleneck [105, 126]. Hence, designing implementations fulfilling
the requirements is often a challenging task and implementing cryptographic
algorithms has been widely studied in academia.

Naturally, general-purpose microprocessors can be used for implementing
cryptographic algorithms but, in that case, the execution of computationally de-
manding cryptographic algorithms easily becomes the limiting factor for overall
performance [63]. Hence, dedicated hardware implementations are commonly
required to offload cryptographic algorithms away from the microprocessor [63].
Reprogrammable hardware has established itself as one of the most attractive
platforms for cryptographic algorithms because of the combination of speed and
flexibility [293]. This thesis concentrates on Field Programmable Gate Arrays
(FPGAs) which are commonly considered very feasible implementation plat-
forms among implementors of cryptographic algorithms [293]. However, a ma-
jority of the ideas and architectures presented in this thesis can be applied also
to Application Specific Integrated Circuits (ASICs), and some even for software
implementations.

1.2 Scope of the Thesis

The thesis concentrates on a secret-key cryptographic algorithm, Advanced En-
cryption Standard (AES) [206], and public-key cryptographic algorithms based
on arithmetic on elliptic curves, Elliptic Curve Cryptography (ECC) [146, 194].
AES has become a true de facto algorithm for secret-key cryptography and it
is used in countless applications worldwide ranging from RFID tags [95] and
sensor networks [120] to heavily-loaded servers [105] and optical networks [126].
Because of the very wide use of AES, it is justified to focus this study solely
to AES. ECC is in many ways superior to traditional public-key algorithms,
such as the widely-used RSA [239], because it offers similar levels of security
with considerably shorter keys [32, 164] and faster performance [88, 251]. In
the recent years, ECC has gained popularity also in practical systems and it
is used, e.g., in Windows Vista [160], OpenSSL [218], and German biometric
passports [43, 44], to name a few. The National Security Agency (NSA) of
the United States is also strongly promoting the use of ECC [210]. ECC has
thus become a mainstream method for public-key cryptography and its use is
increasing. Hence, the selection of ECC is justified.

Because this thesis considers both secret-key and public-key cryptographic
algorithms, the results also enable designing cryptosystems where a secret key is
first shared by two parties with the public-key algorithm, i.e., with ECC, and,
then, the actual encryption is performed with the faster secret-key algorithm,
i.e., with AES. As mentioned, both AES and ECC are algorithms which are
used in numerous practical applications and they are likely to remain popular
also in the foreseeable future. Consequently, most of the findings of this thesis
can be directly applied in practice.

Requirements for cryptographic implementations are diverse, but the pri-
mary requirement considered in this thesis is speed of computation. Before a

— 2 —

cryptographic algorithm can be adopted to a practical application, there must
exist ways to implement it so that it matches the speed requirements of the
application. For instance, if traffic in a high-speed network is encrypted with
cryptographic algorithms, the implementations must be able to compute the
algorithms with throughputs matching the throughput of the network, or oth-
erwise they become the bottleneck for the entire communication. An example
of an application that sets very high requirements for computation speed is the
Packet Level Authentication (PLA) communication scheme [46, 47], which was
the main target application, especially, for the implementations presented in V
and VII. Other examples include heavily-loaded e-commerce servers [105] and
optical network switches [126].

Most publications of this thesis concern ECC. The emphasis is on methods
allowing increased use of parallelism in ECC operations, or more specifically in
elliptic curve point multiplication, the principal operation of ECC. Point mul-
tiplication is recursive in nature and it is thus hard to parallelize. Many of the
contributions focus on a class of elliptic curves, called Koblitz curves [148], which
offer faster computation, but require certain conversions for integers. Koblitz
curves have attained a lot of interest in theoretical cryptography research and
they are listed in major ECC standards, such as [52, 205], but, prior to this
thesis, they have attained only limited interest in the community implementing
cryptographic algorithms in hardware.

The focus of this thesis is on the algorithmic level and in methods allowing
efficient implementation. This thesis does not discuss higher level aspects, such
as cryptographic protocols. Also lower levels, such as gate or transistor levels,
are not discussed in this thesis. All contributions address the problem of achiev-
ing fast computation of cryptographic algorithms efficiently. The scope of the
thesis can be described as finding answers to the following questions:

— Which algorithms are the most suitable for hardware (or FPGA) imple-
mentations and how could they be improved in order to increase their
suitability?

— How should these algorithms be implemented in order to provide the best
possible results?

Author’s other publications on topics related to cryptography, in addition
to the publications of this thesis, include an automated design generator for
ECC [137], studies of cryptographic hash algorithms, MD5 and SHA-1 [138,
139], and a recent work on fast decompressions in ECC [41].

1.3 Contributions of the Thesis

This thesis has contributed to several areas of research in cryptographic im-
plementations. More specifically, the contributions enable faster implementa-
tions of AES and ECC than those that were available previously, and they thus
provide improvements predominantly to applications requiring high speed im-
plementations. The following lists the main contributions of this thesis. More
detailed discussions are given in the publications and in Ch. 7.

The AES-related contributions (I, II) include

— 3 —

— a review of existing FPGA-based implementations of widely-used secret-
key cryptographic algorithms including AES and hash algorithms (I) and
a review complementing and updating this review (Ch. 5),

— a study illuminating the relationship between achieved throughput and
consumed area in AES implementations also when they use embedded
memory of FPGAs (I), and

— a high-speed implementation of AES which was the fastest FPGA-based
implementation at the time of publication (II).

The most significant contributions are those considering ECC (III–XI) and
they include

— a review of existing ECC implementations on FPGAs and ASICs (Ch. 6),

— an implementation optimized for the structure of FPGAs (III),

— a study on the effects of parallelism in ECC implementations and tools
for evaluating and optimizing parallelism in these implementations (IV),

— a method that splits point multiplications on Koblitz curves for parallel
processors and FPGA implementations utilizing this method (IV),

— an FPGA design for computing signature verifications, the most demand-
ing operations of the PLA, with very high speed (V),

— improvements to precomputation algorithms used in these signature veri-
fications (V),

— a method utilizing parallelism and interleaved point operations on Koblitz
curves (VI),

— implementations of the above method (VI) and an optimized implemen-
tation which further improves on this by utilizing similarity of certain
point multiplication algorithms (VII); these implementations achieve the
fastest point multiplications currently available in the literature,

— hardware-optimized algorithms for integer conversions related to Koblitz
curves and their implementations (VIII, IX), and

— an introduction of a new multiple-base expansion to Koblitz curves and
its FPGA implementations (X, XI).

These contributions increase knowledge of implementing AES and ECC in
hardware, and more specifically in FPGAs. The most substantial results are
those that provide methods to implement ECC with increased amounts of par-
allelism, because they result in very fast FPGA implementations. Especially,
the results related to Koblitz curves dramatically improve existing solutions.
The contributions of this thesis could be directly applied in various practical
systems and, as a consequence, they also have significant practical relevance.

— 4 —

1.4 Structure of the Thesis

This thesis comprises an overview and eleven publications which are appended
in the end. The remainder of this overview is structured as follows:

Ch. 2 presents an overview of cryptography.

Ch. 3 discusses implementation platforms of cryptographic algorithms.

Ch. 4 introduces preliminaries of finite fields and their implementations.

Ch. 5 discusses AES and its implementations.

Ch. 6 discusses ECC and its implementations.

Ch. 7 summarizes the results of the thesis.

Ch. 8 draws conclusions.

Ch. 2 and 3 give general descriptions of cryptography and cryptographic
hardware, whereas Ch. 4–6 present detailed descriptions of both theory and
practice of the algorithms discussed in the publications. Ch. 7 and 8 present
the results and conclude their importance for the research field.

1.5 Summary of Publications and Author’s
Contribution

The following provides short summaries of the eleven publications of this thesis.
The author had a major role in research and writing in all these publications,
and the author’s contribution in every particular publication is specified in the
end of each summary.

Publication I The article presents a comparative survey of cryptographic al-
gorithm implementations on FPGAs. The study concentrates on high-speed im-
plementations of AES, International Data Encryption Algorithm (IDEA), MD5,
and SHA-1, but other secret-key algorithms and hash algorithms are studied
shortly as well. The survey addressed the well-recognized problem of comparing
implementations using embedded memory to memory-free implementations. It
was concluded that FPGAs suit well for cryptographic algorithms.

The author is responsible for all research and writing, except for the study of
IDEA in Sec. 2.2 which was written by Dr. Matti Tommiska who also made im-
provement suggestions to the rest of the paper. Prof. Jorma Skyttä supervised
the research.

Publication II The paper describes an implementation of AES. The imple-
mentation provided the highest reported throughput at the time of publication,
and the most important contribution of the paper was thus the speed of the im-
plementation. Composite fields were utilized in order to increase the efficiency
of the implementation. Xilinx Virtex FPGAs were used for demonstration but
the architecture itself is generic and applies to both FPGAs and ASICs.

All hardware designs are due to the author. The author wrote all of the pa-
per; except Secs. 1, 6, and 7. Dr. Matti Tommiska provided extensive support in

— 5 —

both research work and writing of the paper. He also introduced the possibility
of using composite fields to the author and wrote the above mentioned sections.
Prof. Jorma Skyttä supervised the research.

Publication III The paper presents an implementation of ECC optimized
for the structure of Xilinx Virtex FPGAs. The implementation was designed
so that it could be easily generated with an automatic VHDL (Very high speed
integrated circuit Hardware Description Language) generator which was pre-
sented in [137]. The achieved point multiplication times were among the fastest
published results at the time of publication, and even the fastest ones for certain
parameters.

The author designed and implemented all hardware architectures. The au-
thor also wrote the entire paper while Dr. Matti Tommiska supervised the work
and made many observations in both research work and writing of the paper.
Prof. Jorma Skyttä supervised the research.

Publication IV The article discusses parallelization of ECC processors and
describes a generic processor architecture which is used in analyzing effects of
parallelism. The article presents a comprehensive study of existing paralleliza-
tion techniques and, most importantly, presents a novel parallelization technique
using parallel processors which results in considerable reductions in latency, es-
pecially, on Koblitz curves but also on general curves with certain presupposi-
tions. A number of FPGA-based implementations are presented for both general
and Koblitz curves.

The author is responsible for all theory, hardware implementations, and the
entire writing of the manuscript. Prof. Jorma Skyttä supervised the research
and presented comments on the manuscript.

Publication V The paper presents an accelerator designed specifically for
verifying self-certified signatures on Koblitz curves. This operation acts as the
bottleneck in the PLA. It was concluded that up to 166,000 signatures can
be verified in second with a single FPGA by using massive parallelism. The
paper also presents certain improvements to precomputations involved in veri-
fications. The main contribution of the paper is that it shows that considerable
improvements in the number of operations per second are achievable by toler-
ating slightly longer computation times for single operations.

The author is responsible for everything presented in the paper and he wrote
the entire paper. Juha Forsten helped in verifying the designs on an FPGA and
he also made certain improvements to the manuscript. Prof. Jorma Skyttä
supervised the research.

Publication VI The article discusses ECC on Koblitz curves. It introduces
a new parallelization method which achieves optimal multiplier utilization by
interleaving successive operations. The method has several advantages over
the best previously presented methods (the ones presented in IV). First, the
achievable critical path is shorter; second, the method enables implementing
both general and Koblitz curves efficiently in the same hardware; third, the
method increases the attractiveness of using Koblitz curves; and, fourth, efficient

— 6 —

implementations can be designed by using the method as demonstrated in the
paper on FPGAs.

The author is alone responsible for all theory, implementations, and writing.
Prof. Jorma Skyttä supervised the research.

Publication VII The paper presents an implementation designed specifically
for Koblitz curves. The implementation can compute point multiplications and
sums of up to three point multiplications and, hence, it supports all ECC op-
erations required in the PLA, confer V which supports only verifications. The
implementation utilizes the common structure of the algorithms and specific
processing units optimized for different parts of the algorithms, especially, the
method presented in VI. Both fast computation time for single operations and
high throughput are achieved with the implementation and, to the author’s
knowledge, it outperforms all other implementations available in the literature.

The author is responsible for everything presented in the paper and all writ-
ing. Prof. Jorma Skyttä supervised the research.

Publication VIII The paper describes an architecture for integer conversions
related to Koblitz curves. To the author’s knowledge, it was (and still is) the
only publication presenting such converters. The converter is compact and
fast and, hence, it has significance in hardware realization of ECC on Koblitz
curves. Prior to the publication of the paper, a general-purpose processor was
used for the conversions in all publications. The contributions of the paper
include modifications to conversion algorithms, which make them more suitable
for hardware, and an efficient converter architecture.

The author is responsible for all research, implementations, and writing in
the publication. Juha Forsten helped in testing the converter and gave some
comments during the writing of the paper. Prof. Jorma Skyttä supervised the
research.

Publication IX This paper discusses conversions related to Koblitz curves
too, but to the other direction than in VIII. Such conversions have signifi-
cance, e.g., in digital signature algorithms. The benefit compared to conversions
discussed in VIII is that conversions can be computed in parallel with other
operations. The paper also presents efficient hardware implementations of the
conversion, and such converters were not presented previously in the literature.

The author designed and implemented the hardware architecture. Theoret-
ical work and ideas are due to Billy Bob Brumley. The author made certain
suggestions on how to efficiently compute the conversions and wrote Sec. 4.
Brumley wrote the rest of the paper.

Publication X The paper presents multiple-base expansions, analogous to
the Double-Base Number System (DBNS) [79, 80], and they are useful in ECC
on Koblitz curves. Two types of representations, one with two bases and the
other with three, were suggested and it was proven that the number of terms
in the three-base expansions is sublinear in the bit length of an integer. The
same was conjectured for the two-base expansions based on extensive numer-
ical evidence. The practical feasibility of the two-base method was shown by

— 7 —

designing an FPGA implementation. The implementation used the state-of-the-
art algorithms and achieved high speed with moderate area requirements. The
implementation was the fastest published ECC implementation at the time of
publication. The suggested expansions were the first multiple-base expansions
presented for Koblitz curves which were shown to be feasible in practice.

The author designed and implemented the entire hardware implementation,
except the multiple-base expansion converter which was designed and imple-
mented by Dr. Zhun Huang. Theoretical work and ideas on multiple-base
expansions are due to Prof. Vassil Dimitrov and Prof. Michael Jacobson, Jr.
The software implementation and numerical results were made by Andy Chan.
The author is responsible for the writing of Sec. 4, excluding Sec. 4.3, and a
part of Sec. 5. The co-authors wrote the rest of the paper.

Publication XI The article extends X. It discusses multiple-base expansions
with more details and provides additional numerical evidence supporting feasi-
bility of the expansions. A new section discussing inherent parallelism available
in the expansions is included together with a description of an FPGA imple-
mentation utilizing this parallelism.

The most important new part, Sec. 5, was written solely by the author, and
the author is alone responsible for all research related to that section. Otherwise,
the responsibilities were the same as in X.

— 8 —

Chapter 2

Overview of Cryptography

Cryptography, the art and science of keeping messages secure, has a long
history which can be traced back to ancient Egypt some 4000 year ago [189].

Undoubtedly, cryptanalysis, the art and science of revealing messages hidden
by means of cryptography, has an equally long history. Together cryptography
and cryptanalysis are called cryptology. When the history of cryptology is
discussed, it must be emphasized that historical cryptology has little common
with modern cryptology which started in the 20th century, and which is the
topic of this thesis.

First, some fundamental terminology is introduced. The message, which is
to be kept in secret, is referred to as plaintext. The process of hiding its content
is called encryption and the encrypted message is referred to as ciphertext. The
process of receiving the content of plaintext back from ciphertext is decryption.
A cryptographic algorithm is the mathematical function used for encrypting
and decrypting messages. A modern cryptographic algorithm always includes a
key. A cryptographic algorithm, plaintexts, ciphertexts, and keys are referred
to as cryptosystem.

Fig. 2.1 shows the basic communication model where Alice (A) and Bob
(B) are communicating over an unsecured channel, and Eve (E) is trying to
eavesdrop their communication. In order to prevent Eve from obtaining the
content of a message, M , Alice uses a cryptographic algorithm to turn M into

A B

E

Unsecured channel

Figure 2.1: Communication model

— 9 —

a ciphertext, C, i.e. she performs

C = eK(M) (2.1)

where eK(·) is the encryption function with the key, K. Alice sends C over the
unsecured channel to Bob who performs

M = dK(C) (2.2)

where dK(·) is the decryption function. Thus, Bob has received M but Eve,
who does not have K, is unable to get M from C unless she can break the
cryptographic algorithm. [122, 258]

Let Ke and Kd be the keys used in encryption and decryption, respectively.
Cryptographic algorithms where Ke can be computed from Kd, and vice versa,
are called secret-key1 cryptographic algorithms. The secrecy of keys is essential
for the security of secret-key cryptographic algorithms because if Eve obtains
Ke, she can easily compute Kd. Thus, Alice and Bob must exchange keys by
using a secured channel which makes key distribution one of the most difficult
problems in many applications. The most efficient way to attack a secret-key
algorithm should be an exhaustive search through the key space. Even in that
case, a secret-key algorithm is weak if it is realistic to assume that it could
be possible to build a machine that can perform an exhaustive search in some
reasonable time with realistic cost. [258]

Secret-key algorithms were the only option to deploy cryptography until
the mid-1970s when Whitfield Diffie and Martin E. Hellman published their
landmark paper, “New Directions in Cryptography” [76]. They introduced the
concept of public-key cryptography2 where Ke can be easily computed from Kd

but Kd cannot be computed from Ke (in any reasonable time). Thus, Ke can
be made public. Communication between Alice and Bob operates so that Bob
publishes his Ke. Alice uses it to encrypt M and sends C over the unsecured
channel. Only Bob has access to Kd because it cannot be computed from Ke,
and Bob is thus the only one able to decrypt C. Public-key cryptographic
algorithms are based on hard problems where “hard” means that a problem
is considered impossible to solve with any computational resources available
currently or in the (near) future. In proportion, a problem is “weak” if there are
methods for solving the problem with some amount of computational resources
available at the time although acquiring such resources might be unreachable
for all but the richest governments or corporations. Thus, the hardness of a
problem is open to interpretation. [258]

Moreover, the required level of security depends on confidentiality of the
data being encrypted. Hence, an adequate level of security may be achieved
with weak algorithms. For example, Data Encryption Standard (DES) was
used until late-1990s by some corporations although it was commonly considered
weak already in the 1980s [164]. As a rule of thumb, if the cost of breaking a
cryptosystem exceeds the value of encrypted data, then the cryptosystem can
be considered adequately secure [258]. However, cryptography alone does not
provide information security, but it is rather a set of techniques [189]. In addition
to cryptographic algorithms, security relies also on many other aspects. In

1Terms such as private-key or symmetric(-key) are also commonly used in the literature.
2Also called as asymmetric(-key) cryptography.

— 10 —

fact, failures in practical cryptosystems, such as automatic teller machines, are
commonly due to implementation and management errors [11]. Hence, in order
to make a system secure, all sides of an application must be secured: protocols,
algorithms, implementations, etc., [164] and security considerations should be an
organic part in designing applications where security is an issue [231]. The above
does not diminish the importance of secure cryptographic algorithms because
they have an essential role in building a secure system in the first place. Security
is always compromised if a severe flaw is found in a cryptographic algorithm.

Secret-key cryptography is considered in more detail in Sec. 2.1 and public-
key cryptography is discussed in Sec. 2.2. Cryptographic hash algorithms are
one-way functions which have a great significance in many cryptosystems, and
they are considered in Sec. 2.3.

2.1 Secret-key Cryptography

Secret-key cryptographic algorithms are categorized into either stream ciphers or
block ciphers based on how they manipulate data. A stream cipher handles data
one symbol, typically a bit, at a time whereas a block cipher encrypts data in
fixed-length blocks. Most cryptographic algorithms used today are block ciphers
and stream ciphers are used predominately in situations where transmission
errors are probable and implementation resources are limited [189], such as
mobile communication devices. Stream ciphers are not considered further in
this thesis.

Modern block ciphers are usually constructed using a Feistel structure or
a Substitution-Permutation Network (SPN), e.g., DES uses a Feistel structure
and AES is an SPN. In both cases, encryption and decryption are performed by
iteratively applying a round function, Di = f(Di−1,Ki), where Di−1 is the data
at iteration i−1 and Ki is the round key for iteration i. Round keys are derived
from the key, K, with a routine called key schedule. The round function, f(·, ·),
includes substitutions performed with the so-called S-boxes which are predefined
tables, permutations that rearrange the input data using fixed rules, and round
key mixing which is typically performed with an exclusive-or (XOR). [274]

An enormous amount of different block ciphers have been proposed and are
in use in different applications. Probably the two most important ones, DES
and AES, are discussed in Secs. 2.1.1 and 2.1.2, respectively.

2.1.1 Data Encryption Standard (DES)

In 1972, National Bureau of Standards (NBS) of the United States, nowadays
National Institute of Standards and Technology (NIST), initiated a program for
computer security which included the development of an encryption standard.
After initial problems in finding a candidate that would fulfill the requirements
set for the standard, they received a promising candidate called Lucifer from
IBM. Lucifer was evaluated and revised by the NSA before its adaptation as a
Federal Information Processing Standard (FIPS) in 1976. The standard [203]
was published in January 1977. The development process and introduction
of DES was perhaps the most important landmark in the history of academic
research on cryptosystems. It was the first time in history when a high-security

— 11 —

cryptographic algorithm became available to everyone and, hence, it marked the
beginning of wide-scale academic research on cryptography. [258]

It had become obvious that the key length of DES was too short to be
secure against exhaustive key search and, thus, a strengthened variant called
Triple-DES (3DES) was included into the final reaffirmation of the standard
in 1999 [204]. DES was withdrawn officially in 2005 and it has been replaced
by AES. DES is not considered further in this thesis because of its decreasing
importance in contemporary cryptosystems.

2.1.2 Advanced Encryption Standard (AES)

Because it had become obvious that DES had exceeded the end of its reason-
able lifetime, NIST began the process to replace DES in January 1997. An open
competition was announced for algorithms in September of the same year. The
requirements for the algorithm were 128-bit block size, support for keylengths
of 128, 192, and 256 bits, and royalty free availability. Altogether 15 candi-
date algorithms were submitted to the competition. After the first round, five
finalist algorithms were selected; namely, Mars, RC6, Rijndael, Serpent, and
Twofish. [45, 211]

Criteria for the selection of the winner included security, performance, and
algorithm characteristics. All finalists were stated to be secure enough to be
selected as AES, and there were no known intellectual property issues for any
of the algorithms. Thus, performance was the key issue which finally decided
the winner. Performance was evaluated on various platforms including 8-bit
embedded processors, 32-bit Pentium processors (the most important), Digital
Signal Processors (DSPs), FPGAs, and ASICs. [45, 211]

In October 2000, NIST announced that Rijndael was selected as the new AES
algorithm. The reasons why Rijndael was selected were its strong performance
on basically all platforms and the ease of hardware implementation [45, 211].
Rijndael was also the most popular choice in straw polls at the final AES con-
ference, and its selection received an approving reception in the community [45].
Rijndael was officially adopted as the AES on December 6, 2001 [206]. Hence-
forth, AES always refers to Rijndael in this thesis3. Details of the algorithm are
not considered here because they are discussed thoroughly in Sec. 5.1.

2.2 Public-key Cryptography

As mentioned, public-key cryptography was invented by Diffie and Hellman in
the mid-1970s. The main idea that they presented in [76] was that different
keys Ke and Kd could be used for encryption and decryption so that it is easy
to derive Ke from Kd but it would be infeasible to find Kd from Ke. Diffie
and Hellman suggested using discrete exponentiation as a method for obtaining
Ke. Because of its fundamental nature, their key exchange method is reviewed
in Sec. 2.2.1 and it is followed by short descriptions of certain other public-key
algorithms currently used in many practical applications. Only basic versions

3To be precise, there is a small difference between AES and Rijndael: Rijndael accepts
block sizes of 128, 192, and 256 bits, whereas AES defines only a fixed block size of 128 bits.
In this thesis, both terms refer to the official AES unless stated otherwise.

— 12 —

are presented and they may be insecure against certain attacks, such as the-
man-in-the-middle attack; see [258], for example.

Public-key cryptography is used in key exchange, encryption, and digital
signatures. Key exchange and encryption are self-explanatory: Key exchange
permits two parties to safely agree a shared secret key over an unsecured channel
and encryption allows data to be encrypted without sharing a secret key. Digital
signatures can be seen as digital counterparts for handwritten signatures and
they provide unforgeable proofs of authorship and authenticity as well as non-
repudiation.

2.2.1 Diffie-Hellman Key Exchange

First, Alice selects a random integer Kd,A from an interval [1, p− 1] where p is
a prime. Then, she computes and publishes

Ke,A = gKd,A (mod p) (2.3)

where g is a fixed element of a finite field Fp. Finite fields will be discussed
in more detail in Ch. 4. Alice’s private-key and public-key are Kd,A and Ke,A,
respectively. Similarly, Bob selects Kd,B and computes and publishes Ke,B .
Now, Alice and Bob get a common secret key K, which can be used in a secret-
key cryptographic algorithm, by computing

K = gKd,AKd,B = (Ke,B)Kd,A = (Ke,A)Kd,B (mod p). (2.4)

In order to compute K, Eve, who knows only Ke,A and Ke,B , must compute
either Kd,A from Ke,A or Kd,B from Ke,B , i.e., she must solve the following
Discrete Logarithm Problem (DLP)

Kd = loggKe (mod p). (2.5)

DLP is believed to be a hard problem if g and p are chosen carefully. Thus, it
is impossible for Eve to obtain K. [76]

2.2.2 RSA Cryptosystems

Soon after Diffie and Hellman’s paper, Ronald L. Rivest, Adi Shamir, and
Leonard Adleman published a cryptosystem [239] which is now known, after
its inventors, as the RSA cryptosystem. A key pair is generated in RSA so that
one randomly selects two primes p1 and p2 of the same bit length `/2 where `
is referred to as the security parameter [122]. Then, one computes

n = p1p2 and ϕ(n) = (p1 − 1)(p2 − 1), (2.6)

and selects an integer e from the interval [1, ϕ(n)] so that gcd(e, ϕ(n)) = 1, i.e.,
the greatest common divisor (gcd) of e and ϕ(n) is one4. Finally, one computes
d = e−1 (mod ϕ(n)). The public-key is Ke = (n, e) and the private-key is
Kd = d. RSA encryption and signature schemes are based on the fact that

Med ≡M (mod n) (2.7)
4ϕ(n) is Euler’s totient function which gives the number of positive integers smaller than

n and coprime to n [274].

— 13 —

for all integers M . [239]
The RSA encryption operates so that Alice computes

C = MeB (mod nB), (2.8)

by using Bob’s public-key Ke,B = (nB , eB). She sends C over the unsecured
channel to Bob who decrypts the message by computing

M = CdB (mod nB) (2.9)

where dB is Bob’s private-key Kd,B . [239]
In the RSA signature scheme, Kd is used in signing (encryption) and Ke

in verification (decryption), but this does not change the fact that Kd must be
private while Ke is public. Bob signs a message M as follows. First, he computes
a hash, h = Hash(M), of M by using a cryptographic hash algorithm which
are discussed in more detail in Sec. 2.3. At this point, it suffices to state that h
is a fixed-length bit string which can be considered as the “fingerprint” of M .
Second, Bob generates the signature s by computing

s = hdB (mod nB) (2.10)

and sends s and M to Alice. Alice verifies that M was signed by Bob so that,
first, she computes h, as Bob did, and, second, she computes

h′ = seB (mod nB). (2.11)

Alice accepts the signature if h = h′, else she rejects it. [239]
RSA is believed to depend on the difficulty of Integer Factorization Problem

(IFP) because Eve is unable to compute d from e if she does not know ϕ(n).
Furthermore, she is unable to find ϕ(n) unless she can factor p1 and p2 out from
n, which requires solving the IFP. The best known method for factorization is
currently the number field sieve factoring [18].

2.2.3 ElGamal Cryptosystems

Taher ElGamal [92] expanded the idea of Diffie and Hellman by introducing
encryption and signature schemes based on the DLP in 1985. The ElGamal
encryption scheme is considered next. Let private-keys and public-keys be as
in Diffie-Hellman in Sec. 2.2.1. Then, Alice encrypts a plaintext, M , with the
following equations by using a random integer k ∈ [1, p−1] and Bob’s public-key,
Ke,B :

C1 = gk (mod p)

C2 = MKk
e,B (mod p).

(2.12)

Then, Alice sends (C1, C2) to Bob who decrypts the ciphertext by computing

M = C2C
−Kd,B

1 (mod p). (2.13)

— 14 —

2.2.4 Digital Signature Algorithm (DSA)

Digital Signature Algorithm (DSA), first presented by David W. Kravitz in [155],
is included in standards by American National Standards Institute (ANSI) [8],
NIST [205], and Institute of Electrical and Electronics Engineers (IEEE) [132,
133], among others. DSA specifies how to sign and verify messages with cryp-
tographic signatures. Consider a case where Bob signs a message, M , and Alice
verifies the signature.

The domain parameters are agreed so that p is a prime, n is a prime divisor
of p − 1 and g is a generator of Fn; see Ch. 4. First, Bob generates a key pair
(Kd,B ,Ke,B) by selecting a random integer Kd,B ∈ [1, n− 1] and by computing

Ke,B = gKd,B (mod p). (2.14)

Bob signs a message, M , by computing its hash, h = Hash(M). The signa-
ture (s, r) is computed as follows:

r = (gk mod p) (mod n)

s = k−1(h+ rKd,B) (mod n)
(2.15)

where k ∈ [1, n− 1] is a random integer and k−1 is its multiplicative inverse in
Fn; see Ch. 4. Bob published the domain parameters and Ke,B and sends the
message, M , and the signature, (r, s), to Alice. [205]

When Alice receives a message, M , and an attached signature, (r, s), which
is claimed to be signed by Bob, she retrieves the domain parameters and Bob’s
public key Ke,B . She verifies the signature by computing h = Hash(M) and
the following formulae:

u1 = s−1h (mod n)

u2 = s−1r (mod n)
v = (gu1Ku2

e,B mod p) (mod n).

(2.16)

Alice accepts the signature if v = r, else she rejects it. [205]
If Bob indeed generated the signature Alice received and the message was

not tampered after signing, s received by Alice is as in (2.15) which gives

k = s−1(h+ rKd,B) = u1 + u2Kd,B (mod n). (2.17)

Thus, gu1Ku2
e,B = gu1gK

u2
d,B = gu1+u2Kd,B = gk (mod n), and v = r which shows

that Bob generated the signature and M was not tampered after the generation.
This proof was adapted from [140].

2.2.5 Elliptic Curve Cryptosystems

The use of elliptic curves in cryptography was independently proposed by Neil
Koblitz [146] and Victor Miller [194] in 1985. Since then, large amounts of
work has been done on ECC in academia and increasingly also in industry. The
security of ECC is based on the hardness of a problem called Elliptic Curve
Discrete Logarithm Problem (ECDLP) which is an elliptic curve analogue of
the DLP. ECC operates analogously to the cryptosystems based on the DLP
with the exception that exponentiations are replaced by elliptic curve operations.

— 15 —

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
0

100

200

300

400

500

600

Discrete logarithm or factorization (bits)

E
lli

pt
ic

 c
ur

ve
s

(b
its

)

Figure 2.2: Approximative key sizes of ECC and public-key cryptosystems based on
the DLP or the IFP for a similar level of security [32]. The corresponding key sizes
for the curves specified by NIST [205] are plotted with dotted lines.

Elliptic curve operations are not considered here because a comprehensive review
is presented in Ch. 6.

Standardization has great significance in ECC because there is a multitude
of parameters to choose from, they have a large impact on design decisions, and
implementations using different parameters usually fail to cooperate [67]. ECC
is included in the following major standards: ANSI X9.62 [8] and X9.63 [9],
IEEE 1363 [132, 133], FIPS 186-2 [205] (NIST), ISO/IEC 15946-1/2/3/4 [135]
and 18033-2 [134], and SECG [51, 52].The DSA standard [205] also includes an
elliptic curve variant of DSA called Elliptic Curve Digital Signature Algorithm
(ECDSA) which is equivalent with the algorithm described in Sec. 2.2.4 with the
exception that the exponentiations are replaced by elliptic curve operations [132,
205]. A thorough presentation of ECDSA is given in [140].

The main reason why ECC has attained so much interest during the past
twenty years is depicted in Fig. 2.2. The curve in Fig. 2.2 shows an approx-
imation of the required key sizes of ECC vs. conventional public-key cryp-
tosystems, i.e., schemes based on the DLP and the IFP, for a similar level of
security. Fig. 2.2 is based on a formula from [32]. Fig. 2.2 also plots the cor-
responding key sizes for the five elliptic curves recommended by NIST [205],
henceforth called the NIST curves. When the ECC key sizes are 163, 233, 283,
409, or 571 bits, the key sizes of cryptosystems based on the DLP or the IFP
required for a similar level of security are approximately 890, 2030, 3220, 7820,
or 17730 bits. These values are naturally highly approximative and they are
based on the assumption that there are no sub-exponential algorithms for the
ECDLP [32]. Further estimates on key sizes with equivalent security levels are
provided in [164] where they favor ECC even more.

— 16 —

Technical reasons supporting the use of RSA instead of ECC are basically
nonexistent. The reasons that have prevented ECC from becoming the primary
public-key cryptosystems are most probably the tradition of using RSA and the
fact that mathematics related to ECC are more difficult to understand. The
field of ECC also contains many patents (many of them owned by Certicom
Corporation [53], the leading company in ECC solutions) whose validity has not
yet expired (confer RSA) which may have hindered the use of ECC. However,
ECC has already been included in many widely-used standards and adapted to
many major applications.

2.2.6 On Difficulties of the Hard Problems

Although public-key cryptosystems ultimately rely on conjectures that hard
problems are indeed impossible to solve, several studies have supported such
conjectures. In 1991, RSA Laboratories published a challenge where cash prizes
up to $200,000 (US dollars) were offered for successful factorizations of products
of two primes (n in Sec. 2.2.2). The challenge was set in order to motivate
researchers and, thus, increase knowledge on the difficulty of the IFP [246]. The
largest challenge solved is 640-bit n that was factored in November 2005 [246].
Nowadays, the smallest bit length of n recommended for use in practice is 1024
bits. The challenge ended in 2007 when RSA Laboratories stated that enough
knowledge on the cryptographic strength of the IFP exists making the challenge
irrelevant [246].

In 1997, Certicom Corporation launched a challenge for ECC, similar to the
RSA challenge. The largest problem solved thus far is ECDLP with a 109-bit
key which was solved in April 2004 [50]. They used 2600 computers running
17 months (roughly equivalent to one Athlon XP 3200+ running non-stop for
1200 years) [50]. When the key size is 163 bits, the smallest size recommended
by NIST [205], the ECDLP is roughly 100,000,000 times harder [50]. In 2001, a
model presented in [164] predicted with various presumed parameters5 that 163-
bit ECC will remain secure up to year 2021. More pessimistic parameters which
assumed considerable advances in methods for solving the ECDLP gave year
2011 [164], but such advances have not yet been presented. A recent academic
security analysis [192] estimated that manufacturing and running ASICs that
could solve the ECDLP with a 163-bit key in one year would cost $2,200,000,000,
half of which is for power consumption. Hence, the 163-bit ECDLP is likely to
remain unsolvable for several years to come.

2.3 Cryptographic Hash Algorithms

Cryptographic hash algorithms play a central role in many modern cryptosys-
tems because they can provide data integrity. A hash algorithm produces a
hash6 for an input message. The hash acts as a “fingerprint” of the message.
This fingerprint can be used in ensuring integrity of a message because if the
message changes, so does its hash. Thus, a user can check the integrity of a

5Such as, DES was secure up to 1982, computing power doubles every 18 months (Moore’s
law), budget doubles every 10 years, and no new cryptanalytic methods are developed for the
ECDLP.

6Also commonly called message digest (MD), hash-code, hash-result, hash-value, etc.

— 17 —

message by computing a hash and comparing it to a previously computed hash.
If the hashes are different, someone has edited the message. [189, 274]

Let Hash(·) be a cryptographic hash algorithm. Then the hash, h, of a
message, M , is given by

h = Hash(M) (2.18)

where M is a binary string with an arbitrary length and h has a fixed length.
Two principal properties of a hash algorithm are compression and ease of com-
putation [189]. Compression means that the function maps an input of an arbi-
trary length to an output of a relatively small fixed length. Ease of computation
simply means that it is computationally easy to derive h from M .

In order to a hash algorithm to be secure, it must be resistant against the
following three problems [274].

— It must be computationally infeasible to find a preimage, i.e., given a
hash, h, find M such that h = Hash(M). If a preimage is hard to find,
the function is said to be preimage resistant.

— It must be hard to find a second input M ′ which has the same hash with
any specific input M . If it is hard to find M ′ 6= M such that Hash(M ′) =
Hash(M), the hash algorithm is said to be second preimage resistant.

— The function must be collision resistant, i.e., it must be hard to find two
arbitrary inputs M and M ′, such that M 6= M ′, for which Hash(M) =
Hash(M ′).

If the first and second problem are infeasible to solve, a hash algorithm is re-
ferred to as a one-way function [189]. If any of the three problems is “easy” to
solve, a hash algorithm is broken in cryptographical sense. However, in some
applications where cryptographic hash algorithms are used, it suffices that hash
algorithms are resistant only against certain problems, e.g., when used in a one-
way password file, the only requirement is that the hash algorithm is preimage
resistant [189].

Hash algorithms may involve a key, K, as well. Hash algorithms with a key
are referred to as keyed hash algorithms whereas algorithms without a key are
called unkeyed hash algorithms. Unkeyed hash algorithms can be viewed as a
special case of keyed hash algorithms where the key is constant. If an unkeyed
hash algorithm is used, the hashes must be protected so that they cannot be
altered but, when a keyed hash algorithm is used with a secret key, the hashes
can be public or transmitted over an unsecured channel without sacrificing the
integrity of a message [274]. Unkeyed hash algorithms are commonly used in
manipulation detection codes and keyed hash algorithms in message authenti-
cation codes [189].

Cryptographic hash algorithms commonly used in practical applications in-
clude MD algorithms proposed by Ronald L. Rivest of which MD5 [238] is
the latest, Secure Hash Algorithms (SHA) [207] recommended by the NIST,
RIPEMD7 algorithms of which RIPEMD-160 and its extensions [81] are the
newest, and Whirlpool [21]. The author has published FPGA implementations
of MD5 [139] and a combined implementation of MD5 and SHA-1 [138].

