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Abstract: In the selection of investment projects, it is important to account for 

exogenous uncertainties (such as macroeconomic developments) 
which may impact the performance of projects. These uncertainties 
can be addressed by examining how the projects perform across a set 
of scenarios; but it may be difficult to assign well-founded probabilities 
to such scenarios, or to characterize the decision makers' risk 
preferences through a uniquely defined utility function. Motivated by 
these considerations, we develop a portfolio selection framework 
which (i) uses set inclusion to admit incomplete information about 
scenario probabilities and utility functions, (ii) identifies all the non-
dominated project portfolios in view of available information, and (iii) 
offers consequent decision support for the selection and rejection of 
projects. The proposed framework enables interactive decision 
support processes where the implications of introducing additional 
probability and utility information or further risk constraints are shown 
in terms corresponding decision recommendations. 
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Senario-Based Portfolio Seletion of Investment Projets withInomplete Probability and Utility InformationSeptember 3, 2008Juuso Liesiö and Ahti SaloSystems Analysis LaboratoryHelsinki University of TehnologyP.O. Box 1100, 02015 TKK, Finlandemail: �rstname.lastname�tkk.�AbstratIn the seletion of investment projets, it is important to aount for exogenousunertainties (suh as maroeonomi developments) whih may impat the per-formane of projets. These unertainties an be addressed by examining how theprojets perform aross a set of senarios; but it may be di�ult to assign well-founded probabilities to suh senarios, or to haraterize the deision makers' riskpreferenes through a uniquely de�ned utility funtion. Motivated by these onsid-erations, we develop a portfolio seletion framework whih (i) uses set inlusion toadmit inomplete information about senario probabilities and utility funtions, (ii)identi�es all the non-dominated projet portfolios in view of available information,and (iii) o�ers onsequent deision support for the seletion and rejetion of projets.The proposed framework enables interative deision support proesses where theimpliations of introduing additional probability and utility information or furtherrisk onstraints are shown in terms orresponding deision reommendations.Keywords: deision analysis, projet portfolio seletion, risk, senarios, stohastidominane, inomplete information, utility theory, Conditional Value-at-Risk.



11 IntrodutionIndustrial and publi organizations take 'go/no go' deisions about investment projetswith unertain future onsequenes. Typially these deisions are ompliated by thepresene of multiple attributes, several resoures onstraints, projet interdependenies,and balane requirements aross tehnologies and business areas. These ompliations,along with the importane of the projet portfolio seletion problem, have fostered thedevelopment of deision analyti methods whih have found high-impat appliationsin domains suh as R&D projet portfolio seletion (Golabi et al., 1981; Beaujon etal., 2008), apital budgeting in healthare (Kleinmuntz, 2008), and military resourealloation (Ewing et al., 2006).In the seletion of investment projets, exogenous unertainties (whih are not in�u-ened by the projets, e.g., rate of industry growth) are ruial, beause they may impatmany projets, even to the point where unfavorable developments derease the value of ev-ery projet in the portfolio. Suh unertainties an be aptured through a set of senarios(see, e.g., Bunn and Salo, 1993; Poland, 1999) and by ombining senario-based projetanalyses with models for risk preferenes and risk onstraints (see, e.g., Gustafsson andSalo, 2005). However, well-founded information about the senario probabilities or thedeision makers' (DM) risk preferenes may be di�ult to eliit: for example, the DMsmay have on�iting views about these probabilities, and they may also exhibit di�erentrisk attitudes. It is therefore important to explore how deisions an be supported on thebasis of inomplete information, also in view of positive experienes from the use of suhinformation in multi-attribute projet seletion problems (Stummer and Heidenberger,2003; Liesiö et al., 2007, 2008; Lindstedt et al., 2008).In this paper, we develop a deision analyti framework for senario-based seletionof portfolios of investment projets based on inomplete probability and utility informa-tion. We model inomplete information through set inlusion and solve multiple objetivezero-one linear programming problems to determine all the orresponding non-dominatedportfolios in reognition of relevant logial, resoure, and risk onstraints as well as projetinterdependenies. Then, deision reommendations about individual projets are derivedby examining whih projets are ontained in all, some, or none of non-dominated port-folios; this approah applies the onepts of ore, borderline and exterior projets fromRobust Portfolio Modeling (Liesiö et al., 2007) to senario-based deision analyses. Fur-thermore, the DMs are allowed to provide information about senario probabilities andtheir risk preferenes interatively, and to examine the impliations of this for deisionreommendations.The rest of this paper is strutured as follows. Setion 2 disusses earlier approahesfor the projet portfolio seletion. Setion 3 presents our analytial framework. Setion 4



2extends this framework to settings with inomplete information, presents orrespondingdominane strutures and desribes approahes to deision support. Setion 5 devel-ops omputational methods for the identi�ation of non-dominated portfolios. Setion 6presents an illustrative example in R&D portfolio seletion.2 Earlier Approahes to Projet Portfolio SeletionThe seletion of investment projets involves usually estimates about the DM's preferenesand the projets' future performane. Deision support for this problem needs to bealigned with the possibilities of eliiting suh estimates; in partiular, the usability ofhighly sophistiated optimization models that assume omplete information and o�erunique `optimal' solutions may be limited if the requisite inputs annot be eliited with ahigh level of on�dene (Kleinmuntz, 2008; Cooper et al., 1999). For example, Stummerand Heidenberger (2003) note that DMs may �nd it di�ult to provide exat informationabout their preferenes. Motivated by this reognition, they develop an approah for R&Dprojet portfolio seletion based on the omputation of all Pareto-optimal portfolios inview of multiple attributes (i.e. portfolios that annot be improved with regard to allattributes). They also desribe a dediated deision support software whih allows theDMs to set aspiration levels for the attributes and to seek interatively portfolios that areonsistent with their preferenes.Even if onsensus estimates about the investments' expeted values an be obtained,unertainties about these estimates ontribute to portfolio risk. For example, Beaujon etal. (2008) evaluated risks arising from unertain projet values in R&D portfolio seletion.Spei�ally, they �rst obtained the optimal portfolio with mixed integer programming andthen used Monte Carlo simulation to explore how the value of the optimal portfolio variessubjet to random errors in the projets' value estimates. In their sensitivity analysis,the portfolio value was lose to the optimum even with rather large errors. This is notsurprising, beause the independently distributed random errors (an assumption whihan be questioned in many ases) are likely to anel out eah other, when the portfoliovalue is omputed as the sum of projets' values.In their ase study on strategi produt portfolio development, Lindstedt et al. (2008)used Robust Portfolio Modeling (RPM; Liesiö et al., 2007, 2008) to apture di�erent viewson the produts' future values in order to identify most attrative ombinations of teh-nologies and market segments. In RPM, the possibility to admit inomplete informationthrough feasible sets of parameters value was harnessed to aount for di�erent viewswithin the management team. Based on the omputation of all non-dominated portfolios(i.e. portfolios for whih a better portfolio for all allowed parameter values annot be



