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Abstract

In decision analysis, difficulties of obtaining complete information about model parameters make it advisable to seek
robust solutions that perform reasonably well across the full range of feasible parameter values. In this paper, we develop
the Robust Portfolio Modeling (RPM) methodology which extends Preference Programming methods into portfolio prob-
lems where a subset of project proposals are funded in view of multiple evaluation criteria. We also develop an algorithm
for computing all non-dominated portfolios, subject to incomplete information about criterion weights and project-specific
performance levels. Based on these portfolios, we propose a project-level index to convey (i) which projects are robust
choices (in the sense that they would be recommended even if further information were to be obtained) and (ii) how con-
tinued activities in preference elicitation should be focused. The RPM methodology is illustrated with an application using
real data on road pavement projects.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Project portfolio selection is a strategic decision problem which is often characterized by multiple, conflict-
ing and incommensurate objectives. The methodological literature on this problem offers a variety of
approaches which have been used in public administration (e.g., Golabi et al., 1981; Kleinmuntz and Kle-
inmuntz, 1999) and industrial organizations (e.g., Stummer and Heidenberger, 2003). Reported experiences
from these applications suggest that simple and transparent approaches which consider multiple criteria
and accommodate incomplete information (e.g., parametric uncertainties) are more likely to be accepted by
practitioners; they also tend to yield better decisions (Archer and Ghasemzadeh, 1999; Cooper et al., 1999;
Keefer et al., 2004; Hämäläinen, 2004).
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Methods of multi-criteria weighting – such as value tree analysis – are well-suited to the selection of a single
alternative from a short-list of candidates in view of several evaluation criteria (Keeney and Raiffa, 1976). But
this problem context, too, often involves incomplete information: for instance, the decision maker (DM) may
be unable or reluctant to state exact preference statements, or it may be impossible to obtain complete infor-
mation about how the alternatives perform with regard to the different criteria. A considerable amount of
research has consequently sought to accommodate incomplete information in multi-criteria weighting models.
This work has resulted in several methods – jointly referred by the term Preference Programming – which
accommodate incomplete information by way of set inclusion (i.e., the ‘true’ parameter is contained in a fea-
sible set characterized by the DM’s preference statements). The methods resemble each other in that they
employ dominance concepts and decision rules in the development of decision recommendations; they also
guide further preference elicitation efforts by providing supplementary information (see, e.g., White et al.,
1984; Kirkwood and Sarin, 1985; Hazen, 1986; Weber, 1987; Rios Insua and French, 1991; Salo and Hämäläi-
nen, 1992, 1995, 2001; Mármol et al., 1998; Dias and Clı́maco, 2000).

In this paper, we develop the Robust Portfolio Modeling (RPM) methodology which extends the principles
of Preference Programming to the problem of project portfolio selection. In RPM, the values of individual
projects as well as project portfolios are modeled by an additive weighting model (e.g., Golabi et al., 1981;
Golabi, 1987). Incomplete information about criterion weights is captured through linear inequalities (e.g.,
Arbel, 1989; Park and Kim, 1997; Salo and Punkka, 2005), while intervals are employed to model the perfor-
mance of projects with regard to different criteria. In the presence of such incomplete information, the number
of non-dominated portfolios can be very large. This leads to challenges in the computation of non-dominated
portfolios, and also to questions about how such portfolios should be presented to the DM or harnessed in the
development of decision recommendations.

Specifically, we first formalize the notion of dominance for project portfolio selection problems under
incomplete information. Second, because the explicit enumeration of feasible portfolios becomes intractable
when the number of projects increases (e.g., Stummer and Heidenberger, 2003), we develop a dynamic pro-
gramming algorithm for determining all non-dominated portfolios subject to incomplete information. Third,
we utilize these portfolios at the project-level by developing a core index which (i) identifies projects that are
robust in the sense that they would be surely selected, even if additional information were to be acquired, (ii)
helps the DM reject projects that are not contained in any non-dominated project portfolios, and (iii) provides
guidance for further preference elicitation efforts. Fourth, we extend relevant decision rules from Preference
Programming to the portfolio context and apply them as robust performance measures (Kouvelis and Yu,
1997; Salo and Hämäläinen, 2001). Taken together, these conceptual and computational results lead to an
interactive decision support process for project portfolio selection.

The remainder of this paper is organized as follows. Section 2 introduces the RPM framework and defines
the relevant dominance concept for project portfolios under incomplete information. An algorithm for com-
puting all non-dominated portfolios is presented in Section 3. Section 4 considers the elicitation of additional
information, proposes the core index for the development of project-level decision recommendations and
describes the interactive RPM decision support process. An application of RPM to the selection of road pave-
ment projects is presented in Section 5.

2. Preference programming for portfolio problems

2.1. Additive value

Multi-criteria weighting models are widely employed to assess and evaluate the overall value of project pro-
posals (e.g., Henriksen and Traynor, 1999; Salo et al., 2004). In the portfolio context, several authors describe
models where the recommended project portfolio is determined by maximizing the overall sum of the additive
values from the individual projects, subject to specified resource constraints. For instance, Golabi et al. (1981)
describe a case study on the selection of a portfolio of solar energy production projects that were evaluated
with regard to several technical criteria. Kleinmuntz and Kleinmuntz (1999) use a similar approach to support
capital budgeting decisions in health-care organizations where both qualitative (e.g., patient satisfaction) and
quantitative (e.g., standard net present value) criteria are maximized. Memtsas (2003) presents an additive
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model for the reserve site selection problem, with the aim of maximizing the (multi-criteria) conservation value
of the reserve portfolio. Liberatore (1987), in turn, extends the Analytic Hierarchy Process (AHP) to assist
managers in R&D portfolio selection and resource allocation.

Formally, let X = {x1, . . . ,xm} denote a set of m project proposals that are to be evaluated with regard to n
criteria. The score of project xj on the ith criterion is denoted by vj

i P 0, i.e., the jth project is thus represented
by the score vector vj ¼ ½vj

1; . . . ; vj
n�. These vectors form the rows of the score matrix v 2 Rm�n

þ such that
½v�ji ¼ vj

i (here Rþ ¼ ½0;1Þ) . The overall value of project xj is the weighted average of its scores or, more spe-
cifically, V ðxjÞ ¼

Pn
i¼1wiv

j
i where the weight wi measures the relative importance of the ith criterion. Without

loss of generality, the weights w = (w1, . . . ,wn)T and scores can be scaled so that

w 2 S0
w ¼ w 2 Rnjwi P 0;

Xn

i¼1

wi ¼ 1

( )
ð1Þ

and vj
i 2 ½0; 1�. In this additive model, the weight wi relates a unit increase in the criterion-specific score to an

increase in the overall value. A project is preferred to another if it has the higher overall value of the two.
A project portfolio p � X is a subset of available projects. Thus, the set of all possible portfolios is the

power set P = 2X. For any portfolio, the corresponding overall value is modeled as the sum of the values that
are associated with the projects in the portfolio. We thus have the mapping V : P � S0

w � Rm�n
þ ! Rþ:

V ðp;w; vÞ ¼
X
xj2p

V ðxjÞ ¼
X
xj2p

Xn

i¼1

wiv
j
i : ð2Þ

Rearranging the terms in (2) gives V ðp;w; vÞ ¼
Pn

i¼1wi
P

xj2pvj
i , where

P
xj2pvj

i is the score of portfolio p with

regard to the ith criterion. Theoretical premises of the additivity assumption (2) are discussed thoroughly
by Golabi et al. (1981) and Golabi (1987).