7Research and Development in Advanced Communications Technologies in Europe (RACE)
Integrity Primitives Evaluation Message Digest

— 18 —

Several cryptographic hash algorithms have been compromised recently so
that collisions can be found “easily”. MD5 and SHA-1 are among these algo-
rithms. Thus, these hash algorithms should be used only in applications which
do not require collision resistivity. [286, 287]

The SHA algorithms will be replaced with an algorithm developed through
an open competition similar to AES. The call for new hash algorithms was
published in November 2007 in [208] and the new algorithm is scheduled to be
selected in 2012.

— 19 —

— 20 —

Chapter 3

Hardware Implementation of
Cryptographic Algorithms

Naturally, in order to use cryptographic algorithms in practice they need
to be implemented. This chapter presents the most common platforms on

which cryptographic algorithms are implemented and discusses their suitability.
The emphasis is on FPGAs because they are used in the publications.

Designing a good cryptographic implementation is a challenging task. There
are at least the following requirements for implementations of cryptographic
algorithms and security systems in general:

Speed An implementation should be fast enough to ensure that execution of
cryptographic algorithms does not slow down a system significantly. Be-
cause computation of cryptographic algorithms dominates in computa-
tional complexity of many protocols, the need for fast implementations is
evident [231]. Achieving fast performance is often a difficult task and it has
attained considerable amount of interest in both industry and academia.
This requirement often yields a need for hardware acceleration because
many studies have shown that software implementations cannot achieve
required performance levels with reasonable costs [118].

Resources Many environments set tight constraints to resources available for
implementations of cryptographic algorithms [231]. If resources are low on
the whole, only a small portion of those few resources is usually devoted
for cryptography which complicates implementing high-security crypto-
graphic algorithms. The aforementioned constraints may include power
consumption, amount of available logic or memory, etc. Arguably, the
importance of this requirement is increasing because of the emerging use
of cryptographic algorithms in various low-cost applications [90], such as
smart cards or mobile hand-held devices.

Costs Use of cryptographic algorithms should not increase the total cost of
a product significantly. This requirement sets strict constraints for de-
signers, especially, if other requirements, such as speed, are considered

— 21 —

too. This is naturally an important requirement for any product but its
importance is apparent in low-price consumer products.

Invisibility Implementations of cryptographic algorithms and other security
measures should be invisible, transparent, and easy to use for an end user.
In other words, they should not cause any considerable harm for the user.
The reason for this is that, if they do, it is likely that the algorithms will
not be used or they will be misused in a way that compromises security.
A classical example is an exhaustive use of complex passwords which can
even weaken the system because users commit passwords to paper if they
cannot remember them.

Exactness Designs must implement algorithms exactly according to the speci-
fications, i.e., cryptographic algorithms are in general intolerant for errors
caused by optimizations. In many applications, such as Digital Signal
Processing (DSP), it is possible to optimize implementations by allow-
ing small errors caused by a reduced computation accuracy, for instance.
However, cryptographic algorithms usually fail to operate correctly if even
one bit is incorrect. On the other hand, optimizations inside the algorithm
are possible as long as they do not change the output; see Sec. 5.2.2, for
example.

Security An implementation should not leak any information which can po-
tentially compromise security. Although this first seems as a trivial re-
quirement, it is—possibly together with an incompetent user—one of the
most important issues affecting overall security. Actually, it has been
stated that it is more likely that a real world cryptosystem is broken be-
cause of the weaknesses of implementations rather than the weaknesses of
cryptographic algorithms [294].

As this thesis is about hardware implementation of cryptographic algorithms,
it is of interest to examine how the above requirements relate to hardware imple-
mentations. Invisibility requirement seldom has any direct impact on hardware
implementations because the user interface is usually software engineer’s work
rather than hardware engineer’s. Even hardware designers must indirectly take
the end user’s comfort into account through other requirements. All other re-
quirements need to be considered by a hardware designer and the importance
of a particular requirement depends on implementation platforms and applica-
tions.

3.1 Implementation Platforms

A coarse categorization for implementations, which has already been used above,
is to divide them to software and hardware implementations. A software imple-
mentation is an implementation running on a general-purpose processor; such
as Intel Core-2 Duo processors. The role of an implementor is to write software
for a processor by using a programming language. These implementations are
therefore referred to as software implementations although the processor itself is
hardware. In a hardware implementation the implementor designs the hardware
which performs the desired function.

— 22 —

Reprogrammable logic refers to digital logic devices whose functions can be
reprogrammed throughout the device [281]. The place of reprogrammable logic
in the aforementioned categorization is problematic because it can be catego-
rized to either category on a sound basis. On one hand, an implementor does
not design the actual hardware but produces a “software”, i.e., a program-
ming file which programs the hardware to implement the desired function. On
the other hand, the way in which an implementor works is almost identical
to hardware design process and all decisions (s)he makes during the process
are closer to implementing hardware than software. Besides, people working
on reprogrammable logic in industry or academia almost always have a hard-
ware background. In this thesis, reprogrammable logic is considered hardware.
The implementations presented in the publications are all designed primarily
for FPGAs. However, the ideas used in them apply usually to ASIC-based
implementations, too.

General-purpose processors, ASICs, and certain low-cost environments are
discussed in the following sections concentrating on their use for cryptographic
algorithms. The prime target devices of this thesis, FPGAs, are discussed in
more detail Sec. 3.2.

3.1.1 General-Purpose Processors

General-purpose processors execute a program which is a series of instructions.
Instructions supported by a processor are referred to as an instruction set. In-
struction sets usually include instructions for integer arithmetic, boolean op-
erations, data handling, and control flow as well as, e.g., for floating point
arithmetic. Programmer writes a program, either in assembly or high-level lan-
guages, such as C, which is then compiled into instructions. The performance
of a program depends on programmer’s skill, the instruction set provided by a
processor, and the efficiency of hardware.

The advantages of general-purpose processors are easy programming and up-
dating and the fact that the same code is usually easy to use in different proces-
sors. Typical disadvantages are slow performance and high power consumption.
These disadvantages emphasize if a cryptosystem is implemented using proces-
sors with instructions sets that do not naturally support operations required
in cryptographic algorithms. For instance, instruction sets of microprocessors
usually support integer and floating point arithmetic and boolean operations,
whereas cryptographic algorithms often use more “exotic” arithmetic such as
finite fields.

Academics—and more recently also processor manufacturers—have recog-
nized the problems caused by limited instructions, and instruction set extensions
for cryptography are gaining interest [89]. Such extensions have been proposed,
e.g., in [89, 112, 279]. On the commercial side, better support for cryptography
has been included at least in Sun Microsystems’ new UltraSPARC T2 micro-
processors which include specific cryptographic accelerator blocks supporting
various cryptographic algorithms including (3)DES, AES, SHA-1, MD5, RSA,
and ECC [276]. Such instruction set extensions can provide considerable perfor-
mance increases and, thus, make general-purpose microprocessors more feasible
platforms for cryptography.

— 23 —

3.1.2 Application Specific Integrated Circuits (ASICs)

As the name suggests, ASICs are integrated circuits designed for a specific ap-
plication. Contrary to general-purpose circuits, such as microprocessors, ASICs
can perform only functions that they are designed to perform. In ASICs, a
design is implemented directly on silicon and, hence, it cannot be changed after
the chip is manufactured. The resulted implementation can be highly optimized
in terms of speed, area, and power consumption, but the inability to change the
design after manufacturing is a serious disadvantage. Modern ASIC processes
are also very expensive and time consuming and, hence, they are nowadays used
predominantly in large volume consumer products, such as mobile phones.

Traditionally cryptographic algorithms were always implemented as ASICs
whereas, nowadays, a large majority of practical cryptosystems are undoubtedly
software implementations running on general-purpose microprocessors. How-
ever, ASICs still have significant importance for cryptographic implementations
in environments where microprocessors, or even FPGAs, cannot be used, e.g., in
environments requiring very low power consumption or high encryption speeds.

3.1.3 Low-Cost Environments

The use of cryptographic algorithms is increasing in low-cost environments,
such as smart cards, radio frequency identification (RFID) tags, etc. [90]. The
reason is that they often handle sensitive data, such as health-monitoring, anti-
counterfeit, or biometric data, which yields a need for strong encryption [90].
Although implementations for low-cost environments use the same techniques
that are used in implementations targeting to high speed, i.e., ASICs, micro-
processors, or FPGAs, the requirements set by these environments differ greatly
from the ones discussed previously. As a consequence, low-cost environments are
discussed as a separate topic. Low-cost implementations require difficult trade-
offs between security, cost, and performance [90]. Besides, they are used in the
most insecure environments [231] which makes implementations more vulnera-
ble for physical attacks, as will be discussed in Sec. 3.4. Hence, cryptography
in low-cost environments is an important and difficult research area.

Modern cryptographic algorithms, such as AES, have been developed so
that they achieve good performance in software. This may not be a problem
for smart cards because their processors have become powerful enough to run
cryptographic algorithms originally designed for high-end microprocessors [229].
However, this sets challenges for designing efficient implementations for certain
low-cost environments, such as RFID tags [90]. Hence, several block ciphers
developed specifically for low-cost applications have been proposed recently in-
cluding DESXL (a low cost variant of DES) [163], Hight [127], and Present [33].
Implementing public-key cryptography is costlier but ECC has been shown to
be a viable solution even for low-cost environments [23, 116]. A recent survey
of the field of low-cost cryptography is given by Eisenbarth et al. in [90].

3.2 Field Programmable Gate Arrays (FPGAs)

Implementations on general-purpose processors are flexible in the sense that
programs are easily written and updated by using high-level programming lan-
guages. As a downside, they are slow and consume considerable amounts of

— 24 —

Low High

Low

High

Performance

F
le

xi
bi

lit
y

General−Purpose
Processors

Field−Programmable
Gate Arrays

(FPGAs)

Application−Specific
Integrated Circuits

(ASICs)

Figure 3.1: A performance-flexibility comparison of general-purpose processors,
ASICs, and FPGAs [34, 281]. Performance can be understood as pure speed or power
efficiency, or as their combination (throughput/Watt).

power which practically rule general-purpose processors out from many appli-
cations. ASICs, on the other hand, are less flexible but offer high performance
and low power consumption. Thus, there is a significant gap between general-
purpose processors and ASICs [34]. Reconfigurable logic fills this gap and—
in an ideal case—combines the best of both; namely, the speed of ASICs to
the flexibility of general-purpose processors [281]. This is illustrated in the
performance-flexibility graph of Fig. 3.1 [34, 281].

Reconfigurable logic includes a wide scope of programmable devices in-
cluding PLA (Programmable Logic Array), PAL (Programmable Array Logic),
CPLD (Complex Programmable Logic Device), and FPGA. However, FPGAs
are the only ones which have any major interest from the cryptography point-of-
view and, henceforth, the terms reconfigurable logic and device always refer to
FPGAs in this thesis. This presentation concentrates on FPGAs manufactured
by the two leading vendors: Altera and Xilinx. Other FPGA manufacturers
include Achronix, Actel, Atmel, Cypress, Lattice, and QuickLogic.

FPGAs consists of reconfigurable functional units, interconnections, and in-
terface. Reconfigurable functional units are used for implementing the logic
needed in a design and they are connected with the reconfigurable intercon-
nections. Reconfigurable interfacing is used for communication with the rest of
a system. As a rule of thumb, the more reconfigurable an architecture is the
slower it is and the more power it consumes. [280]

Reconfigurability depends on the size of reconfigurable units referred to as
granularity. An architecture where reconfigurable functional units are small is
called fine-grained and an architecture where they are large is coarse-grained. A
fine-grained functional unit typically operates on a small number of bits and acts

— 25 —

LUT &
Carry

Control

FF
D Q

LUT &
Carry

Control

FF
D Q

COUT

CIN

BX

BY

F1
F2
F3
F4

G1
G2
G3
G4

Y

YQ

X

XQ

Figure 3.2: A simplified presentation of a Virtex-E/II slice (adapted from [299, 302]).

as a Look-Up Table (LUT) with a small number of inputs and a single bit out-
put [280]. An example of a coarse-grained functional unit is an Arithmetic Logic
Unit (ALU) [280] and, thus, coarse-grained architectures are usually better in
applications which are intensive on arithmetic [281]. The granularity of recon-
figurable interconnections also varies in different reprogrammable architectures
so that fine-grained interconnections allow each bit to be connected separately
whereas coarse-grained interconnections connect several bits at a time [280].
Most modern commercial FPGAs use fine-grained architectures where recon-
figurable functional units are typically 4-to-1-bit LUTs which are arranged in
clusters [280].

Programming an FPGA differs considerably from general-purpose processors
because a general-purpose processor program is stored into a separate memory
as instructions, whereas programming of an FPGA directly implements logic
functions and interconnections inside the device [290].

3.2.1 Modern FPGAs and Recent Trends

In Xilinx Virtex-E and Virtex-II FPGAs, which are used as implementation
platforms in I–III and X, the functional units are 4-to-1-bit LUTs which are
arranged in clusters called slices and Configurable Logic Blocks (CLBs). A CLB
comprises four slices which consists of two 4-to-1-bit LUTs, two registers, and
carry and control logic [299, 302]. Fig. 3.2 presents a Xilinx Virtex slice. The
LUTs can be configured also as a 16-bit RAM (Random Access Memory) [299,
302] or 16-bit shift register [302]. The Altera Stratix II architecture, used in IV–
IX and XI, differs from the Virtex architecture so that the clusters called Logic
Array Blocks (LABs) consists of eight subblocks named Adaptive Logic Modules
(ALMs) which fracture into two Adaptive LUTs (ALUTs), two registers, and
carry and control logic [6]. ALUTs are flexible so that they can implement up
to a 7-to-1-bit LUT [6]. Virtex-E, Virtex-II, and Stratix II devices all contain

— 26 —

considerable amounts of embedded memory [6, 299, 302].
Modern FPGAs typically contain hardwired logic units specialized for cer-

tain commonly used tasks, such as DSP [280]. These units provide improve-
ments in performance and power consumption in those specialized tasks but
they are useless in many applications where these operations are not directly
needed [280]. Virtex-II has hardwired 18×18-bit multipliers [302] and Stratix II
has more flexible DSP blocks which are useful in various DSP-related tasks [6],
for example.

In 2005, Todman et al. [280] listed main trends in reconfigurable architec-
tures as follows. First, there is a trend to increase granularity of logic units in
order to reduce the amount of interconnections, e.g., Stratix II 7-input LUT [6].
Second, the number of specific embedded function units, e.g., DSP blocks and
embedded memories, is increasing. Third, the use of soft cores, and espe-
cially soft core processors, is growing. A soft core is implemented using re-
programmable logic by using synthesizable function provided by a vendor [280].
Although they are slower and require more area than hard cores which are
hardwired onto the silicon, they provide upgradeability and they are easy to in-
tegrate into the rest of a system [280]. Xilinx offers a soft core processor called
MicroBlaze [300] and Altera calls their newest soft core processor Nios II [5].

Since Todman’s predictions, Xilinx has launched Virtex-5 devices [303] and
Altera has introduced Stratix III family FPGAs [7]. Xilinx has increased the
granularity of Virtex-5 by introducing 5-to-1-bit and 6-to-2-bit LUTs and Al-
tera’s Stratix III is still using up to 7-to-1-bit ALUTs. The number of specialized
embedded function units has continued growing in the new device families, and
also Xilinx has introduced more flexible DSP blocks [303]. Both Xilinx and
Altera are still supporting their soft core processors. Hence, the development
has obviously had the direction predicted in [280]. There is also an evident
direction which began by the introduction of Virtex-4 and which has continued
in Virtex-5 and Stratix III as well; namely, the vendors introduce sub-families
tailored for certain types of applications. Virtex-4 has sub-families LX, SX, and
FX for logic applications, DSP applications, and embedded platform applica-
tions, respectively [301]. Virtex-5 also has an additional sub-family specialized
in advanced serial connectivity [303]. Stratix III has a balanced sub-family L
for mainstream logic applications, a memory and multiplier rich sub-family E
for data-centric applications, and a sub-family GX with high-speed connectivity
for high bandwidth applications [7].

3.2.2 FPGA Design Flow

A design flow of FPGA-based implementations is presented in Fig. 3.3. The flow
begins from design specifications and ends to a working design in an FPGA. The
most laborious part is the writing of Hardware Description Language (HDL).
VHDL was used as an HDL for all designs of this thesis. The functionality of
the HDL is verified by functional simulations. The verified HDL is mapped to
a gate-level netlist with logic synthesis. Placement in the place & route process
dedicates operations to specific reconfigurable functional units and routing con-
nects these units by using reconfigurable interconnections. The place & route
is constraint-driven. A place & route of a complex design is computationally
demanding and often takes several hours with a modern desktop computer. The
place & route returns a programming bitfile and a timing model description of

— 27 —

netlist
Gate-levelLogic

synthesisHDL
Place &
route

bitfile
Programming

model
Timing

Timing
simulation

Functional
simulation

Design
specifications FPGA

Figure 3.3: FPGA design flow

the result. The timing model is verified to fulfill timing requirements set in the
specifications with timing simulations. Finally, the FPGA is programmed with
the programming file.

The entire design flow can be performed within design softwares provided by
FPGA vendors. Logic synthesis programs are included in the design softwares
but several third party tools are available, too. Simulation software is often
provided by a third party because only simple simulators are included in the
design softwares. Place & route tools are always provided by the FPGA vendor
as well as software used in programming the FPGA.

As mentioned, writing HDL is the most laborious part. Automatic HDL
generators, which automatically map specifications to HDL, can considerably
reduce time required in this step. Typically, such generators can produce com-
petitive results compared to hand-optimized versions only if they are realized
for a small and well-constrained set of specifications, e.g., for one cryptographic
algorithm with specific parameters. The author developed a simple generator
for ECC in [137].

3.2.3 Cryptographic Algorithms in FPGAs

Cryptographic algorithms often dominate in computational costs of security
protocols which yields a need for acceleration; for example, over one half of the
processing time in Secure Sockets Layer (SSL) is consumed in cryptographic
algorithms [231]. Acceleration is typically performed by delegating the most
expensive operations to an accelerator while the rest of the application is imple-
mented in the main system which is usually a general-purpose processor [281].
Consider DSA presented in Sec. 2.2.4 as an example. The most demanding task
in DSA is the modular exponentiation and, hence, DSA can be accelerated by
delegating exponentiations to an accelerator while the main processor performs
other operations concurrently. Because this thesis predominantly considers im-
plementing cryptographic algorithms using FPGAs, the following assumes that

— 28 —

Memory
caches

I/O
interface

(a)

(b)(c)

(e)

Processor

(d)

Processor

Figure 3.4: Classification of reconfigurable systems [69, 280]; (a) external stand-
alone processing unit, (b) attached processing unit, (c) coprocessor, (d) reconfigurable
functional unit, and (e) processor embedded in reconfigurable logic.

the accelerators are implemented with reconfigurable logic. Many of the princi-
ples are, however, valid also for other implementation platforms, such as ASICs.

Fig. 3.4 shows the classification of reconfigurable systems. The first four
classes were presented by Compton and Hauck in [69] and their classification
was complemented by Todman et al. in [280] with the class where the pro-
cessor is embedded in reconfigurable logic. The closer the reconfigurable unit
is to the control processor the faster the communication between the unit and
the processor is but, as a downside, the amount of reconfigurability is usually
smaller and more control is required [280]. The external stand-alone processing
unit favors applications which are computationally intensive but require little
communication and the reconfigurable functional unit, e.g., reconfigurable in-
structions inside a processor, is ideal for small but frequently used tasks [69].
The attached processing unit and coprocessor classes can be seen as tradeoffs
between these two extremes. The last class, where the processor is embedded
in reconfigurable logic, is currently emerging in many applications because the
growth in FPGA resources has enabled implementing entire systems within one
FPGA. This approach combines many of the advantages of the other four classes
but requires a large (and expensive) device. The embedded processor can be
either hard core, such as PowerPC in Xilinx Virtex-4 FX [301], or soft core,
such as Nios II in Altera FPGAs [5]. Notice that all classes except (d) can
be implemented with a stand-alone FPGA. Thus, the implementations of this
thesis suit for all other classes except (d).

FPGAs have several advantages in cryptographic applications [91, 293]:

Algorithm agility It is possible to easily switch from an operation to an-
other. This has significant importance in cryptographic applications be-

— 29 —

cause modern cryptosystems must often support many encryption algo-
rithms. It is also possible to delete broken algorithms and introduce new
algorithms into the system.

Algorithm upload It is possible to easily update devices which are already
in use. This is, again, important for cryptographic applications because
parameters of the current cryptosystem may need to be changed, e.g.,
key length needs to be increased or an algorithm needs to be changed as
standards expire, e.g., DES needs to be changed to AES.

Architecture efficiency Significantly more efficient implementations can be
designed with fixed parameters in certain cases. Reprogrammability of
FPGAs allows designing optimized implementations for all parameters
separately because the device can be reprogrammed when parameters are
changed whereas an ASIC design must support all parameters and such
optimizations are out of reach. One example is the finite field multiplica-
tion in polynomial basis; see Ch. 4. If an irreducible polynomial is fixed,
reductions required in multiplication can be hardwired resulting in faster
and smaller multipliers. If the design must support arbitrary irreducible
polynomials, such optimizations cannot be made.

Resource efficiency Many protocols are hybrid in the sense that a public-key
algorithm is used in the beginning for key exchange after which the actual
communication is encrypted using a secret-key algorithm. Because these
algorithms are not used simultaneously, they can be switched on-the-fly
by reprogramming the device which leads to a considerable reduction in
required resources.

Algorithm modification Parts of standardized algorithms, e.g., S-boxes, may
need to be modified, and such modifications are not a problem because of
reprogrammability.

Throughput Considerable increase in throughput is achievable with FPGAs
when compared to general-purpose processors as shown in an extensive
number of publications; see, e.g., [59, 106, 107, 280].

Cost efficiency FPGA-based projects are typically significantly cheaper than
ASIC-based projects when the products are targeted to low-to-medium
sized markets. The main reasons are shorter time-to-market and lower
initial costs. ASICs become cheaper when the production quantities rise
because production of a single chip is cheaper after the often very large
startup cost.

It has been stated based on the above reasonings that cryptographic al-
gorithms are prime candidates for FPGA-based implementations [281]. The
suitability of FPGAs for cryptography has been pointed out also in other pub-
lications, e.g., [34, 280].

Although embedded function units, such as DSP blocks, certainly improve
performance and power consumption in many applications, they have little use
in most cryptographic applications, with the exception of embedded memories.
The reason for this is that cryptographic algorithms commonly require “exotic”
operations, such as arithmetic in finite fields, which are not supported by the

— 30 —

embedded blocks of modern FPGAs. Introduction of blocks specialized for
cryptographic operations would naturally benefit the performance and power
consumption of cryptographic algorithms on FPGAs, but currently none of the
FPGAs available at market supports cryptography if hardwired cryptomodules
for programming bitstream decryption are not taken into account.

3.2.4 Comparisons

Generally, FPGAs can provide speedups up to 500 times and power savings of
35–70% compared to general-purpose processors [280]. However, the achievable
improvements depend on the implemented application. Cryptographic applica-
tions usually achieve significant speedups on FPGAs, e.g., speedups of over 1000
times have been reported for ECC [59]. The efficiency of FPGAs compared to
general-purpose processors originates from parallel and pipelined processing and
from the fact that general-purpose processors are often ill-suited for operations
used in cryptography. Operations causing problems include modular arithmetic
and bit-level manipulations on bitvectors with uncommon lengths, i.e., other
than 2w and longer than the wordlength. They cause problems, especially, in
public-key algorithms [293].

A recent study in [158] showed that FPGA-based designs are on average 3.4
to 4.6 times slower than ASIC-based designs and implementations on FPGAs
consume about 35 times more silicon area. Hence, the speed-area product is
over 100 times better for ASICs than for FPGAs. FPGAs also consume about
14 times more dynamic power. Area and power differences reduce substantially
by using dedicated memory and multiplier blocks whereas their effect on per-
formance is small. These values suggest that the price of reprogrammability is
relatively high. [158]

However, an obvious weakness of the study of [158] is that it simply synthe-
sizes a design for both ASICs and FPGAs and compares the results. Although
the values themselves are solid, omitting such advantages as architecture and
resource efficiency skews the results because these advantages have a direct im-
pact on the above values. For example, as discussed previously, FPGAs allow
optimizing field multipliers for a fixed field but such optimizations are usually
out of reach in ASICs. Thus, the difference of FPGAs and ASICs is certainly
smaller in cryptographic applications where the effects of these advantages are
often significant.

3.3 Metrics for Evaluating Implementations

Thus far, speed and performance were used as arbitrary terms and more precise
definitions are necessary. Ways of measuring speed are diverse. Supposedly
the simplest is to report computation time, t, i.e., the time in seconds required
for a single operation, encryption of a single block, for example. Another way
of expressing speed is to provide the number of clock cycles required for a
single operation, referred to as latency1, l. In single clock systems, latency and

1Sometimes latency may also refer to computation time but, in this thesis, latency refers
strictly to the number of clock cycles, except in II where it refers to computation time.

— 31 —

computation time are linked through the following equation:

t =
l
f

(3.1)

where f is a clock frequency. Latency is usually more informative than computa-
tion time because it is independent of the clock frequency. However, latency and
computation time are not always sufficient for measuring speed because imple-
mentations capable of computing several operations simultaneously may have
long latencies and computation times but can still be considered fast. Through-
put, T, the number of operations per second, has considerable importance in
evaluating cryptographic processors. If a design can process p operations simul-
taneously, T, t, and l are related through the equation:

T =
p
t

=
pf
l
. (3.2)

When designs implementing secret-key cryptographic algorithms are considered,
it is a common practice to report the number of bits that the design can process
in second. In that case, throughput given by (3.2) is multiplied by the number
of bits processed in one operation, e.g., with the block size.

Objectives vary in designing cryptographic implementations. A common
objective is computation acceleration where the goal is in minimizing t and/or
maximizing T. Another objective is implementing an algorithm with as few
resources as possible. Supposedly, the most common objective is a combination
of these two objectives; namely, maximization of speed under some constraints
on resources. It can be measured with area-latency (or area-computation time,
etc.) efficiencies, e.g., with a product of latency and area of an implementation.

3.4 Side-Channel Attacks

Traditional cryptanalysis is out of the scope of this thesis but cryptanalytic
methods called side-channel attacks form a serious threat for many crypto-
graphic implementations and a few words about them are thus in order. Side-
channel attacks are methods where Eve is trying to reveal secret keys by exploit-
ing information leaked by an implementation. Side-channel attacks are based,
e.g., on time, power, and electromagnetic measurements and they have been
successfully applied, especially, against smart cards [271]. Actually, the main
threat for practical cryptosystems is not traditional cryptanalysis but rather the
weaknesses of implementations [294].

Although smart cards and simple general-purpose processors are generally
more vulnerable for side-channel attacks than hardware implementations, suc-
cessful applications of certain attacks have been reported on FPGA implemen-
tations as well [271]. The first such attack was demonstrated in [223] where
power analysis attacks were successfully applied to an ECC implementation.
The following discusses certain principal side-channel attacks and their coun-
termeasures.

Timing analysis was introduced by Paul C. Kocher in [152]. Timing attacks
are based on information about computation time. It can be possible to retrieve
information about a secret key by measuring computation time variations de-
pending on the secret key [152]. A successful practical implementation of the
attack was demonstrated for smart cards in [75].

— 32 —

Time

P
ow

er

S S S S SM M M

Figure 3.5: Simple artificial example of SPA in revealing a secret exponent in expo-
nentiation using binary method; S stands for squaring and M for multiplication.

Simple Power Analysis (SPA) and Differential Power Analysis (DPA) were
introduced by Kocher et al. in [151] and they exploit information leaked by
power consumption. The idea is that instantaneous power consumption is linked
to an instruction or operation currently being executed. Consider exponenti-
ation as an example. Let the exponent be secret as in Diffie-Hellman key ex-
change, for example; see Sec. 2.2.1. If an exponentiation is performed with
the binary method (see Sec. 6.3), each bit in an exponent results in a squar-
ing operation, whereas multiplications are performed only for bits which are
ones. It may be possible to reveal the secret exponent by observing instanta-
neous power consumption. Fig. 3.5 illustrates SPA by presenting an example
power trace2. Although both squaring and multiplication require equal amount
of time, they are clearly distinguishable because their power traces differ from
each other. Thus, it is obvious that the bit string used as the exponent in
Fig. 3.5 is 〈10011〉.

Because both timing analysis and SPA exploit the feature that some opera-
tions can be distinguished from each other by time or power consumption, the
obvious way to countermeasure these attacks is to make these operations indis-
tinguishable. In practice this is done by using side-channel atomic blocks which
consist of exactly the same operations performed in the same order [60]. Usually
achieving side-channel atomicity requires that certain dummy (fake) operations
are performed thus reducing performance. It is, however, possible to achieve
side-channel atomicity with low overhead as presented for exponentiation and
elliptic curves in [60], for example.

SPA operates directly on a single power trace whereas DPA analyzes a large

2The power trace in Fig. 3.5 does not represent any actual measurement as it was artificially
created for the sake of exemplification.

— 33 —

number of traces with statistical methods [151]. It is considerably harder to
protect an implementation against DPA because it can distinguish dummy op-
erations from real ones if there is enough data available and the power model of
the implementation is good enough. Protecting implementations against DPA
and other statistical attacks is generally very hard but attacking can be made
considerably more difficult by time randomization, noise addition, masking, or
with dynamic and differential logic styles [271].

Side-channel attacks can be based on electromagnetic emanations, as well.
They are referred to as electromagnetic side-channel attacks and they, too, have
simple and differential methods similar to SPA and DPA. Electromagnetic side-
channel attacks were adapted to AES in FPGAs in [49].

Although side-channel attacks form a serious threat in many applications,
hardware implementations are usually much harder to attack than software im-
plementations [271] and FPGAs are sometimes even harder to attack than ASIC
implementations [294]. In general, provably secure implementations cannot be
made. Thus, the designer’s role is to evaluate possible threats and implement
countermeasures that measure up with them. As the implementations of this
thesis mostly target to high-performance applications where the risk that an
attacker is able to measure, e.g., power consumption is low, countermeasures
against side-channel attacks have not been considered by any great extent in
the publications.

Development of side-channel attacks has been intensive during the past few
years. The most important forum for developments in side-channel attacks is
probably the Workshop on Cryptographic Hardware and Embedded Systems
(CHES) and, thus, interested readers should consult the proceedings of CHES
for further information. Various attacks are discussed also in [10]. Compre-
hensive reviews of power analysis attacks and their countermeasures are given
in [180, 226].

— 34 —

Chapter 4

Finite Fields

This chapter presents preliminaries of finite fields which have importance
in many cryptographic algorithms. Both AES and ECC use finite field

arithmetic and, thus, finite fields are considered before discussing the algorithms.
The efficiency of arithmetic in an underlying finite field greatly determines the
efficiency of an entire cryptosystem and implementation techniques are thus
discussed in the end of this chapter.

Finite fields are commonly referred to as Galois fields in order to honor the
contributions of Évariste Galois, a French mathematician, who lived in the early
19th century. His work includes some of the most fundamental results of the
theory of finite fields. Finite fields have importance in many branches of math-
ematics. In addition to their extensive use in cryptography, finite fields have
practical applications also in coding theory; see, e.g., [171]. Because of these
practical applications, finite fields and, especially, their implementations have
been studied also by computer scientists and electrical engineers. Finite fields
are extensively studied and an enormous amount of literature exists. Hence, it is
impossible to provide an all-inclusive survey. The following study concentrates
on the most relevant topics for implementations of cryptographic algorithms
with the emphasis being on issues related to efficient hardware implementation.

The following discussion is twofold: First, a more theoretical description
is given and, second, practical implementation related aspects are discussed.
The basic properties of algebraic structures of groups, rings, fields, and vector
spaces are introduced in Sec. 4.1. Two types of finite fields primarily used
in cryptographic algorithms, namely prime and binary fields, are considered
in Secs. 4.2 and 4.3, respectively. Sec. 4.4 discusses the most complex field
operation, inversion. Implementation related aspects are discussed in Sec. 4.5.

4.1 Preliminaries

This section presents preliminaries of algebraic structures: groups, rings, fields,
and vector spaces. The discussion is based on comprehensive presentations
available in [85, 122, 189].

— 35 —

A set G and a binary operation ∗ form a group (G, ∗) if they satisfy the
following axioms

1. The operation is associative, i.e., a ∗ (b ∗ c) = (a ∗ b) ∗ c for a, b, c ∈ G.

2. There exists an identity element e ∈ G such that e ∗ a = a ∗ e = a for all
a ∈ G.

3. Every element a ∈ G has an inverse element b ∈ G such that a∗b = b∗a =
e.

Furthermore, the group (G, ∗) is said to be Abelian (or commutative) if it sat-
isfies

4. a ∗ b = b ∗ a for all a, b ∈ G.

If the group operation is multiplication ×, the group (G,×) is said to be a
multiplicative group. In that case, the identity element is denoted by 1 and the
inverse element by a−1. If the group operation is addition +, the group (G,+)
is an additive group, and the identity element is 0 and the inverse element is
−a.

The order of the group, ord(G), is the number of elements in the set G. If
ord(G) is finite, the group G is finite. The order of an element a ∈ G, denoted
by ord(a), is the smallest positive integer, n, for which an = e. If there is an
element a ∈ G such that for each b ∈ G there is an integer i for which b = ai,
the group G is cyclic and a is a generator of G.

A ring (R,+,×) consists of the set R and two binary operations + (addition)
and × (multiplication), and it satisfies the following axioms

1. (R,+) is an Abelian group with an identity element 0.

2. The operation × is associative, i.e., a×(b×c) = (a×b)×c for all a, b, c ∈ R.

3. There is a multiplicative identity element 1 such that 1 6= 0 with the
property that 1× a = a× 1 = a for all a ∈ R.

4. The operation × is distributive over the operation +, i.e., a × (b + c) =
(a× b) + (a× c) and (b+ c)× a = (b× a) + (c× a) for all a, b, c ∈ R.

Furthermore, the ring (R,+,×) is a commutative ring if it satisfies

5. a× b = b× a for all a, b ∈ R.

An element a ∈ (R,+,×) is an invertible element if there exists an element
b ∈ (R,+,×) such that a× b = 1.

A field, henceforth denoted by F, is a commutative ring in which all nonzero
elements are invertible. A field with q elements is said to be finite if q is finite,
and a finite field is denoted1 by Fq. Again, the order of Fq, ord(Fq), is the
number of elements in Fq, and Fq exists if and only if q is a prime or a power
of a prime, i.e., q = pm where m is a positive integer. If m = 1, Fp is called
a prime field and, if m ≥ 2, Fpm is called an extension field. Extension fields,
where p = 2, i.e., F2m , are called binary fields (or fields with characteristic
two), and they are commonly deployed in cryptosystems. There is essentially

1The notation GF (q) (Galois field) is also commonly used in the literature and in I–III.

— 36 —

only one finite field with an order q and therefore two fields Fq and F′q are
structurally the same and only the labeling of elements is different, i.e., Fq and
F′q are isomorphic.

By definition, Fq has two operations: addition and multiplication. Subtrac-
tion in Fq is defined through addition so that a− b = a+ (−b) for all a, b ∈ Fq
so that −b is a unique element with the property: b + (−b) = 0. Similarly,
division is defined for all a ∈ Fq and b ∈ Fq\{0} using multiplication so that
a/b = a×b−1 where b−1, the inverse of b, is unique and fulfills b×b−1 = 1. Here-
after, multiplication is denoted by juxtaposition and × is omitted. The nonzero
elements in Fq, i.e., the elements in Fq\{0}, form a multiplicative group of Fq,
denoted by F∗q , which is cyclic with ord(F∗q) = q − 1. Hence,

aq = a (4.1)

for all a ∈ Fq, also known as Fermat’s Little Theorem: ap ≡ a (mod p).
A vector space V over a field F is an additive Abelian group (V,+) with a

multiplication, F × V → V , if the following axioms are satisfied for all a, b ∈ F
and c, d ∈ V .

1. a(c+ d) = ac+ ad.

2. (a+ b)c = ac+ bc.

3. (ab)c = a(bc).

4. 1c = c.

The elements of V are called vectors and the elements of F are scalars. The
finite field Fpm can be considered as a vector space over Fp. Thus, the elements
of Fpm are vectors and the elements of Fp are scalars. The dimension of the
vector space is m and there are many ways to select a basis.

4.2 Prime Fields

Let p be a prime. Integers modulo p form the set {0, 1, 2, . . . , p−2, p−1} which
constructs a finite field with addition and multiplication modulo p as discussed
above. The field is denoted by Fp and called prime field.

Operations in Fp are computed by using normal integer arithmetic and by
reducing the result modulo p. The result is thus the unique integer remainder
obtained with a division by p. Consider the prime field F17, for example. The
elements in F17 are {0, 1, 2, . . . , 16}. An addition 12 + 7 = 2 because the re-
mainder of 19 divided by 17 is 2. Similarly, 2− 16 = 3 and 5× 12 = 9 because
−14 ≡ 3 (mod 17) and 60 ≡ 9 (mod 17), respectively. Furthermore, 5−1 = 7
because 5× 7 ≡ 1 (mod 17).

Modular reductions using divisions of large integers are expensive. If p is
fixed or changed infrequently (which usually is the case in cryptography), modu-
lar reductions can be performed more efficiently with a series of multiplications,
additions, and shifts by using precomputed data [22]. This technique is known
as the Barrett’s reduction.

A widely-used method circumventing the problem of expensive reductions
for arbitrary p was introduced by Peter L. Montgomery in [196]. It uses Mont-
gomery representation for integers. The Montgomery representation of a ∈

— 37 —

[0, p − 1] is aR mod p where R > p such that gcd(R, p) = 1. The value,
R = 2dlog2 pe, where d·e denotes rounding to the closest larger integer, is com-
monly used in practice. For b ∈ [0, Rp − 1], Montgomery reduction is given
by bR−1 mod p. When R is a power of the radix, the Montgomery reduction
requires only multiplications, additions, and shifts. The conversion from the
Montgomery representation to conventional integer representation is performed
with the Montgomery reduction. The Montgomery representation does not give
any computational advantage for a single multiplication. However, as multipli-
cations in the Montgomery representation are cheap compared to conventional
modular multiplications, serious enhancements in computational requirements
occur for several multiplications performed in the Montgomery representation.
Hence, Montgomery representation is useful, e.g., in modular exponentiation
(Diffie-Hellman, RSA, and ElGamal) and ECC over Fp.