3found), deision reommendations for the produt strategy were developed in an inter-ative deision workshop. Beause many produts were inluded in all non-dominatedportfolios and some in none, the disussion ould be foused on those `borderline' prod-uts inluded in some but not all non-dominated portfolios. Thus, instead of requiring alengthy debate on what the `orret' values for model parameters would be, RPM helpeddemonstrate whih produt deisions were supported by the available and partly inom-plete information.Poland (1999) reports positive experienes from the use of deision trees in the develop-ment of a business portfolio strategy. In his model, the exogenous (or global) unertainties(e.g., gross domesti produt, interest rates) were aptured by senarios and assoiatedprobabilities, whih were then harnessed in the analysis of 20 businesses. Based on theseresults, multiple relevant portfolio strategies were strutured, whih spei�ed strategywithin eah business. Yet, instead of omputing a single portfolio strategy, several nearlyoptimal portfolios were presented to the senior managers who then seleted the �nal port-folio strategy. In the �nal seletion, they also debated those goals and onstraints thatwere not expliitly inluded in the preeding analyses.In dynami deision problems with dozens of projets, it is impossible to examine allportfolio strategies by inspetion, and hene optimization approahes are needed. Con-tingent Portfolio Programming (CPP; Gustafsson and Salo, 2005), for example, apturesexogenous unertainties through a multi-period senario tree with known probabilitiesand investments' senario-spei� ash �ows, and determines the optimal portfolio strat-egy in sense of expeted ash position at the terminal period from a mixed integer lin-ear programming problem. In the CPP framework, it is also possible to introdue riskonstraints based on various risk measures, for example by imposing bounds on the Con-ditional Value-at-Risk levels at di�erent time periods or on�dene levels (Kettunen andSalo, 2008).3 Portfolio Seletion under Risk3.1 Portfolio Value and FeasibilityThe m investment projets X0 = {x1, . . . , xm} represent disrete `go/no-go' deision al-ternatives with outomes in n disjoint senarios Ω = {s1, . . . , sn}. The value of projet
xj in senario si, denoted by xj(si), an represent the net present ash �ow of the projetin senario si, or the ardinal multi-attribute value of the projet, as obtained from on-ventional MAVT analysis (see, e.g., Keeney and Rai�a, 1976), for instane.



4An investment portfolio X is a subset of available investment projets X0 and henethe set of all possible portfolios is X = {X | X ⊆ X0}. Eah portfolio X implies areal-valued random variable X : Ω → R whih represents the portfolio's value:
X(si) =

∑
xj∈X

xj(si). (1)The probability of senario si is pi. The senario probabilities p = (p1, . . . , pn)T belongto the set
P 0 = {p ∈ Rn | pi ≥ 0,

n∑
i=1

pi = 1}. (2)For any p ∈ P 0, the probability of the event ω ⊆ Ω is P(ω) =
∑

si∈ω pi. For brevity,we write P(X ≤ t) = P({si ∈ Ω | X(si) ≤ t}). The expeted value of portfolio X is
Ep[X] =

∑n

i=1 piX(si), and Ep[X | ω] =
∑

si∈ω(pi/P(ω))X(si) is the expeted portfoliovalue onditioned on the event ω ⊆ Ω (with notational onvention Ep[X | ∅] = 0).The set of feasible portfolios XF ⊆ X an be restrited by various onstraints (e.g.,availability of resoures, projet interdependenies, requirements of balane; see Stummerand Heidenberger, 2003; Liesiö et al., 2008). These onstraints are modeled through linearinequalities so that
XF = {X ∈ X |Az(X) ≤ B}, (3)where the oe�ients for the q onstraints are ontained in the matrix A ∈ Rq×m and thevetor B ∈ Rq. In (3), the binary vetor z(X) ∈ {0, 1}m is suh that zj(X) = 1 if andonly if xj ∈ X.A risk neutral DM with omplete information about senario probabilities (in the sensein a single point estimate) seeks to maximize the expeted value of the portfolio. Thismaximum an be solved from the linear zero-one programming (ZOLP) problem

max
X∈XF

Ep[X] = max
z∈{0,1}m

{
m∑

j=1

zj

n∑
i=1

pix
j(si)) | Az ≤ B}. (4)3.2 Portfolio RiskEspeially for large non-reurring investment projets the assumption of risk neutralityis not tenable. In the Expeted Utility Theory (von Neumann and Morgenstern, 1947),the DM's risk preferenes are aptured by a stritly inreasing utility funtion u thatmaps the portfolio values to utilities. Thus, instead of expeted value, the DM seeks to



5maximize the expeted utility of the portfolio so that (4) beomes a non-linear zero-oneprogramming problem
max
X∈XF

Ep[u(X)] = max
z∈{0,1}m

{
n∑

i=1

piu(
m∑

j=1

zjx
j(si)) | Az ≤ B}. (5)In some situations it may be more onvenient to use risk-measures and assoiated riskonstraints rather than utility funtions to model risk aversion. A risk-measure ρ mapseah portfolio to a real-valued measure for risk. Sine our model builds on maximizationof value rather than minimization of losses, following Dentheva and Ruszzynski (2006)we de�ne that portfolio X is less or equally risky than X ′ if ρ[X] ≥ ρ[X ′] . We would liketo emphasize that this is matter of de�nition and does not hange any pratial aspets ofmeasuring risk. Suh a risk measure is oherent if for any X, X ′ ∈ X it satis�es (Artzneret al., 1999)Translation invariane: ρ[X + λ] = ρ[X] + λ ∀ λ ∈ RPositive homogeneity: λρ[X] = ρ[λX] ∀ λ ≥ 0Superadditivity: ρ[X + X ′] ≥ ρ[X] + ρ[X ′]Monotoniity: X(si) ≥ X ′(si) ∀ si ∈ Ω ⇒ ρ[X] ≥ ρ[X ′].Translation invariane and positive homogeneity guarantee that the ordering of port-folios based on their riskiness will not hange if their values are subjeted to posi-tive a�ne transformations. Superadditivity implies that diversi�ation does not in-rease risk: for example, if there are two equally risky portfolios X and X ′ suh that

ρ[X] = ρ[X ′], then doubling either one of these portfolios results in a portfolio that iseither more or equally risky than a diversi�ed portfolio formed from X and X ′, beause
ρ[2X ′] = 2ρ[X ′] = ρ[X ′] + ρ[X] ≤ ρ[X ′ + X]. Monotoniity, in turn, ensures that if aportfolio X yields at least as muh value as X ′ in all senarios, it annot be the morerisky.In our framework, we use the Conditional Value-at-Risk (CVaR) measure, whih isoherent. For a �xed on�dene level α, CVaR is the expeted portfolio value, onditionalto that the value realizes from the worst α-quantile, i.e., CVaR[X] = E[X|X ≤ t], where
t is suh that P(X ≤ t) = α. However, P(X ≤ t) = α may have no solution, beausethe umulative probability distribution P(X ≤ t) is disontinuous in t. Therefore analternative de�nition is used, whih oinides to the interpretation above if P(X ≤ t) = αhas a solution.De�nition 1 Let portfolio X ∈ X , probabilities p ∈ P 0 and risk-level α ∈ (0, 1]. Letsenarios be indexed so that X(si−1) ≤ X(si) for all i ∈ {2, ..., n} and denote ω0 = ∅,



6
ωi = {s1, . . . , si} for all i ∈ {1, ..., n}. The Conditional Value-at-Risk is de�ned as