2.2. Resource constraints and feasible portfolios

The number of all possible portfolios is jPj = 2m. Typically, however, only a subset of the project proposals
can be funded with available resources. These are modeled so that Bk is the available amount of the kth
resource type (k = 1, . . . ,q). The total budget vector is denoted by B ¼ ½B1; . . . ;Bq�T 2 Rq

þ.
If started, project xj consumes cj

k P 0 units of the kth resource. It is associated with the resource consump-
tion vector CðxjÞ ¼ ½cj

1; . . . ; cj
q�

T which is referred to as its cost. The total cost vector of a project portfolio is
obtained by summing the cost vectors of its constituent projects, i.e., CðpÞ ¼

P
xj2pCðxjÞ and Cð;Þ ¼ �0. The set

of feasible portfolios is consequently

P F ¼ fp 2 P jCðpÞ 6 Bg;
where the inequality holds componentwise. We also assume that (i) each project has a strictly positive cost
with regard to some resource type and (ii) single projects, when taken alone, are feasible in the sense that they
do not consume more resources of any type than what is available.

If complete weight and score information is available, the most preferred portfolio is the one that maxi-
mizes the overall value (2) subject to resource constraints. This optimal portfolio can be obtained as the solu-
tion to the following linear integer programming problem (ILP)

max
p2P F

X
xj2p

Xn

i¼1

wiv
j
i ¼ max

z1;...;zm

Xm

j¼1

zj

Xn

i¼1

wiv
j
i

Xm

j¼1

zjCðxjÞ 6 B; zj 2 f0; 1g
�����

( )
; ð3Þ

where zj = 1 if and only if xj 2 p.

2.3. Incomplete information

In the RPM methodology, incomplete information is modeled by means of set inclusion. Thus, instead of
using point estimates for weights and scores, the analysis is based on the consideration of sets of feasible
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parameters that are consistent with the DM’s preference statements. While such sets may not lead to the iden-
tification of a single optimal portfolio, they may result in informative decision recommendations.

Incomplete information about criterion weights is modeled by the set of feasible weights, denoted by
Sw � S0

w where S0
w is given by (1). The weight set Sw is assumed to be a convex set of weight vectors constrained

by a set of linear inequalities that correspond to the DM’s preference statements. The literature on Preference
Programming provides several methods for the elicitation of both complete and incomplete weight informa-
tion (see Salo and Punkka, 2005, among others). At the two extremes, Sw ¼ S0

w is the largest possible weight set
which corresponds to lack of any weight information, while a point estimate in S0

w corresponds to complete
information.

Incomplete score information about projects is modeled through score intervals which are assumed to con-
tain the ‘true’ scores vj

i . The lower and upper bounds of these intervals are denoted by vj
i and vj

i such that
vj

i 6 vj
i 6 vj

i for all j = 1, . . . ,m and i = 1, . . . ,n. The set of feasible scores is consequently
Sv ¼ fv 2 Rm�n

þ jv
j
i 2 ½vj

i ; v
j
i �g.

For a given portfolio p, the selection of different feasible scores and weights defines an interval of overall
portfolio value such that for any w 2 Sw, v 2 Sv,

V ðp;w; vÞ 2 min
w2Sw

V ðp;wÞ;max
w2Sw

V ðp;wÞ
� �

; ð4Þ

where V(p,w,v) is given by (2) and the mappings V ; V : P � S0
w ! Rþ are given by

V ðp;wÞ ¼
X
xj2p

Xn

i¼1

wiv
j
i ; ð5Þ

V ðp;wÞ ¼
X
xj2p

Xn

i¼1

wiv
j
i : ð6Þ

These upper and lower bounds on portfolio value are linear in w. Moreover, for a given weight vector w, the
overall value of portfolio p ranges over the entire interval ½V ðp;wÞ; V ðp;wÞ� when feasible scores v are allowed
to vary in Sv.

The composite set of feasible weight and score parameters is denoted by the Cartesian product of Sw and Sv,
i.e., S � Sw · Sv and s = (w,v) 2 S is equivalent to w 2 Sw and v 2 Sv. Such a non-empty set S of feasible
weights and scores will be referred to as the information set.

2.4. Dominance structures

For any two portfolios p and p 0, it is of interest to determine if one is preferred to the other in view of the
information set S. Even if the value intervals (4) of these portfolios overlap, it is possible that (i) the overall
value of p is higher than or equal to that of p 0 for all feasible combinations of the parameters (i.e., weights and
scores) and that (ii) there exists a feasible combination of parameters such that the overall value of p is strictly
higher than that of p 0. If these two conditions hold, p is preferred to p 0 in the sense of (pairwise) dominance:

Definition 1. Let p, p 0 2 P. Portfolio p dominates p 0 with regard to the information set S, denoted by p �S p 0,
iff

V ðp;w; vÞP V ðp0;w; vÞ for all ðw; vÞ 2 S and

V ðp;w; vÞ > V ðp0;w; vÞ for some ðw; vÞ 2 S:

We denote p � p 0 when there is no risk of confusion about the information set S. Based on Definition 1, it
can be readily shown that the dominance relation is asymmetric (p ¤ p), irreflexive (p � p 0 ) p 0 ¤ p) and tran-
sitive (p � p 0 ^ p 0 � p00 ) p � p00).

If the score information is complete (Sv such that vj
i ¼ vj

i 8i; j) and there is no a priori weight information
(Sw ¼ S0

w), Definition 1 coincides with the concept of dominance as usually presented in multiple criteria opti-
mization literature (see, e.g., Steuer, 1986). In this special case, the determination of dominance reduces to the
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comparison of portfolio score vectors: portfolio p dominates p 0 if and only if its score with regard to each cri-
terion is higher than or equal to that of p 0, with a strict inequality on some criterion.

Dominance between two portfolios can be readily checked by using the bounds (5) and (6) and by noting
that (i) projects that are included in both portfolios contribute equally to them both and (ii) project scores may
vary across the full range of their respective intervals, regardless of what the other scores or weights are. All
proofs are in Appendix A.

Theorem 1. For any p,p 0 2 P and information set S = Sw · Sv

p �S p0 ()
min
w2Sw
½V ðp n p0;wÞ � V ðp0 n p;wÞ�P 0;

max
w2Sw

½V ðp n p0;wÞ � V ðp0 n p;wÞ� > 0;

8><>:
where V(Æ, Æ) and V ð�; �Þ are given by (5) and (6), respectively.

