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Abstract

In the selection of investment projects, it is important to account for exogenous
uncertainties (such as macroeconomic developments) which may impact the per-
formance of projects. These uncertainties can be addressed by examining how the
projects perform across a set of scenarios; but it may be difficult to assign well-
founded probabilities to such scenarios, or to characterize the decision makers’ risk
preferences through a uniquely defined utility function. Motivated by these consid-
erations, we develop a portfolio selection framework which (i) uses set inclusion to
admit incomplete information about scenario probabilities and utility functions, (ii)
identifies all the non-dominated project portfolios in view of available information,
and (iii) offers consequent decision support for the selection and rejection of projects.
The proposed framework enables interactive decision support processes where the
implications of introducing additional probability and utility information or further
risk constraints are shown in terms corresponding decision recommendations.
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1 Introduction

Industrial and public organizations take 'go/no go’ decisions about investment projects
with uncertain future consequences. Typically these decisions are complicated by the
presence of multiple attributes, several resources constraints, project interdependencies,
and balance requirements across technologies and business areas. These complications,
along with the importance of the project portfolio selection problem, have fostered the
development of decision analytic methods which have found high-impact applications
in domains such as R&D project portfolio selection (Golabi et al., 1981; Beaujon et
al., 2008), capital budgeting in healthcare (Kleinmuntz, 2008), and military resource
allocation (Ewing et al., 2006).

In the selection of investment projects, exogenous uncertainties (which are not influ-
enced by the projects, e.g., rate of industry growth) are crucial, because they may impact
many projects, even to the point where unfavorable developments decrease the value of ev-
ery project in the portfolio. Such uncertainties can be captured through a set of scenarios
(see, e.g., Bunn and Salo, 1993; Poland, 1999) and by combining scenario-based project
analyses with models for risk preferences and risk constraints (see, e.g., Gustafsson and
Salo, 2005). However, well-founded information about the scenario probabilities or the
decision makers’ (DM) risk preferences may be difficult to elicit: for example, the DMs
may have conflicting views about these probabilities, and they may also exhibit different
risk attitudes. It is therefore important to explore how decisions can be supported on the
basis of incomplete information, also in view of positive experiences from the use of such
information in multi-attribute project selection problems (Stummer and Heidenberger,
2003; Liesi6 et al., 2007, 2008; Lindstedt et al., 2008).

In this paper, we develop a decision analytic framework for scenario-based selection
of portfolios of investment projects based on incomplete probability and utility informa-
tion. We model incomplete information through set inclusion and solve multiple objective
zero-one linear programming problems to determine all the corresponding non-dominated
portfolios in recognition of relevant logical, resource, and risk constraints as well as project
interdependencies. Then, decision recommendations about individual projects are derived
by examining which projects are contained in all, some, or none of non-dominated port-
folios; this approach applies the concepts of core, borderline and exterior projects from
Robust Portfolio Modeling (Liesit et al., 2007) to scenario-based decision analyses. Fur-
thermore, the DMs are allowed to provide information about scenario probabilities and
their risk preferences interactively, and to examine the implications of this for decision
recommendations.

The rest of this paper is structured as follows. Section 2 discusses earlier approaches
for the project portfolio selection. Section 3 presents our analytical framework. Section 4



extends this framework to settings with incomplete information, presents corresponding
dominance structures and describes approaches to decision support. Section 5 devel-
ops computational methods for the identification of non-dominated portfolios. Section 6
presents an illustrative example in R&D portfolio selection.

2 Earlier Approaches to Project Portfolio Selection

The selection of investment projects involves usually estimates about the DM’s preferences
and the projects’ future performance. Decision support for this problem needs to be
aligned with the possibilities of eliciting such estimates; in particular, the usability of
highly sophisticated optimization models that assume complete information and offer
unique ‘optimal’ solutions may be limited if the requisite inputs cannot be elicited with a
high level of confidence (Kleinmuntz, 2008; Cooper et al., 1999). For example, Stummer
and Heidenberger (2003) note that DMs may find it difficult to provide exact information
about their preferences. Motivated by this recognition, they develop an approach for R&D
project portfolio selection based on the computation of all Pareto-optimal portfolios in
view of multiple attributes (i.e. portfolios that cannot be improved with regard to all
attributes). They also describe a dedicated decision support software which allows the
DMs to set aspiration levels for the attributes and to seek interactively portfolios that are
consistent with their preferences.