Consider multiplication 5 × 12 mod 17. Let R = 25 = 32. Hence, R−1 ≡ 8
(mod 17). The Montgomery representations are 7 and 10 for 5 and 12, re-
spectively. An integer multiplication gives 7 × 10 = 70 and the Montgomery
reduction is 70 × 8 = 16 (mod 17) which is cheap to compute. The result of
the multiplication is finally given by the Montgomery reduction: 16 × 8 = 9
(mod 17).

Certain reduction methods are developed for primes of special forms. Re-
ductions for primes with the form p = 2t − c where c is small (fits into one
word) can be computed with additions and two multiplications by c [70]. This
technique is known as the Crandall reduction. It is commonly known that if p
is a Mersenne number, i.e., p = 2t − 1, modular reductions can be computed
with a single addition (the most significant half plus the least significant half).
Unfortunately, Mersenne primes (primes which are Mersenne numbers) are rare.
Generalized Mersenne primes [265] consist of a small number of powers of two,
e.g., p = 2192 − 264 − 1. Modular reduction with generalized Mersenne primes
are inexpensive (only additions and subtractions) [265]. The work of [265] was
recently generalized for even wider class of primes with some reductions in per-
formance [64]. Many practical cryptosystems use primes of special form. For
instance, all primes listed by NIST in [205] are (generalized) Mersenne primes
and [52] includes primes for which Crandall reduction can be applied.

4.3 Binary Fields

The elements of F2m are represented as a vector space over F2 with respect
to a basis. As mentioned, there are many alternatives for the basis, and all
representations with different bases are isomorphic. Because the two elements
of F2 can be represented with a bit, m bits are required in total to represent
elements of F2m . Addition of two elements in F2m is simply performed coefficient
wise, i.e., bitwise, but multiplication requires information about dependencies
between the elements. [85]

F2 has two elements: {0, 1}. Addition is computed modulo 2 and thus
0 + 0 = 0, 0 + 1 = 1, and 1 + 1 = 0, i.e., addition is a logical XOR operation
denoted by ⊕. Multiplication is 0 × 0 = 0, 0 × 1 = 0, and 1 × 1 = 1, which
is computed by using a logical AND operation denoted by ⊗. The absence
of carry makes binary fields suitable from implementation point-of-view, and
binary fields are usually considerably faster than prime fields.

— 38 —

4.3.1 Polynomial Basis

Let f(x) be a polynomial whose coefficients are elements of F, i.e.,

f(x) =
∞∑
i=0

fix
i (4.2)

where fi ∈ F. The ring of polynomials over F is denoted by F[x]. Let deg(f(x))
denote the degree of f(x), i.e., the largest integer m for which fi 6= 0. A
polynomial f(x) is an irreducible polynomial over F if it cannot be presented
as a product of two polynomials with positive degrees [189]. Henceforth, an
irreducible polynomial is denoted by p(x).

Let p(x) be an irreducible polynomial over F2 with deg(p(x)) = m given by

p(x) = xm +
m−1∑
i=0

pix
i = xm + p′(x) (4.3)

where pi ∈ F2. Then, the binary field F2m can be constructed by setting

F2m : F2[x]/p(x), (4.4)

and the elements of F2m can be represented with the basis {1, x, x2, . . . , xm−1}.
From now on, such basis is referred to as polynomial basis2. An element a(x) ∈
F2m is represented with a polynomial basis as follows:

a(x) =
m−1∑
i=0

aix
i (4.5)

where ai ∈ F2. In order to simplify, a bitvector representation is commonly
used so that a(x) = 〈am−1am−2 . . . a1a0〉. The identity element of addition, 0,
is 〈00 . . . 00〉 and the identity element of multiplication, 1, is 〈00 . . . 01〉. [83, 122]

Addition and multiplication are performed modulo p(x). An addition a(x)+
b(x) where a(x), b(x) ∈ F2m is simply given by

a(x) + b(x) =
m−1∑
i=0

(ai ⊕ bi)xi . (4.6)

Thus, addition is a bitwise XOR of the bitvectors representing a(x) and b(x).
Subtraction is the same because XOR is its own inverse operation. [122]

Multiplication a(x)b(x) where a(x), b(x) ∈ F2m is more complex. First,
a(x) and b(x) are multiplied by using ordinary polynomial multiplication and,
second, the result is given by taking the remainder after polynomial division by
p(x). The result of the ordinary polynomial multiplication, denoted by c(x) =∑2m−2
i=0 cix

i, is a polynomial with deg(c(x)) < 2m − 1. The coefficients of c(x)
are given by

ci =
i∑

k=0

ak ⊗ bi−k . (4.7)

The number of ANDs can be reduced at the expense of more XORs by adapting
techniques presented in [143], called Karatsuba multiplication. [122]

2Also called standard or canonical basis

— 39 —

Finally, the multiplication result is obtained by computing

a(x)b(x) = c(x) mod p(x). (4.8)

For p(x) given by (4.3), the computation of (4.8) is based on the following
congruence: [122]

c(x) = c2m−2x
2m−2 + . . .+ c1x

1 + c0

≡ (c2m−2x
m−2 + . . .+ cm)p′(x)

+ cm−1x
m−1 + . . .+ c1x+ c0 (mod p(x))

(4.9)

which is applied one bit at a time starting from the msb. The procedure is
continued while deg(c(x)) ≥ m. Fixing p(x) drastically reduces computational
complexity, especially, if p(x) is sparse, i.e., only few pi are ones in (4.3). Hence,
trinomials (three nonzero terms) or pentanomials (five nonzero terms) are often
used in practical cryptosystems. [122]

A special case of multiplication, where a(x) = b(x), is called squaring and
denoted by a2(x). Squaring is computationally cheaper than multiplication
because c(x) is simply given by

c(x) =
m−1∑
i=0

aix
2i, (4.10)

i.e., c(x) is obtained by inserting zeros between each bit in the bitvector rep-
resenting a(x) [122]. The result of squaring is obtained by computing (4.8).
Complexities of squarings are discussed in more detail in [296], for example.

Consider the field F24 as an example. The polynomial p(x) = x4 + x + 1
is irreducible over F2 and, thus, F24 can be constructed as F2[x]/p(x). Now,
consider two elements of F24 , a(x) = 〈0110〉 = x2 + x and b(x) = 〈1011〉 =
x3 +x+1. Then, a(x)+b(x) = 〈1101〉 and a(x)b(x) = 〈1111〉 since (x2 +x)(x3 +
x+ 1) = x5 + x4 + x3 + x and (x5 + x4 + x3 + x) mod p(x) = x3 + x2 + x+ 1.
The inverse of a(x) is a−1(x) = 〈0111〉 because (x2 + x)(x2 + x + 1) = x4 + x
and (x4 + x) mod p(x) = 1.

Let p1(x) be an irreducible polynomial over F2 with deg(p1(x)) = m1. Then,
F2m1 : F2[x]/p1(x). Let p2(y) be an irreducible polynomial over F2m1 with
deg(p2(y)) = m2. Then, F(2m1)m2 : F2m1 [y]/p2(y). These fields are called
composite fields. Composite fields introduce computational advantages over
conventional binary fields, because arithmetic operations in F(2m1)m2 can be
computed with a series of operations in F2m1 . Naturally, this can be extended
to F(...(2m1)m2 ...)mn . Composite fields are frequently used, e.g., in hardware
implementations of AES where computational complexity of inversion in F28

reduces considerably with composite field representations; see Sec. 5.2.2. How-
ever, ECC over composite fields has vulnerabilities against certain cryptanalytic
attacks [263]. Prior to finding these vulnerabilities, and even afterwards, they
have been used in implementations for efficiency reasons.

Because reductions are expensive also in F2m , their computation requires
attention. The idea of the Barrett’s reduction can be applied also for F2m over
polynomial basis [74]. An adaption of the Montgomery multiplication for F2m

was introduced in [149] and improved in [298]. Furthermore, analogously to
using primes of special forms, the use of special form p(x), e.g., trinomials,

— 40 —

pentanomials, all-one polynomials, or equally-spaced polynomials, offers con-
siderably faster reductions than general irreducible polynomials as discussed
above.

4.3.2 Normal Basis

A normal basis is constructed by using a normal element over F2. The element
α ∈ F2m is a normal element if α, α2, . . . , α2m−1 are linearly independent over
F2. Then, {α, α2, α22

, . . . , α2m−1} is a normal basis of F2m over F2. It is
commonly known that a normal basis can be found for all F2m [202]. An element
a ∈ F2m can be represented by using the basis as follows:

a =
m−1∑
i=0

aiα
2i (4.11)

where ai ∈ F2. A bitvector notation is used also for normal basis. The identity
element of addition, 0, is 〈00 . . . 00〉 and the identity element of multiplication,
1, is 〈11 . . . 11〉. [85]

Addition a+b where a, b ∈ F2m is essentially the same as in polynomial basis
and it is given by

a+ b =
m−1∑
i=0

(ai ⊕ bi)α2i. (4.12)

Normal bases are attractive mainly because squaring is very efficient with
them. Obviously, squaring (4.11) gives

a2 =
m−1∑
i=0

aiα
2i+1

(4.13)

and (4.1) gives that α2m = α. Thus, squaring is a cyclic shift of the bitvector
representing a, i.e.,

a2 = 〈am−2am−3 . . . a0am−1〉. (4.14)

Multiplication ab, where a, b ∈ F2m , is more involved and it is computed
using a multiplication matrix, TN , with entries, ξi,h, satisfying [83]

α2iα =
m−1∑
h=0

ξi,hα
2h so that α2iα2j =

m−1∑
h=0

ξi−j,h−jα
2h . (4.15)

Then the bits of c = ab are given by [83]

ch =
m−1∑
i=0

m−1∑
j=0

ξi−j,h−j ⊗ ai ⊗ bj . (4.16)

The number of ones, dN , in TN defines the complexity of multiplication,
and it is bounded by 2m − 1 ≤ dN ≤ m2 [202]. If dN is on the lower bound,
the basis is said to be an Optimal Normal Basis (ONB). There are two types
of ONBs, referred to as Type I and Type II ONBs [202]. An ONB does not
exist for all m. In fact, the density is about 23 % for m < 1200 [202]. For
example, an ONB does not exist for F2163 and, as a consequence, the basis used

— 41 —

in IV–VI, X, and XI is not an ONB. A comprehensive evaluation of the lowest
complexities achievable with different m is provided in [183]. A low complexity
normal basis, called Gaussian Normal Basis (GNB), can be constructed if an
ONB does not exist [14]. GNBs have been included in many ECC standards,
such as [8, 132, 205], and the basis used in the above mentioned publications of
this thesis is a GNB.

As shown in (4.16), the leftmost bit of c = ab, cm−1, can be computed from
a and b with a 2m-to-1-bit logic function as cm−1 = F (a, b). The function is
called F -function. Because squaring is a cyclic shift, the leftmost bit of the
squaring, c2, is cm−2. On the other hand, the leftmost bit is again given by the
F -function as cm−2 = F (a2, b2). Following this down to c0 leads to the following
formula:

c = ab =
m−1∑
i=0

F (a2m−1−i
, b2

m−1−i
)α2i (4.17)

which defines the Massey-Omura multiplier. [217, 285]

4.4 Inversion

Inversion, i.e., given an element a ∈ Fq finding an element a−1 ∈ Fq such that
aa−1 = 1, is much more involved than addition or multiplication. Moreover,
it is commonly required in practical applications of finite fields and, hence,
its efficient implementation is important. There are essentially two ways to
compute an inversion in Fq: extended Euclidean algorithm and Fermat’s Little
Theorem.

Extended Euclidean algorithm is an extension of the Euclidean greatest com-
mon divisor algorithm which, in addition to finding gcd(a, b), also gives c and d
satisfying

ac+ bd = gcd(a, b) . (4.18)

If b is a prime and a < b or if b is irreducible with deg(b) = m and deg(a) < m,
gcd(a, b) = 1. Thus, by setting b = p, the algorithm returns c such that ac ≡ 1
(mod p), i.e., c = a−1 in Fp. Analogously, if b = p(x), then c(x) = a−1(x) in
F2m . [122]

The standard version of the extended Euclidean algorithm requires several
integer (for Fp) or polynomial (for F2m) divisions, which can be costly. A binary
gcd algorithm which requires only additions, shifts (divisions by 2), and parity
tests was introduced in [273]. An algorithm for binary inversion in F2m was
given in [30]. An algorithm, called almost inverse algorithm, which returns
a weighted inverse, xta−1(x), was presented in [260]. Algorithms for efficient
inversions in the Montgomery representation were given in [142, 256]. Normally,
division b/a is computed by multiplying b with a−1, but modifications of the
above algorithms performing a direct division have been given in [54, 106], for
example.

Inversion based on Fermat’s Little Theorem uses consecutive squarings and
multiplications in Fq. It follows directly from (4.1) that for a ∈ Fq

a−1 = aq−2 . (4.19)

— 42 —

Hence, inversion in F2m is given by a−1 = a2m−2. Optimizing this exponen-
tiation returns to the theory of addition chains3. In exponentiation, the ad-
dition chain consists of multiplications and squarings required to exponentiate
a. A straightforward application of the binary method results in an addition
chain with the cost of m− 2 multiplications and m− 1 squarings [285], because
2m − 2 = 〈111 . . . 1110〉2 (the length is m bits). Because m is known a pri-
ori, addition chains with lower costs than binary method can be searched for
exponentiation. Efficient addition chains proposed in [136], called Itoh-Tsujii
inversion, reduce the cost to blog2(m− 1)c+H(m− 1)− 1 multiplications and
m− 1 squarings, where b·c denotes rounding to the closest smaller integer and
H(·) is the Hamming weight, the number of ones in the binary representation.
The Itoh-Tsujii inversion is efficient, especially, in normal basis because squar-
ings are almost free [136], but it can be efficiently used in polynomial basis,
too [113, 295].

Because inversions are typically more expensive than other field operations,
it is of interest to trade inversions to other operations. A method, known as
Montgomery’s trick [197], trades inversions to multiplications. It is based on the
observation: a−1 = b(ab)−1 and b−1 = a(ab)−1, which is generalized for n inver-
sions resulting in a cost of one inversion and 3(n− 1) multiplications [197, 261].
Montgomery’s trick is a general method, but some specific methods for trading
inversions to other operations are presented in Secs. 5.2.2 and 6.2, which discuss
AES S-box optimization with composite fields and elliptic curve arithmetic in
projective coordinates, respectively.

4.5 Notes on Implementations

The following presents certain notes on implementation related aspects. This
discussion is not all-inclusive because of the superfluity of papers discussing
efficient implementation of finite fields in various applications. However, the
following points give a brief overview of issues related to implementations of
finite field arithmetic and present the most commonly used multiplier struc-
tures. The discussion focuses on F2m and multiplication because Fp is not used
in the publications of this thesis and multiplication dominates in both compu-
tation time and resource requirements of practical cryptosystems. The subject
is revisited in Sec. 6.5 which discusses ECC processors.

A bit-serial multiplier computes one bit of the product of two elements of
F2m in one clock cycle, thus, requiring m clock cycles in total. A bit-parallel
multiplier computes all bits of the product simultaneously in one clock cycle.
Obviously, the bit-parallel multiplier consumes a lot of area while the bit-serial
multiplier is slow. A digit-serial multiplier is a tradeoff between these two ex-
tremes and it computes D bits of the product in one clock cycle resulting in
dm/De clock cycles for an entire multiplication. As a result of the rounding, only
certain values of D reduce latency and only they should be considered for use in
practical applications in order to prevent unnecessary use of area. For instance,
D should be chosen from the set {1− 15, 17, 19, 21, 24, 28, 33, 41, 55, 82, 163} for
F2163 used in all ECC publications of this thesis. Furthermore, there exists
a value of D optimizing the latency-area product of a multiplier. This value

3An addition chain is the chain of additions required to get a starting from 1 by using only
values that have appeared previously in the chain.

— 43 —

is usually small (see IV) which challenges practical feasibilities of digit-serial
multipliers with large D and, especially, bit-parallel multipliers.

A multiplier is said to be fixed if it supports only one specific field and the
ability to support several fields is called flexibility. As a rule of thumb, the
more flexible a multiplier is the slower it is and the more area it requires. An
extreme example is squaring in polynomial basis which can be computed in
one clock cycle with a fixed (sparse) irreducible polynomial but requires several
clock cycles with an arbitrary irreducible polynomial.

A classical bit-parallel multiplier for polynomial basis was presented in [181,
182], and it is nowadays referred to as the Mastrovito multiplier after its in-
vertor. A Mastrovito multiplier combines the polynomial multiplication and
reduction phases to a single matrix multiplication. An optimized Mastrovito
multiplier for trinomials was developed in [277] which was later generalized for
arbitrary irreducible polynomials in [117]. A systematic approach for designing
Mastrovito multipliers was presented in [305]. A disadvantage of Mastrovito
multipliers is that flexible multipliers cannot be designed. Other bit-parallel
multipliers have been presented, e.g., in [233, 235].

Because m is usually large in public-key cryptography applications, bit-serial
or digit-serial multipliers are commonly preferred in practice. Ordinary polyno-
mial multiplication, as given by (4.7), and Karatsuba multiplication [109, 143,
283] can be implemented in both bit-serial and digit-serial fashion. Complex-
ity of reduction has been studied with various types of irreducible polynomials
in [295, 297]. The following multipliers interleave polynomial multiplication and
reduction steps but still incorporate different circuitries for both of them con-
trary to the Mastrovito multiplier. A multiplier, called super-serial multiplier,
suitable for applications where resources are very scarce was presented in [219]
and it allows trading off resources to even longer latency than that of the bit-
serial multiplier. Digit-serial multipliers for polynomial basis were introduced
in [269]. They were improved in [156] by introducing new multiplier architec-
tures with different numbers of accumulators in order to minimize the critical
path and by studying their optimality in terms of speed and area. A digit-serial
multiplier utilizing LUTs suitable for software implementations was introduced
in [123], but it can be efficiently implemented in hardware as well [123, 177]. It
was used in VI and VII.

If the reduction step is interleaved with polynomial multiplication, it can
be computed very efficiently even with arbitrary irreducible polynomials by us-
ing the so-called partial reduction techniques [115] where a result of ordinary
polynomial multiplication is reduced only to a congruent polynomial with a
degree higher than m. Partial reduction embedded in an efficient digit-serial
multiplier can provide support for arbitrary irreducible polynomials (up to cer-
tain m) with half the speed compared to fixed polynomials [87]. Combination
of specific reduction circuitries for a few fixed irreducible polynomials and cir-
cuitry for arbitrary irreducible polynomials provides flexible multipliers with
fast computation for frequently used fields [87, 114, 115].

A number of papers have discussed multiplication in normal basis. A classical
multiplier structure for normal basis is the Massey-Omura multiplier described
in [217, 285]. Normal basis multiplication is easy to parallelize because the
same F -function is used for all bits of the result, as shown in (4.17). Bit-
serial architectures have been presented in [1, 217, 285], digit-serial multipliers
in [232, 234], and bit-parallel multipliers in [278, 285], to name a few. Several

— 44 —

multipliers exploit specific types of normal basis. A multiplier structure for ONB
was presented in [1]. A bit-parallel multiplier, called Sunar-Koç multiplier, that
is smaller than the bit-parallel Massey-Omura multiplier was given for Type II
ONBs in [278]. Multiplier architectures specifically for GNBs were presented
in [159, 236].

Two bit-parallel polynomial basis multipliers, based on ordinary polyno-
mial multiplication and modified Karatsuba method [109, 143], and normal
basis multipliers, digit-serial (D = 117) Massey-Omura and bit-parallel Sunar-
Koç multipliers, were compared in [109] on a Xilinx Virtex-II FPGA in the
case of F2233 for which exists a Type II ONB. They concluded that their mod-
ified Karatsuba multiplier outperforms ordinary polynomial multiplier. The
Massey-Omura and Sunar-Koç multipliers had similar time-area products, but
Sunar-Koç was faster. Sunar-Koç was also faster than both polynomial basis
multipliers, but Karatsuba had clearly the best time-area product.

Polynomial basis is superior over normal basis in software; see, e.g., [121,
213]. Both bases result in efficient implementations in hardware and, thus,
normal basis is a viable choice especially in applications where the number
of squarings is high, such as ECC with Koblitz curves. Commonly support
for normal basis is implemented in software by utilizing the isomorphism of
different representations of Fq so that elements are converted to polynomial basis
where computations are carried out followed by a conversion back to normal
basis. However, such conversions can be costly and direct implementation can
be more efficient in certain applications [213] and software implementations of
normal basis have been proposed, such as [213, 232, 242]. Conversions between
normal basis and polynomial basis are very efficient with Type I ONB and all-
one polynomials which enables efficient implementations as shown in [150, 166].
However, Type I ONBs are not practical in ECC because they can exist only if
m is even [202], although it should be a prime for security reasons; see, e.g., [99].

Because many standards in (elliptic curve) cryptography, e.g., [51, 52, 205],
define both prime and binary fields, an implementation must support both Fp
and F2m in order to cover all standardized fields. Hence, processors combin-
ing support for Fp and F2m have attained interest. The first such processors
were presented in [106, 257] which presented unified Montgomery multipliers
supporting both prime and binary fields with arbitrary field sizes. The work
of [106] was later extended in [107]. Another multiplier for Fp and F2m based
on Montgomery multiplication was given in [255]. A multiplier which does not
use Montgomery representation was presented in [111]. A low-power arithmetic
unit supporting addition, multiplication, and extended Euclidean algorithm in
Fp and F2m was presented in [291] and instruction set extensions for a 32-bit
RISC (Reduced Instruction Set Computer) processor supporting both Fp and
F2m were developed in [112]. A multiplier supporting both Fp and F2m typically
requires only slightly more area than an Fp multiplier and, in fact, the support
for F2m can be added to an Fp multiplier with no additional area cost [255].
In all cases, F2m operations clearly outperform Fp operations with comparable
field sizes.

As mentioned, inversion is the most complex field operation. Hence, its fast
computation is important in applications where inversions are frequently used.
Inversion algorithms based on extended Euclidean algorithm are preferred in
software implementations, because they usually result in slightly faster results.
However, Fermat’s Little Theorem computes inversions without an additional

— 45 —

inverter circuitry, namely with successive multiplications and squarings, which
makes it a feasible alternative in hardware implementations.

To summarize, an enormous amount of work has been done on realizing finite
field arithmetic and many architectures are available having merits in various
different target applications. The research field can be considered mature and
this thesis does not introduce any major contributions to this field. A scalable
multiplier that can be easily generated with an automatic generator and that
suits for the 4-to-1-bit LUT structure of Xilinx FPGAs was, however, introduced
in III. Otherwise, the contributions of this thesis are on higher algorithm levels
than field arithmetic and they are discussed in the following chapters.

— 46 —

Chapter 5

Advanced Encryption Standard

This chapter studies AES from the hardware implementation point-of-view
and provides an extensive review of implementation methods developed for

AES. The objective is to review the state-of-the-art of AES implementations and
to point out the relationship of I and II to other studies. The focus is again
on FPGAs, but also ASIC implementations are discussed in detail in order to
provide an inclusive view of the state of hardware implementation of AES and
because many techniques used in FPGAs have been first introduced for ASICs.
Software implementations are not discussed in the following description but, to
the author’s knowledge, the fastest reported software has been written by Helger
Lipmaa in assembly and it achieves throughput of over 1.5 Gbps on a 3.2 GHz
Pentium 4 [172]. This value is a useful benchmark for hardware implementa-
tions. It should be noted, however, that slower hardware implementations can
also be useful because low price or power consumption may be required which
typically cannot be achieved with general-purpose microprocessors.

AES algorithm is presented in Sec. 5.1. Different implementation techniques
presented for AES are discussed in Sec. 5.2 and Sec. 5.3 reviews and compares
published ASIC and FPGA implementations of AES.

5.1 Description of AES

The following description of AES is based on [71, 206]. AES has a block size of
128 bits and there are three options for the key size: 128, 192, or 256 bits. AES-
128, AES-192, and AES-256 henceforth refer to AES and the key size. AES is
an iterative SPN and the number of rounds, Nr, depends on the key size so
that Nr = 10 for AES-128, Nr = 12 for AES-192, and Nr = 14 for AES-256.

AES operates on an intermediate result called the State. At the beginning
of encryption, the 128-bit M is interpreted as a two dimensional table or a
matrix with bytes as elements where the first byte of M is s0,0 and the last one
is s3,3. The rows and columns of the matrix are referred to as rows and columns
of the State. AES involves four different transformations which are all applied
to the State. Separate round keys are used in different rounds and they are
derived in a key schedule. Once all rounds have been processed, C is build up

— 47 —

so that s0,0 becomes the first byte of C and s3,3 becomes the last one. Alg. 5.1
shows the outline of the AES algorithm. The transformations are considered in
the following.

Algorithm 5.1 Outline of the AES encryption
Input: M (128 bits), K (128, 192 or 256 bits)
Output: C (128 bits)
1. State←M
2. RoundKeys← KeySchedule(K)
3. State← AddRoundKey(State,RoundKeys[0])
4. for i = 1 to Nr − 1 do
5. State← SubBytes(State)
6. State← ShiftRows(State)
7. State←MixColumns(State)
8. State← AddRoundKey(State,RoundKeys[i])
9. end for

10. State← SubBytes(State)
11. State← ShiftRows(State)
12. State← AddRoundKey(State,RoundKeys[Nr])
13. C ← State

The AddRoundKey(·, ·) transformation embeds key into the State by per-
forming a 128-bit bitwise XOR, i.e.,

AddRoundKey(State,RoundKeys[i]) = State⊕RoundKeys[i]. (5.1)

AddRoundKey(·, ·) is the only transformation in AES involving the key.
The SubBytes(·) transformation is a non-linear operation which operates

on each byte of the State independently. A byte is considered to be an element
of the field

F28 : F2[x] / x8 + x4 + x3 + x+ 1 . (5.2)

It is, thus, presented as
∑7
i=0 bix

i so that b0 is the lsb. SubBytes(·) consists
of two phases:

1. Computation of an inversion in F28 . The element 〈00〉x maps to itself.

2. An affine transformation over F2 defined as

b′i = bi ⊕ b(i+4) mod 8 ⊕ b(i+5) mod 8 ⊕ b(i+6) mod 8 ⊕ b(i+7) mod 8 ⊕ ci (5.3)

where c = 〈63〉x and 0 ≤ i ≤ 7.

The ShiftRows(·) transformation operates on the 32-bit rows of the State
independently. Each byte of the row i is shifted cyclically to the left by i bytes
with 0 ≤ i ≤ 3.

The MixColumns(·) transformation operates on the 32-bit columns of the
State independently. Each column is considered as an element of the finite
field

F(28)4 : F28 [x] / x4 + 1 (5.4)

where F28 is defined by (5.2). The columns are then multiplied with a fixed
polynomial

a(x) = 〈03〉xx3 + 〈01〉xx2 + 〈01〉xx+ 〈02〉x . (5.5)

— 48 —

The KeySchedule(·) routine expands the length of the key, K, to 128(Nr+
1) bits. The result is used as RoundKeys[i] in encryption as presented in
Alg. 5.1. K is placed into the beginning of RoundKeys and, thus, K forms
the first 128, 192, or 256 bits of RoundKeys depending on the key size. From
this point forward, KeySchedule(·) builds RoundKeys one 32-bit word at a
time with SubBytes(·), XORs, and shifts.

More detailed descriptions of AES are available in [71, 206].

5.1.1 Decryption

Decryption inverts all transformations performed in encryption. Thus, the order
in which transformations are performed is reversed and the transformations
are replaced by their inverses. However, because the inverse of SubBytes(·)
operates byte-wise, it can be computed before the inverse of ShiftRows(·) and
a structure similar to Alg. 5.1 can be devised also for decryption [71, 206].

The AddRoundKey(·, ·) is its own inverse and it remains unchanged. The
inverse of the ShiftRows(·) shifts bytes to the right, not to the left, and
the inverse of the SubBytes(·) performs an inverse of the affine transfor-
mation followed by an inversion in F28 which is its own inverse operation
by definition. The inverse of the MixColumns(·) multiplies a column with
a(x)−1 = 〈0b〉xx3 + 〈0d〉xx2 + 〈09〉xx+ 〈0e〉x. The KeySchedule(·) is exactly
the same for both encryption and decryption but the RoundKeys[i] are used
in reversed order. [71, 206]

5.2 Implementation of AES

Although AES is a well-defined standard, there are certain choices that can be
made and both academic and commercial AES implementations typically im-
plement only a part of the full AES. For instance, only encryption or decryption
is implemented or support only for 128-bit keys is included in order to minimize
area and increase speed. Many published designs, e.g., [37, 42, 55, 86, 154, 169,
201, 309] and II, include only AES-128 encryption. Some implementations,
such as [86, 91, 97, 201], do not implement KeySchedule(·) and they require
that RoundKeys are computed by an external processor or that the key K
is fixed and RoundKeys are precomputed. The support for KeySchedule(·)
is referred to as key agility and if an implementation can switch keys without
additional delays, it is fully key agile. Achieving full key agility can require
large amounts of area, especially, if several blocks are encrypted or decrypted
simultaneously. Implementations supporting the full AES, i.e., all key sizes with
key agility, encryption, and decryption, are presented in [4, 179, 228, 275].

AES can be implemented with basic techniques used in implementing block
ciphers [91]. They include unrolling and pipelining. The following discussion is
based on categorizations from [100, 120, 306]. Different unrolling and pipelin-
ing techniques are depicted in Fig. 5.1. An iterative architecture implements
only one round of the algorithm which is then used iteratively. A loop-unrolled
architecture performs several rounds in one iteration. If all rounds are unrolled,
an architecture is referred to as fully unrolled. Naturally, the more rounds are
unrolled the more area is required to implement the architecture. Pipelining can
be categorized as outer-round or inner-round pipelining. Outer-round pipelining

— 49 —

Round

(a)

Round

Round

n
ro

u
n
d
s

(b)

Round

Round

Round

Round

N
r

ro
u
n
d
s

(c)

Round

n
ro

u
n
d
s

Round

(d)

Round

n
ro

u
n
d
s

Round

(e)

Figure 5.1: Implementation techniques (adapted from [100, 120, 306]): (a) iterative,
(b) loop-unrolled, (c) fully unrolled, (d) loop-unrolled with outer-round pipeline, and
(e) loop-unrolled with inner-round and outer-round pipeline. The black bars depict
register stages. The number of inner-round pipeline stages may be higher than one
and the number of outer-round pipeline stages is bounded by the number of unrolled
rounds.

— 50 —

includes registers between two or several rounds, whereas inner-round pipelining
adds registers inside a round between or in transformations. In either case, the
total number of pipeline stages determines the number of simultaneous encryp-
tions. The highest throughputs are achieved with fully unrolled architectures
utilizing aggressive inner-round pipelining.

If the entire State is operated simultaneously, the width of the data path is
128 bits. However, even the iterative architecture with a 128-bit data path may
be too large for certain applications. A technique called folding uses smaller
data path, such as 32 or 8 bits, so that the same circuitry is used for different
parts of the State during several clock cycles. Folding is nontrivial because
ShiftRows(·) complicates accessing bytes of the State and results in a large
switching circuitry [61]. The penalty in speed can be considerable in folded
architectures but, nonetheless, even lower speed is adequate for many consumer
applications where low cost is often essential [104].

Throughput of an AES implementation is given by the following equation
which is similar to (3.2) but gives the number of bits processed per second

T = 128
pf
l

(5.6)

where f, l, and p are as defined in Sec. 3.3; hence, p is the number of pipeline
stages. In a fully unrolled (and pipelined) design, p = l resulting in T = 128f.

Block ciphers are used in different modes of operations. The simplest mode
of operation is Electronic Code Book (ECB) mode where each block is encrypted
separately. Thus, the same plaintext encrypted with the same key always re-
sults in the same ciphertext. This can be avoided by using more sophisticated
modes of operations. They commonly require that the ciphertext of the previ-
ous block is available in encryption of the next block which prevents efficient
pipelining. However, certain modes of operations, e.g., Cipher Block Chaining
(CBC) mode, allow pipelining in decryption but not in encryption whereas cer-
tain modes of operations, e.g., counter (CTR) mode, allow pipelining in both.
The reader is referred to basic textbooks on cryptography, e.g., [258, 274], for
further information.

5.2.1 Memory-based Implementations

As discussed in Sec. 5.1, SubBytes(·) operates the State byte-wise. It com-
putes an inversion in F28 and performs an affine transformation. These opera-
tions can be combined and performed with a single look-up from a precomputed
LUT of 256 8-bit elements and such a table is called S-box. This approach is
particularly feasible for software, but also for FPGAs where logic resources can
be saved at the expense of a few embedded memory blocks, e.g., BlockRAMs
in Xilinx FPGAs. In total 16 S-boxes are required if the entire SubBytes(·) is
computed in parallel, and the KeySchedule(·) requires additional 4 S-boxes.
This approach is straightforward and it has been successfully used in numerous
papers, such as [62, 97, 185, 248, 272, 304]. However, memory requirements
may restrict the use of this approach in certain low-cost environments and fully
unrolled designs. There are also certain other issues that require commenting.

Because SubBytes(·) and its inverse differ, efficient implementation of both
encryption and decryption in the same design is not easy. A straightforward
implementation requires two different LUTs: one for encryption and one for

— 51 —

decryption. This problem can be circumvented with an approach using com-
binatorial logic for the affine transformation and its inverse and a LUT only
for inversion in F28 [176, 240]. Hence, both encryption and decryption can be
implemented with the same memory requirements than plain encryption or de-
cryption with an increase in logic requirements and computation delay. Another
approach is to use two ROMs (Read-Only Memories) including precomputed
values for the S-boxes of SubBytes(·) and its inverse [185]. Encryption and
decryption are then carried out with LUTs implemented in programmable em-
bedded memory, e.g., BlockRAMs in Xilinx Virtex FPGAs, whose contents are
loaded from one of the ROMs at the beginning [185]. However, switching la-
tencies may become a problem if encryption and decryption modes need to be
switched frequently.

SubBytes(·), ShiftRows(·), and MixColumns(·) can be combined into
column-wise LUTs, referred to as T-boxes. This approach was first proposed by
the inventors of AES for 32-bit software [71], but it can be efficiently adapted to
memory-rich FPGAs, too, and it has been used at least in [56, 86, 97, 103, 186].
The quadruple memory requirements compared to the S-box approach [97] are
a downside of this method.

Let S(a) denote an S-box. Then, four T-boxes needed in AES encryption
are given as follows [71]:

T0(a) =

S(a)× 〈02〉x
S(a)× 〈01〉x
S(a)× 〈01〉x
S(a)× 〈03〉x

 T1(a) =

S(a)× 〈03〉x
S(a)× 〈02〉x
S(a)× 〈01〉x
S(a)× 〈01〉x

T2(a) =

S(a)× 〈01〉x
S(a)× 〈03〉x
S(a)× 〈02〉x
S(a)× 〈01〉x

 T3(a) =

S(a)× 〈01〉x
S(a)× 〈01〉x
S(a)× 〈03〉x
S(a)× 〈02〉x

(5.7)

each of which can be implemented with a LUT of 256 32-bit elements. The
values of a new column are received by using the bytes of an old column as
inputs for the T-boxes and XORing the 32-bit outputs. In T-boxes used in
decryption, 〈01〉x, 〈02〉x, and 〈03〉x are replaced by 〈0b〉x, 〈0d〉x, 〈09〉x, and
〈0e〉x.

As shown in Alg. 5.1, MixColumns(·) is not computed in the last round
and, hence, an implementation must be capable of computing only SubBytes(·)
(or its inverse), i.e., S(a). This is not a major problem in encryption because the
T-boxes include plain S-boxes as well (those multiplied by 〈01〉x) [71]. However,
in decryption the S-boxes are not available and they must be multiplied out of
the T-boxes which requires additional logic.

The T-boxes provide faster implementations than the S-boxes, but expect-
edly with increased memory requirements [97]. Because modern FPGAs are
usually memory-rich, the T-boxes can provide very fast performance with low
logic requirements as shown in [56, 86, 186] as well as very small logic require-
ments [245].

5.2.2 Combinatorial Implementations

Memory must be available in order to implement the previously discussed ap-
proaches efficiently. However, it is important to have an efficient method for

— 52 —

implementing SubBytes(·) with combinatorial logic, especially, in ASIC im-
plementations. Efficient combinatorial implementation of the S-boxes is impor-
tant also in high-speed implementations on FPGAs because throughput can be
increased by pipelining the S-boxes which is not possible with memory-based
implementations. Straightforward derivations of combinatorial expressions for
SubBytes(·), either directly from the truth-table of the S-box or with Fer-
mat’s Little Theorem, result in fast but large circuitries [201]. Composite fields,
discussed in Sec. 4.3.1, reduce the complexity of combinatorial inversion consid-
erably.

Using composite fields in the S-boxes was proposed by Rijmen [237]. The
idea is that although all representations of F28 are isomorphic, computational
complexities differ between representations and it is more efficient to compute
inversions in a composite field rather than in the field specified by (5.2).

A byte is first mapped with an isomorphism, σ, to

F(24)2 : F24 [y]/y2 + ψy + ω . (5.8)

An inversion for an element, a = a1y + a0 where ai ∈ F24 : F2[y]/y4 + y + 1, is
then computed with the following equation

(a1y + a0)−1 = a1∆y + (a1 + a0ψ)∆ (5.9)

where ∆ = (a2
1ω+a1a0ψ+a2

0)−1 [237]. Finally, the result is mapped back to the
original representation with an isomorphism, σ−1. Hence, an inversion in F28 has
been replaced by two isomorphisms and an inversion and some multiplications,
squarings, and additions in F24 . [237]

The constants ψ and ω effect both the complexity of operations of (5.9) and
mappings, σ and σ−1. The values can be chosen freely as long as y2 + ψy + ω
remains irreducible over F24 . If ψ = 1, there are four possible values for ω and,
for each of them, there are seven alternatives for σ and σ−1 [247].