Because Sw is a convex polyhedron, the minimization and maximization in Theorem 1 are linear program-
ming problems which obtain their solutions at extreme points of Sw.

A rational DM who seeks to maximize the overall portfolio value would not choose a dominated portfolio;
hence, dominated portfolios can be discarded from further analysis. Conversely, if portfolio p is non-domi-
nated, any other feasible portfolio p 0 either (i) gives a lower overall value than p for some feasible parameters
(w,v) 2 S in the information set, or (ii) is equivalent to p, in the sense that the overall values of both portfolios
are the same across the information set.

Definition 2. The set of non-dominated portfolios with regard to the information set S, denoted by PN(S), is

P N ðSÞ ¼ fp 2 P F jp0 ¤S p 8p0 2 P F g:

We denote PN � PN(S), when there is no risk of confusion about the information set S.

Because the dominance relation is asymmetric, irreflexive and transitive, PN cannot be empty unless the set
of feasible portfolios PF is empty. Furthermore, for each dominated portfolio p 0 2 PFnPN there exists at least
one non-dominated portfolio p 2 PN such that p � p 0. The computation of all non-dominated portfolios can
thus be regarded as a key step in supporting the selection of projects subject to incomplete information – it can
eliminate unacceptable (dominated) portfolios from further consideration while retaining the interesting (non-
dominated) ones.

3. Computation of non-dominated portfolios

In principle, the set of non-dominated portfolios can be determined by (i) enumerating all possible portfo-
lios P, (ii) discarding the infeasible portfolios to obtain PF and (iii) using pairwise dominance checks within PF

to obtain the set PN. But because the number of possible portfolios with m projects is jPj = 2m, this explicit
enumeration procedure becomes intractable as the number of projects grows. For instance, if the generation
of P with 20 projects takes one second (see, e.g., Stummer and Heidenberger, 2003), then it would take 1 · 220

seconds (about 12 days) to generate P with 40 projects. More efficient optimization algorithms are therefore
needed.

If complete score information is available ðvj
i ¼ vj

i 8i; jÞ, non-dominated portfolios can be computed with
multi-objective multi-dimensional knapsack algorithms (for a survey, see Ehrgott and Gandibleux, 2000).
To our knowledge, however, algorithms for solving the multi-objective knapsack problem with incomplete
score information have not been developed to-date.

Building on the work of Villarreal and Karwan (1981), we propose a dynamic programming algorithm for
computing the non-dominated portfolios. In our algorithm, projects are treated sequentially so that the kth
round (k 6 m) of the algorithm generates portfolios that contain projects that belong to the set
{x1, . . . ,xk}. Moreover, only those portfolios which use resources efficiently are stored for use in subsequent
rounds.
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More specifically, for k = 1, . . . ,m we denote two sets of portfolios

P k
F ¼ fp 2 P F jp � fx1; . . . ; xkgg; ð7Þ

P k
N ¼ fp 2 P k

F j 9= p0 2 P k
F such that p0 � p;Cðp0Þ 6 CðpÞg: ð8Þ

The set of non-dominated portfolios PN can now be obtained by structuring the auxiliary sets P k
N recursively,

as stated by the following lemma.

Lemma 1. Let 2 6 k 6 m. Then

(i) p 2 P k
N ) p n fxkg 2 P k�1

N ;
(ii) p 2 P k

F n P k
N ) 9p0 2 P k

N such that p0 � p;Cðp0Þ 6 CðpÞ,
(iii) p 2 P N ) p 2 P m

N .

In view of the first two properties of Lemma 1, the set P k
N can be constructed by extending the set P k�1

N

(rather than by examining the entire feasible set P k
F ). The third property, in turn, states that all the non-dom-

inated portfolios can be readily obtained from the final set P m
N . The algorithm can now be formalized as

follows.

1. P 1
N  ff;g; fx1gg

2. For k = 2, . . . ,m do
(a) ~P k

N  fp 2 P F jxk 2 p; ðp n fxkgÞ 2 P k�1
N g

(b) P k
N  fp 2 ~P k

N j 9=p0 2 P k�1
N such that p0 � p;Cðp0Þ6 CðpÞg [ fp 2 P k�1

N j 9=p0 2 ~P k
N such that p0 � p;Cðp0Þ6

CðpÞg
3. P N  fp 2 P m

N jp0¤p 8p0 2 P m
Ng

Step 1 considers only portfolios {;} and {x1} for which conditions C(;) 5 C(x1) 6 B and {;} ¤ {x1} hold
by assumption; thus P 1

N  ff;g; fx1gg. The loop in Step 2 is repeated recursively by using the first property of
Lemma 1, i.e., if xk is removed from a portfolio that belongs to P k

N , then the resulting portfolio must belong to
P k�1

N . In Step 2(a), project xk is appended to all portfolios in P k�1
N , and Step 2(b) removes portfolios that do not

use resources efficiently, with the aim of obtaining P k
N . In Step 2(b), pairwise dominance checks are needed

only for pairs of portfolios that are taken from the sets ~P k
N and P k�1

N . Steps 2(a) and 2(b) are repeated for
rounds k = 2, . . . ,m. Finally in Step 3, dominated portfolios are removed from P m

N to obtain PN.
A concern with the above algorithm is that the auxiliary sets P k

N may include many portfolios with a low
value and low resource consumption. These portfolios are carried on until Step 3, where they are evaluated
only based on their value and are therefore discarded.

However, the size of the set P k
N can be reduced as follows. At round k of step 2, let U kþ1ð~B;wÞ be an upper

bound for the overall value of a portfolio p � {xk+1, . . . ,xm}, measured at an extreme point of Sw subject to
the resource constraint CðpÞ 6 ~B. Thus, Ukþ1ð~B;wÞ satisfies

Ukþ1ð~B;wÞP max
p
fV ðp;wÞjp � fxkþ1; . . . ; xmg;CðpÞ 6 ~Bg: ð9Þ

With regard to each resource type, the problem of maximizing the overall value with fixed (extreme point)
weights is a knapsack problem, whereby an upper bound with regard to a single resource can be expressed in
closed form through a continuous relaxation of the knapsack problem (Marthello and Toth, 1990). An upper
bound with regard to all resources can thus be taken as the minimum of these resource-specific bounds. In
view of Lemma 2, the bound U kþ1ð~B;wÞ may help establish a dominance relationship already at the kth round
of the algorithm.

Lemma 2. Let p, p 0 2 PF, 1 6 k < m and a = {xk+1, . . . ,xm}. If

min
w2extðSwÞ

½V p n ðp0 n aÞ;wð Þ � V ðp0 n aÞ n p;wð Þ � U kþ1ðB� Cðp0 n aÞ;wÞ� > 0;

then p � p 0.
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In order to discard portfolios p0 2 P k
N on the basis of dominance p � p 0, the value of the reference portfolio

p should be as high as possible over the information set S; preferably, it should be a non-dominated portfolio
p 2 PN. Let PD 	 PF now be a set of reference portfolios, which can be generated, for instance, by solving the
ILP-problem (3) with arbitrary weights and scores (w,v) 2 S.