Even if consensus estimates about the investments’ expected values can be obtained,
uncertainties about these estimates contribute to portfolio risk. For example, Beaujon et
al. (2008) evaluated risks arising from uncertain project values in R&D portfolio selection.
Specifically, they first obtained the optimal portfolio with mixed integer programming and
then used Monte Carlo simulation to explore how the value of the optimal portfolio varies
subject to random errors in the projects’ value estimates. In their sensitivity analysis,
the portfolio value was close to the optimum even with rather large errors. This is not
surprising, because the independently distributed random errors (an assumption which
can be questioned in many cases) are likely to cancel out each other, when the portfolio
value is computed as the sum of projects’ values.

In their case study on strategic product portfolio development, Lindstedt et al. (2008)
used Robust Portfolio Modeling (RPM; Liesio et al., 2007, 2008) to capture different views
on the products’ future values in order to identify most attractive combinations of tech-
nologies and market segments. In RPM, the possibility to admit incomplete information
through feasible sets of parameters value was harnessed to account for different views
within the management team. Based on the computation of all non-dominated portfolios
(i.e. portfolios for which a better portfolio for all allowed parameter values cannot be



found), decision recommendations for the product strategy were developed in an inter-
active decision workshop. Because many products were included in all non-dominated
portfolios and some in none, the discussion could be focused on those ‘borderline’ prod-
ucts included in some but not all non-dominated portfolios. Thus, instead of requiring a
lengthy debate on what the ‘correct’ values for model parameters would be, RPM helped
demonstrate which product decisions were supported by the available and partly incom-
plete information.

Poland (1999) reports positive experiences from the use of decision trees in the develop-
ment of a business portfolio strategy. In his model, the exogenous (or global) uncertainties
(e.g., gross domestic product, interest rates) were captured by scenarios and associated
probabilities, which were then harnessed in the analysis of 20 businesses. Based on these
results, multiple relevant portfolio strategies were structured, which specified strategy
within each business. Yet, instead of computing a single portfolio strategy, several nearly
optimal portfolios were presented to the senior managers who then selected the final port-
folio strategy. In the final selection, they also debated those goals and constraints that
were not, explicitly included in the preceding analyses.

In dynamic decision problems with dozens of projects, it is impossible to examine all
portfolio strategies by inspection, and hence optimization approaches are needed. Con-
tingent Portfolio Programming (CPP; Gustafsson and Salo, 2005), for example, captures
exogenous uncertainties through a multi-period scenario tree with known probabilities
and investments’ scenario-specific cash flows, and determines the optimal portfolio strat-
egy in sense of expected cash position at the terminal period from a mixed integer lin-
ear programming problem. In the CPP framework, it is also possible to introduce risk
constraints based on various risk measures, for example by imposing bounds on the Con-
ditional Value-at-Risk levels at different time periods or confidence levels (Kettunen and
Salo, 2008).

3 Portfolio Selection under Risk

3.1 Portfolio Value and Feasibility

The m investment projects X° = {z!,... 2™} represent discrete ‘go/no-go’ decision al-
ternatives with outcomes in n disjoint scenarios Q@ = {s1,...,,}. The value of project
27 in scenario s;, denoted by x7(s;), can represent the net present cash flow of the project
in scenario s;, or the cardinal multi-attribute value of the project, as obtained from con-
ventional MAVT analysis (see, e.g., Keeney and Raiffa, 1976), for instance.



An investment portfolio X is a subset of available investment projects X° and hence
the set of all possible portfolios is X = {X | X C X%}. Each portfolio X implies a
real-valued random variable X : 2 — R which represents the portfolio’s value:

X(si) =Y a/(s:). (1)

zieX

The probability of scenario s; is p;. The scenario probabilities p = (p1,...,p,)T belong
to the set

P'={peR"|p;>0,Y p=1} (2)
i=1
For any p € P, the probability of the event w C Q is P(w) = > 5,0 bi- For brevity,
we write P(X < t) = P({s; € Q| X(s;) < t}). The expected value of portfolio X is
E [X] = 2L, piX(si), and Ej[X | w] = >, ., (pi/P(w)) X (si) is the expected portfolio
value conditioned on the event w C € (with notational convention E,[X | 0] = 0).