The above approach can be used further so that operations of F28 are de-
composed into operations of F2 with irreducible trinomials as follows [254]

F((22)2)2 : F(22)2 [y]/y2 + ψ0y + ω0 (5.10)

F(22)2 : F22 [y]/y2 + ψ1y + ω1 (5.11)

F22 : F2[y]/y2 + ψ2y + ω2 . (5.12)

If ψ0,1,2 = 1, then there are eight possible values for ω0, two for ω1, and one
for ω2 [308]. Decompositions beyond F24 can be beneficial for ASIC implemen-
tations but they do not reduce the complexity of inversion in typical FPGA
implementations because the 4-to-1-bit LUT structure provides all arithmetic
operations in F24 already with the minimum cost of 4 LUTs [105]. Besides, it is
simple to directly derive equations for operations in F24 and they provide more
efficient inversions in F24 than further decompositions [128, 307]. However, the
simplest isomorphisms, σ and σ−1, have been presented by decomposing F28 to
F((22)2)2 [48, 308]. Naturally, there are no restrictions for the basis of F24 , and
normal bases have been suggested at least in [48, 275].

The first practical implementation of composite fields was presented in [247]
where the composite field F(24)2 was used for all operations of AES, i.e., also
MixColumns(·) was performed in the composite field. Thus, σ was applied

— 53 —

to the plaintext and the key once in the beginning and the resulted cipher-
text was mapped with σ−1 in the end. This was also the approach taken
in II. However, it has become evident that it is more efficient for the over-
all area consumption and critical path to perform only inversions in composite
fields [48, 254, 292, 307, 308]. The reasons are that the simple multiplications
of MixColumns(·) become much more complex in composite fields and either
σ or σ−1 can be embedded in affine transformations which reduces the overhead
of these mappings. The first implementations using composite fields to compute
only the inversion were presented in [254] using F((22)2)2 and [292] using F(24)2 .

Evaluations of the optimal composite field constructions have been presented
in [48, 190, 308]. The study of [190] optimized the implementation of [254] by
studying effects of different irreducible polynomials to the complexity of the
isomorphisms. In [48], various different constructions including normal bases
were studied resulting in the smallest S-box available in the literature. Slightly
larger circuit with shorter critical path was given in [308]. The exact values
are 91 XORs and 36 ANDs for [48] with a critical path of 23 XORs and 4
ANDs and 120 XORs and 35 ANDs for [308] with a critical path shorter by 4
XORs. The difference in area consumption is notable with all above mentioned
decompositions compared to straightforward implementations from the truth-
table of the S-box which requires about 1500-3000 ASIC gates with different
techniques [201]. A study on the most energy efficient construction in F((22)2)2

was provided in [200]. The above mentioned complexity studies are not valid for
FPGAs where LUT structures change both area requirements and critical paths
from the above values as shown for one construction in [309]. However, optimal
pipeline constructions in composite fields for FPGAs were studied in [103, 105].

Although SubBytes(·) dominates in area consumption and computation
time, MixColumns(·) also deserves attention, especially, when combined with
its inverse; see, e.g., [98, 129, 254, 306]. A basic implementation technique,
which was described already in the standard [206], builds around multiplica-
tions by 〈02〉x which can be implemented with shifts and 4 XORs [306]. Both
MixColumns(·) and its inverse can be implemented with these multiplica-
tions and additions (XORs). When both encryption and decryption are im-
plemented, area can be reduced by sharing multiplications by 〈02〉x [307] or
by decomposing MixColumns(·) out of its inverse [71]. The latter approach
utilizes the fact that the polynomial used in multiplication in the inverse of
MixColumns(·), a−1(x), can be expressed by using a(x) of MixColumns(·),
(5.5), as a−1(x) = (〈04〉xx2+〈05〉x)a(x) (mod x4+1). As a consequence, the in-
verse of MixColumns(·) is computed by first applying multiplications by 〈04〉x
and 〈05〉x followed by MixColumns(·).

5.3 Literature Review of AES Implementations

This literature review complements the review presented in I. This review
surveys progress that has took place after the writing of I and considers also
published ASIC implementations which were not discussed in I. This review
also updates the previous ones presented in [118, 120, 293] by including im-
plementations which appeared after their publication. The scope is also wider
compared to [120], which focused only on low-cost implementations. Details of
implementations are collected into Table 5.1. Selected implementations from

— 54 —

I are also discussed in order to avoid discontinuations, and in particular in-
cluded in Table 5.1 for reader’s convenience. If a publication presents several
implementations, only the ones which are the most comparable with other imple-
mentations in the literature and, especially, with II were selected. Commercial
AES implementations were not included in this review because only limited and
marketing-oriented information is available.

5.3.1 ASIC Implementations

This review begins with ASIC implementations. The first studies on ASIC-based
implementation of AES (Rijndael) were published during the AES selection
process by Ichikawa et al. [131] and Weeks et al. [288]. Rijndael was found to be
superior compared to other algorithms in [131] whereas the study of [288] refused
to put algorithms in any particular order, but the values seem to support both
Rijndael and Serpent. Rijndael was found superior to Serpent in a study [176]
that appeared after the decision of AES.

A multitude of ASIC implementations have been published since the se-
lection of Rijndael as AES. Most of them are iterative or loop-unrolled archi-
tectures with 128-bit data paths achieving throughputs ranging from several
hundred Mbps to Gbps level. Such architectures have been presented, for ex-
ample, by Alam et al. [4], Hsiao et al. [128], Kosaraju et al. [153], Kuo and
Verbauwhede [157], Lutz et al. [176], Mangard et al. [179], and Su et al. [275].
Important aspects that have attained interest in the papers are methods to
combine encryption and decryption with key agility and support for different
key sizes. Alam et al. [4] presented an ASIC-based implementation support-
ing the full AES (all key sizes with encryption and decryption) and additional
plaintext sizes of 192 and 256 bits. They used composite fields in the imple-
mentation. Hsiao et al. [128] optimized logic functions of all transformations of
AES and described an ASIC implementation supporting encryption and decryp-
tion with key agility. Kosaraju et al. [153] presented a straightforward ASIC
implementation which achieves full key agility. Kuo and Verbauwhede [157]
presented a fully key agile implementation of the full AES. Their design uses
S-boxes implemented with combinatorial logic without composite fields and the
data path is 256 bits. Special attention was given for an efficient implemen-
tation of KeySchedule(·). The implementation of [157] was later improved
in [282] which also studied power consumption. Lutz et al. [176] compared im-
plementations of Rijndael and Serpent as mentioned above. Mangard et al. [179]
presented a highly regular and scalable iterative ASIC implementation for both
encryption and decryption with full key agility and support for the CBC mode
of operation. Su et al. [275] implemented the full AES with key agility by uti-
lizing composite field F(24)2 with a normal basis. Next, two interesting special
cases, very low cost and high throughput implementations, are discussed.

Low cost, meaning low area and/or power consumption, is required in many
applications, including smart cards, home consumer electronics, and mobile de-
vices, and there is an obvious need for minimizing the cost of AES implemen-
tations. As discussed earlier, the key techniques for achieving low cost are data
path folding and composite fields for the S-boxes. The first implementation
aiming to a small area was presented by Satoh et al. [254]. They presented both
small and high throughput ASIC implementations which use the composite field
F((22)2)2 in SubBytes(·). They also presented how encryption and decryption

— 55 —

Table 5.1: AES implementations. The six implementations on the top were included
in I and the implementations from II are in the bottom.

Reference Year Device Area requirements1 Features2 T (Mbps)

Chodowiec [61] 2003 Spartan-II 30-6 222 sl., 3 BRAM EDK1 166
Hodjat [125] 2004 Virtex-II Pro 20-7 9446 sl. EK1 21640
Pramstaller [228] 2004 Virtex-E 1000-8 1125 sl. EDK123 215
Rouvroy [245] 2004 Spartan-III 50-4 163 sl., 3 BRAM EDK1 208
Zambreno [304] 2004 Virtex-II 4000 16938 sl. EK1 23570
Zhang [307] 2004 Virtex-E 1000-8 11022 sl. EDK1 21556
Alam [4] 2007 0.18 µm CMOS 21000 gt. EDK123M 384
Brokalaikis [37] 2005 Virtex-II 2000-5 1122 sl., 8 BRAM EK1 1941
Bulens [42] 2008 Virtex-5 400 sl. EK1 4100
Charot [55] 2003 Apex 20 —— EK1 10800
Chaves [56] 2006 Virtex-II Pro 20-7 3513 sl., 80 BRAM ED1 34760
Chaves [56] 2006 Virtex-II Pro 20-7 515 sl., 12 BRAM ED1 2332
Drimer [86] 2008 Virtex-5 SX95T-3 428 sl., 80 BRAM,

160 DSP
E1 55000

Feldhofer [96] 2005 0.35 µm CMOS 3400 gt. EDK1 9.9
Good [103] 2005 Spartan-III 2000-5 17425 sl. EDK1 25107
Good [103] 2005 Virtex-E 2000-8 16693 sl. EDK1 23654
Good [104] 2006 Spartan-II 15-6 122 sl., 2 BRAM EDK1 2.18
Good [105] 2007 Spartan-III 4000-5 20720 sl. EDK1 30835
Good [105] 2007 Virtex-II 8000-5 31674 sl. EDK1 28526
Hämäläinen [119] 2006 0.13 µm CMOS 3100 gt. EK1 121
Hsiao [128] 2005 0.18 µm CMOS 18540 gt. EDK1 1500
Hwang [130] 2006 0.18 µm CMOS 199000 gt. EK1 3840
Hwang [130] 2006 0.18 µm CMOS 596000 gt. EK1C 990
Ichikawa [131] 2000 0.35 µm CMOS 612834 gt. EDK1 1950.03
Kosaraju [153] 2006 0.35 µm CMOS —— EDK1 232.7
Kotturi [154] 2005 Virtex-II Pro 70-7 5408 sl., 200 BRAM EK1 29770
Kuo [157] 2001 0.18 µm CMOS 173000 gt. EK123M 1820
Liberatori [169] 2007 Spartan-III 200 822 sl. EK1 224.12
Lutz [176] 2002 0.6 µm CMOS ∼300000 trans. EDK1 2260
Mangard [179] 2003 0.6 µm CMOS 10799 gt. EDK1 128
Morioka [201] 2004 0.13 µm CMOS 167566 gt. E1 11600
Satoh et al. [254] 2001 0.11 µm CMOS 21337 gt. EDK1 2609.11
Satoh et al. [254] 2001 0.11 µm CMOS 5400 gt. EDK1 311.09
Satoh [253] 2006 0.13 µm CMOS 297542 gt. EK123G 42670
Su [275] 2003 0.35 µm CMOS 58430 gt. EDK123 2008
Verbauwhede [282] 2003 0.18 µm CMOS 173000 gt. EK123M 2290
Zhou [309] 2007 Virtex-4 LX40-12 16396 sl. EK1G 20608
II 2003 Virtex-E 1000-8 11719 sl. EK1 16540
II 2003 Virtex-II 2000-5 10750 sl. EK1 17800
1 sl. = slice, gt. = gate, BRAM = BlockRAM, DSP = DSP block, trans. = transistor
2 E = Encryption, D = Decryption, K = Key agile, 1 = AES-128, 2 = AES-192, 3 = AES-256,

G = Galois Counter Mode, M = Also 192 and 256-bit M , C = Countermeasures against DPA

— 56 —

can be compactly combined in SubBytes(·) and MixColumns(·). Feldhofer
et al. [96] implemented key agile AES-128 encryption and decryption with only
3400 gates with throughput of nearly 10 Mbps by using an 8-bit data path.
Hämäläinen et al. [119] introduced an 8-bit implementation of the AES-128 en-
cryption using parallel AES round and KeySchedule(·, ·) and they achieved
a throughput of 121 Mbps with only 3100 gates. This represents the smallest
published ASIC implementation. However, it must be emphasized when com-
pared to [96] that [119] does not include decryption. A review of low-cost AES
implementations was presented in [120] which concluded that the best architec-
tures for wireless sensor networks requiring only low encryption speed with very
low cost are the 8-bit dedicated architectures from [96, 119].

Throughputs exceeding 10 Gbps are required in heavily-loaded servers and
optical network switches, for example, and fully unrolled and pipelined archi-
tectures are therefore of interest. The implementation of Rudra et al. [247]
was the first one to utilize composite fields. They implemented AES so that
the entire AES was computed in the composite field F(24)2 , but they provided
only estimates for speed and area of such an implementation. Morioka and
Satoh [201] presented that a throughput of over 11 Gbps can be reached even
with an iterative AES implementation by utilizing combinatorial T-boxes de-
rived directly from the truth-table of the S-box. As a consequence, their im-
plementation supports also the CBC mode of operation with maximal through-
put. Satoh [253] presented an implementation supporting all key sizes with a
throughput of over 40 Gbps for AES-128. The design also implements all logic
required in the GCM (Galois Counter Mode) mode of operation [209], i.e., also
a 128-bit finite field multiplier is included. Hodjat and Verbauwhede [126] pre-
sented area-throughput tradeoffs for fully unrolled ASIC-based architectures
achieving throughputs of over 30 Gbps. They concluded that the best re-
sults are achieved by using composite fields for SubBytes(·) with an offline
KeySchedule(·) unit. They did not present any exact implementation re-
sults but showed that throughputs ranging from 30 Gbps to nearly 70 Gbps are
achievable with 150000-275000 gates.

As discussed in Sec. 3.4, side-channel attacks form a serious threat in certain
applications and countermeasures are thus required. Hwang et al. [130] pre-
sented an AES coprocessor using differential logic style which aims to an equal
power consumption regardless of the operation being executed and thwarts DPA
attacks as a result. They showed how differential logic style can make DPA at-
tacks considerably more difficult, but with relatively high costs in area, power
consumption, and throughput. They claimed that their coprocessor is the first
practical implementation that is resistant against DPA.

5.3.2 FPGA Implementations

FPGAs are appealing platforms for cryptographic algorithms as discussed in
Sec. 3.2 and, therefore, numerous FPGA-based implementations of AES have
been published. Three fastest FPGA implementations included in I were pre-
sented by Hodjat and Verbauwhede [125], Zambreno et al. [304], and Zhang
et al. [307]. They all used full unrolling and pipelining and utilized composite
fields in SubBytes(·) [125, 304, 307]. High throughput with FPGAs has been
the target in numerous other publications, too. Charot et al. [55] presented a
fully key agile AES-128 implementation which supports the CTR mode of op-

— 57 —

eration on an Altera APEX FPGA and studied effects of pipelining. Good and
Benaissa [103] presented implementations where throughput was maximized by
carefully balancing pipeline registers so that the critical path was formed by 3
LUTs. The implementations were optimized further in [105] where the critical
path was reduced to only 2 LUTs. This required careful design and floor-
planning in order to prevent routing delays from degrading the results. As a
consequence, they achieved a throughput of over 30 Gbps even in a low-cost
Spartan-III FPGA [105]. Kotturi et al. [154] presented a straightforward fully
unrolled and aggressively pipelined implementation of AES-128 encryption us-
ing BlockRAMs. Brokalakis et al. [37] presented a straightforward, but efficient,
iterative implementation of AES-128 encryption using BlockRAMs for S-boxes.
Chaves et al. [56] presented folded and fully unrolled FPGA-based AES im-
plementations utilizing T-boxes implemented in BlockRAMs. Zhou et al. [309]
presented an AES implementation in the GCM mode of operation and they
optimized their implementation for 4-to-1-bit LUTs.

As discussed in Sec. 3.2.1, the recent FPGA families have introduced several
new features, such as larger memories and granularity, and they have changed
the ways how AES can be implemented. Utilization of the new FPGA archi-
tectures has been studied in two very recent papers by Bulens et al. [42] and
Drimer et al. [86]. Bulens et al. [42] studied the effects of the new Virtex-5
architecture for AES implementations and they concluded that the new 6-bit
LUT structure is well-suited for implementing SubBytes(·). A straightforward
implementation of the S-box directly from the truth-table requires only 32 6-bit
LUTs whereas it requires 144 4-bit LUTs [42]. Hence, the increase in granularity
has positive effects for AES implementations. Drimer et al. [86] presented an
FPGA implementation which extensively utilizes BlockRAMs for the T-boxes
and DSPs for AddRoundKey(·, ·). As a result, their fully unrolled implemen-
tation of AES-128 encryption using 80 BlockRAMs and 160 DSPs requires only
428 slices and achieves a throughput of 55 Gbps [86]. This represents the fastest
FPGA-based implementation currently available in the literature.

Although FPGAs are generally unsuitable for low-cost applications because
of their high power consumption compared to ASICs, several low-cost FPGA
implementations of AES have been presented. Three smallest implementations
considered in I were presented by Chodowiec and Gaj [61], Pramstaller and
Wolkerstorfer [228] and Rouvroy et al. [245]. Only slices were used in [228]
whereas [61] used BlockRAMs to store the State and the S-boxes and [244] used
them to implement the T-boxes. Liberatori et al. [169] presented a straightfor-
ward implementation with a 64-bit data path that requires fewer slices than [228]
and no BlockRAMs, but it supports only AES-128 encryption. To the au-
thor’s knowledge, the smallest FPGA-based AES implementation was intro-
duced by Good and Benaissa [103] and it was later considered in more de-
tail in [104]. In the architecture, the S-box was implemented with combina-
torial logic and other operations were implemented with a single multiplier-
accumulator in F28 [103, 104]. The implementation utilized an 8-bit data path
and optimized instruction sets and microcodes.

5.3.3 Comparisons

Difficulty of comparing published AES implementations is a problem that is
generally recognized in the community. In the author’s opinion, the most thor-

— 58 —

ough discussion on aspects related to these difficulties was provided by Drimer
et al. in [86] and, hence, the following discussion is based mainly on their paper.
The most obvious problem is that published AES implementations commonly
implement different functions (different key sizes, encryption and/or decryption,
inclusions of KeySchedule(·, ·), modes of operation, etc.). The large range of
target applications and implementation platforms, ASICs with different CMOS
(Complementary Metal Oxide Semiconductor) processes and various FPGAs,
makes comparison very challenging. The lamentable fact that authors some-
times left out necessary information, such as speed grades or sizes of devices,
makes comparison even more difficult. Even though functions were the same and
all information was available, fair comparison of FPGA implementations is not
easy because, as Drimer et al. concluded, resources combining several smaller
resources, such as slices, ALMs, etc., are not good metrics for comparisons for
three reasons [86]:

— Their “definitions” differ among device families, e.g., slices in Virtex fam-
ilies consist of different numbers of LUTs with different sizes; see Sec. 3.2.

— It cannot be differentiated whether only part or all of the resources are
used, e.g., one can use only one LUT and no registers or all LUTs and
registers from a slice or an ALM.

— Listing and comparing only the number of such resources neglects the
number of other blocks, e.g., embedded memory or DSP blocks. Hence,
metrics such as throughput per slice are seldom sufficient for fair compar-
ison.

The same points also cause problems when LUTs are considered [86]. Publish-
ing source codes would help in comparisons because the same target devices and
design softwares could be used [86]. However, it would not solve problems en-
tirely because authors would probably—even without intention—optimize their
own designs more carefully [86].

Hence, unconditionally fair comparison is impossible without a specific ap-
plication in mind [86] and implementations presented in Table 5.1 should not be
compared one-to-one only based on the values given in the table. For instance,
the implementation of [86] using numerous BlockRAMs and DSPs but only few
slices can be the most useful if logic resources are scarce, but BlockRAMs and
DSPs are unused [86]. If the situation is vice versa, other architectures, such
as [105, 304, 307], are more feasible.

As discussed, difficulty of fair comparison is an issue that requires attention.
I includes one of few efforts for providing fair(er) comparisons. BlockRAMs
and slices were mapped to a common quantity by utilizing equations from [248]
which helped to compare designs implemented with older Virtex family FPGAs.
However this method does not provide unconditionally fair comparisons either,
because it does not differentiate between different utilization factors inside slices
or BlockRAMs and also neglects the subjective factor that in certain applica-
tions BlockRAMs can indeed be considered free. Values obtained similarly as
in I are not included in Table 5.1 because the considerably wider scope of target
devices makes the use of such values impossible. Notice that the above dis-
cussion on the difficulty of comparisons is valid also for ECC implementations
discussed in Ch. 6.

— 59 —

Despite the above, certain implementations which represent the state-of-the-
art of AES implementation are raised above others and discussed next. These
are discussed in contexts of different target applications in order to provide fairer
comparison. However, it should be noted that some of the designs discussed
above, but which are not given in the following selections, may have merits
which make them the best suitable solutions for certain applications.

If an application requires a low-cost ASIC implementation, then implementa-
tions by either Feldhofer et al. [96] or Hämäläinen et al. [119] should be preferred
so that [96] should be selected if both encryption and decryption are needed,
[119] otherwise. When low-cost FPGA implementations are required, then one
of the implementations by Chodowiec and Gaj [61], Good and Benaissa [104],
Liberatori et al. [169], or Rouvroy et al. [245] should be chosen depending on
the target device. Of these, the smallest one was presented in [104] and it does
not set any specific requirements for the target device. For very high through-
put ASIC implementations, implementation techniques proposed by Hodjat and
Verbauwhede [126], Morioka and Satoh [201], or Satoh [253] should preferred
depending on which modes of operations are required. In FPGAs, the best
high throughput architectures are available in the papers presented by Good
and Benaissa [105], Chaves et al. [56], and Drimer et al. [86], and their mutual
superiority depends on how much BlockRAMs and DSPs are available on the
target device. If support for the full AES is needed in ASICs, the design pre-
sented by Su et al. [275] is the best option. The only design supporting the
full AES that has been targeted to FPGAs was presented by Pramstaller and
Wolkerstorfer [228]. When pure speed is considered, speedups of several tens
of times can be achieved compared to the fastest software implementation by
Lipmaa [172].

The above review and comparisons demonstrate that AES is suitable for
various environments and means for its implementation for nearly all imaginable
applications exist. Consequently, the research field of AES implementation can
be considered mature.

— 60 —

Chapter 6

Elliptic Curve Cryptography

This chapter discusses both ECC algorithms and implementations. The
emphasis is, again, on issues related to hardware implementation and, es-

pecially, FPGAs. The objectives of this chapter are to provide an overview of
ECC, to present details of algorithms used in the publications, III–XI, and to
review existing literature on ECC implementations.

Many of the publications, namely IV–IX, were written during the PLA
project. The PLA is a countermeasure against Denial-of-Service (DoS) attacks
in computer networks [46, 47], e.g., in the Internet. A cryptographic signature is
attached to each packet and it is verified from node to node when the packet pro-
ceeds through the network [46, 47]. Hence, the computational requirements are
very high making hardware acceleration essential. ECC and Koblitz curves are
used in the PLA in order to provide short signatures and adequate performance.
Hardware implementations for the PLA are presented in the publications of this
thesis, and a comparable software implementation is presented in [40].

This chapter is organized as follows. Preliminaries of ECC are presented in
Sec. 6.1 followed by detailed descriptions of algorithms used in ECC in Secs. 6.2
and 6.3. A special class of elliptic curves called Koblitz curves, which has been
extensively used in the publications, is discussed in Sec. 6.4. Review of existing
literature on hardware implementations of ECC is given and implementations
of this thesis are compared to them in Sec. 6.5.

6.1 Preliminaries

Theory of elliptic curves is rich and deep. Elliptic curves have been studied
by mathematicians over a hundred years [122]. They arise naturally in many
mathematical problems but were considered only as a beautiful branch of math-
ematics with little practical use. However, in the recent decades elliptic curves
have been used in solving a variety of problems. They have been used, e.g., in
factoring integers [165] and proving Fermat’s Last Theorem [289]. In 1985, Neal
Koblitz [146] and Victor Miller [194] independently proposed the use of elliptic
curves in public-key cryptography after which an enormous amount of work has
been done on elliptic curves in academia.

— 61 —

An elliptic curve is defined as the set of solutions for the following so-called
affine version of the Weirstraß equation [32]:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (6.1)

where a1, a2, a3, a4, a6 ∈ F.
A point P = (x, y) is on the curve E if it satisfies (6.1). Also a point called

the point at infinity, denoted by O, is considered as a point on E. The origin of
the name is that O can be thought of as lying infinitely far up the y-axis when
curves are defined over real numbers [32]. Hence, the set of points on E defined
over F is

E(F) = {(x, y) ∈ F × F | y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6} ∪ O. (6.2)

It is possible to define an addition of two points, P1, P2 ∈ E(F), and produce a
third point, P3 = P1 + P2 ∈ E(F), by using arithmetic operations in F. This
addition is called point addition. The set E(F) forms an additive Abelian group
with the addition rule and O serves as the identity element; see Sec. 4.1. [122]

Elliptic curve point multiplication1 is defined over the Abelian group and it
is given as follows

Q = kP = P + P + . . .+ P︸ ︷︷ ︸
k times

(6.3)

where Q,P ∈ E(F) and k is a positive integer. The point P is called the base
point and Q is the result point.

ECDLP is the problem of finding k if P and Q are known. Methods for
solving ECDLP are not considered in this thesis; however, extensive reviews
can be found in [32] and Part V of [68], for example.

The order of a point P , ord(P), is the smallest integer, t, for which tP = O.
The integer k in (6.3) should be chosen so that it fulfills

1 < k ≤ ord(P)− 1. (6.4)

When curves over Fq are considered, the length of the binary expansion of k, `,
is bounded by ` ≤ dlog2 qe. When q = 2m, this gives ` ≤ m. [122]

Elliptic curve point multiplication, (6.3), is hierarchical in nature. The oper-
ation decomposes into three levels as shown in Fig. 6.1. This thesis concentrates
in improving the two highest levels of the hierarchy and offers only minor con-
tributions to the level of finite field arithmetic.

The lowest level, finite field arithmetic, was discussed in detail in Ch. 4,
and it is not considered further here. Point operations are computed by using
field arithmetic. Computational costs of point operations, i.e., the number
of required field operations, can be reduced mainly by representing points in
different coordinates. When a point is represented with two coordinates as
P = (x, y) as above, it is said to be in affine coordinates, or A for short. If
inversions in F are considerably more expensive than multiplications (which
usually is the case), it is more efficient to use projective coordinates which are
considered in more detail in Sec. 6.2 which discusses elliptic curve arithmetic,
i.e., point operations.

The highest level, elliptic curve point multiplication, is computed by using
point operations and these algorithms are discussed in Sec. 6.3. If the base point

1The term scalar multiplication is also commonly used in the literature

— 62 —

Multiplication Addition Squaring Inversion

Point
addition

Point
doubling

Point
multiplication

The middle level

Point operations

The highest level

Elliptic curve point multiplication

The lowest level

Finite field arithmetic

Figure 6.1: Hierarchy of point multiplication is depicted on the left-hand side. Typi-
cal construction of operations in this hierarchy is shown on the right-hand side. Notice,
however, that all operations may not be needed or implemented in all algorithms, e.g.,
squaring may not be included, or additional operations can be used, e.g., point halv-
ings or Frobenius maps. Inversion can be interpreted also as a separate level between
the lowest level and the middle level because it can be computed with a series of other
finite field operations.

P is fixed, i.e., P is the same for all point multiplications, the computation can
be accelerated considerably with precomputations involving P . These methods
will be discussed in Sec. 6.3.1. Certain applications, including digital signature
algorithms, require computing sums of point multiplications, such as k(1)P(1) +
k(2)P(2). There are methods for speeding up these so-called multiple point
multiplications and they are discussed in Sec. 6.3.2. A family of curves on
which point multiplication can be computed considerably faster than on general
curves is called Koblitz curves and they are considered in detail in Sec. 6.4.

Hyper-Elliptic Curve Cryptography (HECC) [147], a generalization of ECC,
achieves a similar level of security than ECC with smaller finite fields, thus,
resulting in faster finite field arithmetic. However, point operations are more
complex. Recent studies [249, 250] suggest that HECC is slower than ECC with
similar levels of security. HECC is not studied in detail in this thesis; the reader
should consult [68], for example, for details.

6.2 Arithmetic on Elliptic Curves

The following discusses arithmetic on elliptic curves, the middle level of the
hierarchy of Fig. 6.1. The discussion is restricted to so-called non-supersingular
elliptic curves over F2m , because they are used in the publications. Non-
supersingular curves are preferred also in other published ECC implementations.
Supersingular curves, which were preferred previously for implementation effi-
ciency reasons, should be avoided because ECDLP can be reduced to a DLP
in an extension of the underlying field [188]. Formulae for curves over Fp are
available in [84, 122], for example. The following formulae and notations are
presented as in [84].

Non-supersingular curves over F2m are defined by

E : y2 + xy = x3 + a2x
2 + a6 (6.5)

— 63 —

with a2, a6 ∈ F2m so that a6 6= 0. The implementations of this thesis mainly
focus on elliptic curves standardized by NIST in FIPS 186-2 [205]. Specifically,
the curves NIST B-163, K-163, K-233, and K-283 were considered in the pub-
lications and they all have the form of (6.5). The K-curves are Koblitz curves,
and they will be discussed in more detail in Sec. 6.4.

Elliptic curve point multiplication, (6.3), is typically computed using two
principal operations on the curve; namely, point addition and point doubling.
Let P1 and P2 be two points in E(F). Point addition is P3 = P1 + P2 with
P1 6= ±P2 and it results in P3 ∈ E(F). Point doubling refers to a case where
P1 = P2, and it is denoted by P3 = 2P1. Computational costs of elliptic curve
operations depend on the number of operations required in F. This discussion
focuses on curves over F2m . The following notations are used for operations in
F2m : I denotes inversion, M multiplication, S squaring, and A addition.

6.2.1 Affine Coordinates

Point addition P3 = P1+P2 = (x3, y3) for points P1 = (x1, y1) and P2 = (x2, y2)
such that P1 6= ±P2 is given by

λ =
y1 + y2
x1 + x2

, x3 = λ2 +λ+x1 +x2 + a2, y3 = λ(x1 +x3) +x3 + y1 . (6.6)

Point doubling P3 = 2P1 = (x3, y3) for a point P1 = (x1, y1) is given by

λ = x1 +
y1
x1
, x3 = λ2 + λ+ a2, y3 = λ(x1 + x3) + x3 + y1 . (6.7)

Thus, point addition costs I + 2M + S + 8A and point doubling costs I + 2M +
S + 6A which are almost the same because additions are cheap. Given a point
P = (x, y), its point negation, −P , is given by (x, x+ y) which costs A. [84]

As discussed in Ch. 4, inversions are more expensive than other field opera-
tions; e.g., an Itoh-Tsujii inversion requires 9M+162S in F2163 [136]. Inversions
can be avoided in point addition and point doubling by using projective coordi-
nates with the expense of more multiplications. Projective coordinates usually
results in considerable speed enhancements in practical cryptosystems. Two
projective coordinate systems used in the publications are discussed in the fol-
lowing.

6.2.2 Standard Projective Coordinates

By using standard projective coordinates, P, a point is represented with the
triple (X,Y, Z) so that it represents the point (X/Z, Y/Z) in A if Z 6= 0 and
O = (0, 1, 0) otherwise.

Point addition P3 = P1 +P2, where Pi = (Xi, Yi, Zi) and P1 6= ±P2, is given
by:

A = Y1Z2 + Z1Y2, B = X1Z2 + Z1X2, C = B2,

D = Z1Z2, E = (A2 +AB + a2C)D +BC,

X3 = BE, Y3 = (AX1 + Y1B)CZ2 + (A+B)E, Z3 = (BC)D.

(6.8)

— 64 —

Point doubling P3 = 2P1 is given by:

A = X2
1 , B = A+ Y1Z1, C = X1Z1,

D = C2, E = B2 +BC + a2D,

X3 = CE, Y3 = (B + C)E +A2C, Z3 = CD.

(6.9)

Neither of the operations requires inversions, and the costs are 16M + 2S + 6A
and 8M + 4S + 5A for point addition and point doubling, respectively. Point
negation is given by (X,X +Y,Z), and it costs A. It depends on the cost of an
inversion whether this representation is faster than A. [84]

A very efficient algorithm for point multiplication is achievable in P by
adapting Montgomery’s idea from [197] to curves with the form of (6.5) as
presented by Lopéz and Dahab in [175]. This method, henceforth referred to
as Montgomery point multiplication, relies on the fact that y-coordinate is not
needed during point multiplication because it can be recovered in the end [175,
197]. The method will be discussed in more detail in Sec. 6.3, but the point
operation level formulae are given in the following. The x-coordinate of point
addition, P1 + P2, is obtained with the following formulae [175]:

Z3 = (X1Z2 +X2Z1)2, X3 = xZ3 +X1Z2X2Z1 (6.10)

where x is the x-coordinate of the base point P . The x-coordinate of point
doubling, 2P1, is given by the formulae [175]:

X3 = X4
1 + a6Z

4
1 = (X2

1 +
√
a6Z

2
1)2, Z3 = X2

1Z
2
1 . (6.11)

The cost of (6.10) is 4M + S + 2A while (6.11) costs 2M + 3S + A if
√
a6 is

precomputed [175]. The y-coordinate is recovered by computing x1 = X1/Z1

and x2 = X2/Z2 and by using the formula [175]:

y1 =
(x1 + x)

(
(x1 + x) (x2 + x) + x2 + y

)
x

+ y (6.12)

where (x, y) is the base point P . The y-coordinate can be recovered with the cost
of I+10M+S+6A [175]. Standard projective coordinates, P, and Montgomery
point multiplication were used in III and IV.

6.2.3 López-Dahab Coordinates

When López-Dahab coordinates [174], LD, are in use, a point is represented
with the triple (X,Y, Z) which represent the point (X/Z, Y/Z2) in A when
Z 6= 0 and O = (1, 0, 0) otherwise.

Point addition, P3 = P1 + P2, is carried out with the formulae [124]

A = X1Z2, B = X2Z1, C = A2, D = B2, E = A+B,

F = C +D, G = Y1Z
2
2 , H = Y2Z

2
1 , I = G+H, J = IE,

Z3 = FZ1Z2, X3 = A(H +D) +B(C +G),
Y3 = (AJ + FG)F + (J + Z3)X3,

(6.13)

and point doubling, P3 = 2P1, is given by the following formulae [161]:

A = X1Z1, B = X2
1 , C = B + Y1, D = AC,

Z3 = A2, X3 = C2 +D + a2Z3, Y3 = (Z3 +D)X3 +B2Z3.
(6.14)

— 65 —

Table 6.1: The costs of point operations

Operation P1 P2 P3 Cost

P3 = P1 + P2 A A A I + 2M + S + 8A
P3 = 2P1 A - A I + 2M + S + 6A
P3 = −P1 A - A A
P3 = P1 + P2 P P P 16M + S + 6A
P3 = 2P1 P - P 8M + 4S + 5A
P3 = −P1 P - P A
P1 7→ P3 P - A I + 2M
P3 = P1 + P2 (x-coord.) P P P 4M + S + 2A
P3 = 2P1 (x-coord.) P - P 2M + 3S + A
P1 7→ P3 (and y-coord.) P - A I + 10M + S + 6A
P3 = P1 + P2 LD LD LD 13M + 4S + 9A
P3 = 2P1 LD - LD 5M + 4S + 5A
P3 = P1 + P2 LD A LD 9M + 5S + 9A
P3 = −P1 LD - LD M + A
P3 = P1 7→ P3 LD - A I + 2M + S

The costs of the above point addition and point doubling are 13M+4S+9A and
5M + 4S + 5A, respectively. Point negation is given by (X,XZ + Y, Z) which
costs M + A. The attractiveness of LD coordinates is based on a very efficient
point addition when the point P2 is represented in A. This is called mixed
coordinate point addition and the formulae for (X3, Y3, Z3) = (X1, Y1, Z1) +
(x2, y2) are given by [3]

A = Y1 + y2Z
2
1 , B = X1 + x2Z1, C = BZ1,

Z3 = C2, D = x2Z3,

X3 = A2 + C(A+B2 + a2C),

Y3 = (D +X3)(AC + Z3) + (y2 + x2)Z2
3 .

(6.15)

This has the cost of 9M + 5S + 9A. Further reductions by M if a2 ∈ {0, 1}
and by A if a2 = 0 occur on Koblitz curves; see Sec. 6.4. The López-Dahab
coordinates, LD, were used in IV–VII, X, and XI.

Table 6.1 summaries all above-discussed point operations and their costs.

6.3 Elliptic Curve Point Multiplication

Elliptic curve point multiplication is computed with algorithms which are analo-
gous to those used in exponentiation. A comprehensive survey of exponentiation
is provided in [108]. This section gives a review of a few most commonly used
algorithms for elliptic curve point multiplication by concentrating on the algo-
rithms used in the publications.

A standard method for computing (6.3) is called binary method2 where the
integer k is represented with binary expansion as

k =
`−1∑
i=0

ki2i (6.16)

2Also called double-and-add method (or square-and-multiply method in exponentiation).

— 66 —

where ki ∈ {0, 1}. When binary method operates k from the right to the left,
i.e., from the lsb to the msb, 2iP is added to the result point Q when ki = 1.
Consider 18P as an example. Binary expansion of 18 is 〈10010〉. One first
computes 2P with one point doubling and adds it to Q after which 16P is
computed with three point doublings and the result is added to Q giving 18P .
A modification which operates k from the left to the right is commonly used
in practical implementations and in IV–VII, X, and XI. It is presented in
Alg. 6.1 and it has the benefit that only Q needs to be accumulated while P
remains unchanged.

Algorithm 6.1 Left-to-right binary method for elliptic curve point multiplica-
tion
Input: P ∈ E(F), integer k =

∑`−1
i=0 ki2

i where ki ∈ {0, 1}
Output: Q = kP
Q← O
for i = `− 1 downto 0 do
Q← 2Q
if ki = 1 then
Q← Q+ P

end if
end for
return(Q)

Obviously, the computational cost of the binary method depends on the
number of ones in the binary expansion of k. Again, H(k) denotes the Hamming
weight of k, i.e., the number of nonzero terms in k. The computational cost of
the binary method is `−1 point doublings and H(k)−1 point additions because
the first point addition is simply a substitution. On average, half of the bits in
a binary expansion are ones; thus, H(k) ≈ `/2.

Because H(k) has a direct impact on performance, it is of interest to reduce
it. Signed-binary representations, k =

∑`−1
i=0 ki2

i where ki ∈ {0,±1}, are partic-
ularly interesting because point subtractions have approximately the same cost
with point additions3 [198]. Point subtraction, P1−P2, is simply point addition
where P2 is negated, and point negation is cheap as discussed in Sec. 6.2.

A Non-Adjacent Form4 (NAF) is a representation that has the minimum
H(k) among all signed-binary representations which makes it well-suited for
practical applications. When k is in NAF, two consecutive digits are never
nonzero, i.e., kiki+1 = 0 for all i. Every positive integer k has a unique NAF
with a length which is at most one bit longer than its binary expansion. Most
importantly, the average density of nonzero terms in NAF is 1/3 which results
in H(k) ≈ `/3. An NAF is constructed from a binary expansion starting from
the lsb by replacing strings of j ones with 10 . . . 01̄, where the number of zeros
is j − 1 and 1̄ = −1.[82]

Consider 1853P as an example. The binary method requires seven point
additions because 1853 = 〈11100111101〉. The number of point additions and

3Signed-binary representations cannot be used as efficiently in exponentiation, e.g., in
RSA or ElGamal, unless precomputations are allowed, because divisions are considerably
more expensive than multiplications.