We now modify the algorithm by adding an additional Step 2(c) which discards at the kth round some port-
folios p0 2 P k

N that cannot be augmented with projects xk+1, . . . ,xm by expending remaining resources
B � C(p 0) so that the resulting portfolio would belong to PN:

P k
N  p0 2 P k

N j min
w2extðSwÞ

½V ðp n p0;wÞ � V ðp0 n p;wÞ � U kþ1ðB� Cðp0Þ;wÞ� 6 0 8p 2 P D

� �
:

As we shall demonstrate in the context of the example in Section 5, the above algorithm is more efficient
than the explicit enumeration approach. The use of upper bounds in Step 2(c), in particular, seems very effi-
cient in reducing the size of the auxiliary sets.

4. Development of decision recommendations

4.1. Additional information

After the computation of PN(S), the DM is typically faced with several non-dominated portfolios. If the
number of such portfolios is very large, additional preference information (see Salo and Hämäläinen, 2001)
can be solicited, with the aim of obtaining more conclusive decision recommendations based on fewer non-
dominated portfolios.

In this context, additional information corresponds to further preference statements which reduce the set S,
resulting in the revised information set ~S 	 S (which, by assumption, is also non-empty). These statements can
be elicited either as further weight constraints ð~Sw 	 SwÞ and/or narrower score intervals ð~Sv 	 SvÞ. Because
the dominance relationships between portfolios are contingent on the information set, the shift from S to ~S
usually leads to a different set of non-dominated portfolios.

For the purpose of examining the impacts of additional information, we assume that ~S 	 S. We also assume
that the ‘true’ parameter values are contained in ~S, as well as in the (relative) interior of S, defined as

intðSÞ ¼ fs 2 Sj 8s0 2 S 9d > 0 s:t: sþ eðs� s0Þ 2 S 8e 2 ½0; d�g:

This requirement means that the initial information set S is assumed to be balanced, in the sense that the re-
vised set ~S is not entirely contained on the ‘border’ of S. Thus, for example, additional preference statements
should not reduce a score interval to one of its original end points: rather, the initial score intervals should be
wide enough so that the ‘true’ score is somewhere in the middle.

When the above assumptions hold, additional information may eliminate some portfolios from the previ-
ous set of non-dominated portfolios, but cannot add any new portfolios to it. That is, if a given portfolio is
dominated subject to the information set S, it will remain dominated subject to the revised information set ~S,
too.

Theorem 2. Let ~S; S be information sets such that ~S 	 S and intðSÞ \ ~S 6¼ ;. Then, P N ð~SÞ � P N ðSÞ.

The requirement intðSÞ \ ~S 6¼ ; is a necessary condition for the conclusion of Theorem 2. This can be
shown by considering projects x1, x2 with complete score information v1

1 ¼ 0:5; v1
2 ¼ 0:5; v2

1 ¼ 1; v2
2 ¼ 0 and

weight information Sw ¼ fw 2 S0
wjw2 P w1g. Clearly, x1 �S x2 because V(x1,w,v) = 0.5 P w1 = V(x2,w,v)

whenever 0 6 w1 6 0.5. If additional preference information were to result in the complete weight information
~Sw ¼ fð0:5; 0:5ÞTg – in violation to the requirement of Theorem 2 – the dominance relation x1 �~S x2 would not
necessarily hold: for example, if only one project can be started with the available resources, we would have
fx2g 2 P N ð~SÞ and {x2} 62 PN(S).

From the computational point of view, a major implication of Theorem 2 is that the set of non-dominated
portfolios needs to be computed by the dynamic programming algorithm in Section 3 with regard to the initial
information set S only. Thereafter, the set P N ð~SÞ can be obtained from PN(S) by pairwise dominance checks

1494 J. Liesiö et al. / European Journal of Operational Research 181 (2007) 1488–1505



within PN(S), i.e., P Nð~SÞ ¼ fp 2 P N ðSÞjp0 ¤~S p 8p0 2 P N ðSÞg, because the dominance relation is asymmetric,
irreflexive and transitive.

4.2. Robust projects

Even if the number of non-dominated portfolios is high, it may be possible to provide incontestable recom-
mendations about individual projects. Indeed, the characterization of projects that should be surely selected or
rejected is one of the defining features of RPM. The proposed approach can also be extended to other discrete
portfolio problems where the DM is presented with a set of non-dominated solutions instead of a unique
solution.

Definition 3. The core index of project xj 2 X with regard to the information set S, denoted by CI(xj,S), is

CIðxj; SÞ ¼ jfp 2 P N ðSÞjxj 2 pgj
jP N ðSÞj

;

where j{Æ}j denotes the number of portfolios in the respective set.

If the core index of a project is 1, the project is included in all non-dominated portfolios; it is consequently
called a core project. At the other extreme, if its core index is 0, the project is not included in any non-dom-
inated portfolio; it is therefore referred to as an exterior project. Finally, projects whose core index is strictly
greater than zero but less than one are called borderline projects.

Definition 4. With regard to the information set S, we define the sets of

Core projects : X CðSÞ ¼ fxj 2 X jCIðxj; SÞ ¼ 1g;

Borderline projects : X BðSÞ ¼ fxj 2 X j0 < CIðxj; SÞ < 1g;

Exterior projects : X EðSÞ ¼ fxj 2 X jCIðxj; SÞ ¼ 0g:

The two following corollaries can be derived from Theorem 2 to characterize how the core indexes of pro-
jects respond to additional information. Specifically, core (exterior) projects remain core (exterior) even if
additional information is given. Moreover, additional score information can reduce the set of non-dominated
portfolios only if it relates to borderline projects, because providing narrower score intervals for core or exte-
rior projects has no impact on the set of non-dominated portfolios.

Corollary 1. Let ~S � S such that intðSÞ \ ~S 6¼ ;. Then, X CðSÞ � X Cð~SÞ and X EðSÞ � X Eð~SÞ.

Corollary 2. Let ~S � S such that intðSÞ \ ~S 6¼ ;. If ~Sw ¼ Sw and ~vj
i ¼ vj

i , ~vj
i ¼ vj

i 8i ¼ 1; . . . ; n; xj 2 X BðSÞ, then

P N ðSÞ ¼ P N ð~SÞ.

Core projects are robust choices in the sense that if point estimates for weight and score parameters
(w,v) 2 S were to be acquired through the elicitation of additional information, these projects would be
included in the portfolio that maximizes the overall portfolio value. Conversely, any portfolio which does
not contain all core projects, or which contains an exterior project, is either dominated or infeasible. By Cor-
ollary 1, additional information cannot alter the core (exterior) status of projects. The decision to select or to
reject a project can be taken as soon as such a status is first established.