CVaRα
p [X] = λEp[X|ωk−1] + (1 − λ)Ep[X|{sk}],where k = max{k ∈ {1, . . . , n} | P(ωk−1) ≤ α} and λ = P(ωk−1)/α ∈ (0, 1].The CVaR measure an be omputed as the minimum expeted value over a set ofsenario probabilities, whih is a linear programming (LP) problem. This follows fromArtzner et al.(1999) whih states that a risk measure is oherent if and only if it an bepresented as the minimum expeted value over some set of probability measures.Lemma 1 Let portfolio X ∈ X , probabilities p ∈ P 0 and risk-level α ∈ (0, 1]. Then

CVaRα
p [X] = min

q∈Qα
p

Eq[X], Qα
p = {q ∈ P 0 | q ≤

p

α
}, (6)or equivalently CVaRα

p [X] = maxt∈R(t − 1
α
Ep[max{0, t − X}]), whih is the dual of LPproblem (6).The dual is often used as a de�nition of CVaR (Rokafellar and Uryasev, 2000;Dentheva and Ruszzynski, 2006; Kettunen and Salo, 2008). Yet, we use the repre-sentation (6) whih extends readily to the onsideration of inomplete information aboutsenario probabilities and makes it possible to limit portfolio risk in Problem (4) withoutneed for ontinuous variables. Beause the minimum of (6) is always obtained at an ex-treme point of Qα

p , denoted by ext(Qα
p ) = {q1, . . . , qt}, t additional onstraints in Problem(4) ensure that the optimal portfolio's CVaR will exeed a given threshold γ:

max
X∈XF

CVaRα
p [X]≥γ

Ep[X] = max
z∈{0,1}m

m∑
j=1

zj

n∑
i=1

pix
j(si) (7)

Az ≤ B
m∑

j=1

zj

n∑
i=1

qix
j(si) ≥ γ ∀ q ∈ ext(Qα

p ).



74 Projet Portfolio Seletion under Inomplete Infor-mation4.1 Modeling Inomplete InformationIt may be di�ult to obtain preise probabilities, beause the eliitation of these prob-abilities may involve onsiderable osts or time delays; moreover, the experts may holddiverging beliefs about whih senarios are more probable than others. Thus, instead ofderiving deision reommendations from a single probability estimate, it is instrutive toadmit inomplete probability information and to examine what impliations are suggestedby it (f. e.g., White et al., 1981; Hazen, 1986; Moskowitz et al., 1993; Walley, 1991).In our framework, the set of feasible probabilities is
P := {p ∈ P 0 | App ≤ Bp}, (8)where the matrixAp ∈ Rqp×n and the vetor Bp ∈ Rqp×1 are derived from statements aboutsenarios probabilities. For instane, if senario s1 is more likely than senario s2, we havethe onstraint p1 ≥ p2. Events with multiple senarios an also be ompared: for example,if the event {s1, s2} is less likely than the event {s3, s4, s5}, the onstraint p3 + p4 + p5 ≥

p1 + p2 holds. If senario probabilities are derived from statistial analysis, on�deneintervals an be haraterized through lower and upper bounds (p
i
≤ pi ≤ pi) and ifsenario probabilities are estimated by several experts, the set of feasible probabilitiesan be de�ned as the onvex hull of their independent estimates (so that the extremepoints of P , denoted by ext(P ), orrespond to the experts' estimates).Likewise, the set of feasible utility funtions is U ⊂ U0, where

U0 = {u : R → [0, 1] | u(t) ≥ u(t′) ∀ t ≥ t′}. (9)We assume that the set U is onvex with at least one stritly inreasing utility funtion(i.e., for any t > t′ these exists u ∈ U suh that u(t) > u(t′)). If the DM is risk averse,the set of feasible utility funtions is limited to onave funtions
UA := {u ∈ U0 | λu(t) + (1 − λ)u(t′) ≤ u(λt + (1 − λ)t′) ∀ t, t′ ∈ R λ ∈ [0, 1]}. (10)The set of feasible utility funtions U an be restrited by standard tehniques forthe eliitation of risk preferenes in whih the DM ompares alternatives with ertainand unertain outomes (see, e.g., Clemen, 1996). Arguably, the eliitation of inompleteinformation an be easier, beause responses need not to be adjusted until indi�erene is



8reahed. Instead any preferene for one option over another implies onstraints on themodel: for example, if a lottery whih yields $1 million with probability of 40% and $50thousand with probability of 40% is preferred to a ertain outome whih yields $100thousand for sure, all feasible utility funtions have to satisfy the onstraint u(100) ≤
0.4u(1000) + 0.6u(50)The information set (whih ontains information about probabilities and utility fun-tions) is denoted by S = P × U . The largest suh set (whih re�ets no information onsenario probabilities or utility funtions) is denoted by S0 = P 0 × U0.4.2 Dominane struturesWhen senario probabilities and utility funtions vary over their respetive feasible sets,di�erent expeted utilities are assoiated with the portfolio X. In order to make onlu-sions about whih portfolios outperform others, we de�ne dominane as follows (f. Whiteet al., 1981; Hazen, 1986; Moskowitz et al., 1993).De�nition 2 Portfolio X dominates X ′ with regard to information set S = P × U ,denoted X ≻S X ′ if

Ep[u(X)] ≥ Ep[u(X ′)] for all (p, u) ∈ S and

Ep[u(X)] > Ep[u(X ′)] for some (p, u) ∈ S.Thus, a portfolio dominates another if and only if (i) its expeted utility is at least asgreat for all feasible senario probabilities and utility funtions and (ii) there exist somesenario probabilities and utility funtions for whih its expeted utility is stritly greater.Dominane an be heked by omparing the expeted utilities at the extreme pointsof the set of feasible senario probabilities P . Spei�ally, if there are no onstraints onsenario probabilities (i.e., P = P 0), every extreme point of P 0 is assoiated with a singlesenario that ours with probability one. In this ase, portfolio X dominates X ′ if andonly if the value of X is greater than or equal to X ′ in all senarios and stritly greaterat least in one senario.Theorem 1 Let P ⊆ P 0, U ⊆ U0 and hoose portfolios X, X ′ ∈ X . Then
(i) X ≻P×U X ′ ⇔ X ≻ext(P )×U X ′

(ii) X ≻P 0×U X ′ ⇔ X(si) ≥ X ′(si) ∀ i ∈ {1, . . . , n},where at least one of the inequalities in (ii) is strit for some i ∈ {1, . . . , n}.