4In DSP, such representations are commonly called canonic signed-digit representations.

— 67 —

subtractions reduces to four if 1853 is given in NAF as 〈1001̄010001̄01〉. Point
multiplication requires in this case an additional point doubling but the speedup
is, nonetheless, considerable.

If used näıvely, NAF doubles requirements for storage space compared to
binary expansion because two bits are needed to represent one signed-bit. How-
ever, if storage space is an issue, the easily-disposable compact encoding pre-
sented in [141] allows representing NAF with at most one extra bit compared
to binary expansion. The same paper suggest also a technique for selecting
well-distributed random NAFs [141].

One advantage of using NAF is that H(k) can be reduced without any pre-
computations involving the base point P . If such precomputations are allowed,
H(k) can be reduced by using methods which are discussed in more detail in
Sec. 6.3.1. If the base point is fixed and there are no strict memory constraints,
those methods can provide considerable speedups.

Computational complexity of point multiplication can be reduced also by
using a DBNS in representing k. When k is represented in the DBNS, it has
the form:

k =
∑
i,j

ki,j2i3j (6.17)

where ki,j ∈ {0, 1} and i, j are non-negative integers [79, 80]. Obviously, such
representations are not unique and it is possible to find representations which
are very sparse, i.e., H(k) is small [80]. Hence, fewer point operations are
required but extra computation is needed in conversions to the DBNS. In [79,
80], Dimitrov et al. proposed the use of the DBNS in DSP applications and
exponentiation. The idea has been adapted to elliptic curve point multiplication
in [66, 77, 78].

Binary method has the weakness that, if point additions and point doublings
are distinguishable, it may be possible to retrieve confidential information with
side-channel attacks because point additions are performed only when k 6= 0.
This can be avoided by using a structure called Montgomery’s ladder [197] where
point doubling and point addition are both performed for each bit. Montgomery
point multiplication is outlined in Alg. 6.2 [197]. As mentioned in Sec. 6.2.2,
Montgomery point multiplication can be adapted to curves with a form of (6.5)
as shown by López and Dahab in [175] and it results in a very efficient point
multiplication algorithm. Point multiplication is carried out in P without infor-

Algorithm 6.2 Point multiplication using Montgomery’s ladder

Input: P ∈ E(F), integer k =
∑`−1
i=0 ki2

i where ki ∈ {0, 1} and k`−1 = 1
Output: Q = kP
P1 ← P and P2 ← 2P
for `− 2 downto 0 do

if ki = 0 then
P2 ← P1 + P2 and P1 ← 2P1

else
P1 ← P1 + P2 and P2 ← 2P2

end if
end for
return(Q = P1)

— 68 —

mation about the y-coordinate, i.e., only X and Z are updated. In the beginning
P1 and P2 are computed from P with 2S+A. Point multiplication is computed
with Alg. 6.2 so that point addition and point doubling are performed for all bits
with (6.10) and (6.11), respectively, requiring together only 6M + 4S + 3A per
iteration. The y-coordinate is recovered in the end by computing (6.12). [175]

Computation of the binary method can be accelerated also by replacing
point doublings with more efficiently computable operations. Point doublings
can be replaced with very cheap Frobenius maps on Koblitz curves as will be
discussed in Sec. 6.4. Koblitz curves are defined over F2m , but analogously
efficiently-computable endomorphisms are used in the GLV (Gallant, Lambert,
and Vanstone) method for a class of curves over Fp [101]. Another approach
which gives smaller improvements but applies to a wider class of curves is called
point halving, proposed independently by Erik W. Knudsen [145] and Richard
Schroeppel (at the rump session of CRYPTO 2000). Point halving, the inverse
operation of point doubling, is the operation P3 = 1

2P1 such that 2P3 = P1.
After manipulations on k, computationally cheaper point halvings can be used
instead of point doublings which leads to faster point multiplication [145].

6.3.1 Methods with Precomputations

The common idea in the methods presented in this section is that the com-
putational cost of (6.3) is reduced by precomputing some data depending on
P . These methods are especially useful if P is fixed because, in that case, pre-
computations need to be performed only once; however, considerable speedup
may be achievable even though P is not fixed. Naturally, storage for precom-
puted data must be available. Analogous methods exist for exponentiation and
the following methods are their adaptations for elliptic curves; see [82, 108] for
comprehensive reviews.

The first method, which dates to 1939, is called 2w-ary algorithm [35] where
the integer k is represented in radix-2w as

k =
`−1∑
i=0

ki(2w)i (6.18)

where ki ∈ [0, 2w − 1]. The precomputed points are 3P, 5P, . . . , (2w − 1)P .
Each ki is given in the form ki = 2su where u is odd; s = w and u = 0 if
ki = 0 [82]. Then each ki transforms into the operation 2s(2w−sQ+uP) on the
curve. The computation of (6.3) requires `− 1 point doublings and on average
(2w − 1)/2wd`/we − 1 point additions.

Consider 846P as an example with w = 3. Precomputed points are 3P, 5P ,
and 7P and k is represented as 〈1 101 001 110〉2 = 〈1516〉23 . First, one sets
Q = P because k3 = 1. Because 5 = 20 · 5, one computes 20(23P + 5P) = 13P ,
and continues by computing 20(23(13P)+P) = 105P because 1 = 20 ·1. Finally,
the result is given by 2(22(105P) + 3P) = 846P because 6 = 21 · 3. Hence,
point multiplication requires 9 point doublings and 3 point additions excluding
precomputations requiring 3 point additions and 1 point doubling.

The 2w-ary algorithm slices k by using a fixed window. A sliding window
analogue results in slightly more optimal representations because it skips consec-
utive zeros [82]. In the case of the above example, a sliding window with w = 3
results in the following windowing: 〈1 101 00 111 0〉2, and the number of point

— 69 —

additions reduces by one. The window methods can be used also for signed-
digit representations. A generalization of NAF called width-w NAF, or NAFw
for short, gives a representation whose H(k) ≈ m/(w + 1) with precomputed
points 3P, 5P, . . . , (2w−1 − 1)P [122].

The above ideas can be used in accelerating (6.3) even if P is not fixed.
The following methods are useful only with a fixed P . The simplest idea is
to precompute 2iP for all integers i ∈ [1,m − 1]. This shortens runtime by
eliminating all point doublings, but requires storage for m points. Combination
of the previous idea with the 2w-ary algorithm results in an algorithm [36],
called fixed-base windowing method. The method is based on the following
equation [122]:

kP =
t−1∑
i=0

ki(2wiP) =
2w−1∑
j=1

j ∑
i:ki=j

2wiP

 (6.19)

where ki ∈ [0, 2w − 1], t = d`/we and points 2wiP are precomputed for integers
i ∈ [0, t − 1]. The fixed-base windowing method computes (6.3) with approx-
imately 2w + t − 3 point additions [36, 122]. The idea can be generalized to
NAF which results in an average runtime of 2w+1/3 + d(` + 1)/we − 2 point
additions [36, 122]. Furthermore, Montgomery’s trick, discussed in Sec. 4.4, can
be applied to reduce the number of inversions if A coordinates are in use [195].

The fixed-base comb method [170] is also a method involving precomputa-
tions with P . The integer k is represented as a binary array of w rows and
t = d`/we columns. Points are precomputed for all possible values of the
columns. Point multiplication operates on the array one column at a time so
that a precomputed value of the column is added. Moving to the next column
implies a point doubling. It requires t − 1 point doublings and, on average,
(2w− 1)/2wt− 1 point additions [122, 170]. The number of point doublings can
be reduced to dt/2e − 1 by using two precomputation tables [122, 170].

Methods for speeding up (6.3) when the integer k is fixed exist but they are
not considered in this thesis because they have little practical importance in
ECC. Such methods are reviewed in [82], for example.

6.3.2 Multiple Point Multiplication

Multiple point multiplication refers to a sum of point multiplications, i.e.,

Q =
n−1∑
i=0

k(i)P(i) (6.20)

where k(i) are integers and P(i) ∈ E(F). Multiple point multiplications are used
in various schemes including digital signatures, e.g., multiple point multiplica-
tions with n = 2 are required in ECDSA verifications [140] and verifications of
self-certified identity based signatures in the PLA require multiple point mul-
tiplications with n = 3 [38]. Of course, multiple point multiplications can be
computed näıvely with n separate point multiplications and n − 1 point addi-
tions combining their results. This requires

∑n−1
i=0 H(k(i)) − 1 point additions

and
∑n−1
i=0 (`(i) − 1) point doublings and it is possible to do much better.

Shamir’s trick, a method attributed to Shamir by ElGamal in [92], operates
in the following way when n = 2. Bits of k(0) and k(1) are scanned from the left

— 70 —

to the right and point doubling is performed when moving from a bit to another.
When the present bits of k(0)

k(1)
are 1

0 , 0
1 , or 1

1 points P(0), P(1), or P(0) + P(1) are
added, respectively. The point P(0) + P(1) should be precomputed. Clearly,
Shamir’s trick is easy to generalize for n integers. Let k denote an array of n
binary expansions and let Hn(k) be its joint Hamming weight, i.e., the number
of nonzero columns in k. Shamir’s trick requires Hn(k)− 1 point additions and
`− 1 point doublings excluding precomputations which require 2n−n− 1 point
additions.

As the computational cost depends on Hn(k), it is of interest to reduce it
once again. Because the probability of a zero bit in a binary expansion is 0.5,
the probability of a zero column in an array of n integers is simply 0.5n which
gives Hn(k) ≈ `(1− 0.5n). If the integers are in NAF, the probability becomes
(2/3)n. This can be improved because signed-binary representations are not
unique. Thus, one can use signed-binary representations which maximize the
number of zero columns in the array. One such representation is referred to as
Joint Sparse Form (JSF) and it is unique and has the minimum Hn(k) among
all signed-binary representations of n integers [230, 268]. Jerome A. Solinas
presented an algorithm for obtaining JSF for a pair of integers in [268]. A
generalization for n integers is due to John Proos [230]. Probabilities of nonzero
columns are presented in Table 6.2 with different values of n. A variant of
JSF called simple JSF, which also has a minimal Hn(k) but is more efficient to
compute, was introduced in [110].

If n is relatively small—which usually is the case—it can be advantageous
to combine window methods with multiple point multiplications. As a con-
sequence, a large number of points need to be precomputed, but their com-
putational cost can be reduced by eliminating inversions with Montgomery’s
trick [215], discussed in Sec. 4.4. Montgomery’s trick provides considerable
speedups even though window methods are not in use as shown in V for n = 3.

6.4 Koblitz Curves

Koblitz curves [148] are a class of non-supersingular curves defined over F2 by

Ea2 : y2 + xy = x3 + a2x
2 + 1 (6.21)

where a2 ∈ {0, 1}. The NIST curves K-163, K-233, and K-283 [205], which are
used in IV–XI, are Koblitz curves and have the above form. Koblitz curves are
an attractive family of curves because Frobenius endomorphisms can replace
point doublings. The Frobenius endomorphism, φ : Ea2(F2m)→ Ea2(F2m), is a

Table 6.2: Probabilities of nonzero columns in n integers with different representa-
tions [39, 230]

n Binary NAF JSF

1 0.5000 0.3333 —
2 0.7500 0.5555 0.5000
3 0.8750 0.7037 0.5897
4 0.9375 0.8025 0.6425
5 0.9688 0.8683 0.6727

— 71 —

map such that
φ(x, y) = (x2, y2) and φ(O) = O. (6.22)

Frobenius maps are obviously very cheap if compared to point operations dis-
cussed in Sec. 6.2 because only two or three squarings are required depending on
the coordinate system. Squarings are efficient especially in normal basis where
they are simple bitvector rotations as discussed in Ch. 4. Successive applications
of Frobenius maps are simply φt(x, y) = (x2t, y2t).

It can be shown that the following equation stands for all P ∈ Ea2(F2m):

µφ(P)− φ2(P) = 2P (6.23)

where µ = (−1)1−a2 . Thus, the Frobenius map can be seen as a complex number
τ satisfying

µτ − τ2 = 2 (6.24)

which has two solutions, and it is chosen that

τ =
µ+
√
−7

2
. (6.25)

It is now possible to multiply points in Ea2(F2m) with elements of a ring of
polynomials in τ with integer coefficients, given by

k =
`−1∑
i=0

kiτ
i (6.26)

where ki are integers. Obviously, it is of interest to find such a representation
where the length, `, and the nonzero digits, ki, are small. [148]

It follows directly from (6.24) that every element k of the ring can be ex-
pressed in a canonical form as

k = k0 + k1τ. (6.27)

If an integer, k, is represented with a binary expansion, each bit ki requires
point doubling. Point addition is computed if ki = 1, as discussed previously.
Similarly, if k is represented with a τ -adic expansion of (6.26) where ki ∈ {0, 1},
each ki requires a Frobenius map and ki = 1 yields point addition. Such rep-
resentation can be found by repeatedly dividing the integer k by τ . The digits
ki ∈ {0, 1} are the remainders of the divisions. This procedure is analogous with
the computation of binary representation where divisions by 2 are applied. [148]

Analogously with the NAF, it is possible to represent k in τ -adic Non-
Adjacent Form (τNAF) where ki ∈ {0,±1} and kiki+1 = 0 for all i, i.e., there
are no adjacent nonzero digits. Algorithms for computing τNAF and width-w
τNAF, or τNAFw for short, were presented by Solinas in [264, 266, 267]. The
average density of τNAF is the same as for binary NAF, i.e., 1/3. The problem
is, however, that the length of an expansion, `, doubles to approximately 2m
if the τNAF conversion algorithm from [264, 266, 267] is applied directly to an
integer.

It is possible to circumvent this problem because the following equation
stands for all P ∈ Ea2(F2m) [187]:

(φm − 1)P = φmP − P = P − P = O. (6.28)

— 72 —

This implies that if k′ ≡ k (mod τm − 1), then k′P = kP . τNAF of the
remainder of k divided by τm − 1 has a length of approximately m which is
only one half of the length of τNAF of k [264, 266, 267]. It can be proven that
k′P = kP stands for all P ∈ Ea2(F2m) also in the case k′ ≡ k (mod δ) where
δ = (τm−1)/(τ−1) [266, 267]. The strategy is to find k′ = k0+k1τ ≡ k (mod δ)
with the smallest possible norm and then convert it to τNAF. The result has a
length of approximately m. Finding k′ ≡ k (mod δ) can be expensive, although
an efficient partial reduction algorithm was proposed in [267].

Another approach is to first convert an integer k to τNAF and then factor
(τm − 1) out of the result. The problems in this approach are that the τNAF
conversion takes longer and the non-adjacency is lost in the reduction and its
recovery may be computationally demanding. This approach was outlined at
least in [177]. This method yields efficient hardware implementations as shown
in VIII.

If reduced τNAFs are used, the average computational cost of (6.3) is only
m/3 point additions because point doublings are replaced by Frobenius maps
which are almost free. This is a significant reduction compared to computa-
tions on general curves. Hence, Koblitz curves offer major benefits over general
curves.

However, before fast point multiplications can be utilized, conversions need
to be applied to integers which require time and resources. In order to avoid
these conversions, random τ -adic expansions can be generated in a simple man-
ner and they have been shown to be well-distributed [162]. Such representations
are troublesome in certain applications including digital signatures because the
binary equivalent is required which yields a need for a conversion from τ -adic
to binary expansion. An efficient algorithm for the conversion from τ -adic to
binary expansion and its hardware implementation were presented in IX.

Many methods, which were discussed earlier, can be adapted to Koblitz
curves and, in some cases, even further improvements are gained compared
to their general curve equivalents. τNAFs can be compressed similarly as
NAFs and the method for selecting random NAFs gives almost perfectly dis-
tributed τNAFs, as well [141]. Adaptations of DBNS-related expansions to
Koblitz curves were presented in X and in [15, 16], but practical significance of
such methods was first demonstrated in X. Point halving gives computational
advantages also on Koblitz curves even though there are no point doublings
to be replaced [17, 19]. Computing one point halving reduces the number of
required point additions from m/3 to m/4 [19]. Unfortunately, Montgomery
point multiplication has not been adapted to Koblitz curves. Window meth-
ods, on the other hand, can be computed without requirements for storage
space as presented in [216, 284] by exploiting the inexpensiveness of Frobenius
maps. The technique operates so that an entire k is scanned once for every
precomputed point and, hence, it requires storage only for the point currently
at hand [216, 284]. The inexpensiveness of Frobenius maps was used also in IV
allowing efficient parallelization of point multiplication. Multiple point multi-
plications and the idea of JSF can be used also for τ -adic representations. An
algorithm for obtaining τ -adic Joint Sparse Form (τJSF) for a pair of integers
was proposed by Ciet et al. in [65] and it was generalized for n integers by Brum-
ley in [39]. Also τJSFs have the probabilities of nonzero columns presented in
Table 6.2.

— 73 —

6.5 Literature Review of ECC Implementations

This section reviews published implementations of ECC on both ASICs and
FPGAs in chronological order. The FPGA-based implementations are consid-
ered in more detail because of the focus of this thesis. Details of implementations
discussed in the following are collected to Table 6.3. The table includes the de-
sign which is the most comparable with the implementations of the publications
of this thesis when several implementations are presented. Other reviews of ECC
implementations are available in [26, 193].

The first hardware implementation of ECC was published by Agnew et al.
in [2] in 1993. They presented a processor architecture with a bit-serial normal
basis multiplier for F2155 . They provided performance estimates for both super-
singular and non-supersingular curves. The first FPGA-based ECC architecture
was presented by Rosner in [243] in 1998. Both of these implementations use
parameters which are nowadays considered insecure, i.e., composite fields are
considered in [2, 243] and supersingular curves are used in [2]. Nevertheless,
at least [2] is commonly considered one of the landmark works in the field of
cryptographic hardware implementation. It was also considerably ahead of its
time because implementations of ECC did not start to gain serious interest in
academia before the turn of the millennium.

In 1999, Gao et al. presented ECC implementations on a low-cost Xilinx
FPGA in [102]. However, the very small field sizes (m ≤ 53) used in [102] were
insecure already in 1999. Orlando and Paar [219] also presented performance
estimates of ECC with their super-serial multiplier at the same conference, IEEE
International Symposium on Field-Programmable Custom Computing Machines
(FCCM) 1999.

In 2000, Leung et al. presented a microcoded processor architecture for
FPGAs in [168]. The paper also presented an automated design generator
which facilitated generation of several designs with different design parame-
ters. The microcoded architecture provided easily modifiable point operations.
This work was later continued by Leong and Leung in [167] which provided
further studies on the architecture as well as the effects of coordinate selection,
field size, and parallelism. In [106, 107], Goodman and Chandrakasan presented
an ASIC implementation targeting to low-power applications. The architecture
was reconfigurable in the sense that it supported several irreducible polyno-
mials and implemented support for both Fp and F2m . The architecture also
performed SHA-1 hashing and RSA and, hence, supported practically all of the
IEEE P1363 standard [132]. The papers concluded that ECC is both faster and
more energy-efficient than RSA. Energy-efficiency comparisons to FPGA and
software based implementations were also provided and the ASIC implemen-
tation was claimed to be 30-180 times more energy-efficient than FPGA and
over three orders of magnitude better than software. Okada et al. presented an
ECC processor based on a novel field multiplier architecture in [214]. The mul-
tiplier can be seen as a generalization of the super-serial multiplier presented
in [219] and it supports arbitrary irreducible polynomials. This was also the
first paper considering FPGA-based implementation of Koblitz curves. Koblitz
curves were found to be nearly twice as fast as general curves. The architecture
did not, however, include circuitry for τ -adic conversions. Orlando and Paar
presented an FPGA-based processor optimized for a fixed irreducible polyno-
mial in [220]. Irreducible polynomials could be changed by reprogramming the

— 74 —

FPGA. They provided comparisons between Montgomery point multiplication
and binary method and concluded that Montgomery point multiplication is su-
perior. Notice that [106, 214, 220] were all published in CHES 2000.

In 2001, Orlando and Paar [221] published an FPGA-based ECC processor
for Fp using Montgomery multiplier with precomputed LUTs stored in embed-
ded memory. Ernst et al. [94] discussed implementation of ECC by using an
automated VHDL generator. Again, the generator provided multiple designs
with various design parameters in a short time.

In 2002, Kerins et al. [144] presented an FPGA-based processor optimized
for a(x)b(x)/c(x) mod p(x) in F2m . The processor was designed to support
point multiplication in A, where the above computation is useful. Compre-
hensive comparisons of various aspects of ECC implementations were given by
Bednara et al. in [27, 28]. Polynomial and normal bases were compared and
polynomial basis was found to give better results. Coordinate systems and point
multiplication algorithms were compared and Montgomery point multiplication
was shown to provide the best results. Choosing the number of multipliers
in the processor was also briefly discussed. Ernst et al. [93] presented a low-
cost implementation for computing kP on E(F2133) by using an Atmel FPGA
board. In [114], Gura et al. presented an ECC implementation integrated into
OpenSSL. Computations were optimized for F2m with certain fixed polynomials
but support for arbitrary polynomials was also included. The fixed polynomials
were shown to provide ten times faster performance. The architecture was im-
proved by introducing partial reduction for arbitrary polynomials in [115] which
reduced the gap to six times. Even further improvements were shown to be pos-
sible by Eberle et al. in [87] where a new multiplier was introduced reducing the
difference to only two times. This is very impressive considering the complexity
of polynomial reduction with an arbitrary irreducible polynomial. Schroeppel et
al. [259] published a low-power ASIC implementation of ElGamal signatures on
elliptic curves. The implementation utilized point halving, composite field F2178

which was claimed to be secure, and included logic for performing all operations
required in signature generation and verification, i.e., also SHA-1 was included.
Potgieter and van Dyk [227] presented a scalable and flexible processor archi-
tecture for F2m . Their architecture was based on a multiplier combining the
classical and Montgomery multipliers.

In 2003, Satoh and Takano [255] presented a processor architecture imple-
menting support for both F2m and Fp with different irreducible polynomials
and primes. It was concluded that F2m is 3-6 times faster than Fp and sup-
port for F2m was achieved with no additional cost compared to Fp. Nguyen et
al. [212] studied implementation of ECC on a reconfigurable computer. Their
study concentrated on partitioning between software and hardware (FPGA).
They concluded that the entire point multiplication should be implemented in
hardware, but it suffices that only the finite field arithmetic is implemented
in VHDL. Örs et al. [222] described an ECC processor over Fp. They used a
multiplier based on systolic array architecture and Montgomery representation.
The processor is capable of computing RSA as well.

In 2004, Lutz and Hasan [178] (based on Lutz’s Master’s thesis [177]) pre-
sented a processor architecture computing point multiplication on both general
and Koblitz curves. The implementation was optimized for Koblitz curves so
that all coordinates of Frobenius maps were computed in parallel with squarers
attached to registers. The implementation did not include a τ -adic converter.

— 75 —

Table 6.3: Published ECC implementations

Reference Year Curve Device Area requirements1 Features2 t (µs) T (ops)

Agnew [2] 1993 E(F2155), NB Gate array ∼11,000 gt. —— ——
Ansari [12] 2006 E(F2163), PB Virtex-II 2000 8,300 LUT, 1,100 FF, 7 BRAM 41 24,000
Ansari [13] 2007 E(F2163), PB 0.18µm CMOS 36000 gt., 1KB RAM 62 19,000
Bajracharya [20] 2004 E(F2233), NB Virtex-II 6000 59% of sl. 201 5,000
Batina [24] 2005 E(F2179), PB Virtex 800 11,811 sl. C 557 1,800
Batina [25] 2006 E(F2163), PB Virtex-II Pro 8769 sl. H 667 1,500
Bednara [28] 2002 E(F2191), PB Virtex 1000-4 —— O 2270 440
Benaissa [29] 2006 E(F2163), PB Virtex-E 2000 6,010 LUT, 504 FF, 12 BRAM F 804 1,200
Chelton [57] 2008 E(F2163), PB Virtex-4 L200 16209 sl. O 19.55 51,120
Chen [58] 2007 E(Fp), 256-bit 0.13µm CMOS 122000 gt. 1010 990
Cheung [59] 2005 E(F2162), NB Virtex-II 6000 —— O 100 10,000
Daly [72] 2004 E(Fp), 160-bit Virtex-E 2000-6 3434 sl. O —— ——
Daneshbeh [73] 2004 —— 0.18µm CMOS 35,000 gt. F —— ——
Eberle [87] 2003 E(F2163), PB Virtex-E 2000-7 20,068 LUT, 6321 FF F 302.29 3,308
Ernst [94] 2001 E(F2155), NB XC4085XLA 63% of CLB 1290 775
Ernst [93] 2002 E(F2113), PB AT94K40 96% of resources 1400 700
Gao [102] 1999 E(F253), NB XC4044XL 1626 CLB O 370 2,670
Goodman [107] 2001 E(F2176), PB 0.25µm CMOS 2.9× 2.9 mm2 FI 6950 140
Gura [114] 2002 E(F2163), PB Virtex-E 2000-7 20,068 LUT, 6321 FF (F)I 143.81 6,987
Gura [114] 2002 E(F2163), PB Virtex-E 2000-7 20,068 LUT, 6321 FF FI 1554 644
Gura [115] 2002 E(F2163), PB Virtex-E 2000-7 —— F 930 1,075
Kerins [144] 2002 E(F2151), PB Virtex-E 2000-6 4,048 sl. F 5100 200
Leong [167] 2002 E(F2113), NB Virtex 1000-6 1,410 sl. O 4300 230
Leung [168] 2000 E(F2113), NB Virtex 300-4 1,290 sl. O 3700 270
Liu [173] 2006 E(F2163), PB Virtex-II 2000 910 CLB and 1 BRAM 1900 530
Lutz [177, 178] 2004 E(F2163), PB Virtex-E 2000 10,017 LUT, 1,930 FF 233 4,300
Lutz [177, 178] 2004 E1(F2163), PB Virtex-E 2000 10,017 LUT, 1,930 FF 75 13,300
McIvor [184] 2006 E(Fp), < 2256 Virtex-II Pro 125-7 15,755 sl., 256 mult. 3860 260
Mentens [191] 2004 E(F2160), PB Virtex 800-4 150,678 equiv. gt. O 3801 260
Morales-S. [199] 2006 E(F2163), PB Virtex-II 4000 7342 sl. O 1020 980
1 sl. = slice, gt. = gate, BRAM = BlockRAM, FF = Flip-Flop, mult. = embedded multiplier, M4K and M512 = Stratix II embedded memory blocks
2 F = Flexible, O = Other designs also included in the paper, C = Countermeasures against side-channel attacks, H = HECC, B = Both F2m and Fp,

M = Multiple point multiplications, I = Includes other operations, e.g., SHA-1, T = τ -adic converter Continued on next page. . .

—
76

—

Reference Year Curve Device Area requirements1 Features2 t (µs) T (ops)

Nguyen [212] 2003 E(F2233), PB Virtex-II 6000 39% of 33,792 sl. O 2979 336
Okada [214] 2000 E(F2163), PB Flex 10K 250-2 —— F 80300 12
Okada [214] 2000 E1(F2163), PB Flex 10K 250-2 —— F 45600 22
Orlando [220] 2000 E(F2167), PB Virtex-E 400-8 3002 LUT, 1769 FF, 10 BRAM O 210 4,800
Orlando [221] 2001 E(Fp), P-192 Virtex-E 1000-8 11,416 LUT, 5,735 FF, 35 BRAM 3000 330

Öztürk [224] 2004 E(Fp), (2167 + 1)/3 0.13µm CMOS 34,390 gt. O 3100 320

Örs [222] 2003 E(Fp), 160-bit Virtex-E 1000-8 11,227 LUT, 6,959 FF 14414 69
Peter [225] 2007 E(F2163), PB 0.25µm CMOS 1.0 mm2 (F)O 83 12,000
Potgieter [227] 2002 E(F2163), PB Spartan-II 200 —— F 3776 260
Rodŕıguez-H. [241] 2004 E(F2191), PB Virtex-E 2600 17630 sl. 63 16,000
Rosner [243] 1998 E(F(28)21), PB XC4062XL-1 1810 sl. O 4470 220

Sakiyama [249] 2006 E(F2163), PB Virtex-II Pro 30 8450 sl. FOH 280 3,600
Sakiyama [251] 2007 E(Fp), 256-bit Spartan-III 5000-5 27597 sl. O 17700 56
Sakiyama [250] 2007 E(F2163), PB 0.13µm CMOS 115000 gt. (F)OH 29 34,000
Saqib [252] 2004 E(F2191), PB Virtex-E 3200 18314 sl., 24 BRAM 56.44 17,700
Satoh [255] 2003 E(F2160), PB 0.13µm CMOS 106,659 gt. FB 190 5,300
Satoh [255] 2003 E(Fp), 192-bit 0.13µm CMOS 106,659 gt. FB 1440 700
Schroeppel [259] 2002 E(F(289)2), PB 0.5µm CMOS 191,000 gt. I 4400 230

Shu [262] 2005 E(F2163), PB Virtex-E 2000-7 25,763 LUT, 7,467 FF O 48 21,000
Sozzani [270] 2005 E(F2163), PB 0.13µm CMOS 0.66 mm2 27 36,805
Zhou [310] 2007 E(F2163), PB Stratix II S15C3 6589 ALUT, 5777 FF, memory I 750 1,300
III 2004 E(F2163), PB Virtex-II 8000-5 18,076 sl. O 106 9,400
IV 2007 E(F2163), NB Stratix II S180C3 11,800 ALM, several M4K O 48.88 20,458
IV 2007 E1(F2163), NB Stratix II S180C3 13,472 ALM, several M4K OT 25.81 49,318
V 2007 E1(F2163), NB Stratix II S180C3 67,467 ALM, 305 M4K, 240 M512 MT 114.2 166,000
VI 2007 E1(F2163), PB Stratix II S180C3 26,148 ALM O 4.91 203,670
VII 2008 E1(F2163), PB Stratix II S180C3 16,930 ALM, 21 M4K MT 16.36 161,290
X 2006 E1(F2163), NB Virtex-II 2000-6 8,745 sl., 10 BRAM, 2 mult. T 35.75 28,000
XI 2008 E1(F2163), NB Stratix II S180C3 8799 ALM, 36 M4K, 20 M512, 4 DSP T 35.04 28,500
XI 2008 E1(F2163), NB Stratix II S180C3 28328 ALM, 66 M4K, 52 M512, 4 DSP T 13.38 74,700
1 sl. = slice, gt. = gate, BRAM = BlockRAM, FF = Flip-Flop, mult. = embedded multiplier, M4K and M512 = Stratix II embedded memory blocks
2 F = Flexible, O = Other designs also included in the paper, C = Countermeasures against side-channel attacks, H = HECC, B = Both F2m and Fp,

M = Multiple point multiplications, I = Includes other operations, e.g., SHA-1, T = τ -adic converter

—
77

—

Mentens et al. [191] presented an implementation for Fp using Montgomery
multiplier. Rodŕıguez-Henŕıquez et al. [241] presented an implementation com-
puting Montgomery point multiplication with Karatsuba multipliers over F2191 .
The paper also studied parallelization and concluded that up to four multipliers
can be used in speeding up Montgomery point multiplication. Slightly improved
results were presented in [252]. Bajracharya et al. [20] discussed implementa-
tion on a reconfigurable computer similarly as in [212] with different design
parameters and considerably improved results. Öztürk et al. [224] presented a
low-power ASIC implementation for ECC over Fp. The cost of modular opera-
tions was reduced by introducing modulus scaling techniques and a new inver-
sion algorithm together with an efficient hardware implementation. Daneshbeh
and Hasan presented an ASIC-based implementation utilizing combined mul-
tiplier and inverter in [73]. The implementation handled different irreducible
polynomials and field sizes. Daly et al. [72] introduced an FPGA-based ALU
supporting AB/C operation in Fp using Montgomery representation.

In 2005, Sozzani et al. [270] discussed ASIC implementation of ECC and pre-
sented an implementation capable of computing both Montgomery point multi-
plication and binary method at the same time. This was achieved by prioritizing
multiplier for multiplication-intensive Montgomery point multiplication and in-
verter for inversion-intensive binary method in A. ECC was also compared to
RSA and it was concluded that ECC is both faster and more area efficient.
Batina et al. [24] presented an implementation which takes side-channel attacks
into account on all design levels. Cheung et al. [59] introduced a customizable ar-
chitecture and provided several implementations which were generated with an
automated design generator. They also independently showed how Montgomery
point multiplication can be computed with four parallel multipliers similarly
as in [241]. Also the problem of comparing designs on different FPGAs was
addressed by studying the implementations on different Xilinx FPGAs. Shu
et al. [262] presented high-speed implementations utilizing parallel multipliers
specialized for certain operations.

In 2006, Batina et al. [25] compared ECC and HECC. They concluded that
HECC is faster but requires more area. However, they used binary method in
P for ECC which is not the most efficient method. Liu et al. [173] proposed
a method for computing point multiplication with shared LUTs in multipliers
suggested in [123]. Benaissa et al. [29] presented a new word-level multiplier
for arbitrary irreducible polynomials and provided point multiplication timings
with a processor using the multiplier. McIvor et al. [184] studied implementa-
tion of ECC over Fp. Their processor included a new combined modular inverter
and bit-parallel multiplier. Morales-Sandoval and Feregrino-Uribe evaluated
different implementation techniques and parallelization alternatives in [199].
They targeted implementations especially to mobile applications. Sakiyama
et al. [249] presented a processor for both ECC and HECC. They exploited
parallelism in operations and provided comparisons between ECC and HECC
and concluded that ECC is faster. Another study from the same authors [250],
continuing the work of [249], described a parallelized ASIC implementation of
ECC and HECC and also preferred ECC. Ansari and Hasan [12] introduced a
carefully implemented processor where the multiplier is always kept busy with
no idle cycles. The processor implemented Montgomery point multiplication
with polynomial basis.

In 2007, Sakiyama et al. [251] presented a reconfigurable ALU supporting

— 78 —

RSA and ECC over 256-bit Fp. They concluded that ECC outperforms RSA
by about factor of two. Chen et al. [58] presented a systolic array based archi-
tecture for Fp arithmetic and used it for ECC. Ansari and Wu [13] presented
an ECC implementation employing an efficient digit-serial multiplier in poly-
nomial basis and utilized parallelism in point operations which resulted in a
fast ECC implementation. Peter et al. [225] studied the effects of support-
ing several irreducible polynomials in ECC implementations. They concluded
that supporting a few irreducible polynomials can be done without major de-
crease in speed and increase in area. However, supporting arbitrary irreducible
polynomials is costly but, nonetheless, considerably more efficient than soft-
ware. Zhou et al. [310] presented an implementation on a Nios II soft-core
processor utilizing custom functions for multiplication and inversion. Hence,
the implementation falls to the class (e) in the classification of Fig. 3.4. They
concluded that considerable speedup is achieved with the approach compared
to pure software on Nios II. In 2008, Chelton and Benaissa [57] presented an
implementation which appears to be the fastest FPGA-based implementation
using general curves. Their processor utilized a carefully pipelined multiplier
and supported custom instructions: multiply-accumulate, multiply-square, and
repeated-square. The processor achieved point multiplication times of 19.55µs
and 33.05µs in a Virtex-4 and Virtex-E FPGAs, respectively.

As can be seen above, a large number of ECC implementations have been
published. The implementations target to various applications with differ-
ent requirements and introduce numerous different implementation techniques.
Hence, the following discussion is presented in order to provide an overview of
the implementations and to ensure fairer comparison in Sec. 6.5.5.

6.5.1 Typical Structure of ECC Processors

The most typical structure of an ECC implementation is depicted in Fig. 6.2.
Such a structure can be identified from a large majority of publications discussed
above. It can be found also from implementations presented in III–V, X, and
XI. The structure includes a Field Arithmetic Processor (FAP) which supports
arithmetic in Fq. FAPs always include dedicated processing units at least for
multiplication and addition and memory or registers for storing elements of Fq.
An FAP implements the lowest level of the hierarchy of Fig. 6.1 and higher
levels are implemented in control logic with a Finite State Machine (FSM)
and/or microcode. If both FSM and microcode are used, the FSM implements
the highest level of the hierarchy while point operation level is implemented
with the microcode.

Depending on Fq, other operations besides multiplication and addition are
also commonly supported. Squaring is typically supported for F2m whereas Fp
implementations usually include an inverter. The reasons are obvious: Squaring
is very cheap in F2m , especially in normal basis or with a fixed irreducible poly-
nomial, and inversion in Fp would be very time consuming without a dedicated
inverter. If an inverter is not available, inversion is computed with Fermat’s Lit-
tle Theorem, (4.19). However, inverters are commonly included also for F2m , es-
pecially, with polynomial basis. Other operations that may be supported include
shifts, comparisons, and custom-instructions, such as multiply-and-accumulate.

Control logic for an FAP is usually, but not always (see e.g. [115]), included
in implementations presented in the papers. FAPs which do not include control

— 79 —

FAP

Memory/
Register file Inverter(∗)Multiplier

Adder/
Subtractor Squarer(∗)

Q

Control logic(∗)

Microcode(∗)FSMk

P

Figure 6.2: Typical structure of an ECC implementation. (*) not necessarily available
in all FAPs.

logic can be used only in a close relationship with a controlling processor, i.e., in
the classification of Fig. 3.4, they can be used as coprocessors (c), reconfigurable
function units (d), or embedded processing units (e). All implementations pre-
sented in the publications of this thesis include control logic and, therefore, they
can be used in all roles given in Fig. 3.4, although their sizes probably prevent
their use as a reconfigurable function unit.

6.5.2 Parallelism in ECC Processors

The possibility of using parallelism is the key factor that gives advantage for
FPGA (and ASIC) implementations, but the use of parallelism in ECC is far
from trivial. Because multiplications dominate in costs of point operations (if
projective coordinates are in use), efficient computation of multiplications is
emphasized in almost all published implementations. Use of parallelism is easy
in finite field operations as discussed in Ch. 4. However, highly parallelized
multipliers, i.e., bit-parallel or digit-serial with large digit size, have poor area-
latency efficiencies which degrade their feasibility in practice. Besides, when an
area of a multiplier grows, routing in the place & route becomes much harder
which degrades results even further. These aspects were studied in IV.