Non-dominated portfolios differ from each other only in terms of the borderline projects that they contain.
Thus, from the viewpoint of decision support, a key objective of eliciting additional information is to reduce
the set of non-dominated portfolios (and hence the number of borderline projects). In view of Corollary 2,
these elicitation efforts can be focused on obtaining narrower score intervals for borderline projects and/or
more restrictive weight information. In this sense, core indexes help identify further information needs, which
as such is one of the key purposes of sensitivity and robustness analysis (e.g., Pannell, 1997).

Apart from guiding the elicitation of additional information, core indexes justify project-specific yes/no
decisions in a manner which accounts for incomplete information, resource constraints and alternative project
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opportunities. These indexes also lead to a transparent project selection process, because for each project they
transform information about non-dominated portfolios into a single performance measure.

4.3. Robustness measures for portfolios

Apart from considering robustness at the level of individual projects, it is instructive to analyze which port-
folios are robust subject to the given information set. Such an analysis is called for especially when no addi-
tional information can be acquired, but decision recommendations at portfolio level must nevertheless be
provided. In this situation, non-dominated portfolios can be regarded as discrete decision alternatives whose
performance can be analyzed through suitable robustness measures.

Kouvelis and Yu (1997) present two robustness measures in the context of discrete optimization problems.
Absolute robustness is defined as the worst-case performance of a solution while robust deviation is defined as
the worst-case performance difference between the given solution and the best solution. These two robustness
measures parallel the maximin and the minimax-regret decision rules in Preference Programming (see, e.g.,
Salo and Hämäläinen, 2001).

Maximin rule recommends the portfolio for which the minimum of its overall portfolio value over the infor-
mation set is highest. Thus, the robustness measure of a portfolio is based on its ‘worst-case’ value (i.e., lower
bound of its overall value interval (4)). The recommended portfolio is therefore in the set

P min ¼ arg max
p2P N

min
w2Sw

V ðp;wÞ:

Minimax-regret rule recommends the portfolio for which the maximum regret – defined as the greatest pos-
sible loss of value relative to some other portfolio over the information set – is smallest. The maximum regret
of portfolio p can be computed by maximizing the value difference between other non-dominated portfolios
and p over the information set S. Thus, the recommended portfolio belongs to the set

P mmr ¼ arg min
p2P N

max
p02P N ;
w2Sw

½V ðp0 n p;wÞ � V ðp n p0;wÞ�:

For any non-dominated portfolio p, it may be instructive to present the DM with the corresponding maximum
loss of value ðmaxp02P N ;w2Sw ½V ðp0 n p;wÞ � V ðp n p0;wÞ�Þ on the basis of which the minimax-regret recommenda-
tions are given.

The maximin and minimax-regret decision rules are based on different robustness measures and may there-
fore recommend different portfolios. The focus on non-dominated portfolios is well-motivated: for if a dom-
inated portfolio were recommended to the DM, there would exist a non-dominated portfolio with a higher or
equal portfolio value over the entire information set. Such a portfolio would outperform the dominated one in
view of any robustness measure (see, e.g., Kouvelis and Yu, 1997).

4.4. Interactive decision support

Fig. 1 gives a schematic outline of the interactive RPM decision support process. At the outset, the DM is
advised to supply wide enough score intervals and loose enough weight constraints so that the ‘true’ parameter
values are contained in the initial information set. The corresponding non-dominated portfolios are computed
by the dynamic programming algorithm with regard to the initial information set. When additional informa-
tion is given, the set of non-dominated portfolios can be updated by pairwise comparisons (Theorem 2).

The DM can analyze non-dominated portfolios in terms of their criterion-specific scores and overall value
intervals (4). She is also guided by core indexes at the project-level (Corollaries 1 and 2) and robustness mea-
sures at the portfolio-level (maximin, minimax-regret). If the robustness measures for non-dominated portfo-
lios are not acceptable to the DM, she may seek to reduce the number of non-dominated portfolios by
providing additional weight statements and/or narrower score intervals for borderline projects.

Core indexes indicate which projects should be surely selected or rejected in the view of the information set.
These indexes are useful also in that they allow the DM to focus on borderline projects, which reduces the
complexity of the portfolio selection problem when the number of projects is high.
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For the purpose of promoting learning, it may be advisable to proceed from a relatively incomplete infor-
mation set towards a more complete one. In the course of such an iterative process, the DM can learn, for
instance, when a particular project is identified as one of the core or exterior projects. Moreover, the selection
of the final project portfolio can be defended by showing which projects were among the core and borderline
projects, respectively. It is even possible to backtrack at what stage core projects acquired their core status.

By construction, the portfolio recommendations based on two robustness measures are contingent on the
information set. It is therefore advisable not to follow them early on when the number of non-dominated port-
folios is still high and, specifically, when these measures (e.g., minimum overall portfolio value, maximum loss
of value) are not yet acceptable to the DM. One reason for this is that one cannot exclude the possibility that
these measures provide support for portfolios that would be outperformed by other portfolios, if additional
information were to be acquired (Salo and Hämäläinen, 2001).

If several non-dominated portfolios remain after the iterative elicitation of additional information, the pro-
ject portfolio can be selected by relying on one of the robustness measures, or on judgemental comparisons or
other less formal approaches. But even in this case, the DM is strongly advised to select core projects, to reject
exterior projects, and to focus on the analysis of borderline projects.

The RPM methodology seems particularly helpful in settings where the decision is to be taken by several
DMs who act in public interest, on behalf of their constituencies, or as representatives of specific fields of
expertise. In this case, the information set can be defined so that it subsumes the DMs’ complementary view-
points about the performance of proposed projects and the relative importance of evaluation criteria. The use
of this information in RPM analysis yields core index values which help identify those projects that would
either belong to or be absent from the DMs’ optimal portfolios, if all the DMs were to solve the project port-
folio selection problem independently. Thus, the RPM methodology does identify ‘consensus projects’ so that
further attention can be devoted to the reduction of the information set, or to informal negotiations which
may even address considerations that are not necessarily captured by the formal model.

Our belief in the practical significance of the RPM methodology is based on several case studies. In a tele-
communication company, for instance, RPM was deployed for product strategy development (Lindstedt et al.,
2006). In this case study, the members of the management group provided scores for 41 products, while the
CEO of the company outlined information about the relative importance of the three criteria. Based on this
information, core index values were assigned to all products and adopted as a useful point of departure in an
ensuing management group meeting. In another case study, RPM was employed for screening promising inno-
vation ideas in an extensive consultation process that was run on behalf of the Finnish Ministry or Trade and
Industry (Könnölä et al., 2006). Here, well over 100 participants produced some 166 innovation ideas which
were first evaluated with regard to three criteria (novelty, feasibility, societal relevance), and then extensively
discussed in foresight workshops by using the resulting core index values as a guiding principle. The RPM

Fig. 1. RPM – decision support process.
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methodology can also be used as an ex post evaluation framework: that is, because RPM helps identify which
projects are incontestably ‘best’ and ‘worst’ (in terms of their ex post impacts), corresponding longitudinal
data can be examined to find out what ex ante characteristics may have contributed to such exceptional over-
or underperformance (Salo et al., 2006). For further case studies and examples, see http://www.rpm.

tkk.fi/.