9De�nition 2 generalizes the notion of stohasti dominane (see, e.g., Levy, 1992)to inompletely de�ned senario probabilities. For inreasing utility funtions U = U0,the de�nition means that �rst degree stohasti dominane (FSD) holds for all feasiblesenario probabilities. In the modeling of risk aversion with onave utility funtions(U = UA), dominane means that seond degree stohasti dominane (SSD) must holdfor all feasible senario probabilities.Lemma 2 Let P ⊆ P 0 and portfolios X, X ′ ∈ X . Then
FSD : X ≻P×U0 X ′ ⇔ P(X ≤ t) ≤ P(X ′ ≤ t) ∀ p ∈ P, t ∈ R

SSD : X ≻P×UA X ′ ⇔

∫ t

−∞

P(X ≤ y)dy ≤

∫ t

−∞

P(X ′ ≤ y)dy ∀ p ∈ P, t ∈ R,where for both equivalene relations there exist some p ∈ P, t ∈ R suh that the right sideinequalities are strit.Seond degree stohasti dominane is losely related to the CVaR measure. For �xedsenario probabilities, portfolio X dominates portfolio X ′ with regard to seond orderstohasti dominane if and only if CVaRα[X] is greater than CVaRα[X ′] at all risk levels
α ∈ (0, 1] (Dentheva and Ruszzynski, 2006). This result an be extended to aount forinomplete information about senario probabilities.Lemma 3 Let P ⊆ P 0 and portfolios X, X ′ ∈ X . Then

X ≻P×UA X ′ ⇔ CVaRα
p [X] ≥ CVaRα

p [X ′] ∀p ∈ P, α ∈ (0, 1],where the inequality is strit for some p ∈ P, α ∈ (0, 1].Hene, the set of feasible utility funtions U makes it possible to disard feasibleportfolios that seem too risky in view of inomplete probability information (even in theCVaR sense). Further analysis an be foused on those feasible portfolios that are notdominated by any other feasible portfolio: for if a dominated portfolio were seleted, itwould be possible to identify another portfolio with greater expeted utility for all feasibleprobabilities and utility funtions.De�nition 3 The set of non-dominated portfolios with information set S = P × U is
XN (S) = {X ∈ XF | ∄X ′ ∈ XF such that X ′ ≻S X}



10As a rule, the introdution of additional onstraints on feasible senario probabilitiesor utility funtions redues the set of non-dominated portfolios, but annot generate newnon-dominated portfolios, i.e., if S̃ is a subset of S then XN(S̃) is also a subset of XN (S).However, if S̃ is a subset of the `border' of S, then there an be two portfolios in XN (S̃)that have a equal expeted utility in the border while one is stritly inferior if evaluatedanywhere else in S and thus does not belong to XN(S). To rule out suh situations weassume that S̃ inludes at least some points from the (relative) interior of S.Theorem 2 Let S̃ ⊆ S and int(S) ∩ S̃ 6= ∅, whereint(U) = {u ∈ U | ∀u∗ ∈ U∃ǫ > 0 such that u + ǫ(u − u∗) ∈ U}int(P ) = {p ∈ P | ∀p∗ ∈ P∃ǫ > 0 such that p + ǫ(p − p∗) ∈ P}and int(S) =int(P )×int(U). Then XN (S̃) ⊆ XN (S).Figure 1 summarizes key relationships among non-dominated portfolios for di�erentfeasible senario probabilities and utility funtions. If there are no onstraints on senarioprobabilities and all inreasing utility funtions are onsidered, the set of non-dominatedportfolios XN (P 0 × U0) orresponds to feasible portfolios suh that any other feasibleportfolio has a lower value in at least one senario. This is implied by Theorem 1, whihalso states that if P = P 0, restritions on the set of utility funtions will not hange theset of non-dominated portfolios, i.e, XN (P 0 × U0) = XN (P 0 × U) for any U .However, if senario probabilities are restrited to P ⊂ P 0, the set of feasible util-ity funtions may impat the omposition of the set of non-dominated portfolios. Forinstane, if the set of utility funtions is not restrited, then for any feasible portfolio
X ′ /∈ XN(P × U0), there exists a portfolio X ∈ XN(P × U0) whih dominates X ′ withregard to �rst order stohasti dominane that holds for all feasible senario probabilities(Lemma 2).The set of non-dominated portfolios XN(P × UA) inludes all portfolios that a risk-averse DM would onsider, regardless of whether risk aversion is de�ned in terms of (i)preferenes for ertain outomes over unertain outomes with equal expeted value or(ii) preferenes for an inrease in the portfolio's CVaR at any risk level α (Lemma 3).Furthermore, XN (P × UA) inludes all portfolios that maximize the expeted portfoliovalue subjet to onstraints on the portfolio CVaR, no matter what senario probabilitiesin p ∈ P , risk levels α ∈ (0, 1] and threshold levels γ ∈ R are hosen.
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Figure 1: Relationship among sets of non-dominated portfolios when P ⊂ P 0 and U ⊂ UA ⊂ U0.Sets marked with dashed-lines may interset depending on the problem instane.



124.3 Risk Measures under Inomplete InformationWith inomplete information about senario probabilities, the portfolio risk onsists oftwo omponents: the portfolio an have a low value in the senario that obtains (senariorisk), or the `true' senario probabilities are suh that the expeted value of the portfoliowill be low (parametri risk). This latter type of risk an be measured by the minimumexpeted portfolio value when senario probabilities vary with in the set P . The resultingrisk measure is also oherent.Lemma 4 Minimum expeted value MEP [X] = minp∈P Ep[X] is a oherent risk-measurefor any P ⊆ P 0.With inompletely de�ned senario probabilities, the senario risk an be ap-tured by the minimum CVaR value over all feasible probabilities, i.e, WCVaRα
P [X] =

minp∈PCVaRα
p [X]. Beause WCVaR orresponds to a minimum expeted value over aspei� set of probabilities, it is a oherent measure of risk based on Lemma 4.Lemma 5 For a risk level α ∈ (0, 1] and set of feasible probabilities P ⊆ P 0 the Worst-ase Conditional Value-at -Risk for a portfolio X ∈ X is a solution to the LP-problem

WCVaRα
P [X] = min

q∈Qα
P

Eq[X], Qα
P = {q ∈ P 0 | ∃p ∈ P such that αq ≤ p},whih is a oherent risk measure and P ⊆ Qα

P .Given a probability set P the WCVaR measures the worst ase expeted portfolio value,not over P , but over a larger set of feasible probabilities QP ⊇ P . In ase of exatprobabilities P = {p} WCVaR is equal to CVaR.WCVaR oinides with the absolute robustness-measure (i.e., the worst senario spe-i� value) of robust disrete optimization (Kouvelis and Yu, 1997) when (i) no restritionsare plaed on senario probabilities or (ii) α tends to zero. In these ases, the least riskyportfolio (measured through WCVaR) is the maximin portfolio. At the other extreme,portfolio's WCVaR with α = 1 is equal to the portfolio's minimum expeted value overthe feasible senario probabilities P .Lemma 6 Let X ∈ X0 and P ⊆ P 0. Then
(i) WCVaRα

P 0[X] = min
si∈Ω

X(si) ∀ α ∈ (0, 1]

(ii) lim
α→0+

WCVaRα
P [X] = min

si∈Ω
X(si), if P ∩ int(P 0) 6= ∅

(iii) WCVaR1
P [X] = MEP [X].