Another approach is to reduce the number of multiplications on the critical
path by using multiple multipliers. This utilizes parallelism in point operations.

— 80 —

However, data dependencies prevent achieving full multiplier utilization with
parallel multipliers which leads to poor area-latency efficiency. For example,
point addition and point doubling of Montgomery point multiplication can be
computed with critical paths of six, three, or two multiplications with one, two,
or four multipliers, respectively [59, 241]. Hence, full multiplier utilization can
be achieved only with one or two multipliers.

The situation is even worse when parallelism is utilized on the highest level
of the hierarchy of Fig. 6.1. Point multiplication algorithms are recursive and,
thus, contain only limited amounts of intrinsic parallelism. For example, point
operations in Alg. 6.1 must be computed recursively because the result of a point
addition is needed in point doublings, and vice versa. However, point addition
and point doubling can be computed in parallel in Montgomery point multi-
plication, Alg. 6.2, [241, 262] and right-to-left binary method [212]. Beyond
that, consecutive point operations must be computed recursively, which limits
the amount of exploitable parallelism. However, this problem can be circum-
vented with Koblitz curves by exploiting the inexpensiveness of Frobenius maps
as shown in IV. It is also possible to use more parallelism in point operations
by interleaving successive point additions as shown in VI. Sozzani et al. [270]
took another approach by computing two point multiplications simultaneously
with different algorithms, one of which is multiplication-intensive and the other
which is inversion-intensive.

6.5.3 Flexibility of ECC Processors

In many practical applications, implementations must handle elliptic curve op-
erations with various different parameters, such as curve, field size, etc. In such
applications, support for all parameters must be implemented. This support is
referred to as flexibility. It is one of the most important features determining
speed and area requirements of an implementation and, therefore, comparing
designs with different levels of flexibility is difficult.

Many implementations having the structure of Fig. 6.2 provide inherent flex-
ibility on the two highest levels of the hierarchy of Fig. 6.1, e.g., point operations
can be modified easily by uploading a new microcode. On the other hand, the
same point multiplication algorithms and even point operation formulae can be
used for a variation of curves which limits the need for such flexibility. However,
if an FAP fails to support different finite fields, an implementation using that
FAP is always limited to only few elliptic curves, and it cannot be considered
flexible. Hence, support for various finite fields is the feature that has the most
crucial effect on flexibility.

At simplest, limited field flexibility can be achieved by including specific
circuitries for a small number of fields. For example, support for a few binary
fields with polynomial basis can be achieved with specific reduction circuitries
for a few irreducible polynomials. This approach provides adequate flexibility
for many applications without major decrease in speed. However, the approach
is not viable if a large number of fields must be supported.

Reduction with an arbitrary irreducible polynomial is iterative which makes
it inherently slow. However, it can be computed fairly efficiently with methods
such as the partial reduction [115]. On the other hand, fixed reduction circuitry
can perform an entire reduction in one clock cycle with a high clock frequency
with a few XORs if the polynomial is sparse (e.g., trinomial or pentanomial).

— 81 —

Combination of the two above approaches, i.e., combining the support for
both arbitrary and specific irreducibles as shown in [87, 114, 115], is a viable
solution in many practical applications. Reduction circuitries for specific irre-
ducible polynomials provide fast computation for a few frequently used fields
while arbitrary fields are supported by a slower generic reduction circuitry. How-
ever, even this approach restricts to binary fields with polynomial basis.

Normal bases do not suit well for flexible designs. Although it is easy to
design flexible adders and squarers for normal bases, multipliers supporting
arbitrary fields cannot be implemented efficiently, because they would need to
support multiple F -functions; see Sec. 4.3.2. Therefore, an implementation
should include circuitry for computing different F -functions on-the-fly and it
should be able to update the F -function circuitry accordingly. At least to the
author’s knowledge, such multipliers have not been published, and it is hard to
see how such multipliers could be devised without serious reductions in speed
and increases in area.

Thus far, only flexibility of F2m has been discussed. Support for both F2m

and Fp can be added by utilizing techniques discussed in Sec. 4.5. It should be
noted that Fp is slower than F2m , and speedups compared to software are also
considerably lower.

Flexibility is more crucial for ASICs than for FPGAs because FPGAs can
provide flexibility through reprogramming; see the advantages provided by re-
programmability from Sec. 3.2. Of course, if parameters need to be changed
frequently, reprogramming times start to dominate which makes this approach
unpractical and, thus, flexible FAPs may be needed in FPGAs as well. Any-
how, design flexibility is undoubtedly more important in ASIC implementations
where designs cannot be changed after manufacturing.

6.5.4 Optimizations for Specific Curves or Algorithms

The structure of Fig. 6.2 can be applied in elliptic curve point multiplication
over all sets of parameters, e.g., coordinate systems. However, structures opti-
mized for certain operations have been presented and they provide considerable
speed increases with the expense of reduced generality. A specific structure for
Montgomery point multiplication was presented in [241]. Point addition and
point doubling are computed in parallel with processing units build around one
multiplier and several registers. Control logic is very simple: Only the bit ki
is used for selecting the inputs of point addition and point doubling processing
units, see Alg. 6.2. However, the structure does not include logic for (6.12), i.e.,
it outputs only X and Z coordinates of the result point, Q. Similar approach
was presented in [262], but their implementation included a specific processing
unit also for coordinate conversions.

The structure of Fig. 6.2 can be optimized for Koblitz curves by attaching
squarers to the registers holding Q [178]. This enhances the performance on
Koblitz curves without sacrificing generality. The architecture of VI can be
seen as an adaptation of the ideas of [241, 262] to Koblitz curves, although
the architecture also utilizes point operation interleaving allowing even further
improvements in speed. The structure of VII builds upon VI and introduces
specific units for precomputations, τ -adic conversions, for-loop computation,
and coordinate conversion.

Complex instructions, e.g., A(B+D)+C in [250] or a(x)b(x)/c(x) mod p(x)

— 82 —

in [144], can be seen as optimizations for specific algorithms. For example,
a(x)b(x)/c(x) mod p(x) is useful for point operations in A, but it has little use
with projective coordinates.

6.5.5 Comparisons

Details of published ECC designs have been collected into Table 6.3. Fair com-
parison is extremely difficult (confer AES implementations) and all issues dis-
cussed in Sec. 5.3.3 cause difficulties also for ECC comparisons. However, com-
paring ECC designs is even more difficult because the variety of implemented
algorithms is larger and this variety has great impacts on implementation re-
sults. For instance, curves and field sizes have major influences on both speed
and area requirements, as can be seen, for example, from the tables in VI which
list implementation results with different field sizes. Nevertheless, certain imple-
mentations that represent the state-of-the-art are given in the following together
with estimates of how designs presented in III–VII, X, and XI compare with
other published designs.

To the author’s knowledge, the fastest design for general curves was pre-
sented by Chelton and Benaissa in [57] where point multiplication time 19.55µs
was achieved on NIST B-163 with a Virtex-4 FPGA. The fastest design for
Koblitz curves is given in VI for NIST K-163 on which point multiplication takes
4.91µs in a Stratix II FPGA excluding τ -adic conversions. When throughput
is considered instead of computation time, the implementations presented in V
and VII outperform other published designs, because they are the only ones
optimized for high throughput, with the exception of [270], i.e., throughput is
simply the inverse of computation time for other designs. The most compact
implementations given in Table 6.3 use parameters which are insecure, but com-
pact implementations using secure parameters are given, for example, by Liu
et al. in [173] and Orlando and Paar in [220]. Compact implementations for
both general and Koblitz curves are listed also in IV. However, very compact
FPGA-based implementations are still missing from the literature. Support for
arbitrary irreducible polynomials was achieved efficiently by Eberle et al. in [87]
with a technique called partial reduction. They also included fixed reduction
circuitries for specific irreducible polynomial in order to accelerate their com-
putation [87, 114, 115]. When support for both F2m and Fp is needed, a good
option is the implementation presented in [255].

Table 6.3 shows that the designs of this thesis compare favorably with other
designs from the literature. The implementations are faster than most other
published implementations and, in fact, VI and VII utilizing Koblitz curves
represent the fastest published ECC implementations. The fastest general curve
implementation, which was presented in [57], outperforms the implementations
presented in IV, but it used polynomial basis whereas IV uses a normal basis.
Table 6.3 also shows that Koblitz curves give considerable enhancements in
speed compared to general curves. They are more than twice as fast as general
curves even including the time of τ -adic conversions. Koblitz curves are therefore
highly feasible alternatives in applications requiring very fast computation.

The area requirements of implementations of this thesis are quite large. They
prevent using the implementations in constrained applications, but the area re-
quirements are in line with other published implementations. Besides, the values
given in Table 6.3 reflect only the area requirements of the fastest implementa-

— 83 —

tions and smaller implementations were also presented in the publications. All
architectures presented in the publications are also scalable in the sense that
speed can be traded off for smaller area. In the publications, the target has been
in high speed which has resulted in large area requirements but, for example,
Tables VII and VIII of IV show that compact designs can be realized with the
same architectures.

The use of fixed parameters, especially, fixed fields, give a large speed advan-
tage compared to flexible designs and, hence, the implementations of this thesis
are not comparable with flexible designs. It has been shown that fixed designs
are at least about twice as fast as flexible designs [87]. However, because the
implementations of this thesis use FPGAs, the disadvantages of fixed designs
are reduced as flexibility can be achieved in many cases by reprogramming the
FPGA.

— 84 —

Chapter 7

Results

This chapter summarizes the main research results of this thesis and identi-
fies their significance to the research field of cryptographic implementation.

Details, such as exact computation times, etc., are not considered in this chapter
but they are available in the appended publications. The contributions of this
thesis are twofold as they relate to either AES or ECC, and they are discussed
separately in Secs. 7.1 and 7.2, respectively.

7.1 AES-related Contributions

AES was discussed in I, which surveyed and compared AES implementations,
and II, which presented a fast AES implementation for FPGAs. The following
two sections discuss their results.

7.1.1 AES Surveys

The survey provided in I gave an overview of secret-key cryptographic imple-
mentations using FPGAs, as well as hash algorithms. The emphasis was on
AES and the survey was the first review concentrating to high-speed implemen-
tations; to the author’s knowledge, FPGA implementations of AES had been
reviewed only in [293] where the emphasis was on security questions of FPGAs
as implementation platforms. The implementations were compared both in
terms of throughput per slice and throughput per area which consisted of the
slice and BlockRAM utilization. A fairer comparison was provided than in
other comparisons which had only considered slice count. However, even the
new metric cannot provide an unconditionally fair comparison as discussed in
Sec. 5.3.3. Nonetheless, the survey provided valuable information of the state
of FPGA-based AES implementations at the time of publication.

The survey presented in Ch. 5 should be considered as a contribution of this
thesis as well because, to the author’s knowledge, it is the most comprehensive
and up-to-date review of published ASIC and FPGA implementations available
in the literature at the time of writing this thesis. Thus, it complements other
reviews previously presented in the literature, such as I and [118, 120, 293].

— 85 —

7.1.2 Fast AES Implementation

The main contribution of the implementation of II was its speed. In retrospec-
tive, the approach taken in II is not the most efficient because it computes the
entire encryption in F(24)2 . The design could be improved also in many other as-
pects; for instance, the pipeline should be balanced better and the isomorphisms
should be optimized. Nonetheless, the implementation of II was the fastest pub-
lished implementation of AES-128 encryption at the time of publication and
presented the first published FPGA implementation utilizing composite fields.
Hence, despite it weaknesses from the current point-of-view, it represented the
state-of-the-art in achieved throughput at the time of publication, and it is still
cited many recent publications.

7.2 ECC-related Contributions

The main contributions of this thesis relate to ECC, and ECC was the subject
in III–XI. The focus was on high-speed implementation using parallelism. Op-
erations of ECC are recursive in nature which restricts the use of parallelism. In
this thesis, methods enabling increased parallelism were studied and developed.
They resulted in faster implementations than existing methods, as shown in
the comparison of Sec. 6.5.5. The studies considered both general and Koblitz
curves, the emphasis being in Koblitz curves.

The implementations presented in IV–XI use curves specified in [205], i.e.,
the NIST curves, and III uses curves from [52] recommended by SECG. Despite
this fact, the contributions of this thesis are curve independent in the sense that
they can be easily adapted to curves defined in different standards, or even
to non-standardized curves. Of course, the methods developed specifically for
Koblitz curves set restrictions for curve selection but even they are not restricted
to any particular Koblitz curves.

7.2.1 ECC Implementations for General Curves

General curves were studied in III and IV. A fast and scalable architecture
suitable for an automated VHDL generator [137] was presented in III. The
architecture was optimized for the 4-to-1-bit LUT structure of the target FPGA.
It was shown to result in very fast point multiplication times, including some
of the fastest results available in the literature at the time of publication. In
retrospective, the weakest link in the implementation was the use of a large
control FSM which resulted in a large circuitry.

One of the key publications of this thesis, IV, also considered general curves.
The main contribution of IV concerning general curves was that it illuminated
the effects of parallelization in ECC implementations which was not adequately
addressed in the existing literature. A generic architecture was presented and
tools were provided for analyzing parallelization on different levels of the hier-
archy of Fig. 6.1. The paper concluded that large field multipliers are inefficient
and better results are obtained with several smaller multipliers in parallel.

— 86 —

7.2.2 Utilizing Parallelism with Koblitz Curves

Koblitz curves were considered in IV–XI. The main contribution of IV, es-
pecially useful for Koblitz curves, was the method to parallelize point multipli-
cation for several FAPs. The method resulted in implementations which were
faster and required less area than traditional implementations utilizing either
one large field multiplier or several smaller ones.

Throughput maximization with parallel FAPs was studied in V. It was
concluded that allowing slightly longer computation times for single operations
results in a considerably higher throughput because more parallel FAPs fit into
an FPGA. This conclusion is, again, due to the fact that multipliers with large
digit sizes are inefficient. Improvements to precomputation algorithms related
to three-term multiple point multiplications were also developed and they were
shown to provide major enhancements compared to a straightforward approach.
To the author’s knowledge, V was the first paper presenting ECC implemen-
tations which prioritize throughput over computation time of a single point
multiplication. Arguably, the focus in high-speed ECC implementations will
shift to high throughput in the future. The reasons are that the computation
times achievable with current knowledge are adequate for most applications, but
there is still a need for higher throughput. Furthermore, increasing throughput
by shortening computation time increases area considerably, whereas parallel
processing leads to high throughput with reasonable area, as shown in V.

The parallelization methods presented in IV and V utilized parallelism on
the highest level of the hierarchy of Fig. 6.1. Data dependencies restrict efficient
use of parallelism on the middle level of the hierarchy, but observations made
in VI helped to circumvent this problem by interleaving consecutive point ad-
ditions. Hence, the method utilized parallelism on both the highest and middle
levels of the hierarchy. The proposed method was shown to be highly feasible
and scalable in practice. It resulted in the shortest point multiplication times
available in the literature today. The same idea was used in VII, which in-
troduced also further optimizations by utilizing similar structures of window
methods and multiple point multiplications. An FPGA implementation with
both short computation time and high throughput was achieved by designing
optimized processing units for different parts of the algorithms.

These results prove that highly specialized implementations, which use large
amounts of parallelism and features of specific curves, can provide very large
speedups compared to more general implementations. Such specializations can
be done in FPGAs without major reductions in generality of the system because
an FPGA can be reprogrammed if other parameters are needed. The results also
demonstrate the efficiency of Koblitz curves in hardware implementations. Prior
to this thesis, only few publications had discussed implementations using Koblitz
curves, but this thesis shows that Koblitz curves give major speed improvements
even with τ -adic conversions. Hence, the results of this thesis can improve
the attractiveness of Koblitz curves in hardware implementations and, as a
consequence, also their use in practical systems.

7.2.3 Efficient Converters for Koblitz Curves

Because point multiplication times have been reduced to only a few microsec-
onds, the traditional approach to compute τ -adic conversions in host processors

— 87 —

as in [178, 214] is not a viable solution as it becomes the bottleneck. Hence,
efficient hardware implementations of τ -adic conversions are necessary. Hard-
ware implementations of τ -adic conversions were not presented in the literature
prior to VIII and IX and, thus, they delivered undeniable novelty. Algorithm
modifications and an efficient implementation for converting integers into the
τNAF were presented in VIII. The implementation was later used in IV, V,
and VII. The converter from IX performs conversions to the other direction,
from τ -adic representation to binary integer. Such conversions are useful in
applications where random τ -adic expansions are used but also their integer
equivalents are needed. Such applications include, for example, ECDSA with
Koblitz curves. They could be realized with the converter of VIII as well, but
the conversions of IX provide performance improvements because they can be
computed in parallel with point multiplications.

7.2.4 Adaptation of the DBNS to Koblitz Curves

An adaptation of the DBNS to τ -adic representations was proposed in X where
k was represented as

∑
i,j ki,jτ

i(τ − 1)j . The representation was considerably
sparser than the τNAF and, as a result, achieved point multiplication times
were shorter. The paper also presented a variation using three bases which has
serious theoretical significance because it results in the first provably sublinear
point multiplication algorithm for Koblitz curves. Different adaptations with
the form

∑
i,j ki,jτ

i3j were proposed almost at the same time with X in [15,
16], but their practical usefulness was not verified. However, the results of
the FPGA implementation proved that the representation suggested in X was
indeed practical. The work of X was extended to a journal paper, XI, including
also a study of the inherent parallelism included in the DBNS. It was shown
that exploiting this parallelism leads to a very fast FPGA implementation.

— 88 —

Chapter 8

Conclusions

This thesis studied implementation of cryptographic algorithms. The sub-
ject has importance in many practical systems which use cryptographic al-

gorithms for improving security. Cryptographic algorithms are omnipresent in
modern communication in which information security, such as confidentiality
of communication or reliable authentication, are absolute necessities. The the-
sis studied techniques enabling fast computation of cryptographic algorithms
which cannot be achieved with software-based solutions. Hardware acceleration
is commonly required in important applications, such as heavily-loaded network
servers. Efficient implementation techniques are necessary in order to provide
high-security cryptographic algorithms to such applications and, hence, the sub-
ject has been studied intensively in both academia and industry. The focus of
the thesis was on a secret-key cryptographic algorithm, AES, which was studied
in I and II, and public-key cryptography algorithms, ECC, which were the topic
of III–XI. The most important contributions of the thesis consider ECC.

Because cryptographic algorithms are used in a variety of applications rang-
ing from low cost environments, such as RFID tags, to high speed systems,
such as optical networks, the requirements set for cryptographic implementa-
tions differ. The most important requirements in low cost environments are
low resource utilization and power consumption whereas high speed systems re-
quire short computation times and high throughputs. These requirements are
usually out of reach with general-purpose microprocessors which are too slow
and power consuming. On the other hand, ASICs are often too expensive and
they lack flexibility which is essential for many cryptosystems. All presented
implementations of this thesis targeted to FPGAs. However, many of the ideas
and architectures can be adapted to ASICs as well. The focus of implementa-
tions was on accelerating computation and, hence, the target applications are
environments which require very high computation speed.

In the introduction, Ch. 1, the scope of this thesis was described as finding
answers to certain questions. The first ones asked which algorithms are the
most suitable for hardware and how should they be improved in order to in-
crease suitability. As shown in this thesis, the answers to these questions depend
much on the implementation platform and target application. For instance, in

— 89 —

AES, both memory-based and combinatorial approaches, discussed in Sec. 5.2.1
and 5.2.2, respectively, have merits. Their mutual superiority depends on how
much memory is available and whether operations are pipelined, etc. On the
ECC side, this thesis showed that Koblitz curves are highly suitable also for
hardware implementations and they result in significant speedups compared to
general curves. It was also asked what kind of implementations provide the best
results. This thesis has answered this question in many ways. For instance, al-
though it is obvious that parallelism can improve the speed of implementations,
this thesis showed that it must be carefully studied where to focus parallelism
in order to maximize efficiency.

The thesis presented improvements both to algorithms and techniques for
implementing them. Improvements to algorithms included modifications that
made them more suitable for hardware implementations and reorganizations
that enabled increased amount of parallelism. Practical implementations were
presented in all publications and they exploited the results of the algorithm
modifications. Many of the implementations were the fastest ones available in
the literature at the time of publication which verifies the efficiency of both
implementations and techniques used in them.

Next, the contributions of this thesis are shortly revisited, and certain topics
for future research are pointed out, first, for AES and, then, for ECC. Efficient
implementation techniques of AES have been studied extensively in the litera-
ture and they have considerable importance in many practical systems because
of the wide distribution of AES. AES-related contributions of this thesis were
the surveys and comparisons of high-speed FPGA-based implementations (I,
Ch. 5) and an efficient combinatorial implementation (II). It can be concluded,
based on the discussion of Ch. 5, that hardware implementation of AES is a
mature field of research and it is unlikely that any new techniques considerably
improving implementations will emerge. This conclusion is supported by the
facts that techniques to implement AES have been extensively studied already
for several years and methods to implement AES in practically all applications
exist. However, introduction of some new features in FPGAs can produce a
small renaissance to the field because they can open new directions for imple-
mentations. Indications of such possibilities can be found from the very recent
papers [42, 86] which utilized the new Virtex-5 architecture. However, as stated
in [42], such improvements arise directly from the new architecture and do not
necessarily include any theoretical novelty.

As mentioned, the most important contributions relate to ECC. They in-
clude techniques increasing speed of ECC computations, especially studies on
parallelization of ECC operations, and issues related to Koblitz curves. Sev-
eral methods and architectures were presented for Koblitz curves including new
methods to utilize parallel processing (IV, V), a method to interleave point ad-
ditions (VI, VII), architectures for conversions needed for Koblitz curves (VIII,
IX), and an adaptation of the DBNS which was shown to be highly feasible with
an FPGA implementation (X, XI). There exist a plethora of published ECC
designs as well. Despite the amount of work that has been done, the field of
ECC implementations has not been fully matured and certain open problems
still exist. Although basic solutions for implementing ECC are available and
well-known, means to include ECC in very demanding environments requiring,
e.g., very low cost or high throughput, are not fully known. Minimizing area
requirements is indispensable in order to provide ECC, or any kind of high-

— 90 —

security public-key cryptography for that matter, to low-cost environments. It
has started to gain interest in the community [23, 116] and will probably be
an important research topic in the near future. Combining low area require-
ments with efficient side-channel countermeasures, which are essential because
of the viability of side-channel attacks in low-cost environments, is a challenging
task that requires more research. On the other hand, the focus in high-speed
implementations will probably shift to high throughput in the future. The rea-
sons are that, arguably, adequately short computation times are achievable with
current knowledge, but there would still be need for higher throughput. Nat-
urally, throughput can by improved by shortening computation times but such
an approach easily leads to poor area efficiency, whereas parallel processing pro-
vides more area efficient solutions, as shown in V. To the author’s knowledge,
the first studies focusing on maximizing throughput were presented in V and
VII. New algorithms and curves providing more efficient computations have
been introduced even recently, e.g., [31], which naturally increases also the need
for hardware implementation related research. Another topic, which will prob-
ably attain interest in the community, is implementation of hash algorithms.
When NIST decides the finalists of the new hash algorithm competition, their
hardware implementation will likely be an active research topic.

To conclude, this thesis has increased knowledge of how to accelerate com-
putation of mainstream cryptographic algorithms with hardware accelerators,
implemented specifically in FPGAs. The most important results are those en-
abling faster computation of ECC by using increased parallelism because they
show that high-security public-key cryptography can be used also in computa-
tionally demanding systems. The publications of this thesis include the fastest
reported ECC implementations currently available in the literature. The contri-
butions of the thesis can be directly adapted to practical systems. Consequently,
they can—in their part—enable increasing use of high-security cryptographic
algorithms in various practical systems and, thus, improve the quality of such
systems.

— 91 —

— 92 —

Bibliography

[1] Agnew, G.B., Mullin, R.C., Onyszchuk, I.M., and Vanstone, S.A., “An im-
plementation for a fast public-key cryptosystem,” Journal of Cryptology,
vol. 3, no. 2, Jan. 1991, pp. 63–79.

[2] Agnew, G.B., Mullin, R.C., and Vanstone, S.A., “An implementation of
elliptic curve cryptosystems over F2155 ,” IEEE Journal on Selected Areas
in Communications, vol. 11, no. 5, Jun. 1993, pp. 804–813.

[3] Al-Daoud, E., Mahmod, R., Rushdan, M., and Kilicman, A., “A new
addition formula for elliptic curves over GF (2n),” IEEE Transactions on
Computers, vol. 51, no. 8, Aug. 2002, pp. 972–975.

[4] Alam, M., Ray, S., Mukhopadhayay, D., Ghosh, S., RoyChowdhury, D.,
and Sengupta, I., “An area optimized reconfigurable encryptor for AES-
Rijndael,” in Proceedings of the Conference and Exhibition on Design,
Automation and Test in Europe, DATE 2007, Nice, France, Apr. 16–20,
2007, pp. 1116–1121.

[5] Altera Corporation, “Nios II processor reference handbook,” Manual,
ver. 7.2.0, Oct. 2007, http://www.altera.com/literature/hb/nios2/n2cpu
nii5v1.pdf (Oct. 9, 2008).

[6] ———, “Stratix II device handbook,” Data sheet, May 2007, http://www.
altera.com/literature/hb/stx2/stratix2 handbook.pdf (Oct. 9, 2008).

[7] ———, “Stratix III device handbook,” Data sheet, Jul. 2008,
http://www.altera.com/literature/hb/stx3/stratix3 handbook.pdf (Oct.
9, 2008).

[8] American National Standards Institute (ANSI), “Public key cryptography
for the financial services industry: The elliptic curve digital signature
algorithm (ECDSA),” ANSI X9.62, 1999.

[9] ———, “Public key cryptography for the financial services industry: Key
agreement and key transport using elliptic curve cryptography,” ANSI
X9.63, 2001.

— 93 —

[10] Anderson, R., Bond, M., Clulow, J., and Skorobogatov, S., “Crypto-
graphic processors—a survey,” Proceedings of the IEEE, vol. 94, no. 2,
Feb. 2006, pp. 357–369.

[11] Anderson, R.J., “Why cryptosystems fail,” Communications of the ACM,
vol. 37, no. 11, Nov. 1994, pp. 32–40.

[12] Ansari, B. and Anwar Hasan, M., “High performance architecture of el-
liptic curve scalar multiplication,” Techical Report CORR 2006-01, Uni-
versity of Waterloo, Canada, 2006.

[13] Ansari, B. and Wu, H., “Efficient finite field processor for GF (2163) and its
VLSI implementation,” in Proceedings of the 4th International Conference
on Information Technology: New Generations, ITNG 2007, Las Vegas,
Nevada, USA, Apr. 2–4, 2007, pp. 1021–1026.

[14] Ash, D.W., Blake, I.F., and Vanstone, S.A., “Low complexity normal
bases,” Discrete Applied Mathematics, vol. 25, no. 3, Nov. 1989, pp. 191–
210.

[15] Avanzi, R., Dimitrov, V.S., Doche, C., and Sica, F., “Extending scalar
multiplication using double bases,” in Proceedings of the 12th Interna-
tional Conference on the Theory and Application of Cryptology and Infor-
mation Security, Advances in Cryptology — ASIACRYPT 2006, Shang-
hai, China, Dec. 3–7, 2006, Lecture Notes in Computer Science, vol. 4284,
Springer, pp. 130–144.

[16] Avanzi, R. and Sica, F., “Scalar multiplication on Koblitz curves using
double bases,” in Revised Selected Papers of the 1st International Confer-
ence on Cryptology in Vietnam, Progress in Cryptology — VIETCRYPT
2006, Hanoi, Vietnam, Sep. 25–28, 2006, Lecture Notes in Computer Sci-
ence, vol. 4341, Springer, pp. 131–146.

[17] Avanzi, R.M., Ciet, M., and Sica, F., “Faster scalar multiplication on
Koblitz curves combining point halving with the Frobenius endomor-
phism,” in Proceedings of the 7th International Workshop on Theory and
Practice in Public Key Cryptography, PKC 2004, Singapore, Mar. 1–4,
2004, Lecture Notes in Computer Science, vol. 2947, Springer, pp. 28–40.

[18] Avanzi, R.M. and Cohen, H., “Compositeness and primality testing—
factoring,” in Handbook of Elliptic and Hyperelliptic Curve Cryptography
(H. Cohen and G. Frey, eds.), chap. 25, Chapman & Hall/CRC, 2006, pp.
591–614.

[19] Avanzi, R.M., Heuberger, C., and Prodinger, H., “Minimality of the Ham-
ming weight of the τ -NAF for Koblitz curves and improved combination
with point halving,” in Revised Selected Papers of the 12th International
Workshop on Selected Areas on Cryptography, SAC 2005, Kingston, On-
tario, Canada, Aug. 11–12, 2005, Lecture Notes in Computer Science, vol.
3897, Springer, pp. 332–344.

[20] Bajracharya, S., Shu, C., Gaj, K., and El-Ghazawi, T., “Implementation
of elliptic curve cryptosystems over GF (2n) in optimal normal basis on

— 94 —

a reconfigurable computer,” in Proceedings of the International Confer-
ence on Field Programmable Logic and Application, FPL 2004, Antwerp,
Belgium, Aug. 29–Sep. 1, 2004, Lecture Notes in Computer Science, vol.
3203, Springer, pp. 1001–1005.

[21] Barreto, P.S.L.M. and Rijmen, V., “The Whirlpool hashing function,” On-
line document, May 24, 2003, http://planeta.terra.com.br/informatica/
paulobarreto/whirlpool.zip (Oct. 9, 2008).

[22] Barrett, P., “Implementing the Rivest Shamir and Adleman public key
encryption algorithm on a standard digital signal processor,” in Advances
in Cryptology — CRYPTO ’86, Santa Barbara, California, USA, Aug. 11–
15, 1986, Lecture Notes in Computer Science, vol. 263, Springer, pp. 311–
323.

[23] Batina, L., Guajardo, J., Kerins, T., Mentens, N., Tuyls, P., and Ver-
bauwhede, I., “Public-key cryptography for RFID-tags,” in Proceedings of
the 5th IEEE International Conference on Pervasive Computing and Com-
munications, PerCom 2007, White Plains, New York, USA, Mar. 19–23,
2007, pp. 217–222.

[24] Batina, L., Mentens, N., Preneel, B., and Verbauwhede, I., “Side-channel
aware design: Algorithms and architectures for elliptic curve cryptography
over GF (2n),” in Proceedings of the 16th International Conference on
Application-Specific Systems, Architecture and Processors, ASAP 2005,
Samos, Greece, Jul. 23–25, 2005, pp. 350–355.

[25] ———, “Flexible hardware architectures for curve-based cryptography,”
in Proceedings of the 2006 IEEE International Symposium on Circuits
and Systems, ISCAS 2006, Island of Kos, Greece, May 21–24, 2006, pp.
4839–4842.

[26] Batina, L., Örs, S.B., Preneela, B., and Vandewalle, J., “Hardware ar-
chitectures for public key cryptography,” Integration, the VLSI Journal,
vol. 34, no. 1-2, 2003, pp. 1–64.

[27] Bednara, M., Daldrup, M., Teich, J., von zur Gathen, J., and Shokrollahi,
J., “Tradeoff analysis of FPGA based elliptic curve cryptography,” in Pro-
ceedings of the 2002 IEEE International Symposium on Circuits and Sys-
tems, ISCAS 2002, Phoenix-Scottdale, Arizona, USA, May 26–29, 2002,
vol. 5, pp. 797–800.

[28] Bednara, M., Daldrup, M., von zur Gathen, J., Shokrollahi, J., and Teich,
J., “Reconfigurable implementation of elliptic curve crypto algorithms,”
in Proceedings of the International Parallel and Distributed Processing
Symposium, IPDPS 2002, Reconfigurable Architectures Workshop, RAW
2002, Ft. Lauderdale, Florida, USA, Apr. 15–19, 2002, pp. 157–164.

[29] Benaissa, M. and Lim, W.M., “Design of flexible GF (2m) elliptic curve
cryptography processors,” IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, vol. 14, no. 6, Jun. 2006, pp. 659–662.

[30] Berlekamp, E.R., Algebraic Coding Theory, McGraw-Hill, 1968.

— 95 —

[31] Bernstein, D.J., Lange, T., and Farashahi, R.R., “Binary Edwards
curves,” in Proceedings of the Workshop on Cryptographic Hardware and
Embedded Systems, CHES 2008, Washington, DC, USA, Aug. 10–13, 2008,
Lecture Notes in Computer Science, vol. 5154, Springer, pp. 244–265.

[32] Blake, I., Seroussi, G., and Smart, N., Elliptic Curves in Cryptography,
London Mathematical Society Lecture Notes Series, vol. 265, Cambridge
University Press, 1999.

[33] Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A.,
Robshaw, M.J.B., Seurin, Y., and Vikkelsoe, C., “PRESENT: An ultra-
lightweight block cipher,” in Proceedings of the Workshop on Crypto-
graphic Hardware and Embedded Systems, CHES 2007, Vienna, Austria,
Sep. 10–13, 2007, Lecture Notes in Computer Science, vol. 4727, Springer,
pp. 450–466.

[34] Bouldin, D., “Enhancing electronic systems with reconfigurable hard-
ware,” IEEE Circuits and Devices Magazine, vol. 22, no. 3, May–Jun.
2006, pp. 32–36.

[35] Brauer, A., “On addition chains,” Bulletin of the American Mathematical
Society, vol. 45, no. 10, Oct. 1939, pp. 736–739.

[36] Brickell, E.F., Gordon, D.M., McCurley, K.S., and Wilson, D.B., “Fast
exponentiation with precomputation,” in Proceedings of the Workshop
on the Theory and Application of Cryptographic Techniques, Advances
in Cryptology — EUROCRYPT ’92, Balatonfüred, Hungary, May 24–28,
1992, Lecture Notes in Computer Science, vol. 658, Springer, pp. 200–207.

[37] Brokalakis, A., Kakarountas, A.P., and Goutis, C.E., “A high-throughput
area efficient FPGA implementation of AES-128 encryption,” in Proceed-
ings of the IEEE Workshop on Signal Processing Systems Design and Im-
plementation, SiPS 2005, Athens, Greece, Nov. 2–4, 2005, pp. 116–121.

[38] Brumley, B.B., “Efficient three-term simultaneous elliptic scalar multipli-
cation with applications,” in Proceedings of the 11th Nordic Workshop on
Secure IT Systems, NordSec 2006, Linköping, Sweden, 2006, pp. 105–116.

[39] ———, “Left-to-right signed-bit τ -adic representations of n integers,” in
Proceedings of the 8th International Conference on Information and Com-
munications Security, ICICS 2006, Raleigh, North Carolina, USA, Dec.
4–7, 2006, Lecture Notes in Computer Science, vol. 4307, Springer, pp.
469–478.

[40] ———, “Implementing cryptography for packet level authentication,” in
Proceedings of the 2008 International Conference on Security and Man-
agement, SAM 2008, Las Vegas, Nevada, USA, Jul. 14–17, 2008, CSREA
Press, pp. 475–480.

[41] Brumley, B.B. and Järvinen, K.U., “Fast point decompression for stan-
dard elliptic curves,” in Proceedings of the 5th European PKI Workshop,
EuroPKI 2008, Trondheim, Norway, Jun. 16–17, 2008, Lecture Notes in
Computer Science, vol. 5057, Springer, pp. 134–149.

— 96 —

[42] Bulens, P., Standaert, F.X., Quisquater, J.J., Pellegrin, P., and Rouvroy,
G., “Implementation of the AES-128 on Virtex-5 FPGAs,” in Proceedings
of the 1st International Conference on Cryptology in Africa, Progress in
Cryptology — AFRICACRYPT 2008, Casablanca, Morocco, Jun. 11–14,
2008, Lecture Notes in Computer Science, vol. 5023, Springer, pp. 16–26.

[43] Bundesamt für Sicherheit in der Informationstechnik (BSI), “Elliptic
curve cryptography based on ISO 15946,” Technical Guideline TR-
03111, ver. 1.00, Feb. 14, 2007, http://www.bsi.de/literat/tr/tr03111/
BSI-TR-03111.pdf (Oct. 9, 2008).

[44] ———, “Advanced security mechanisms for machine readable travel doc-
uments — extended access control (EAC),” Technical Guideline TR-
03110, ver. 1.11, Feb. 21, 2008, http://www.bsi.de/fachthem/epass/
TR-03110 v111.pdf (Oct. 9, 2008).

[45] Burr, W.E., “Selecting the advanced encryption standard,” IEEE Security
and Privacy, vol. 1, no. 2, Mar.–Apr. 2003, pp. 43–52.

[46] Candolin, C., Securing Military Decision Making in a Network-Centric
Environment, Ph.D. thesis, Helsinki University of Technology, 2005.

[47] Candolin, C., Lundberg, J., and Kari, H., “Packet level authentication
in military networks,” in Proceedings of the 6th Australian Information
Warfare & IT Security Conference, Geelong, Australia, Nov. 2005.

[48] Canright, D., “A very compact S-box for AES,” in Proceedings of the
Workshop on Cryptographic Hardware and Embedded Systems, CHES
2005, Edinburgh, Scotland, UK, Aug. 29–Sep. 1, 2005, Lecture Notes
in Computer Science, vol. 3659, Springer, pp. 441–456.

[49] Carlier, V., Chabanne, H., Dottax, E., and Pelletier, H., “Electromagnetic
side channels of an FPGA implementation of AES,” Cryptology ePrint
Archive, Report 2004/145, 2004, http://eprint.iacr.org/ (Oct. 9, 2008).

[50] Certicom, Corp., “The Certicom ECC challenge,” Web page, http://www.
certicom.ca/index.php/the-certicom-ecc-challenge (Oct. 9, 2008).

[51] Certicom Research, “SEC 1: Elliptic curve cryptography,” Standards for
Efficient Cryptography, Sep. 20, 2000.

[52] ———, “SEC 2: Recommended elliptic curve domain parameters,” Stan-
dards for Efficient Cryptography, Sep. 20, 2000.

[53] ———, “Certicom patent letter,” Online document, Feb. 10, 2005, http://
www.secg.org/download/aid-398/certicom patent letter SECG.pdf (Oct.
9, 2008).

[54] Chang Shantz, S., “From Euclid’s GCD to Montgomery multiplication to
the great divide,” Techical Report SMLI TR-2001-95, Sun Microsystems,
Inc., Jun. 2001.