5. Application of RPM to road pavement projects

We next illustrate the RPM process with actual data from a recent case study for the Finnish Road Admin-
istration (Finnra). At Finnra, the local experts develop an annual road pavement programme by deciding
which ones out of the competing road pavement projects are undertaken in their road district (there are 9 dis-
tricts in Finland with some 10000km of roads in each). Although multi-criteria data is systematically collected
on potential pavement projects, the prevailing praxis of programme development has been essentially based on
the use of a single criterion and holistic judgemental iteration. In this situation, Finnra managers were inter-
ested in the possibilities of obtaining multi-criteria decision support.

The salient features of this case study are presented through an illustrative ex post analysis of m = 50 pro-
ject proposals which are evaluated with regard to n = 4 criteria, subject to a single budgetary constraint q = 1.
The projects X = {x1, . . . ,x50} are generated by a road information management system such that each project
proposal corresponds to a continuous road segment with scattered damages. This system provides data mea-
surements on the criteria which correspond to performance indicators on (1) damage density, (2) attainable
improvement in a composite driving cost index, (3) durability life of the repair, and (4) urgency index derived
from the deterioration rate, respectively. On each indicator, proposals with higher data measurements have a
higher priority than those with lower measurements. The cost of each project, CðxjÞ ¼ cj

1, is given in euros. The
budget B = B1 is set at 60% of the sum of all proposals’ costs. The project proposals perform differently with
regard to the criteria, wherefore the proposed programme depends on how the criteria are accounted for in the
optimization problem.

The implications of possible inaccuracies in the measurement data are demonstrated by applying a relative
variation of ±2.5% to the measurements on of each project. Thus, we assume that the ‘true’ performance
belongs to the interval ½0:975xj

i ; 1:025xj
i � where xj

i denotes the point estimate about project’s performance, as
recorded in the information system. On each criterion, indicator measurements are transformed into pro-
ject-specific scores through a linear value function

viðxÞ ¼
x� 0:975x0

i

1:025x
i � 0:975x0
i

; ð10Þ

where x0
i and x
i are the worst and best recorded performance measurements on the ith criterion (e.g., Keeney

and Raiffa, 1976). Lower and upper bounds for score intervals are given by vj
i ¼ við0:975xj

iÞ and
vj

i ¼ við1:025xj
iÞ, respectively, while scores for the initial point estimates are denoted by v̂j

i ¼ viðxj
iÞ. Because

the criterion-specific value function (10) is linear, the weight ratio wi/wj represents the constant trade-off rate
between one unit of xi and xj in the overall value function (2).

The example is presented in four phases which correspond to consecutive information sets S1, S2, S3 and S4,
each of which is a proper subset of its predecessor (see Table 1).

Table 1
Information sets, S1 � S2 � S3 � S4, at the different phases

Set Weight information Sw Score information Sv

S1 fw 2 S0
wjw1 P wi;wi P 1

20 8ig vj
i 2 ½v

j
i ; v

j
i � 8i; j

S2 fw 2 S0
wjw1 P w2 P w3 P w4;wi P 1

20 8ig As above
S3 fw 2 S0

wj0:9wroc
i 6 wi 6 1:1wroc

i 8ig As above
S4 As above vj

i ¼ v̂j
i 8i; xj 2 X BðS3Þ
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• In the first phase, the weight set S1
w is defined by stating the most important criterion only (damage density),

in keeping with the earlier selection praxis at Finnra. The relevance of all criteria is ensured by imposing a
lower bound on their criterion weights such that this bound is set at one fifth of the average weight 0.25/
5 = 0.05 (see Salo and Punkka, 2005). Score information is given by the intervals as described in the pre-
ceding paragraph.

• In the second phase, a full rank-ordering of criterion weights is specified (w1 P w2 P w3 P w4).
• In the third phase, the weight set is constructed around the rank order centroid (ROC) weight vector which

is at the center of the feasible weight region defined by the rank-ordering (Edwards and Barron, 1994). For
the given rank ordering, the ROC vector is wroc = (0.5208,0.2708,0.1458,0.0625)T, around which each
component of the weight vector let to vary ±10% in relative terms subject to the constraint w 2 S0

w.
• In the fourth phase, the score intervals of the remaining borderline projects are replaced by their initial

point estimates while using weight information from the third phase.

Fig. 2 and Table 2 illustrate how the set of non-dominated portfolios and the projects’ core indexes change
when moving from one information set to the next. For the purpose of facilitating comparisons, the projects
are numbered consecutively in the ascending order of their core indexes from the fourth phase (CI(xj,S4)). In
most analyses, however, this ‘last’ information set would not be known at the outset, wherefore it is more
meaningful to list projects in the ascending order of their core indexes for each information set.

In the first phase, the specification of the most important criterion leads to the identification of 15 core pro-
jects and 5 exterior projects, leaving 30 borderline projects. In the second phase, the additional information
reduces the number of non-dominated portfolios from 234 to 77 and makes it possible to identify 5 new core

Fig. 2. The projects’ core indexes with regard to the different information sets. Projects recommended by the minimax regret and maximin
decision rules are marked with triangles. Projects are numbered consecutively based on their core indexes with regard to information set
S4.
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projects (x31, . . . ,x35) and a new exterior project (x6), too. In the third phase, the feasible weight set is far smal-
ler: there are now only 3 non-dominated portfolios and 4 borderline projects, out of which one or two can be
selected. The narrower score intervals in the fourth phase exclude yet another borderline project so that the
DM is left with the problem of choosing either x15 or both x16 and x17 in addition to the 33 core projects.

Fig. 2 also shows the projects that are recommended by the maximin and minimax-regret decision rules
(upward and downward triangles, respectively). In general, these recommended portfolios include projects
with high core indexes, although individual projects may be excluded from the recommended portfolios when
additional information is acquired. For instance, in the first phase (S1) both decision rules recommend port-
folios in which project x13 is contained. Yet, this project is among the exterior projects subject to information
sets S3 and S4. It is worth noting that in the fourth phase (S4) both decision rules recommend the same
portfolio.

This example with 50 projects cannot be readily solved by explicit enumeration. The set of non-dominated
portfolios PN(S1) was consequently computed by the algorithm in Section 3, whereafter the sets PN(S2), PN(S3)
and PN(S4) were obtained from their predecessors through pairwise comparisons between portfolios. The total
computation time for determining PN(S1) was about 27 minutes on a personal computer (Intel Pentium
1.3 GHz). The largest of the auxiliary sets (8) was P 43

N which contained 20649 portfolios. At the final round,
P 50

N contained 1959 portfolios of which 234 were non-dominated. The two most time consuming steps 2(b) and
2(c) took about 26 minutes together. However, step 2(b) discarded 167469 portfolios in about 25 minutes
while step 2(c) discarded 146 663 portfolios in less than one minute when a reference set PD of 10 portfolios
was used. Because the generation of PD by ILP took less than one second, it seems that the benefits of using
reference portfolios for reducing the size of auxiliary sets P k

N outweigh the additional effort involved in the
generation and utilization of PD.