134.4 Impliations for Deision SupportA risk averse DM an be advised to fous on the set of non-dominated portfolios XN(P ×
UA), beause (i) this set ontains all rational hoies for a risk averse DM (see Figure1) and (ii) all other feasible portfolios have a lower ME and WCVaRα

P for any α ∈ (0, 1](Lemma 3).Next, the DM an be presented with the risk levels of non-dominated portfolios, afterwhih she an interatively sreen portfolios by varying WCVaR thresholds for di�erentrisk-levels α. At any stage, the projets that belong to non-dominated portfolios an beshown to the DM to highlight whih projets are inluded in all non-dominated portfoliosand should therefore be seleted; or onversely, whih projets are not ontained in anynon-dominated portfolios, and whih should therefore be rejeted. Also, by varying thelevel of risk onstraints in these analysis helps illustrate how the reommendations dependon the level of aeptable portfolio risk.In group settings where the DMs may hold di�erent views about the senario probabil-ities, the set of feasible senario probabilities P an be taken to be the onvex ombinationof the DM's estimates; in essene, this is a onservative approah as it assumes that allDMs may be `orret' in their estimates. The same approah an be used also in theeliitation of feasible utility funtions. In either ase, rather than arguing about whihsenario probabilities (or risk preferenes) should be used, the DMs an negotiate aboutthe performane of non-dominated portfolios XN (P ×U). This set inludes optimal port-folios in view of eah individual probability estimate as well as rational ompromises,beause the expeted utility of any dominated feasible portfolio ould be improved withregard to all individual senario probability estimates. Furthermore the omposition of thenon-portfolios may be similar, in whih ase the di�erent views on senario probabilitiespossibly have an impat on deisions about few investment projets only.5 Computation of Non-Dominated PortfoliosThe non-dominated portfolios XN(P × U) an be determined by �rst omputing the set
XN(P 0×U0) and by then disarding the portfolios that are dominated with regard to theinformation set P×U , beause XN(P×U) ⊆ XN(P 0×U0) by Theorem 2. By Property (ii)of Theorem 1, the set XN(P 0×U0) an be determined by omputing all the Pareto-optimalsolutions to the multiple objetive zero-one linear programming (MOZOLP) problem

v−max
z

{Cz | Az ≤ B, z ∈ {0, 1}m}, (11)



14where the oe�ient matrix C ∈ Rn×m with [C]ij = xj(si) ontains the projets' senario-spei� values. Any Pareto-optimal solution z to (11) is a non-dominated portfolioX suhthat xj ∈ X if and only if zj = 1. Several MOZOLP algorithms are available (Villarealand Karwan, 1981; Kiziltan and Yuaoglu, 1983; Liesiö et al., 2007, 2008).For risk neutral utility funtions U = UL = {u(t) = at + b | a, b ∈ R, a > 0}, portfolio
X dominates X ′ if and only if the expeted value of portfolioX is greater in every extremepoint of P and stritly greater in at least one extreme point (f. Theorem 1). In this ase,the set of non-dominated portfolios XN(P × UL) an be omputed from the MOZOLPproblem (11) by replaing the matrix C with C ′ ∈ Rt×m that ontains the expeted valuesof the investment projets xj at the extreme points of set of feasible senario probabilities
P (i.e, [C ′]ji = Epi(xj), {p1, . . . , pt} = ext(P )).In the general ase P × U ⊆ P 0 × U0, dominated portfolios an be disarded from
XN(P 0 × U0) with a linear programming model that determines the maximum and min-imum expeted utility di�erene for pairs of portfolios X and X ′ at eah extreme point
p ∈ ext(P ). Spei�ally, let v̂ ∈ Rh ontain the senario-spei� values of portfolios Xand X ′ in an inreasing order so that v̂ = SORT({X(si) | si ∈ Ω} ∪ {X ′(si) | si ∈ Ω}).By onstrution, v̂j < v̂j+1 for all j = 1, . . . , h − 1 and h ≤ 2n. The expeted utilitydi�erene of portfolios X and X ′ is

Ep[u(X)] − Ep[u(X ′)] =
n∑

i=1

piu(X(si)) −
n∑

i=1

piu(X ′(si))

=
h∑

j=1

u(v̂j)[
∑

X(si)=v̂j

pi −
∑

X′(si)=v̂j

pi] =
h∑

j=1

∆j ûj,where u(v̂j) = ûj and ∆j =
∑

X(si)=v̂j
pi −

∑
X′(si)=v̂j

pi. For any given senario probabili-ties p ∈ ext(P ), the minimum and maximum expeted utility di�erenes over u ∈ U0 anbe obtained from LP-problems
min

û
/ max

û
{

h∑
j=1

∆j ûj | û ∈ [0, 1]h, ûj ≤ ûj+1 ∀ j = 1, . . . , h − 1} (12)For example, onsider a two-senario problem with feasible senario probabilities P =
{p = (p1, p2) ∈ P 0 | p1 ∈ [0.4, 0.5]} and orresponding extreme points p1 = (0.4, 0.6) and
p2 = (0.5, 0.5)). If the senario-spei� values of portfoliosX, X ′ are X(s1) = 5, X(s2) = 3and X ′(s1) = 2, X(s2) = 5, respetively, we have v̂ = (2, 3, 5)T . At the extreme point
p1, the di�erene in the expeted utilities of these portfolios is Ep1 [u(X)] − Ep1[u(X ′)] =∑3

j=1 ∆j ûj = −0.4u(2) + 0.6u(3)− 0.2u(5), where ∆ = (−0.4, 0.6,−0.2)T . For inreasingutility funtions, U = U0, this expression attains its minimum −0.2 at û = (0, 0, 1)T .



15Thus, beause the expeted utility of portfolio X at p1 an be stritly lower than that of
X ′, portfolio X does not dominate X ′.The set of feasible utility funtions an be restrited with further onstraints on (12).For instane, linear onstraints

ûj − ûj−1

v̂j − v̂j−1
≥

ûj+1 − ûj

v̂j+1 − v̂j

∀ j = 2, . . . , h − 1,an be introdued to model risk averse preferenes with onave utility funtions U = UA.Even in this ase, su�ient and neessary ondition for dominane an be established bysolving the minimum and maximum of LP problem (12) at every extreme point of P .Theorem 3 Let X, X ′ ∈ X and S = P ×U . Then X ≻S X ′ if and only if the minimumof LP-problem (12) is non-negative for all p ∈ ext(P ) and the maximum is stritly positivefor some p ∈ ext(P ).6 An Illustrative ExampleBeause the ommerial suess of R&D projets is often ontingent on enabling teh-nologies, we present an illustrative example where a high-tehnology Company hoosesan R&D portfolio from 30 projet proposals. The projeted ash �ows of the projetsdepend on the two enabling tehnologies, labeled A and B. Every projet is related to one(but not both) of these tehnologies.For both tehnologies, the Company builds three senarios (pessimisti, neutral, andoptimisti) to desribe how suessful the tehnology will be over a �ve-year planninghorizon; these senarios are denoted by ωA−, ωA0, ωA+ and ωB−, ωB0, ωB+, respetively.Thus, for every proposal, three ash �ow estimates are eliited to desribe how the projetwill perform depending on the suess of its enabling tehnology (see Table 1). Takentogether, the three senarios for tehnologies A and B de�ne nine joint senarios s1, . . . , s9(see Table 2).The seletion of projets is onstrained by the R&D budget (1.2 million euros) andthe availability of human resoures (50 man-years; see Table 1). In addition there areother projet interations. First, both of projets A7 and B5 an be implemented intwo variants, whih requires two linear onstraints to ensure only one of the variants anbe inluded in the portfolio. Seond, Projet A4.1 is a follow-up to Projet A4.0, andthus Projet A4.1 annot be seleted unless Projet 4.0 is also seleted. Third, the joint