— 97 —

[55] Charot, F., Yahya, E., and Wagner, C., “Efficient modular-pipelined AES
implementation in counter mode on Altera FPGA,” in Proceedings of the
13th International Conference on Field-Programmable Logic and Appli-
cations, FPL 2003, Lisbon, Portugal, Sep. 1–3, 2003, Lecture Notes in
Computer Science, vol. 2778, Springer, pp. 282–291.

[56] Chaves, R., Kuzmanov, G., Vassiliadis, S., and Sousa, L., “Reconfigurable
memory based AES co-processor,” in Proceedings of the 20th International
Parallel and Distributed Processing Symposium, IPDPS 2006, the 13th Re-
configurable Architectures Workshop, RAW 2006, Rhodes Island, Greece,
Apr. 25–26, 2006.

[57] Chelton, W.N. and Benaissa, M., “Fast elliptic curve cryptography on
FPGA,” IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, vol. 16, no. 2, Feb. 2008, pp. 198–205.

[58] Chen, G., Bai, G., and Chen, H., “A high-performance elliptic curve cryp-
tographic processor for general curves over GF (p) based on a systolic
arithmetic unit,” IEEE Transactions on Circuits and Systems—Part II:
Express Briefs, vol. 54, no. 5, May 2007, pp. 412–416.

[59] Cheung, R.C.C., Telle, N.J., Luk, W., and Cheung, P.Y.K., “Customiz-
able elliptic curve cryptosystem,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 13, Sep. 2005, pp. 1048–1059.

[60] Chevallier-Mames, B., Ciet, M., and Joye, M., “Low-cost solutions for
preventing simple side-channel analysis: Side-channel atomicity,” IEEE
Transactions on Computers, vol. 53, no. 6, Jun. 2006, pp. 760–768.

[61] Chodowiec, P. and Gaj, K., “Very compact FPGA implementation of
the AES algorithm,” in Proceedings of the Workshop on Cryptographic
Hardware and Embedded Systems, CHES 2003, Cologne, Germany, Sep.
8–10, 2003, Lecture Notes in Computer Science, vol. 2779, Springer, pp.
319–333.

[62] Chodowiec, P., Khuon, P., and Gaj, K., “Fast implementations of secret-
key block ciphers using mixed inner- and outer-round pipelining,” in Pro-
ceedings of the 2001 ACM/SIGDA 9th International Symposium on Field
Programmable Gate Arrays, Monterey, California, USA, Feb. 11–13, 2001,
pp. 94–102.

[63] Chou, W., “Inside SSL: Accelerating secure transactions,” IEEE IT Pro-
fessional, vol. 4, no. 5, Sep.–Oct. 2002, pp. 37–41.

[64] Chung, J. and Hasan, M.A., “Low-weight polynomial form integers for effi-
cient modular multiplication,” IEEE Transactions on Computers, vol. 56,
no. 1, Jan. 2007, pp. 44–57.

[65] Ciet, M., Lange, T., Sica, F., and Quisquater, J.J., “Improved algorithms
for efficient arithmetic on elliptic curves using fast endomorphisms,” in
Proceedings of the International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Advances in Cryptology — EURO-
CRYPT 2003, Warsaw, Poland, May 4–8, 2003, Lecture Notes in Com-
puter Science, vol. 2656, Springer, pp. 388–400.

— 98 —

[66] Ciet, M. and Sica, F., “An analysis of double base number systems and a
sublinear scalar multiplication algorithm,” in Proceedings of the 1st Inter-
national Conference on Cryptology in Malaysia, Progress in Cryptology —
Mycrypt 2005, Kuala Lumpur, Malaysia, Sep. 28–30, 2005, Lecture Notes
in Computer Science, vol. 3715, Springer, pp. 171–182.

[67] Cilardo, A., Coppolino, L., Mazzocca, N., and Romano, L., “Elliptic curve
cryptography engineering,” Proceedings of the IEEE, vol. 94, no. 2, Feb.
2006, pp. 395–406.

[68] Cohen, H. and Frey, G. (eds.), Handbook of Elliptic and Hyperelliptic
Curve Cryptography, Chapman & Hall/CRC, 2006.

[69] Compton, K. and Hauck, S., “Reconfigurable computing: A survey of
systems and software,” ACM Computing Surveys, vol. 34, no. 2, Jun.
2002, pp. 171–210.

[70] Crandall, R.E., “Method and apparatus for public key exchange in a cryp-
tographic system,” United States Patent 5,159,632, Oct. 27, 1992.

[71] Daemen, J. and Rijmen, V., The Design of Rijndael: AES — The Ad-
vanced Encryption Standard, Springer, 2002.

[72] Daly, A., Marnane, W., Kerins, T., and Popovici, E., “An FPGA imple-
mentation of a GF (p) ALU for encryption processors,” Microprocessors
and Microsystems, vol. 28, no. 5-6, Aug. 2004, pp. 253–260.

[73] Daneshbeh, A.K. and Hasan, M.A., “Area efficient high speed elliptic
curve cryptoprocessor for random curves,” in Proceedings of the Inter-
national Conference on Information Technology: Coding and Computing,
ITCC 2004, Las Vegas, Nevada, USA, Apr. 5–7, 2004, vol. 2, pp. 588–592.

[74] Dhem, J.F., “Efficient modular reduction algorithm in Fq[x] and its appli-
cation to ”left to right” modular multiplication in F2[x],” in Proceedings of
the Workshop on Cryptographic Hardware and Embedded Systems, CHES
2003, Cologne, Germany, Sep. 8–10, 2003, Lecture Notes in Computer
Science, vol. 2779, Springer, pp. 203–213.

[75] Dhem, J.F., Koeune, F., Leroux, P.A., Mestré, P., Quisquater, J.J., and
Willems, J.L., “A practical implementation of the timing attack,” in Pro-
ceedings of the 3rd International Conference on Smart Card Research and
Applications, CARDIS ’98, Louvain-la-Neuve, Belgium, Sep. 14–16, 1998,
Lecture Notes in Computer Science, vol. 1820, Springer, pp. 167–182.

[76] Diffie, W. and Hellman, M.E., “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. 22, no. 6, Nov. 1976, pp. 644–
654.

[77] Dimitrov, V., Imbert, L., and Mishra, P.K., “Efficient and secure elliptic
curve point multiplication using double-base chains,” in Proceedings of the
11th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Advances in Cryptology — ASIACRYPT
2005, Chennai, India, Dec. 4–8, 2005, Lecture Notes in Computer Science,
vol. 3788, Springer, p. 59–78.

— 99 —

[78] ———, “The double-base number system and its application to elliptic
curve cryptography,” Mathematics of Computation, vol. 77, no. 262, Apr.
2008, pp. 1075–1104.

[79] Dimitrov, V.S., Jullien, G.A., and Miller, W.C., “An algorithm for mod-
ular exponentiation,” Information Processing Letters, vol. 66, no. 3, May
1998, pp. 155–159.

[80] ———, “Theory and applications of the double-base number system,”
IEEE Transactions on Computers, vol. 48, no. 10, Oct. 1999, pp. 1098–
1106.

[81] Dobbertin, H., Bosselaers, A., and Preneel, B., “RIPEMD-160: A
strengthened version of RIPEMD,” in Proceedings of the 3rd International
Workshop on Fast Software Encryption, FSE 1996, Cambridge, UK, Feb.
21–23, 1996, Lecture Notes in Computer Science, vol. 1039, Springer, pp.
71–82.

[82] Doche, C., “Exponentiation,” in Handbook of Elliptic and Hyperelliptic
Curve Cryptography (H. Cohen and G. Frey, eds.), chap. 9, Chapman &
Hall/CRC, 2006, pp. 145–168.

[83] ———, “Finite field arithmetic,” in Handbook of Elliptic and Hyperelliptic
Curve Cryptography (H. Cohen and G. Frey, eds.), chap. 11, Chapman &
Hall/CRC, 2006, pp. 201–237.

[84] Doche, C. and Lange, T., “Arithmetic of elliptic curves,” in Handbook
of Elliptic and Hyperelliptic Curve Cryptography (H. Cohen and G. Frey,
eds.), chap. 13, Chapman & Hall/CRC, 2006, pp. 267–302.

[85] Doche, C. and Lubicz, D., “Algebraic background,” in Handbook of Ellip-
tic and Hyperelliptic Curve Cryptography (H. Cohen and G. Frey, eds.),
chap. 2, Chapman & Hall/CRC, 2006, pp. 19–37.

[86] Drimer, S., Güneysu, T., and Paar, C., “DSPs, BRAMs and a pinch of
logic: New recipes for AES on FPGAs,” in Proceedings of the 16th Annual
IEEE Symposium on Field-programmable Custom Computing Machines,
FCCM 2008, Stanford, California, USA, Apr. 14–15, 2008, to appear.

[87] Eberle, H., Gura, N., and Chang-Shantz, S., “A cryptographic processor
for arbitrary elliptic curves over GF (2m),” in Proceedings of the IEEE
International Conference on Application-Specific Systems, Architectures,
and Processors, ASAP 2003, The Hague, The Netherlands, Jun. 24–26,
2003, pp. 444–454.

[88] Eberle, H., Gura, N., Chang Shantz, S., Gupta, V., Rarick, L., and Sun-
daram, S., “A public-key cryptographic processor for RSA and ECC,” in
Proceedings of the 15th IEEE International Conference on Application-
Specific Systems, Architectures and Processors, ASAP 2004, Galveston,
Texas, USA, Sep. 27–29, 2004, pp. 98–110.

[89] Eberle, H., Shantz, S., Gupta, V., Gura, N., Rarick, L., and Spracklen,
L., “Accelerating next-generation public-key cryptosystems on general-
purpose CPUs,” IEEE Micro, vol. 25, no. 2, Mar.–Apr. 2005, pp. 52–59.

— 100 —

[90] Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A., and Uhsadel, L., “A
survey of lightweight-cryptography implementations,” IEEE Design and
Test of Computers, vol. 24, no. 6, Nov.–Dec. 2007, pp. 522–533.

[91] Elbirt, A.J., Yip, W., Chetwynd, B., and Paar, C., “An FPGA-based per-
formance evaluation of the AES block cipher candidate algorithm final-
ists,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 9, no. 4, Aug. 2001, pp. 545–557.

[92] ElGamal, T., “A public key cryptosystem and a signature scheme based on
discrete logarithms,” IEEE Transactions on Information Theory, vol. 31,
no. 4, Jul. 1985, pp. 469–472.

[93] Ernst, M., Jung, M., Madlener, F., Huss, S., and Blümel, R., “A reconfig-
urable system on chip implementation for elliptic curve cryptography over
GF (2n),” in Proceedings of the Workshop on Cryptographic Hardware and
Embedded Systems, CHES 2002, Redwood City, California, USA, Aug.
13–15, 2002, Lecture Notes in Computer Science, vol. 2523, Springer, pp.
381–399.

[94] Ernst, M., Klupsch, S., Hauck, O., and Huss, S.A., “Rapid prototyping
for hardware accelerated elliptic curve public-key cryptosystems,” in Pro-
ceedings of the 12th International Workshop on Rapid System Prototyping,
RSP 2001, Monterey, California, USA, Jun. 25–27, 2001, pp. 24–29.

[95] Feldhofer, M., Dominikus, S., and Wolkerstorfer, J., “Strong authenti-
cation for RFID systems using the AES algorithm,” in Proceedings of
the Workshop on Cryptographic Hardware and Embedded Systems, CHES
2004, Cambridge, Massachusetts, USA, Aug. 10–13, 2004, Lecture Notes
in Computer Science, vol. 3156, Springer, pp. 357–370.

[96] Feldhofer, M., Wolkerstorfer, J., and Rijmen, V., “AES implementation on
a grain of sand,” IEE Proceedings: Information Security, vol. 152, no. 1,
Oct. 2005, pp. 13–20.

[97] Fischer, V. and Drutarovský, M., “Two methods of Rijndael implementa-
tion in reconfigurable hardware,” in Proceedings of the Workshop on Cryp-
tographic Hardware and Embedded Systems, CHES 2001, Paris, France,
May 14–16, 2001, Lecture Notes in Computer Science, vol. 2162, Springer,
pp. 77–92.

[98] Fischer, V., Drutarovský, M., Chodowiec, P., and Gramain, F., “InvMix-
Column decomposition and multilevel resource sharing in AES implemen-
tations,” IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, vol. 13, no. 8, Aug. 2005, pp. 989–992.

[99] Frey, G. and Lange, T., “Algebraic realizations of DL systems,” in Hand-
book of Elliptic and Hyperelliptic Curve Cryptography (H. Cohen and
G. Frey, eds.), chap. 23, Chapman & Hall/CRC, 2006, pp. 547–572.

[100] Gaj, K. and Chodowiec, P., “Fast implementation and fair comparison
of the final candidates for advanced encryption standard using field pro-
grammable gate arrays,” in Proceedings of the Cryptographers’ Track at

— 101 —

the RSA Conference 2001, Topics in Cryptology — CT-RSA 2001, San
Francisco, California, USA, Apr. 8–12, 2001, Lecture Notes in Computer
Science, vol. 2020, Springer, pp. 84–99.

[101] Gallant, R.P., Lambert, R.J., and Vanstone, S.A., “Faster point multipli-
cation on elliptic curves with efficient endomorphisms,” in Proceedings of
the 21st Annual International Cryptology Conference, Advances in Cryp-
tology — CRYPTO 2001, Santa Barbara, California, USA, Aug. 19–23,
2001, Lecture Notes in Computer Science, vol. 2139, Springer, pp. 190–
200.

[102] Gao, L., Shrivastava, S., Lee, H., and Sobelman, G.E., “A compact fast
variable key size elliptic curve cryptosystem coprocessor,” in Proceedings
of the 7th Annual IEEE Symposium on Field-Programmable Custom Com-
puting Machines, FCCM 1999, Napa Valley, California, USA, Apr. 21–23,
1999, pp. 304–305.

[103] Good, T. and Benaissa, M., “AES on FPGA from the fastest to the small-
est,” in Proceedings of the Workshop on Cryptographic Hardware and Em-
bedded Systems, CHES 2005, Edinburgh, Scotland, UK, Aug. 29–Sep. 1,
2005, Lecture Notes in Computer Science, vol. 3659, Springer, pp. 427–
440.

[104] ———, “Very small FPGA application-specific instruction processor for
AES,” IEEE Transactions on Circuits and Systems—Part I: Regular Pa-
pers, vol. 53, no. 7, Jul. 2006, pp. 1477–1486.

[105] ———, “Pipelined AES on FPGA with support for feedback modes (in
a multi-channel environment),” IET Information Security, vol. 1, no. 1,
Mar. 2007, pp. 1–10.

[106] Goodman, J. and Chandrakasan, A., “An energy efficient reconfigurable
public-key cryptography processor architecture,” in Proceedings of the
Workshop on Cryptographic Hardware and Embedded Systems, CHES
2000, Worcester, Massachusetts, USA, Aug. 17–18, 2000, Lecture Notes
in Computer Science, vol. 1965, Springer, pp. 175–190.

[107] ———, “An energy-efficient reconfigurable public-key cryptography pro-
cessor,” IEEE Journal of Solid-State Circuits, vol. 36, no. 11, Nov. 2001,
pp. 1808–1820.

[108] Gordon, D.M., “A survey of fast exponentiation methods,” Journal of
Algorithms, vol. 27, no. 1, Apr. 1998, pp. 129–146.

[109] Grabbe, C., Bednara, M., Teich, J., von zur Gathen, J., and Shokrollahi,
J., “FPGA designs of parallel high performance GF (2233) multipliers,” in
Proceedings of the 2003 IEEE International Symposium on Circuits and
Systems, ISCAS 2003, Bangkok, Thailand, May 25–28, 2003, vol. 2, pp.
268–271.

[110] Grabner, P.J., Heuberger, C., and Prodinger, H., “Distribution results
for low-weight binary representations for pairs of integers,” Theoretical
Computer Science, vol. 319, no. 1-3, Jun. 2004, pp. 307–331.

— 102 —

[111] Großschädl, J., “A bit-serial unified multiplier architecture for finite fields
GF (p) and GF (2m),” in Proceedings of the Workshop on Cryptographic
Hardware and Embedded Systems, CHES 2001, Paris, France, May 14–
16, 2001, Lecture Notes in Computer Science, vol. 2162, Springer, pp.
202–219.

[112] Großschädl, J. and Savaş, E., “Instruction set extensions for fast arith-
metic in finite fields GF (p) and GF (2m),” in Proceedings of the Workshop
on Cryptographic Hardware and Embedded Systems, CHES 2004, Cam-
bridge, Massachusetts, USA, Aug. 10–13, 2004, Lecture Notes in Com-
puter Science, vol. 3156, Springer, pp. 133–147.

[113] Guajardo, J. and Paar, C., “Itoh-Tsujii inversion in standard basis and
its application in cryptography and codes,” Designs, Codes and Cryptog-
raphy, vol. 25, no. 2, Feb. 2002, pp. 207–216.

[114] Gura, N., Chang Shantz, S., Eberle, H., Gupta, S., Gupta, V., Finchel-
stein, D., Goupy, E., and Stebila, D., “An end-to-end systems approach
to elliptic curve cryptography,” in Proceedings of the Workshop on Cryp-
tographic Hardware and Embedded Systems, CHES 2002, Redwood City,
California, USA, Aug. 13–15, 2002, Lecture Notes in Computer Science,
vol. 2523, Springer, pp. 349–365.

[115] Gura, N., Eberle, H., and Chang Shantz, S., “Generic implementations of
elliptic curve cryptography using partial reduction,” in Proceedings of the
9th ACM conference on Computer and Communications Security, CCS
2002, Washington, DC, USA, Nov. 18–22, 2002, vol. 1, pp. 108–116.

[116] Gura, N., Patel, A., Wander, A., Eberle, H., and Shantz, S., “Comparing
elliptic curve cryptography and RSA on 8-bit CPUs,” in Proceedings of
the Workshop on Cryptographic Hardware and Embedded Systems, CHES
2004, Cambridge, Massachusetts, USA, Aug. 10–13, 2004, Lecture Notes
in Computer Science, vol. 3156, Springer, pp. 119–132.

[117] Halbutogullari, A. and Koç, Ç.K., “Mastrovito multipliers for general ir-
reducible polynomials,” IEEE Transactions on Computers, vol. 49, no. 5,
May 2000, pp. 503–518.

[118] Hämäläinen, P., Cryptographic Security Design and Hardware Architec-
tures for Wireless Local Area Networks, Ph.D. thesis, Tampere University
of Technology, 2006.

[119] Hämäläinen, P., Alho, T., Hännikäinen, M., and Hämäläinen, T.D., “De-
sign and implementation of low-area and low-power AES encryption hard-
ware core,” in Proceedings of the 9th EUROMICRO Conference on Digital
System Design: Architectures, Methods and Tools, DSD 2006, Dubrovnik,
Croatia, Aug. 30–Sep. 1, 2006, pp. 577–583.

[120] Hämäläinen, P., Hännikäinen, M., and Hämäläinen, T.D., “Review of
hardware architectures for advanced encryption standard implementations
considering wireless sensor networks,” in Proceedings of the 7th Interna-
tional Workshop on Embedded Computer Systems: Architectures, Mod-
eling, and Simulation, SAMOS 2007, Samos, Greece, Jul. 16–19, 2007,
Lecture Notes in Computer Science, vol. 4599, Springer, pp. 443–453.

— 103 —

[121] Hankerson, D., Hernandez, J.L., and Menezes, A., “Software implemen-
tation of elliptic curve cryptography over binary fields,” in Proceedings of
the Workshop on Cryptographic Hardware and Embedded Systems, CHES
2000, Worcester, Massachusetts, USA, Aug. 17–18, 2000, Lecture Notes
in Computer Science, vol. 1965, Springer, pp. 1–24.

[122] Hankerson, D., Menezes, A., and Vanstone, S., Guide to Elliptic Curve
Cryptography, Springer, 2004.

[123] Hasan, M.A., “Look-up table-based large finite field multiplication in
memory constrained cryptosystems,” IEEE Transactions on Computers,
vol. 49, no. 7, Jul. 2000, pp. 749–758.

[124] Higuchi, A. and Takagi, N., “A fast addition algorithm for elliptic curve
arithmetic in GF (2n) using projective coordinates,” Information Process-
ing Letters, vol. 76, no. 3, Dec. 15 2000, pp. 101–103.

[125] Hodjat, A. and Verbauwhede, I., “A 21.54 Gbits/s fully pipelined AES
processor on FPGA,” in Proceedings of 2004 IEEE Symposium on Field-
programmable Custom Computing Machines, FCCM 2004, Napa, Califor-
nia, USA, Apr. 20–23, 2004, pp. 308–309.

[126] ———, “Area-throughput trade-offs for fully pipelined 30 to 70 Gbits/s
AES processors,” IEEE Transactions on Computers, vol. 55, no. 4, Apr.
2006, pp. 366–372.

[127] Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.S., Lee, C., Chang,
D., Lee, J., Jeong, K., Kim, H., Kim, J., and Chee, S., “HIGHT: A new
block cipher suitable for low-resource device,” in Proceedings of the Work-
shop on Cryptographic Hardware and Embedded Systems, CHES 2006,
Yokohama, Japan, Oct. 10–13, 2006, Lecture Notes in Computer Science,
vol. 4249, Springer, pp. 46–59.

[128] Hsiao, S.F., Chen, M.C., Tsai, M.Y., and Lin, C.C., “System-on-chip im-
plementation of the whole advanced encryption standard processor using
reduced XOR-based sum-of-product operations,” IEE Proceedings: Infor-
mation Security, vol. 152, no. 1, Oct. 2005, pp. 21–30.

[129] Hsiao, S.F., Chen, M.C., and Tu, C.S., “Memory-free low-cost designs of
advanced encryption standard using common subexpression elimination
for subfunctions in transformations,” IEEE Transactions on Circuits and
Systems—Part I: Regular Papers, vol. 53, no. 3, Mar. 2006, pp. 615–626.

[130] Hwang, D.D., Tiri, K., Hodjat, A., Lai, B.C., Yang, S., Schaumont, P., and
Verbauwhede, I., “AES-based security coprocessor IC in 0.18-µm CMOS
with resistance to differential power analysis side-channel attacks,” IEEE
Journal of Solid-State Circuits, vol. 41, no. 4, Apr. 2006, pp. 781–791.

[131] Ichikawa, T., Kasuya, T., and Matsui, M., “Hardware evaluation of the
AES finalists,” in Proceedings of the 3rd Advanced Encryption Standard
Candidate Conference, New York, New York, USA, Apr. 13–14, 2000, pp.
279–285.

— 104 —

[132] Institute of Electrical and Electronics Engineers (IEEE), “IEEE standard
specifications for public-key cryptography,” IEEE Std 1363-2000, Jan. 30,
2002.

[133] ———, “IEEE standard specifications for public-key cryptography—
amendment 1: Additional techniques,” IEEE Std 1363a-2004, Jul. 22,
2004.

[134] International Organization for Standardization / International Elec-
trotechnic Commission (ISO/IEC), “Encryption algorithms,” ISO/IEC
18033, Part 2, 2002.

[135] ———, “Techniques based on elliptic curves,” ISO/IEC 15946, Parts 1-4,
2002.

[136] Itoh, T. and Tsujii, S., “A fast algorithm for computing multplicative
inverses in GF (2m) using normal bases,” Information and Computation,
vol. 78, no. 3, Sep. 1988, pp. 171–177.

[137] Järvinen, K., Tommiska, M., and Skyttä, J., “A VHDL generator for ellip-
tic curve cryptography,” in Proceedings of the 14th International Confer-
ence on Field Programmable Logic and Application, FPL 2004, Antwerp,
Belgium, Aug. 29–Sep. 1, 2004, Lecture Notes in Computer Science, vol.
3203, Springer, pp. 1098–1100.

[138] ———, “A compact MD5 and SHA-1 co-implementation utilizing algo-
rithm similarities,” in Proceedings of the 2005 International Conference
on Engineering of Reconfigurable Systems and Algorithms, ERSA 2005,
Las Vegas, Nevada, USA, Jun. 27–30, 2005, pp. 48–54.

[139] ———, “Hardware implementation analysis of the MD5 hash algorithm,”
in Proceedings of the 38th Annual Hawaii International Conference on
System Sciences, HICSS-38, Big Island, Hawaii, USA, Jan. 3–6, 2005, p.
298 (abstract), full paper in the CD proceedings and IEEE Xplore.

[140] Johnson, D., Menezes, A., and Vanstone, S., “The elliptic curve digital
signature algorithm (ECDSA),” International Journal of Information Se-
curity, vol. 1, no. 1, Aug. 2001, pp. 36–63.

[141] Joye, M. and Tymen, C., “Compact encoding of non-adjacent forms with
applications to elliptic curve cryptography,” in Proceedings of the 4th In-
ternational Workshop on Practice and Theory in Public Key Cryptosys-
tems, PKC 2001, Cheju Island, Korea, Feb. 13–15, 2001, Lecture Notes
in Computer Science, vol. 1992, Springer, pp. 353–364.

[142] Kaliski, B.S., “The Montgomery inverse and its applications,” IEEE
Transactions on Computers, vol. 44, no. 8, Aug. 1995, pp. 1064–1065.

[143] Karatsuba, A. and Ofman, Y., “Multiplication of multidigit numbers on
automata,” Doklady Akademii Nauk SSSR, vol. 145, no. 2, Jul. 1962, pp.
293–294, English translation: Soviet Physics — Doklady, vol. 7, no. 7,
Jan. 1963, pp. 595-596.

— 105 —

[144] Kerins, T., Popovici, E., Marnane, W., and Fitzpatrick, P., “Fully pa-
rameterizable elliptic curve cryptography processor over GF (2m),” in
Proceedings of the 12th International Conference on Field Programmable
Logic and Applications, FPL 2002, Montpellier, France, Sep. 2–4, 2002,
p. 750–759.

[145] Knudsen, E.W., “Elliptic scalar multiplication using point halving,” in
Proceedings of the International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Advances in Cryptology —
ASIACRYPT ’99, Singapore, Nov. 14–18, 1999, Lecture Notes in Com-
puter Science, vol. 1716, Springer, pp. 135–149.

[146] Koblitz, N., “Elliptic curve cryptosystems,” Mathematics of Computation,
vol. 48, 1987, pp. 203–209.

[147] ———, “Hyperelliptic cryptosystems,” Journal of Cryptology, vol. 1,
no. 3, Oct. 1989, pp. 139–150.

[148] ———, “CM-curves with good cryptographic properties,” in Advances in
Cryptology — CRYPTO ’91, Santa Barbara, California, USA, Aug. 11–15,
1991, Lecture Notes in Computer Science, vol. 576, Springer, pp. 279–287.

[149] Koç, Ç.K. and Acar, T., “Montgomery multiplication in GF (2k),” De-
signs, Codes and Cryptography, vol. 14, no. 1, Apr. 1998, p. 57–69.

[150] Koç, Ç.K. and Sunar, B., “Low-complexity bit-parallel canonical and nor-
mal basis multipliers for a class of finite fields,” IEEE Transactions on
Computers, vol. 47, no. 3, Mar. 1998, pp. 353–356.

[151] Kocher, P., Jaffe, J., and Jun, B., “Differential power analysis,” in Proceed-
ings of the 19th Annual International Cryptology Conference, Advances in
Cryptology — CRYPTO ’99, Santa Barbara, California, USA, Aug. 15–
19, 1999, Lecture Notes in Computer Science, vol. 1666, Springer, pp.
388–397.

[152] Kocher, P.C., “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems,” in Proceedings of the 16th Annual In-
ternational Cryptology Conference, Advances in Cryptology — CRYPTO
’96, Santa Barbara, California, USA, Aug. 18–22, 1996, Lecture Notes in
Computer Science, vol. 1109, Springer, pp. 104–113.

[153] Kosaraju, N.M., Varanasi, M., and Mohanty, S.P., “A high-performance
VLSI architecture for advanced encryption standard (AES) algorithm,” in
Proceedings of the 19th International Conference on VLSI Design, VLSID
2006, Hyderabad, India, Jan. 3–7, 2006.

[154] Kotturi, D., Yoo, S.M., and Blizzard1, J., “AES crypto chip utilizing
high-speed parallel pipelined architecture,” in Proceedings of the IEEE
International Symposium on Circuits and Systems, ISCAS 2005, Kobe,
Japan, May 23–26, 2005, vol. 5, pp. 4653–4656.

[155] Kravitz, D.W., “Digital signature algorithm,” United States Patent
5,231,668, Jul. 27, 1993.

— 106 —

[156] Kumar, S., Wollinger, T., and Paar, C., “Optimum digit serial GF (2m)
multipliers for curve-based cryptography,” IEEE Transactions on Com-
puters, vol. 55, no. 10, Oct. 2006, pp. 1306–1311.

[157] Kuo, H. and Verbauwhede, I., “Architectural optimization for a
1.82Gbits/sec VLSI implementation of the AES Rijndael algorithm,” in
Proceedings of the Workshop on Cryptographic Hardware and Embedded
Systems, CHES 2001, Paris, France, May 14–16, 2001, Lecture Notes in
Computer Science, vol. 2162, Springer, pp. 51–64.

[158] Kuon, I. and Rose, J., “Measuring the gap between FPGAs and ASICs,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 26, no. 2, Feb. 2007, pp. 203–215.

[159] Kwon, S., Gaj, K., Kim, C.H., and Hong, C.P., “Efficient linear array for
multiplication in GF (2m) using a normal basis for elliptic curve cryptog-
raphy,” in Proceedings of the Workshop on Cryptographic Hardware and
Embedded Systems, CHES 2004, Cambridge, Massachusetts, USA, Aug.
10–13, 2004, Lecture Notes in Computer Science, vol. 3156, Springer, pp.
76–91.

[160] LaMacchia, B.A. and Manferdelli, J.L., “New Vistas in elliptic curve cryp-
tography,” Information Security Technical Report, vol. 11, no. 4, 2006, pp.
186–192.

[161] Lange, T., “A note on López-Dahab coordinates,” Cryptology ePrint
Archive, Report 2004/323, 2004, http://eprint.iacr.org/, (Oct. 9, 2008).

[162] ———, “Koblitz curve cryptosystems,” Finite Fields and Their Applica-
tions, vol. 11, no. 2, Apr. 2005, pp. 200–229.

[163] Leander, G., Paar, C., Poschmann, A., and Schramm, K., “New
lightweight DES variants,” in Revised Selected Papers of the 14th Inter-
national Workshop on Fast Software Encryption, FSE 2007, Luxemburg,
Luxemburg, Mar. 26–28, 2007, Lecture Notes in Computer Science, vol.
4593, Springer, pp. 196–210.

[164] Lenstra, A.K. and Verheul, E.R., “Selecting cryptographic key sizes,”
Journal of Cryptology, vol. 14, no. 4, Dec. 2001, p. 255–293.

[165] Lenstra, H.W., “Factoring integers with elliptic curves,” The Annals of
Mathematics, vol. 126, no. 3, Nov. 1987, pp. 649–673.

[166] Leone, M., “A new low complexity parallel multiplier for a class of finite
fields,” in Proceedings of the Workshop on Cryptographic Hardware and
Embedded Systems, CHES 2001, Paris, France, May 14–16, 2001, Lecture
Notes in Computer Science, vol. 2162, Springer, pp. 160–170.

[167] Leong, P.H.W. and Leung, K.H., “A microcoded elliptic curve processor
using FPGA technology,” IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, vol. 10, no. 5, Oct. 2002, pp. 550–559.

— 107 —

[168] Leung, K.H., Ma, K.W., Wong, W.K., and Leong, P.H.W., “FPGA im-
plementation of a microcoded elliptic curve cryptographic processor,” in
Proceedings of the 2000 IEEE Symposium on Field-Programmable Custom
Computing Machines, FCCM 2000, Napa Valley, California, USA, Apr.
17–19, 2000, pp. 68–76.

[169] Liberatori, M., Otero, F., Bonadero, J.C., and Castiñeira, J., “AES-128
cipher. high speed, low cost FPGA implementation,” in Proceedings of
the 3rd Southern Conference on Programmable Logic, SPL 2007, Mar del
Plata, Argentina, Feb. 26–28, 2007, pp. 195–198.

[170] Lim, C.H. and Lee, P.J., “More flexible exponentiation with precompu-
tation,” in Proceedings of the 14th Annual International Cryptology Con-
ference, Advances in Cryptology — CRYPTO ’94, Santa Barbara, Cali-
fornia, USA, Aug. 21–25, 1994, Lecture Notes in Computer Science, vol.
839, Springer, pp. 95–107.

[171] Ling, S. and Xing, C., Coding Theory: A First Course, Cambridge Uni-
versity Press, 2004.

[172] Lipmaa, H., “AES/Rijndael: speed,” Web page, http://research.cyber.
ee/∼lipmaa/research/aes/rijndael.html (Oct. 9, 2008).

[173] Liu, S., Bowen, F., King, B., and Wang, W., “Elliptic curves cryptosystem
implementation based on a look-up table sharing scheme,” in Proceedings
of the 2006 IEEE International Symposium on Circuits and Systems, IS-
CAS 2006, Island of Kos, Greece, May 21–24, 2006, pp. 2921–2924.

[174] López, J. and Dahab, R., “Improved algorithms for elliptic curve arith-
metic in GF (2n),” in Proceedings of the 5th Annual International Work-
shop on Selected Areas in Cryptography, SAC ’98, Kingston, Ontario,
Canada, Aug. 17–18, 1998, Lecture Notes in Computer Science, vol. 1556,
Springer, pp. 201–212.

[175] ———, “Fast multiplication on elliptic curves over GF (2m) without pre-
computation,” in Proceedings of the Workshop on Cryptographic Hardware
and Embedded Systems, CHES 1999, Worcester, Massachusetts, USA,
Aug. 12–13, 1999, Lecture Notes in Computer Science, vol. 1717, Springer,
pp. 316–317.

[176] Lutz, A.K., Treichler, J., Gürkaynak, F.K., Kaeslin, H., Basler, G., Erni,
A., Reichmuth, S., Rommens, P., Oetiker, S., and Fichtner, W., “2Gbit/s
hardware realizations of RIJNDAEL and SERPENT: A comparative anal-
ysis,” in Proceedings of the Workshop on Cryptographic Hardware and
Embedded Systems, CHES 2002, Redwood City, California, USA, Aug.
13–15, 2002, Lecture Notes in Computer Science, vol. 2523, Springer, pp.
144–158.

[177] Lutz, J., High Performance Elliptic Curve Cryptographic Co-processor,
Master’s thesis, University of Waterloo, Canada, 2003.

[178] Lutz, J. and Hasan, A., “High performance FPGA based elliptic curve
cryptographic co-processor,” in Proceedings of the International Confer-
ence on Information Technology: Coding and Computing, ITCC 2004, Las
Vegas, Nevada, USA, Apr. 5–7, 2004, vol. 2, pp. 486–492.

— 108 —

[179] Mangard, S., Aigner, M., and Dominikus, S., “A highly regular and
scalable AES hardware architecture,” IEEE Transactions on Computers,
vol. 52, no. 4, Apr. 2003, pp. 483–491.

[180] Mangard, S., Oswald, E., and Popp, T., Power Analysis Attacks: Reveal-
ing the Secrets of Smart Cards, Springer, 2007.

[181] Mastrovito, E.D., “VLSI designs for multiplication over finite fields
GF (2m),” in Proceedings of the 6th International Conference on Applied
Algebra, Algebraic Algorithms and Error-Correcting Codes, AAECC-6,
Rome, Italy, Jul. 4–8, 1988, Lecture Notes in Computer Science, vol. 357,
Springer, pp. 297–309.

[182] ———, VLSI architectures for computations in Galois fields, Ph.D. thesis,
Linköping University, 1991.

[183] Masuda, A.M., Moura, L., Panario, D., and Thomson, D., “Low com-
plexity normal elements over finite fields of characteristic two,” IEEE
Transactions on Computers, vol. 57, no. 7, Jul. 2008, pp. 990–1001.

[184] McIvor, C.J., McLoone, M., and McCanny, J.V., “Hardware elliptic curve
cryptographic processor over GF (p),” IEEE Transactions on Circuits and
Systems—Part I: Regular Papers, vol. 53, no. 9, Sep. 2006, pp. 1946–1957.

[185] McLoone, M. and McCanny, J.V., “High performance single-chip FPGA
Rijndael algorithm implementations,” in Proceedings of the Workshop
on Cryptographic Hardware and Embedded Systems, CHES 2001, Paris,
France, May 14–16, 2001, Lecture Notes in Computer Science, vol. 2162,
Springer, pp. 65–76.

[186] McLoone, M. and McCanny, J., “Rijndael FPGA implementation utilizing
look-up tables,” in Proceedings of the 2001 IEEE Workshop on Signal
Processing Systems, SIPS 2001, Antwerp, Belgium, Sep. 26–28, 2001, pp.
349–360.

[187] Meier, W. and Staffelbach, O., “Efficient multiplication on certain non-
supersingular elliptic curves,” in Proceedings of the 12th Annual Interna-
tional Cryptology Conference, Advances in Cryptology — CRYPTO ’92,
Santa Barbara, California, USA, Aug. 16–20, 1992, Lecture Notes in Com-
puter Science, vol. 740, Springer, pp. 333–344.

[188] Menezes, A.J., Okamoto, T., and Vanstone, S.A., “Reducing elliptic curve
logarithms to logarithms in a finite field,” IEEE Transactions on Infor-
mation Theory, vol. 39, no. 5, Sep. 1993, pp. 1639–1646.

[189] Menezes, A.J., van Oorschot, P.C., and Vanstone, S.A., Handbook of Ap-
plied Cryptography, CRC Press, 1997.

[190] Mentens, N., Batina, L., Preneel, B., and Verbauwhede, I., “A system-
atic evaluation of compact hardware implementations for the Rijndael
S-box,” in Proceedings of the Cryptographers’ Track at the RSA Confer-
ence, Topics in Cryptology — CT-RSA 2005, San Francisco, California,
USA, Feb. 14–18, 2005, Lecture Notes in Computer Science, vol. 3376,
Springer, pp. 323–333.

— 109 —

[191] Mentens, N., Örs, S.B., and Preneel, B., “An FPGA implementation of
an elliptic curve processor over GF (2m),” in Proceedings of the 14th ACM
Great Lakes symposium on VLSI, GLVLSI 2004, Boston, Massachusetts,
USA, Apr. 26-28, 2004, pp. 454–457.

[192] Meurice de Dormale, G., Bulens, P., and Quisquater, J.J., “Collision
search for elliptic curve discrete logarithm over GF (2m) with FPGA,” in
Proceedings of the Workshop on Cryptographic Hardware and Embedded
Systems, CHES 2007, Vienna, Austria, Sep. 10–13, 2007, Lecture Notes
in Computer Science, vol. 4727, Springer, pp. 378–393.