The original case study with real DMs was carried out with a larger data set of more than 200 projects. The
non-dominated portfolios were determined approximately by solving the ILP in Eq. (3) in a systematic grid of
feasible weight vectors and point estimate scores. The results – which were essentially similar to those illus-
trated here – were presented to the Finnra managers for analysis and discussion. They found the RPM meth-
odology intuitive and transparent; they could also readily understand its key concepts (e.g., maximization of
multiple criteria, incomplete information, dominance concepts, core index values), even though they did not
have a strong background in mathematics.

The ability to deal with incomplete information, in particular, was deemed useful. The managers noted that
they were comfortable with ordinal statements about the importance of criteria (e.g., incomplete (S1) or com-
plete (S2) rank ordering), but not with the specification of precise point estimates for criterion weights. In this
sense, robust decision recommendations based on incomplete information were regarded more acceptable
than a single optimal recommendation based on the use of complete information. Furthermore, the inconclu-
siveness of the results (cf. information set S2, for example) was not a problem: to the contrary, it was regarded
beneficial in highlighting which projects should be analyzed further through judgmental iteration and
negotiation.

The core index was found instructive, because the road pavement program is developed mainly on the basis
of project-level considerations rather than through explicit portfolio optimization. By construction, this index
serves to inform such considerations by distinguishing between core, borderline and exterior projects. The core
index also illustrated the impacts of incomplete information through the ‘breadth’ of the band of borderline
projects. Thus, it can support decision making in several ways, even if the actual project selection decisions
were to differ from the recommendations based on robustness measures.

Table 2
Set sizes at the four phases of the example

Set jPNj jXCj jXBj jXEj maxp2P N jpj minp2P N jpj
S1 234 15 30 5 37 29
S2 77 20 24 6 36 30
S3 3 33 4 13 35 34
S4 2 33 3 14 35 34
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6. Discussion and conclusions

The RPM methodology developed in this paper offers robust decision recommendations for project portfolio
selection in the presence of incomplete information. In essence, this methodology extends several Preference
Programming concepts (e.g., decision rules, modeling of incomplete information about criterion weights
and/or projects’ scores) to the portfolio context and provides efficient algorithms towards their implementation.

The proposed methodology features a novel project-specific measure – core index – which is based on the
share of those non-dominated portfolios in which a particular project is contained. By construction, this index
helps identify projects that should be surely selected or rejected; it also guides further efforts towards the acqui-
sition of additional information. Together with the proposed robustness measures and computational algo-
rithms, the core index enables interactive decision support processes which guide the DM through
recommendations for choosing among individual projects or entire portfolios. Feedback from real decision
makers suggests that RPM is an intuitively appealing, transparent and readily applicable methodology for
approaching multi-criteria portfolio selection problems.

The RPM methodology can be extended in several ways. First, because the strong additivity assumptions
do not apply in the presence of strong project interactions (i.e., if the overall value of a portfolio differs from
the value sum of its constituent projects), there is a need to accommodate such interactions through additional
dummy projects and corresponding constraints, for instance (see, e.g., Stummer and Heidenberger, 2003). Sec-
ond, problems with a very large number of projects or criteria are likely to remain intractable for exact algo-
rithms, wherefore approximative (see, e.g., Erlebach et al., 2002) or heuristic algorithms (see, e.g., Zitzler and
Thiele, 1999) are called for. Third, it may be of interest to determine how the recommendations would change
when the levels of resource constraints assume values within some specified intervals. Towards this end, the
algorithm in Section 3 can be extended to determine the non-dominated portfolios that correspond to varying
levels of resource availability.
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Appendix A

Proof of Theorem 1. We show that the two conditions of Definition 1 hold if and only if the minimization and
maximization conditions of Theorem 1 hold.

1�

V ðp;w; vÞP V ðp0;w; vÞ 8ðw; vÞ 2 S

() min
w2Sw ;v2Sv

½V ðp;w; vÞ � V ðp0;w; vÞ�P 0

() min
w2Sw ;v2Sv

½V ðp n p0;w; vÞ þ V ðp \ p0;w; vÞ � V ðp \ p0;w; vÞ � V ðp0 n p;w; vÞ�P 0

() min
w2Sw

min
v2Sv
½V ðp n p0;w; vÞ � V ðp0 n p;w; vÞ�

� �
P 0:

Since 9= xj 2 X s.t. xj 2 pnp 0 and xj 2 p 0np, the minimization of the value difference with regard to v can be car-
ried out by separation. Thus,

() min
w2Sw

min
vj

i2½v
j
i ;v

j
i �;

xj2ðpnp0Þ

½V ðp n p0;w; vÞ� � max
vj

i2½v
j
i ;v

j
i �;

xj2ðp0npÞ

½V ðp0 n p;w; vÞ�

264
375 P 0

() min
w2Sw
½V ðp n p0;wÞ � V ðp0 n p;wÞ�P 0;
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2�

9ðw; vÞ 2 S s:t: V ðp;w; vÞ > V ðp0;w; vÞ

() max
w2Sw;v2Sv

½V ðp;w; vÞ � V ðp0;w; vÞ� > 0

() max
w2Sw

max
vj

i2½v
j
i ;v

j
i �;

xj2ðpnp0Þ

½V ðp n p0;w; vÞ� � min
vj

i2½v
j
i ;v

j
i �;

xj2ðp0npÞ

½V ðp0 n p;w; vÞ�

264
375 > 0

() max
w2Sw

½V ðp n p0;wÞ � V ðp0 n p;wÞ� > 0:

The claim follows from cases 1� and 2�. h

Proof of Lemma 1

(i) Assume contrary to the claim that 9p 2 P k
N s.t. ðp n fxkgÞ 62 P k�1

N . Then by (8), 9p0 2 P k�1
F s.t.