16Table 1: Projet andidatesName xj(s), s ∈ ωA− xj(s), s ∈ ωA0 xj(s), s ∈ ωA+ Cost HRProjet A1 0 0 380 44 5Projet A2 0 0 420 31 5Projet A3 0 10 540 30 6Investment A1-3 0 0 0 80 0Projet A4.0 80 100 520 79 6Projet A4.1 20 130 690 85 6Projet A5 70 110 360 142 2Projet A6 130 230 230 121 2Projet A7a 0 10 460 132 6Projet A7b 30 60 420 111 8Projet A8 40 40 440 87 6Projet A9 60 70 420 132 9Projet A10 60 70 450 117 8Projet A11 150 180 180 96 6Projet A12 40 190 190 145 8Projet A13 100 230 230 101 2
xj(s), s ∈ ωB− xj(s), s ∈ ωB0 xj(s), s ∈ ωB+Projet B1 80 110 200 98 2Projet B2 60 150 190 182 4Projet B3 70 150 240 183 6Projet B4 140 160 270 224 2Projet B5a 40 220 230 105 9Projet B5b 50 170 290 157 10Projet B6 200 230 260 177 3Projet B7 40 240 310 139 4Projet B8 120 260 320 184 9Projet B9 230 270 320 157 7Projet B10 200 260 330 254 2Projet B11 60 250 360 224 4Projet B12 130 240 380 224 5Projet B13 180 370 480 331 8exeution of projets A1, A2, and A3 alls for an additional investment into new researhequipment. This is modeled with the help of a dummy projet whih has a positive ostbut no projeted ash �ows (f. Investment A1-3) and a linear onstraint whih ensuresthat the portfolio an ontain any of the projets A1, A2 and A3 only if the dummyprojet is also inluded. Taken together, the model has two resoure onstraints and four



17Table 2: Tehnology suess and model senarios; For instane, ωA− = {s1, s4, s7} ωB0 =
{s4, s5, s6}.

ωA− ωA0 ωA+

ωB− s1 s2 s3

ωB0 s4 s5 s6

ωB+ s7 s8 s9Table 3: Senario probability estimates (%)
pk
1 pk

2 pk
3 pk

4 pk
5 pk

6 pk
7 pk

8 pk
9

p1 2.5 5 15 5 22.5 30 5 10 5
p2 2 5 16 5 20 20 10 20 2
p3 4 2 8 4 35 20 10 16 1
p4 1 4 12 3 30 22.5 5 20 2.5
p5 3 7 15 5 25 15 10 15 5other feasibility onstraints.Without any information about senario probabilities or risk preferenes, the set

XN(P 0 × U0) inludes 329 non-dominated portfolios. These were omputed in less thana minute on a laptop omputer (1.83GHz, 1GB memory) with the MOZOLP algorithmof Liesiö et al. (2008). The orresponding aggregate portfolio ash �ows vary from $0.44to $4.63 million aross the nine senarios and all non-dominated portfolios.Information about senario probabilities p1, . . . , p9 is eliited by onsulting �ve experts.These experts believe it is unlikely that the pessimisti senarios will obtain for bothtehnologies, beause there is a market for the produts enabled by these tehnologies; butbeause the tehnologies ompete with eah other, the joint ourrene of the optimistisenarios is also unlikely, too. These onsiderations are re�eted in the low probabilitiesof senarios s1 and s9 in Table 3.It is assumed that the probability estimate of eah expert may be the orret one.The set of feasible senario probabilities is therefore de�ned as the onvex ombinationof these estimates p1, . . . , p5 so that P = {p =
∑5

i=1 λip
i |

∑n

i=1 λi = 1, λ ≥ 0}. Whenthe senario probabilities are restrited to this set P , the number non-dominated optimalportfolio delines to 317 from the initial 329.When risk-seeking preferenes are exluded by onsidering only linear or onave utilityfuntions XN(P × UA), the number of non-dominated portfolios drops to sixty. The
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Figure 2: Portfolios in XN (P × UA). White ones beome dominated with U1, gray ones withthe linear utility funtion.intervals of orresponding expeted portfolio ash �ows, senario-spei� portfolio ash�ows and WCVaR0.2-values are shown in Figure 2. Here, the portfolios are indexed inan inreasing order of WCVaR0.2, whih re�ets the worst-ase expeted ash �ow of theportfolio, onditioned on the ourrene of the worst 20% of outomes.Interestingly, the level of portfolio risk � as measured by WCVaR0.2 � an be be reduedby diversifying among projets that relate to tehnologies A and B. This an be seen fromFigure 3 whih shows the proportion of funds that are alloated to Tehnology A andTehnology B related projets: for instane, in portfolio #1 � whih has the greatestpossible expeted ash �ow ($2.8 million) � about 80% of the budget is alloated toprojets in Tehnology A; but in the least risky portfolio (#60) only some 33% of budgetis alloated to projets in Tehnology A.
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Figure 4: Set of feasible utility funtions U .Next, the Company management plaes an upper bound on the level of risk aversionby speifying that the ertainty equivalent of a �fty-�fty gamble between the worst ($0.44million) and the best ($4.63 million) portfolio ash �ows is at least $1.8 million. In theset of exponential utility funtions ue(t) = [e−440a − e−at]/[e−440a − e−4630a] that normalizethe worst and best ash �ows onto the range [0, 1], this orresponds to the oe�ient
a = 0.00037 as ue(1800) = 0.5. The set of feasible utility funtions thus beomes

U1 = {u ∈ UA | 0 ≤ u(t) ≤ ue(t) ∀ t ∈ [440, 4630]}, (13)as illustrated in Figure 4.For the utility funtions in U1, nine out of the previously omputed portfolios arenon-dominated; and �ve of these are non-dominated when the portfolios are evaluatedwith a risk-neutral linear utility funtion (see Figure 5).
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Figure 5: Portfolios in XN (P × U1). Blak ones are non-dominated also with the linear utilityfuntion.The WCVaR0.2-values for nine portfolios in XN (P ×U1) range between $0.8 and $1.5million. The Company agrees that an aeptable WCVaR0.2 level is over $1 million, whihmakes it possible to disard portfolios #1 #2 and #3. Furthermore, portfolios #30, #34and #53, although aeptable in terms of their risk level, o�er muh less upside potentialwith smaller minimum expeted ash �ows than those of other portfolios. Thus, the �nalseletion is restrited to portfolios #8, # 15 and #29 whih di�er in terms of few projetsonly (Figure 6). Spei�ally, beause they all inlude the investment into new researhequipment (Investment A1-3), portfolio #8 is reommended for seletion beause it makesthe most use of this investment by inluding projets A1, A2 and A3.
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237 ConlusionsThe framework developed in this paper extends senario-based projet appraisal to theseletion of projet portfolios in the presene of inomplete information about senarioprobabilities and risk preferenes. This framework ensures that senarios (see, e.g., Bunnand Salo, 1993) are expliitly onsidered in the appraisal of investment projets; it alsosynthesizes results from suh an appraisal into well-founded deision reommendations.In general, the framework thus extends senario analyses to problems where (i) severalinvestment projets are seleted at the same time, (ii) omplete information about senarioprobabilities or risk preferenes is di�ult or impossible to obtain, and (iii) the projetsmay have omplex interdependenies.The proposed framework aptures risk preferenes through utility funtions, whihan be eliited with well-established tehniques based on the omparison of lotteries withertain and unertain outomes. In the omparison of suh lotteries, the DM may provideordinal preferene statements or speify upper and lower bounds on ertainty equivalents.The framework also permits the spei�ation of risk onstraints, most notably throughbounds on the CVaR risk measure at di�erent on�dene levels.The framework also supports the interative exploration of the possibilities o�eredby the proposed investment projets. Suh support an be o�ered by omputing all theprojet portfolios that are non-dominated in view of available information about feasiblesenario probabilities and risk preferenes. When additional information is eliited duringthe deision support proess, or when additional risk onstraints are introdued, the set ofnon-dominated portfolios beomes smaller and more onlusive deision reommendationsan be given about whih projets should be seleted or rejeted. Even though thedetermination of non-dominated portfolios may neessitate intensive omputations, theseomputations an be usually arried out in advane with e�ient algorithms for generalmulti-objetive integer linear programming problems (see, e.g., Zitzler and Thiele, 1999).In the sreening phase, the �nal dominane heks among the portfolios an be arriedout e�iently, whih makes it possible to o�er interative deision support in a workshopsetting.This work suggests several avenues for future researh. First, the framework ouldbe extended to multi-period portfolio models (f. Contingent Portfolio Programming;Gustafsson and Salo, 2005) to aount for inomplete information about senario proba-bilities and risk preferenes. Seond, the modeling of projet-spei� unertainties an beimportant, too. However, the need to limit the total number of senarios (resulting fromboth exogenous and endogenous unertainties) suggests that projet-spei� unertain-ties may be best haraterized not through onventional deision trees but, rather, withthe help of intervals for whih the orresponding non-dominated portfolios an then be