[193] Meurice de Dormale, G. and Quisquater, J.J., “High-speed hardware im-
plementations of elliptic curve cryptography: A survey,” Journal of Sys-
tems Architecture, vol. 53, no. 2-3, Feb.–Mar. 2007, pp. 72–84.

[194] Miller, V., “Use of elliptic curves in cryptography,” in Advances in Cryp-
tology — CRYPTO ’85, Santa Barbara, California, USA, Aug. 18–22,
1985, Lecture Notes in Computer Science, vol. 218, Springer, pp. 417–
426.

[195] Mishra, P.K. and Sarkar, P., “Application of Montgomery’s trick to
scalar multiplication for elliptic and hyperelliptic curves using a fixed base
point,” in Proceedings of the 7th International Workshop on Theory and
Practice in Public Key Cryptography, PKC 2004, Singapore, Mar. 1–4,
2004, Lecture Notes in Computer Science, vol. 2947, Springer, pp. 41–54.

[196] Montgomery, P.L., “Modular multiplication without trial division,” Math-
ematics of Computation, vol. 44, no. 170, Apr. 1985, pp. 519–521.

[197] ———, “Speeding the Pollard and elliptic curve methods of factorization,”
Mathematics of Computation, vol. 48, no. 177, Jan. 1987, pp. 243–264.

[198] Morain, F. and Olivos, J., “Speeding up the computations of an elliptic
curve using addition-subtraction chains,” RAIRO Theoretical Informatics
and Applications, vol. 24, no. 6, 1990, pp. 531–543.

[199] Morales-Sandoval, M. and Feregrino-Uribe, C., “GF (2m) arithmetic mod-
ules for elliptic curve cryptography,” in Proceedings of the IEEE Interna-
tional Conference on Reconfigurable Computing and FPGA’s, ReConFig
2006, San Luis Potosi, Mexico, Sep. 20–22, 2006.

[200] Morioka, S. and Satoh, A., “An optimized S-box circuit architecture for
low power AES design,” in Proceedings of the Workshop on Cryptographic
Hardware and Embedded Systems, CHES 2002, Redwood City, California,
USA, Aug. 13–15, 2002, Lecture Notes in Computer Science, vol. 2523,
Springer, pp. 172–186.

[201] ———, “A 10-Gbps full-AES crypto design with a twisted BDD S-box
architecture,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 12, no. 7, Jul. 2004, pp. 686–691.

[202] Mullin, R.C., Onyszchuk, I.M., Vanstone, S.A., and Wilson, R.M., “Op-
timal normal bases in GF (pn),” Discrete Applied Mathematics, vol. 22,
no. 2, 1989, pp. 149–161.

— 110 —

[203] National Institute of Standards and Technology (NIST), “Data encryption
standard (DES),” Federal Information Processing Standard, FIPS PUB
46, Jan. 15, 1977.

[204] ———, “Data encryption standard (DES),” Federal Information Process-
ing Standard, FIPS PUB 46-3, Oct. 25, 1999.

[205] ———, “Digital signature standard (DSS),” Federal Information Process-
ing Standard, FIPS PUB 186-2, Jan. 27, 2000.

[206] ———, “Advanced encryption standard (AES),” Federal Information
Processing Standard, FIPS PUB 197, Nov. 26, 2001.

[207] ———, “Secure hash standard (SHS),” Federal Information Processing
Standard, FIPS PUB 180-2, Aug. 1, 2002.

[208] ———, “Announcing request for candidate algorithm nominations for
a new cryptographic hash algorithm (SHA–3) family,” Federal Register,
vol. 72, no. 212, Nov. 2, 2007, pp. 62212–62220.

[209] ———, “Recommendation for block cipher modes of operation: Ga-
lois/counter mode (GCM) and GMAC,” Special Publication 800-38D,
Nov. 2007.

[210] National Security Agency (NSA), “The case of elliptic curve cryptogra-
phy,” Web page, http://www.nsa.gov/ia/industry/crypto elliptic curve.
cfm (Oct. 9, 2008).

[211] Nechvatal, J., Barker, E., Bassham, L., Burr, W., Dworkin, M., Foti, J.,
and Roback, E., “Report on the development of the Advanced Encryption
Standard (AES),” Techical report, National Institute of Standards and
Technology (NIST), Oct. 2, 2000.

[212] Nguyen, N., Gaj, K., Caliga, D., and El-Ghazawi, T., “Implementation
of elliptic curve cryptosystems on a reconfigurable computer,” in Proceed-
ings of the 2003 IEEE International Conference on Field-Programmable
Technology, FPT 2003, Tokyo, Japan, Dec. 15–17, 2003, pp. 60–67.

[213] Ning, P. and Yin, Y.L., “Efficient software implementation for finite field
multiplication in normal basis,” in Proceedings of the 3rd International
Conference on Information and Communications Security, ICICS 2001,
Xian, China, Nov. 13—16, 2001, Lecture Notes in Computer Science, vol.
2229, Springer, pp. 177–188.

[214] Okada, S., Torii, N., Itoh, K., and Takenaka, M., “Implementation of
elliptic curve cryptographic coprocessor over GF (2m) on an FPGA,” in
Proceedings of the Workshop on Cryptographic Hardware and Embedded
Systems, CHES 2000, Worcester, Massachusetts, USA, Aug. 17–18, 2000,
Lecture Notes in Computer Science, vol. 1965, Springer, pp. 25–40.

[215] Okeya, K. and Sakurai, K., “Fast multi-scalar multiplication methods on
elliptic curves with precomputation strategy using Montgomery trick,” in
Proceedings of the Workshop on Cryptographic Hardware and Embedded
Systems, CHES 2002, Redwood City, California, USA, Aug. 13–15, 2002,
Lecture Notes in Computer Science, vol. 2523, Springer, pp. 564–578.

— 111 —

[216] Okeya, K., Takagi, T., and Vuillaume, C., “Short memory scalar multi-
plication on Koblitz curves,” in Proceedings of the Workshop on Crypto-
graphic Hardware and Embedded Systems, CHES 2005, Edinburgh, Scot-
land, UK, Aug. 29–Sep. 1, 2005, Lecture Notes in Computer Science, vol.
3659, Springer, pp. 91–105.

[217] Omura, J.K. and Massey, J.L., “Computational method and apparatus
for finite field arithmetic,” United States Patent 4,587,627, Oct. 6, 1986.

[218] OpenSSL Project, “OpenSSL: The open source toolkit for SSL/TLS,”
Web page, http://www.openssl.org (Oct. 9, 2008).

[219] Orlando, G. and Paar, C., “A super-serial Galois fields multiplier for
FPGAs and its application to public-key algorithms,” in Proceedings of
the 7th Annual IEEE Symposium on Field-Programmable Custom Com-
puting Machines, FCCM 1999, Napa Valley, California, USA, Apr. 21–23,
1999, pp. 232–239.

[220] ———, “A high-performance reconfigurable elliptic curve processor for
GF (2m),” in Proceedings of the Workshop on Cryptographic Hardware and
Embedded Systems, CHES 2000, Worcester, Massachusetts, USA, Aug.
17–18, 2000, Lecture Notes in Computer Science, vol. 1965, Springer, pp.
41–56.

[221] ———, “A scalable GF (p) elliptic curve processor architecture for pro-
grammable hardware,” in Proceedings of the Workshop on Cryptographic
Hardware and Embedded Systems, CHES 2001, Paris, France, May 14–
16, 2001, Lecture Notes in Computer Science, vol. 2162, Springer, pp.
348–363.

[222] Örs, S.B., Batina, L., Preneel, B., and Vandewalle, J., “Hardware imple-
mentation of an elliptic curve processor over GF (p),” in Proceedings of
the IEEE International Conference on Application-Specific Systems, Ar-
chitectures, and Processors, ASAP 2003, The Hague, The Netherlands,
Jun. 24–26, 2003, pp. 433–443.

[223] Örs, S.B., Oswald, E., and Preneel, B., “Power-analysis attacks on an
FPGA — first experimental results,” in Proceedings of the Workshop on
Cryptographic Hardware and Embedded Systems, CHES 2003, Cologne,
Germany, Sep. 8–10, 2003, Lecture Notes in Computer Science, vol. 2779,
Springer, pp. 35–50.

[224] Öztürk, E., Sunar, B., and Savaş, E., “Low-power elliptic curve cryptogra-
phy using scaled modular arithmetic,” in Proceedings of the Workshop on
Cryptographic Hardware and Embedded Systems, CHES 2004, Cambridge,
Massachusetts, USA, Aug. 10–13, 2004, Lecture Notes in Computer Sci-
ence, vol. 3156, Springer, pp. 92–106.

[225] Peter, S., Langendörfer, P., and Piotrowski, K., “Flexible hardware re-
duction for elliptic curve cryptography in GF (2m),” in Proceedings of the
Conference and Exhibition on Design, Automation and Test in Europe,
DATE 2007, Nice, France, Apr. 16–20, 2007, pp. 1259–1264.

— 112 —

[226] Popp, T., Mangard, S., and Oswald, E., “Power analysis attacks and
countermeasures,” IEEE Design and Test of Computers, vol. 24, no. 6,
Nov.–Dec. 2007, pp. 535–543.

[227] Potgieter, M.J. and van Dyk, B.J., “Two hardware implementations of
the group operations necessary for implementing an elliptic curve cryp-
tosystem over a characteristic two finite field,” in Proceedings of the 6th
IEEE Africon Conference in Africa, Africon 2002, George, South Africa,
Oct. 2-4, 2002, vol. 1, pp. 187–192.

[228] Pramstaller, N. and Wolkerstorfer, J., “A universal and efficient AES co-
processor for field programmable logic arrays,” in Proceedings of the 14th
International Conference on Field Programmable Logic and Application,
FPL 2004, Antwerp, Belgium, Aug. 30–Sep. 1, 2004, Lecture Notes in
Computer Science, vol. 3203, Springer, pp. 565–574.

[229] Preneel, B., “A survey of recent developments in cryptographic algorithms
for smart cards,” Computer Networks, vol. 51, no. 9, Jun. 2007, pp. 2223–
2233.

[230] Proos, J., “Joint sparse forms and generating zero columns when comb-
ing,” Techical Report CORR 2003-23, University of Waterloo, Canada,
Jul. 7, 2003.

[231] Ravi, S., Raghunathan, A., Kocher, P., and Hattangady, S., “Security in
embedded systems: Design challenges,” ACM Transactions on Embedded
Computing Systems, vol. 3, no. 3, Aug. 2004, pp. 461–491.

[232] Reyhani-Masoleh, A., “Efficient algorithms and architectures for field mul-
tiplication using Gaussian normal bases,” IEEE Transactions on Comput-
ers, vol. 55, no. 1, Jan. 2006, pp. 34–47.

[233] Reyhani-Masoleh, A. and Hasan, M.A., “On low complexity bit parallel
polynomial basis multipliers,” in Proceedings of the Workshop on Crypto-
graphic Hardware and Embedded Systems, CHES 2003, Cologne, Germany,
Sep. 8–10, 2003, Lecture Notes in Computer Science, vol. 2779, Springer,
pp. 189–202.

[234] ———, “Efficient digit-serial normal basis multipliers over binary exten-
sion fields,” ACM Transactions on Embedded Computing Systems, vol. 3,
no. 3, Aug. 2004, pp. 575–592.

[235] ———, “Low complexity bit parallel architectures for polynomial basis
multiplication over GF (2m),” IEEE Transactions on Computers, vol. 53,
no. 8, Aug. 2004, pp. 945–959.

[236] ———, “Low complexity word-level sequential normal basis multipliers,”
IEEE Transactions on Computers, vol. 54, no. 2, Feb. 2005, pp. 98–110.

[237] Rijmen, V., “Efficient implementation of the Rijndael S-box,” Online doc-
ument, http://citeseer.ist.psu.edu/293912.html (Oct. 9, 2008).

[238] Rivest, R., “The MD5 message-digest algorithm,” Request for Comments,
RFC 1321, Apr. 1992, http://www.ietf.org/rfc/rfc1321.txt (Oct. 9, 2008).

— 113 —

[239] Rivest, R.L., Shamir, A., and Adleman, L., “A method for obtaining
digital signatures and public-key cryptosystems,” Communications of the
ACM, vol. 21, no. 2, Feb. 1978, pp. 120–126.

[240] Rodŕıguez-Henŕıquez, F., Saqib, N.A., and Dı́az-Pérez, A., “4.2 Gbit/s
single-chip FPGA implementation of AES algorithm,” Electronics Letters,
vol. 39, no. 15, Jul. 24, 2003, pp. 1115–1116.

[241] ———, “A fast parallel implementation of elliptic curve point multiplica-
tion over GF (2m),” Microprocessors and Microsystems, vol. 28, no. 5–6,
Aug. 2004, pp. 329–339.

[242] Rosing, M., Implementing Elliptic Curve Cryptography, Manning Publi-
cations Co., 1999.

[243] Rosner, M.C., Elliptic Curve Cryptosystems on Reconfigurable Hardware,
Master’s thesis, Worcester Polytechnic Institute, 1998.

[244] Rouvroy, G., Standaert, F.X., Quisquater, J.J., and Legat, J.D., “Efficient
uses of FPGAs for implementations of DES and its experimental linear
cryptanalysis,” IEEE Transactions on Computers, vol. 52, no. 4, Apr.
2003, pp. 473–482.

[245] ———, “Compact and efficient encryption/decryption module for FPGA
implementation of the AES Rijndael very well suited for small embedded
applications,” in Proceedings of the International Conference on Informa-
tion Technology: Coding and Computing, ITCC 2004, Las Vegas, Nevada,
USA, Apr. 5–7, 2004, vol. 2, pp. 583–587.

[246] RSA Security, Inc., “The RSA factoring challenge,” Web page, http://
www.rsa.com/rsalabs/node.asp?id=2092 (Oct. 9, 2008).

[247] Rudra, A., Dubey, P.K., Jutla, C.S., Kumar, V., Rao, J.R., and Ro-
hatgi, P., “Efficient rijndael encryption implementation with composite
field arithmetic,” in Proceedings of the Workshop on Cryptographic Hard-
ware and Embedded Systems, CHES 2001, Paris, France, May 14–16, 2001,
Lecture Notes in Computer Science, vol. 2162, Springer, pp. 171–184.

[248] Saggese, G.P., Mazzeo, A., Mazzocca, N., and Strollo, A.G.M., “An
FPGA-based performance analysis of the unrolling, tiling, and pipelining
of the AES algorithm,” in Proceedings of the 13th International Confer-
ence on Field-Programmable Logic and Applications, FPL 2003, Lisbon,
Portugal, Sep. 1–3, 2003, Lecture Notes in Computer Science, vol. 2778,
Springer, pp. 292–302.

[249] Sakiyama, K., Batina, L., Preneel, B., and Verbauwhede, I., “Superscalar
coprocessor for high-speed curve-based cryptography,” in Proceedings of
the Workshop on Cryptographic Hardware and Embedded Systems, CHES
2006, Yokohama, Japan, Oct. 10–13, 2006, Lecture Notes in Computer
Science, vol. 4249, Springer, pp. 415–429.

[250] ———, “Multicore curve-based cryptoprocessor with reconfigurable mod-
ular arithmetic logic units over GF (2n),” IEEE Transactions on Comput-
ers, vol. 56, no. 9, Sep. 2007, pp. 1269–1282.

— 114 —

[251] Sakiyama, K., Mentens, N., Batina, L., Preneel, B., and Verbauwhede,
I., “Reconfigurable modular arithmetic logic unit supporting high-
performance RSA and ECC over GF (p),” International Journal of Elec-
tronics, vol. 94, no. 5, May 2007, pp. 501–514.

[252] Saqib, N.A., Rodŕıguez-Henŕıquez, F., and Dı́az-Pérez, A., “A paral-
lel architecture for fast computation of elliptic curve scalar multiplica-
tion over GF (2m),” in Proceedings of the 18th International Parallel and
Distributed Processing Symposium, IPDPS 2004, Santa Fe, New Mexico,
USA, Apr. 26–30, 2004.

[253] Satoh, A., “High-speed hardware architectures for authenticated encryp-
tion mode GCM,” in Proceedings of the 2006 IEEE International Sympo-
sium on Circuits and Systems, ISCAS 2006, Island of Kos, Greece, May
21–24, 2006, pp. 4831–4834.

[254] Satoh, A., Morioka, S., Takano, K., and Munetoh, S., “A compact Ri-
jndael hardware architecture with S-box optimization,” in Proceedings of
the 7th International Conference on the Theory and Application of Cryp-
tology and Information Security, Advances in Cryptology — ASIACRYPT
2001, Gold Coast, Australia, Dec. 9–13, 2001, Lecture Notes in Computer
Science, vol. 2248, Springer, pp. 239–254.

[255] Satoh, A. and Takano, K., “A scalable dual-field elliptic curve crypto-
graphic processor,” IEEE Transactions on Computers, vol. 52, no. 4, Apr.
2003, pp. 449–460.

[256] Savaş, E. and Koç, Ç.K., “The Montgomery modular inverse—revisited,”
IEEE Transactions on Computers, vol. 49, no. 7, Jul. 2000, pp. 763–766.

[257] Savaş, E., Tenca, A.F., and Koç, Ç.K., “A scalable and unified multi-
plier architecture for finite fields GF (p) and GF (2m),” in Proceedings of
the Workshop on Cryptographic Hardware and Embedded Systems, CHES
2000, Worcester, Massachusetts, USA, Aug. 17–18, 2000, Lecture Notes
in Computer Science, vol. 1965, Springer, pp. 277–292.

[258] Schneier, B., Applied Cryptography, John Wiley & Sons, Inc., 2nd ed.,
1996.

[259] Schroeppel, R., Beaver, C., Gonzales, R., Miller, R., and Draelos, T., “A
low-power design for an elliptic curve digital signature chip,” in Proceed-
ings of the Workshop on Cryptographic Hardware and Embedded Systems,
CHES 2002, Redwood City, California, USA, Aug. 13–15, 2002, Lecture
Notes in Computer Science, vol. 2523, Springer, pp. 366–381.

[260] Schroeppel, R., Orman, H., O’Malley, S., and Spatscheck, O., “Fast
key exchange with elliptic curve systems,” in Proceedings of the 15th
Annual International Cryptology Conference, Advances in Cryptology —
CRYPTO ’95, Santa Barbara, California, USA, Aug. 27–31, 1995, Lecture
Notes in Computer Science, vol. 963, Springer, pp. 43–56.

[261] Shacham, H. and Boneh, D., “Improving SSL handshake performance
via batching,” in Proceedings of the Cryptographers’ Track at the RSA

— 115 —

Conference 2001, Topics in Cryptology — CT-RSA 2001, San Francisco,
California, USA, Apr. 8–12, 2001, Lecture Notes in Computer Science,
vol. 2020, Springer, pp. 28–43.

[262] Shu, C., Gaj, K., and El-Ghazawi, T., “Low latency elliptic curve cryp-
tography accelerators for NIST curves over binary fields,” in Proceedings
of the 2005 IEEE International Conference on Field Programmable Tech-
nology, FPT 2005, Singapore, Dec. 11–14, 2005, pp. 309–310.

[263] Smart, N.P., “How secure are elliptic curves over composite extension
fields?” in Proceedings of the International Conference on the Theory
and Application of Cryptographic Techniques, Advances in Cryptology —
EUROCRYPT 2001, Aarhus, Denmark, May 21–23, 2001, Lecture Notes
in Computer Science, vol. 2045, Springer, pp. 30–39.

[264] Solinas, J.A., “An improved algorithm for arithmetic on a family of el-
liptic curves,” in Proceedings of the 17th Annual International Cryptology
Conference, Advances in Cryptology — CRYPTO ’97, Santa Barbara,
California, USA, Aug. 17–21, 1997, Lecture Notes in Computer Science,
vol. 1294, Springer, pp. 357–371.

[265] ———, “Generalized Mersenne numbers,” Techical Report CORR 99-39,
University of Waterloo, Canada, 1999.

[266] ———, “Improved algorithms for arithmetic on anomalous binary
curves,” Techical Report CORR 99-46, University of Waterloo, Canada,
1999, corrected and updated version of [264].

[267] ———, “Efficient arithmetic on Koblitz curves,” Designs, Codes and
Cryptography, vol. 19, no. 2–3, 2000, pp. 195–249.

[268] ———, “Low-weight binary representations for pairs of integers,” Techical
Report CORR 2001-41, University of Waterloo, Canada, 2001.

[269] Song, L. and Parhi, K.K., “Low-energy digit-serial/parallel finite field
multipliers,” Journal of VLSI Signal Processing, vol. 19, no. 2, Jul. 1998,
pp. 149–166.

[270] Sozzani, F., Bertoni, G., Turcato, S., and Breveglieri, L., “A parallelized
design for an elliptic curve cryptosystem coprocessor,” in Proceedings
of the International Conference on Information Technology: Coding and
Computing, ITCC 2005, Las Vegas, Nevada, USA, Apr. 4–6, 2005, vol. 1,
pp. 626–630.

[271] Standaert, F.X., Peeters, E., Rouvroy, G., and Quisquater, J.J., “An
overview of power analysis attacks against field programmable gate ar-
rays,” Proceedings of the IEEE, vol. 94, no. 2, Feb. 2006, pp. 383–394.

[272] Standaert, F.X., Rouvroy, G., Quisquater, J.J., and Legat, J.D., “Effi-
cient implementation of Rijndael encryption in reconfigurable hardware:
Improvements and design tradeoffs,” in Proceedings of the Workshop on
Cryptographic Hardware and Embedded Systems, CHES 2003, Cologne,
Germany, Sep. 8–10, 2003, Lecture Notes in Computer Science, vol. 2779,
Springer, pp. 334–350.

— 116 —

[273] Stein, J., “Computational problems associated with Racah algebra,” Jour-
nal of Computational Physics, vol. 1, no. 3, Feb. 1967, pp. 397–405.

[274] Stinson, D.R., Cryptography Theory and Practice, Chapman & Hall/CRC,
2nd ed., 2002.

[275] Su, C.P., Lin, T.F., Huang, C.T., and Wu, C.W., “A high-throughput low-
cost AES processor,” IEEE Communications Magazine, vol. 41, no. 12,
Dec. 2003, pp. 86–91.

[276] Sun Microsystems, Inc., “UltraSPARC T2 processor datasheet,”
Data sheet, 2007, http://www.sun.com/processors/UltraSPARC-T2/
datasheet.pdf (Oct. 9, 2008).

[277] Sunar, B. and Ç. K. Koç, “Mastrovito multiplier for all trinomials,” IEEE
Transactions on Computers, vol. 48, no. 5, May 1999, pp. 522–527.

[278] ———, “An efficient optimal normal basis type II multiplier,” IEEE
Transactions on Computers, vol. 50, no. 1, Jan. 2001, pp. 83–87.

[279] Tillich, S. and Großschädl, J., “Instruction set extensions for efficient AES
implementation on 32-bit processors,” in Proceedings of the Workshop on
Cryptographic Hardware and Embedded Systems, CHES 2006, Yokohama,
Japan, Oct. 10–13, 2006, Lecture Notes in Computer Science, vol. 4249,
Springer, pp. 270–284.

[280] Todman, T.J., Constantinides, G.A., Wilton, S.J.E., Mencer, O., Luk,
W., and Cheung, P.Y.K., “Reconfigurable computing: architectures and
design methods,” IEE Proceedings: Computers and Digital Techniques,
vol. 152, no. 2, Mar. 2005, pp. 193–207.

[281] Tommiska, M., Applications of Reprogrammability in Algorithm Accelera-
tion, Ph.D. thesis, Helsinki University of Technology, 2005.

[282] Verbauwhede, I., Schaumont, P., and Kuo, H., “Design and performance
testing of a 2.29-GB/s Rijndael processor,” IEEE Journal of Solid-State
Circuits, vol. 38, no. 3, Mar. 2003, pp. 569–572.

[283] von zur Gathen, J. and Shokrollahi, J., “Efficient FPGA-based Karatsuba
multipliers for polynomials over F2,” in Revised Selected Papers of the 12th
International Workshop on Selected Areas in Cryptography, SAC 2005,
Kingston, Ontario, Canada, Aug. 10–12, 2005, Lecture Notes in Computer
Science, vol. 3897, Springer, pp. 359–369.

[284] Vuillaume, C., Okeya, K., and Takagi, T., “Short memory scalar multi-
plication for koblitz curves,” IEEE Transactions on Computers, vol. 57,
no. 4, 2008, pp. 481–489.

[285] Wang, C.C., Troung, T.K., Shao, H.M., Deutsch, L.J., Omura, J.K., and
Reed, I.S., “VLSI architectures for computing multiplications and inverses
in GF (2m),” IEEE Transactions on Computers, vol. 34, no. 8, Aug. 1985,
pp. 709–717.

— 117 —

[286] Wang, X., Yin, Y.L., and Yu, H., “Finding collisions in the full SHA-1,”
in Proceedings of the 25th Annual International Cryptology Conference,
Advances in Cryptology — CRYPTO 2005, Santa Barbara, California,
USA, Aug. 14–18, 2005, Lecture Notes in Computes Science, vol. 3621,
pp. 17–36.

[287] Wang, X. and Yu, H., “How to break MD5 and other hash functions,” in
Proceedings of the 24th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Advances in Cryptology —
EUROCRYPT 2005, Aarhus, Denmark, May 22–26, 2005, Lecture Notes
in Computer Science, vol. 3494, Springer, pp. 19–35.

[288] Weeks, B., Bean, M., Rozylowicz, T., and Ficke, C., “Hardware perfor-
mance simulations of round 2 advanced encryption standard algorithms,”
in Proceedings of the 3rd Advanced Encryption Standard Candidate Con-
ference, New York, New York, USA, Apr. 13–14, 2000, pp. 286–304.

[289] Wiles, A., “Modular elliptic curves and Fermat’s last theorem,” The An-
nals of Mathematics, vol. 142, no. 3, May 1995, pp. 443–551.

[290] Wolf, W., FPGA-Based System Design, Prectice Hall, 2004.

[291] Wolkerstorfer, J., “Dual-field arithmetic unit for GF (p) and GF (2m),” in
Proceedings of the Workshop on Cryptographic Hardware and Embedded
Systems, CHES 2002, Redwood City, California, USA, Aug. 13–15, 2002,
Lecture Notes in Computer Science, vol. 2523, Springer, pp. 500–514.

[292] Wolkerstorfer, J., Oswald, E., and Lamberger, M., “An ASIC implemen-
tation of the AES Sboxes,” in Proceedings of the Cryptographers’ Track at
the RSA Conference, Topics in Cryptology — CT-RSA 2002, San Jose,
California, USA, Feb. 18–22, 2002, Lecture Notes in Computer Science,
vol. 2271, Springer, pp. 67–78.

[293] Wollinger, T., Guajardo, J., and Paar, C., “Security on FPGAs: State-of-
the-art implementations and attacks,” ACM Transactions on Embedded
Computing Systems, vol. 3, no. 3, Aug. 2004, pp. 534–574.

[294] Wollinger, T. and Paar, C., “How secure are FPGAs in cryptographic
applications?” in Proceedings of the 13th International Conference on
Field-Programmable Logic and Applications, FPL 2003, Lisbon, Portugal,
Sep. 1–3, 2003, Lecture Notes in Computer Science, vol. 2778, Springer,
pp. 91–100.

[295] Wu, H., “Low complexity bit-parallel finite field arithmetic using polyno-
mial basis,” in Proceedings of the Workshop on Cryptographic Hardware
and Embedded Systems, CHES 1999, Worcester, Massachusetts, USA,
Aug. 12–13, 1999, Lecture Notes in Computer Science, vol. 1717, Springer,
pp. 280–291.

[296] ———, “On complexity of polynomial basis squaring in F2m ,” in Pro-
ceedings of the 7th Annual International Workshop on Selected Areas in
Cryptography, SAC 2000, Waterloo, Ontario, Canada, Aug. 14–15, 2000,
Lecture Notes in Computer Science, vol. 2012, Springer, pp. 118–129.

— 118 —

[297] ———, “Bit-parallel finite field multiplier and squarer using polynomial
basis,” IEEE Transactions on Computers, vol. 51, no. 7, Jul. 2002, pp.
750–758.

[298] ———, “Montgomery multiplier and squarer for a class of finite fields,”
IEEE Transactions on Computers, vol. 51, no. 5, May 2002, pp. 521–529.

[299] Xilinx, Inc., “Virtex-E 1.8 V field programmable gate arrays,” Data
sheet, Jul. 17, 2002, http://www.xilinx.com/support/documentation/
data sheets/ds022.pdf (Oct. 9, 2008).

[300] ———, “MicroBlaze processor reference guide,” Data sheet, Jun.
25, 2007, http://www.xilinx.com/support/documentation/sw manuals/
edk92i mb ref guide.pdf (Oct. 9, 2008).

[301] ———, “Virtex-4 family overview,” Data sheet, Sep. 28, 2007, http://
www.xilinx.com/support/documentation/data sheets/ds112.pdf (Oct. 9,
2008).

[302] ———, “Virtex-II platform FPGAs: Complete data sheet,” Data
sheet, Nov. 5, 2007, http://www.xilinx.com/support/documentation/
data sheets/ds031.pdf (Oct. 9, 2008).

[303] ———, “Virtex-5 family overview,” Data sheet, Sep. 23, 2008, http://
www.xilinx.com/support/documentation/data sheets/ds100.pdf (Oct. 9,
2008).

[304] Zambreno, J., Nguyen, D., and Choudhary, A., “Exploring area/delay
tradeoffs in an AES FPGA implementation,” in Proceedings of the 14th
International Conference on Field Programmable Logic and Application,
FPL 2004, Antwerp, Belgium, Aug. 30–Sep. 1, 2004, Lecture Notes in
Computer Science, vol. 3203, Springer, pp. 575–585.

[305] Zhang, T. and Parhi, K.K., “Systematic design of original and modified
Mastrovito multipliers for general irreducible polynomials,” IEEE Trans-
actions on Computers, vol. 50, no. 7, Jul. 2001, pp. 734–749.

[306] Zhang, X. and Parhi, K.K., “Implementation approaches for the advanced
encryption standard algorithm,” IEEE Circuits and Systems Magazine,
vol. 2, no. 4, 2002, pp. 24–46.

[307] ———, “High-speed VLSI architectures for the AES algorithm,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12,
no. 9, Sep. 2004, pp. 957–967.

[308] ———, “On the optimum constructions of composite field for the AES al-
gorithm,” IEEE Transactions on Circuits and Systems—Part II: Express
Briefs, vol. 53, no. 10, Oct. 2006, pp. 1153–1157.

[309] Zhou, G., Michalik, H., and Hinsenkamp, L., “Efficient and high-
throughput implementations of AES-GCM on FPGAs,” in Proceedings
of the 2007 International Conference on Field Programmable Technology,
FPT 2007, Kitakyushu, Japan, Dec. 12–14, 2007, pp. 185–192.

— 119 —

[310] Zhou, J.Y., Liu, X.W., and Jiang, X.G., “Implementing elliptic curve
cryptography on Nios II processor,” in Proceedings of the 7th International
Conference on ASIC, ASICON 2007, Guilin, China, Oct. 26–29, 2007, pp.
205–208.

— 120 —

	Author: Kimmo Järvinen
	Name of the dissertation: Studies on High-Speed Hardware Implementation of Cryptographic Algorithms
	Submitted: May 30, 2008
	Revised: October 16, 2008
	Date of the defence: November 21, 2008
	Monograph: Off
	Article: Yes
	Department: Faculty of Electronics, Communications and Automation
	Laboratory: Department of Signal Processing and Acoustics
	Field of research: Signal Processing Computing Technology
	Opponents: Prof. Jari Nurmi (Tampere University of Technology) and Dr. Toomas P. Plaks (Conhard Design Ltd.)
	Supervisor: Prof. Jorma Skyttä
	Instructor: Prof. Jorma Skyttä
	Abstract: Cryptographic algorithms are ubiquitous in modern communication systems where they have a central role in ensuring information security. This thesis studies efficient implementation of certain widely-used cryptographic algorithms. Cryptographic algorithms are computationally demanding and software-based implementations are often too slow or power consuming which yields a need for hardware implementation. Field Programmable Gate Arrays (FPGAs) are programmable logic devices which have proven to be highly feasible implementation platforms for cryptographic algorithms because they provide both speed and programmability. Hence, the use of FPGAs for cryptography has been intensively studied in the research community and FPGAs are also the primary implementation platforms in this thesis.This thesis presents techniques allowing faster implementations than existing ones. Such techniques are necessary in order to use high-security cryptographic algorithms in applications requiring high data rates, for example, in heavily loaded network servers. The focus is on Advanced Encryption Standard (AES), the most commonly used secret-key cryptographic algorithm, and Elliptic Curve Cryptography (ECC), public-key cryptographic algorithms which have gained popularity in the recent years and are replacing traditional public-key cryptosystems, such as RSA. Because these algorithms are well-defined and widely-used, the results of this thesis can be directly applied in practice.The contributions of this thesis include improvements to both algorithms and techniques for implementing them. Algorithms are modified in order to make them more suitable for hardware implementation, especially, focusing on increasing parallelism. Several FPGA implementations exploiting these modifications are presented in the thesis including some of the fastest implementations available in the literature. The most important contributions of this thesis relate to ECC and, specifically, to a family of elliptic curves providing faster computations called Koblitz curves. The results of this thesis can, in their part, enable increasing use of cryptographic algorithms in various practical applications where high computation speed is an issue.
	Keywords: Cryptography, cryptographic algorithms, elliptic curve cryptography, AES, FPGA
	ISBN printed: 978-951-22-9589-0
	ISSN printed: 1797-4267
	Language: English
	Number of pages: 141+144 (app.)
	Publisher: TKK, Department of Signal Processing and Acoustics
	Print distribution: TKK, Department of Signal Processing and Acoustics
	Web: Yes
	Webaddress: 2008/isbn9789512295906
	Tekija: Kimmo Järvinen
	Vaitoskirjan nimi: Tutkimuksia kryptografisten algoritmien laskennan nopeuttamisesta
	Kasikirjoituksen pvm: 30.5.2008
	Korjattu pvm: 16.10.2008
	Vaitostilaisuus: 21.11.2008
	Monografia: Off
	Yhdistelmavaitoskirja: Yes
	Osasto: Elektroniikan, tietoliikenteen ja automaation tiedekunta
	Laboratorio: Signaalinkäsittelyn ja akustiikan laitos
	Tutkimusala: Signaalinkäsittelyn laskentatekniikka
	Vastavaittajat: Prof. Jari Nurmi (Tampereen teknillinen yliopisto) ja Dr. Toomas P. Plaks (Conhard Design Ltd.)
	Tyon valvoja: Prof. Jorma Skyttä
	Tyon ohjaaja: Prof. Jorma Skyttä
	Tiivistelma: Kryptografiset algoritmit ovat laajalti käytössä monissa modernin tietoliikenteen sovelluksissa, joissa niitä käytetään tiedon salaamiseen, autentikointiin, yms. Tämä väitöskirja tutkii tapoja toteuttaa tiettyjä kryptografisia algoritmeja, jotka ovat käytössä monissa käytännön sovelluksissa. Ne ovat laskennallisesti vaativia, minkä vuoksi ohjelmistopohjaiset toteutusratkaisut osoittautuvat usein liian hitaiksi. Näin ollen laitteistopohjaiset toteutukset ovat usein välttämättömiä. Uudelleenohjelmoitavat logiikkapiirit eli ns. FPGA-piirit soveltuvat hyvin kryptografisten algoritmien toteutusalustoiksi, koska niissä yhdistyvät sekä nopeus että ohjelmoitavuus. Niiden käyttöä kryptografisten algoritmien toteuttamisessa on tutkittu laajalti kansainvälisesti ja myös tässä väitöskirjassa esitettävät toteutukset on suunniteltu ensisijaisesti FPGA-piireille.Väitöskirja esittää tekniikoita, jotka mahdollistavat aikaisempaa nopeammat toteutukset. Tällaiset tekniikat ovat välttämättömiä, jotta kryptografisia algoritmeja voidaan käyttää erittäin nopeaa laskentaa vaativissa sovelluksissa, joita ovat esim. raskaasti kuormitettujen verkkojen palvelimet. Väitöskirja keskittyy AES-algoritmiin, joka on yleisimmin käytössä oleva salaisen avaimen salausalgoritmi, ja elliptisten käyrien salausjärjestelmiin, jotka ovat viime vuosina paljon huomiota saaneita julkisen avaimen salausjärjestelmiä. Elliptisten käyrien järjestelmien käyttö on viime aikoina lisääntynyt merkittävästi ja ne ovat useissa sovelluksissa korvanneet perinteiset järjestelmät, esim. RSA:n. Koska tutkittavat algoritmit ovat hyvin määriteltyjä ja laajasti käytettyjä, ovat väitöskirjan tulokset suoraan hyödynnettävissä käytännön ongelmissa.Väitöskirja esittää parannuksia sekä algoritmeihin että niiden toteutustapoihin. Algoritmeja muokataan siten, että ne soveltuvat paremmin laitteistopohjaisiin toteutuksiin keskittyen etenkin rinnakkaistamismahdollisuuksien lisäämiseen. Väitöskirjassa esitetään useita FPGA-pohjaisia toteutuksia, jotka hyödyntävät kyseisiä muokkauksia, ja niiden joukossa on nopeimpia julkaistuja toteutuksia. Väitöskirjan tärkeimmät tulokset käsittelevät elliptisten käyrien salausjärjestelmiä ja etenkin ns. Koblitz-käyrien käyttöä, jotka ovat nopeamman laskennan mahdollistavia elliptisiä käyriä. Tämän väitöskirjan tulokset voivat osaltaan lisätä kryptografisten algoritmien käyttöä useissa käytännön sovelluksissa, jotka vaativat nopeaa laskentaa.
	Asiasanat: Kryptografia, salausalgoritmit, elliptisten käyrien salausjärjestelmät, AES, FPGA
	ISBN painettu: 978-951-22-9589-0
	ISSN painettu: 1797-4267
	ISBN pdf: 978-951-22-9590-6
	ISSN pdf:
	Kieli: englanti
	Sivumäärä: 141+144 (liit.)
	Julkaisija: TKK, Signaalinkäsittelyn ja akustiikan laitos
	Jakelu: TKK, Signaalinkäsittelyn ja akustiikan laitos
	Verkko-osoite: Yes
	http: 2008/isbn9789512295906