C(p 0) 6 C(pn{xk}) and p 0 � (pn{xk}). If xk 62 p (i.e. p = pn{xk}), then C(p 0) 6 C(p) and p 0 � p and thus
p 62 P k

N , which is a contradiction. On the other hand, if xk 2 p, then

Cðp0Þ 6 Cðp n fxkgÞ ^ p0 � ðp n fxkgÞ ð11Þ
() Cðp0 [ fxkgÞ 6 CðpÞ ^ ðp0 [ fxkgÞ � p: ð12Þ

Since C(p 0 [ {xk}) 6 C(p) 6 B, ðp0 [ fxkgÞ 2 P k
F and thus by (8) p 62 P k

N , which is a contradiction.
(ii) Since p 2 P k

F n P N , 9p1 2 P k
F such that p1 � p and C(p1) 6 C(p). If p1 2 P k

N then the lemma holds. On the
other hand, if p1 2 P k

F n P k
N then 9p2 2 P k

F such that p2 � p1 � p and C(p2) 6 C(p1) 6 C(p). If p2 2 P k
N

then the lemma holds and otherwise the deduction is continued until ph 2 P k
N such that

ph � ph�1 � � � � � p1 � p and C(ph) 6 C(ph�1) 6 � � � 6 C(p1) 6 C(p) is found. Since the set P k
F is finite,

such a portfolio always exists and the lemma holds.
(iii) Assume contrary to the claim that $p 2 PN s.t. p 62 P m

N . Then, by (8), 9p0 2 P m
F ¼ P F s.t. p 0 � p. Therefore,

p 62 PN, which is a contradiction. h

Proof of Lemma 2. Assume that

min
w2extðSwÞ

½V ðp n ðp0 n aÞ;wÞ � V ððp0 n aÞ n p;wÞ � U kþ1ðB� Cðp0 n aÞ;wÞ� > 0: ð13Þ

The first term in (13) can be divided into two terms

V ðp n ðp0 n aÞ;wÞ ¼ V ðp n p0;wÞ þ V ðp \ p0 \ a;wÞ

and the second term in (13) can be divided into three terms

V ððp0 n aÞ n p;wÞ ¼ V ððp0 n pÞ n a;wÞ ¼ V ðp0 n p;wÞ � V ððp0 n pÞ \ a;wÞ
¼ V ðp0 n p;wÞ � V ðp0 \ a;wÞ þ V ðp0 \ a \ p;wÞ:

Since V ðp \ p0 \ a;wÞ � V ðp0 \ a \ p;wÞ 6 0, (13) implies that

min
w2extðSwÞ

½V ðp n p0;wÞ � V ðp0 n p;wÞ þ V ðp0 \ a;wÞ � U kþ1ðB� Cðp0 n aÞ;wÞ� > 0: ð14Þ

Since portfolio p 0 2 PF, i.e., it satisfies all resource constraints, we have B � C(p 0) = B � C(p 0na) �
C(p 0 \ a) P 0, which is equivalent to B � C(p 0na) P C(p 0 \ a). Since j P k + 1 for all xj 2 p 0 \ a, (9) implies
V ðp0 \ a;wÞ 6 U kþ1ðB� Cðp0 n aÞ;wÞ. Thus, V ðp0 \ a;wÞ � U kþ1ðB� Cðp0 n aÞ;wÞ 6 0 and (14) implies that
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min
w2Sw
½V ðp n p0;wÞ � V ðp0 n p;wÞ� > 0

) max
w2Sw

½V ðp n p0;wÞ � V ðp0 n p;wÞ� > 0:

Thus, p � p 0 by Theorem 1. h

Proof of Theorem 2. Assume contrary to the claim that 9p0 2 P N ð~SÞ; p0 62 P N ðSÞ. Then, $p 2 PN(S) s.t. p �S p 0.
That is,

V ðp;w; vÞP V ðp0;w; vÞ 8ðw; vÞ 2 S^ ð15Þ

9ðw
; v
Þ 2 S s:t: V ðp;w
; v
Þ > V ðp0;w
; v
Þ: ð16Þ

Since ~S 	 S, it holds that

V ðp;w; vÞP V ðp0;w; vÞ 8ðw; vÞ 2 ~S: ð17Þ

By assumption, 9s0 ¼ ðw0; v0Þ 2 intðSÞ \ ~S. Let s0 = (w0,v0) such that w0 = w 0 + e(w 0 � w*) and v0 = v 0 + e
(v 0 � v*), where e > 0. Since s 0 2 int(S), $e > 0 s.t. s0 2 S. By rearranging the terms we have

w0 ¼ 1

1þ e
w0 þ e

1þ e
w
 � aw0 þ bw
;

v0 ¼ 1

1þ e
v0 þ e

1þ e
v
 � av0 þ bv
:

Note that a,b > 0. In what follows we use a vector presentation V(p,w,v) = z(p)v w, where z(p) 2 R1·m, such
that zj = 1 if xj 2 p, and zj = 0 otherwise

V ðp;w0; v0Þ � V ðp0;w0; v0Þ ¼ zðpÞ � zðp0Þð Þv0w0 ¼ zðpÞ � zðp0Þð Þ av0 þ bv

� �

aw0 þ bw

� �

¼ zðpÞ � zðp0Þð Þ a2v0w0 þ abv
w0 þ abv0w
 þ b2v
w

� �

¼ a2 V ðp;w0; v0Þ � V ðp0;w0; v0Þ
� �

þ ab V ðp;w0; v
Þ � V ðp0;w0; v
Þ
� �

þ ab V ðp;w
; v0Þ � V ðp0;w
; v0Þ
� �

þ b2 V ðp;w
; v
Þ � V ðp0;w
; v
Þð Þ
> 0;

since all terms are non-negative by inequality (15) and the last one is strictly positive by inequality (16). Thus,

V ðp;w0; v0Þ > V ðp0;w0; v0Þ: ð18Þ

Since inequalities (17) and (18) hold, p �~S p0. Thus, p0 62 P Nð~SÞ, which is a contradiction. h

Proof of Corollary 1. Follows from Theorem 2. h

Proof of Corollary 2. 1� ‘�’. Theorem 2 implies that P N ðSÞ � P Nð~SÞ.
2� ‘�’. Let ~V ðpÞ ¼

P
xj2p

Pn
i¼1wi~v

j
i and ~V ðpÞ ¼

P
xj2p

Pn
i¼1wi~v

j
i . Assume contrary to the claim that $

p 0 2 PN(S) s.t. p0 62 P N ð~SÞ. Then, 9p 2 P N ð~SÞ s.t. p �~S p0, which, by Theorem 1, is equivalent to

min
w2~Sw

½~V ðp n p0;wÞ � ~V ðp0 n p;wÞ�P 0

max
w2~Sw

½~V ðp n p0;wÞ � ~V ðp0 n p;wÞ� > 0:

Corollary 1 implies that xj 2 X Cð~SÞ 8xj 2 X CðSÞ and xj 2 X Eð~SÞ 8xj 2 X EðSÞ. Therefore, xj 2 XB(S)
"xj 2 (pnp 0), "xj 2 (p 0np). Since we have assumed that ~vj

i ¼ vj
i ;~v

j
i ¼ vj

i 8i ¼ 1; . . . ; n; 8xj 2 X BðSÞ and that
~Sw ¼ Sw, we have
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min
w2Sw
½V ðp n p0;wÞ � V ðp0 n p;wÞ� ¼ min

w2~Sw

½~V ðp n p0;wÞ � ~V ðp0 n p;wÞ�P 0;

max
w2Sw

½V ðp n p0;wÞ � V ðp0 n p;wÞ� ¼ max
w2~Sw

½~V ðp n p0;wÞ � ~V ðp0 n p;wÞ� > 0:

Thus, p �S p 0 and therefore p 0 62 PN(S), which is a contradiction. h
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