24omputed (Liesiö et al., 2008). Third, the potential of the proposed framework needs tobe explored in the ontext of ase studies that shed light on its bene�ts in pratie.AknowledgementsThis researh has been supported by the Aademy of Finland and the Finnish FundingAgeny for Tehnology and Innovation (Tekes). We are grateful to Antti Punkka for hisinsightful omments.AppendixProof of Lemma 1. Let k = max{k ∈ {1, . . . , n} | P(ωk−1) ≤ α}: The optimum
minq∈Qα

p
Eq[X] is obtained by setting q∗i = pi/α for all i = 1, ..., k − 1, q∗k = 1 −

∑k−1
i=1 q∗iand q∗i = 0 for all i = k + 1, ..., n, whih is a feasible solution sine q∗i <

∑k

i=1 q∗i =∑k−1
i=1 pi/α+(1−

∑k−1
i=1 pi/α) = 1. Then Eq∗ [X] =

∑k

i=1
pi

α
X(si)+(1−

∑k−1
i=1 pi/α)X(sk) =

P(ωk−1)
α

∑k
i=1 piX(si)

P(ωk−1)
+(1− P(ωk−1)

α
)X(sk) = P(ωk−1)

α
Ep[X|ωk−1]+(1− P(ωk−1)

α
)Ep[X|{sk}]. Thus

CVaRα
p [X] = minq∈Qα

p
Eq[X]

= min
q∈Rn

{
n∑

i=1

qiX(si) | 0 ≤ qi ≤
pi

α
∀ i ∈ {1, ..., n},

n∑
i=1

qi = 1},whih is a bounded and feasible LP-problem, and thus its dual
max
z∈Rn

t∈R

t +
n∑

i=1

pi

α
zi

zi + t ≤ X(si) ∀ i ∈ {1, . . . , n}

zi ≤ 0 ∀ i ∈ {1, . . . , n}yields same optimum. To maximize the dual for a �xed t, variables zi are set to theirupper bound, i.e, zi(t) = min{0, X(si) − t} = −max{0, t − X(si)}, whih gives
CVaRα

p [X] = max
t∈R

(t −
1

α

n∑
i=1

pi max{0, t− X(si)}) = max
t∈R

(t −
1

α
Ep[max{0, t− X}]).

�



25Proof of Theorem 1. i) `⇐': Assume X ≻ext(P )×U X ′ whih implies
Ep[u(X)] ≥ Ep[u(X ′)] ∀ p ∈ {p1, . . . , pt}, u ∈ Uwhere {p1, . . . , pt} =ext(P ). Any p ∈ P is a linear ombination of these extreme points,i.e., p =

∑t

k=1 αkp
k, where αk ≥ 0. For any (p, u) ∈ P × U :

Ep[u(X)] − Ep[u(X ′)] =

n∑
i=1

pi[u(X(si)) − u(X ′(si))]

=
n∑

i=1

t∑
k=1

αkp
k
i [u(X(si)) − u(X ′(si))]

=

t∑
k=1

αk

n∑
i=1

pk
i [u(X(si)) − u(X ′(si))]

=

t∑
k=1

αk(Epk [u(X)] − Epk [u(X ′)]) ≥ 0sine all terms of the sum are non-negative. Thus Ep[u(X)] ≥ Ep[u(X ′)] for all (p, u) ∈
(P × U) and the inequality is strit for some p ∈ ext(P ) ⊂ P and u ∈ U , whih implies
X ≻P×U X ′.`⇒': Assume X ≻P×U X ′, whih implies Ep[u(X)] ≥ Ep[u(X ′)] for all (p, u) ∈ ext(P )×U ,sine ext(P ) ⊂ P . Furthermore, exists p ∈ P , p =

∑t

k=1 αkp
k, suh that 0 < Ep[u(X)] −

Ep[u(X ′)] =
∑t

k=1 αk(Epk [u(X)] − Epk [u(X ′)]). Thus Epk [u(X)] > Epk [u(X ′)] for some
pk ∈ext(P ) whih implies X ≻ext(P )×U X ′.ii) Sine the extreme points {p1, . . . , pn} of P 0 are of the form pi

i = 1, pi
j = 0 ∀j 6= i, i)implies that dominane X ≻(P 0×U) X ′ holds if and only if u(X(si)) ≥ u(X ′(si)) ∀ i ∈

{1, . . . , n}, u ∈ U (with the inequality strit for some i and u). Sine U ⊆ U0 ontainsonly inreasing utility funtions (and at least one stritly inreasing) the ondition is equalto X(si) ≥ X ′(si) ∀ i ∈ {1, . . . , n} with a strit inequality for at least one i. �Proof of Lemma 2. It is well-known (see, e.g., Hanoh and Levy, 1969) that for a �xed
p ∈ P 0

Ep[u(X)] ≥ Ep[u(X)] ∀ u ∈ U0 ⇔ P(X ≤ t) ≤ P(X ′ ≤ t) ∀ t ∈ R

Ep[u(X)] ≥ Ep[u(X)] ∀ u ∈ UA ⇔

∫ t

−∞

P(X ≤ y)dy ≤

∫ t

−∞

P(X ′ ≤ y)dy ∀ t ∈ R.If the expeted utility inequalities are strit for some u, the right-hand-side inequalitiesare strit for some t. The lemma results diretly from these results. �



26Proof of Lemma 3. It is easy to verify that ∫ t

−∞
P(X ≤ y)dy =

∑
X(si)≤t pi(t −

X(si)) = max0≤r≤p

∑n

i=1 ri(t − X(si)) = −min0≤r≤p[
∑n

i=1 riX(si) − t
∑n

i=1 ri]. Denot-ing G(X, p, t) = min0≤r≤p[
∑n

i=1 riX(si) − t
∑n

i=1 ri] and using property ii) of Lemma 2gives
X ≻P×UA X ′ ⇔ G(X, p, t) ≥ G(X ′, p, t)∀p ∈ P, t ∈ R,with the inequality strit for some p ∈ P, t ∈ R. Furthermore, denote

F (X, p, α) = αCVaRα
p [X] = min

0≤αq≤p∑n
i=1

qi=1

n∑
i=1

αqiX(si) = min
0≤r≤p∑n
i=1

ri=α

n∑
i=1

riX(si).For any p ∈ P, α ∈ (0, 1], X ∈ X it holds that
F (X, p, α) ≥ G(X, p, t) + αt ∀t ∈ R

∃t∗ ∈ R s.t. F (X, p, α) = G(X, p, t∗) + αt∗,sine the dual of LP problem F (X, p, α) is maxt∈R[G(X, p, t) + αt]. To prove the lemmait is thus su�ient to show that
G(X, p, t) ≥ G(X ′, p, t) ∀p ∈ P, t ∈ R (14)

⇔ F (X, p, α) ≥ F (X ′, p, α) ∀p ∈ P, α ∈ (0, 1], (15)and that inequality (14) is strit for some p ∈ P, t ∈ R if and only if the inequality (15)is strit for some p ∈ P, α ∈ (0, 1].`(14)⇒ (15)': For any p ∈ P, α ∈ (0, 1] exists t∗ ∈ R suh that F (X ′, p, α) = G(X ′, p, t∗)+
αt∗ ≤ G(X, p, t∗) + αt∗ ≤ F (X, α, p).`(15) ⇒ (14)': Take p ∈ P, t ∈ R. Let α∗ =

∑n

i=1 r∗i , where r∗ solves the optimizationproblem G(X, p, t). Then G(X, p, t)+α∗t =
∑n

i=1 r∗i X(si) ≥ F (X, p, α∗) ≥ F (X ′, p, α∗) ≥
L(X ′, p, t) + α∗t.Finally, orrespondene between strit inequalities holds sine ∃p ∈ P, t ∈
R s.t. G(X, p, t) > G(X ′, α, p, t) ⇔ ¬(G(X ′, p, t) ≥ G(X, p, t) ∀p ∈ P, t ∈ R) ⇔
¬(F (X ′, p, α) ≥ F (X, p, α) ∀p ∈ P, α ∈ (0, 1]) ⇔ ∃p ∈ P, α ∈ (0, 1] s.t. F (X, p, α) >
F (X ′, p, α). �Proof of Theorem 2. Assume X ′ ∈ XF \ XN(S). Then exists X ∈ XN(S) suh that
X ≻S X ′. Sine S̃ ⊆ S, Ep[u(X)] ≥ Ep[u(X)] ∀ (p, u) ∈ S̃ and exists (u∗, p∗) ∈ S suhthat Ep∗ [u

∗(X)] > Ep∗ [u
∗(X ′)]. For any (p, u) ∈int(S) ∩ S̃, exists ǫ > 0 suh that

p′ = p + ǫ(p − p∗) ∈ P

u′ = u + ǫ(u − u∗) ∈ U.



27Sine S = P × U , (p′, u∗) ∈ S and (p∗, u′) ∈ S. Denoting β = ǫ/(1 + ǫ) yields u =
(1 − β)u′ + βu∗ and p = (1 − β)p′ + βp∗, wherefore

Ep[u(X)]

= β2E′
p[u

′(X)] + β(1 − β)E′
p[u

∗(X)] + β(1 − β)Ep∗[u
′(X)] + (1 − β)2Ep∗ [u

∗(X)]

≥ β2E′
p[u

′(X ′)] + β(1 − β)E′
p[u

∗(X ′)] + β(1 − β)Ep∗ [u
′(X ′)] + (1 − β)2Ep∗ [u

∗(X)]

> β2E′
p[u

′(X ′)] + β(1 − β)E′
p[u

∗(X ′)] + β(1 − β)Ep∗ [u
′(X ′)] + (1 − β)2Ep∗ [u

∗(X ′)]

= Ep[u(X ′)],sine β > 0 and 1 − β > 0. Thus X ≻S̃ X ′ wherefore X ′ /∈ XN(S̃). �Proof of Lemma 4. Sine ME is a LP problem, translation invariane and positivehomogeneity are trivial. Superadditivity:
MEP [X + X ′] = min

p∈P
Ep[X + X ′] = min

p∈P
(Ep[X] + Ep[X

′])

= min
p1,p2∈P

p1=p2

(Ep1[X] + Ep2[X ′]) ≥ min
p1,p2∈P

(Ep1[X] + Ep2[X ′])

= min
p1∈P

E1
p[X] + min

p2∈P
E2

p[X
′] = MEP [X] + MEP [X ′],sine {p1, p2 ∈ P | p1 = p2} ⊆ {p1, p2 ∈ P}. Monotoniity: X(si) ≥ X ′(si) ∀ si ∈ Ω ⇒

Ep[X] ≥ Ep[X
′] ∀ p ∈ P 0 ⇒ minp∈P Ep[X] = Ep∗ [X] ≥ Ep∗ [X

′] ≥ minp∈P Ep[X
′] ⇒

MEP [X] ≥ MEP [X ′]. �Proof of Lemma 5 By de�nition
WCVaRα

P [X] = min
p∈P

CVaRα
p [X] = min

p∈P
min
q∈Qα

p

Eq[X]

= min
p∈P,q∈Qα

p

Eq[X] = min
q∈Qα

P

Eq[X],whih is a LP problem sine Qα
P = {q ∈ P 0 |αq ≤ p, p ∈ P} is a polyhedral set. SineWCVaRα

P [X] = MEQα
P
[X], Lemma 4 implies that WCVaR is a oherent risk measure.Furthermore, for any p ∈ P, αp ≤ p wherefore p ∈ Qα

P and thus P ⊆ Qα
P . �Proof of Lemma 6. By Lemma 5

WCVaRα
P (X) = min

q∈Qα
P

Eq[X], Qα
P = {q ∈ P 0 | αq ≤ p, p ∈ P}and minq∈P 0 Eq[X] = minsi∈Ω X(si) (see proof of by Theorem 1). i) If P = P 0 then byLemma 5 P 0 ⊆ Qα

P 0 and by onstrution Qα
P 0 ⊆ P 0, whih together imply Qα

P 0 = P 0. ii)Take any p ∈ P∩int(P 0), whih implies pi > 0∀i = 1, .., n. For any q ∈ P 0, qi ≤ 1 ≤ pi/α



28for all i = 1, ...n, α ∈ (0, mini pi]. Thus, P 0 ⊆ Qα→0
P ⊆ P 0, i.e., Qα→0

P = P 0. iii) If α = 1,the onstraint αq = q ≤ p holds only for p = q, wherefore Q1
P = P . �Proof of Theorem 3. By Theorem 1 X ≻P×U X ′ if and only if Ep[u(X)] ≥ Ep[u(X ′)] forall p ∈ {p1, . . . , pt}, u ∈ U with a strit inequality for some p ∈ {p1, . . . , pt}, u ∈ U . Thisondition an be heked by minimizing and maximizing the expeted utility di�erene
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