The set of feasible portfolios Xr C X can be restricted by various constraints (e.g.,
availability of resources, project interdependencies, requirements of balance; see Stummer
and Heidenberger, 2003; Liesio et al., 2008). These constraints are modeled through linear
inequalities so that

Xp={X € X |Az(X) < B}, (3)

where the coefficients for the ¢ constraints are contained in the matrix A € R?*™ and the
vector B € RY. In (3), the binary vector z(X) € {0,1}"™ is such that z;(X) = 1 if and
only if 27 € X

A risk neutral DM with complete information about scenario probabilities (in the sense
in a single point estimate) seeks to maximize the expected value of the portfolio. This
maximum can be solved from the linear zero-one programming (ZOLP) problem

max E,[X] = max {Z szpZ )) | Az < B}. (4)

XeXp 2e{0,1}

3.2 Portfolio Risk

Especially for large non-recurring investment projects the assumption of risk neutrality
is not tenable. In the Expected Utility Theory (von Neumann and Morgenstern, 1947),
the DM’s risk preferences are captured by a strictly increasing utility function u that
maps the portfolio values to utilities. Thus, instead of expected value, the DM seeks to



maximize the expected utility of the portfolio so that (4) becomes a non-linear zero-one
programming problem

max E,[u(X)] = max sz szx’ )| Az < B}. (5)

XeXp 26{0 1}m

In some situations it may be more convenient to use risk-measures and associated risk
constraints rather than utility functions to model risk aversion. A risk-measure p maps
each portfolio to a real-valued measure for risk. Since our model builds on maximization
of value rather than minimization of losses, following Dentcheva and Ruszczynski (2006)
we define that portfolio X is less or equally risky than X' if p[X] > p[X’] . We would like
to emphasize that this is matter of definition and does not change any practical aspects of
measuring risk. Such a risk measure is coherent if for any X, X’ € X it satisfies (Artzner
et al., 1999)

Translation invariance:  p[X + A =p[X]+ AV A eR
Positive homogeneity: — A\p[X] = p[AX]V A >0
Superadditivity:  p[X + X'] > p[X] + p[X]
Monotonicity: — X(s;) > X'(s;) V s; € Q = p[X] > p[X].

Translation invariance and positive homogeneity guarantee that the ordering of port-
folios based on their riskiness will not change if their values are subjected to posi-
tive affine transformations. Superadditivity implies that diversification does not in-
crease risk: for example, if there are two equally risky portfolios X and X’ such that
p[X] = p[X'], then doubling either one of these portfolios results in a portfolio that is
either more or equally risky than a diversified portfolio formed from X and X', because
p[2X'] = 2p[X'] = p[X'] + p[X] < p[X' + X]. Monotonicity, in turn, ensures that if a
portfolio X yields at least as much value as X’ in all scenarios, it cannot be the more
risky.

In our framework, we use the Conditional Value-at-Risk (CVaR) measure, which is
coherent. For a fixed confidence level ar, CVaR is the expected portfolio value, conditional
to that the value realizes from the worst a-quantile, i.e., CVaR[X] = E[X|X < t], where
t is such that P(X < t) = a. However, P(X < t) = a may have no solution, because
the cumulative probability distribution P(X < t) is discontinuous in ¢. Therefore an
alternative definition is used, which coincides to the interpretation above if P(X <) = «
has a solution.

Definition 1 Let portfolio X € X, probabilities p € P° and risk-level o € (0, 1] Let
scenarios be indexed so that X(sz_l) < X(s;) for all i € {2,...,n} and denote W° = (),



w'={s1,...,si} foralli € {1,...,n}. The Conditional Value-at-Risk is defined as
CVaRy [ X] = AE,[X|w" '] + (1 = NE,[X[{s}],

where k = max{k € {1,...,n} | P(w*™1) < a} and X = P(w*1)/a € (0,1].

The CVaR measure can be computed as the minimum expected value over a set of
scenario probabilities, which is a linear programming (LP) problem. This follows from
Artzner et al.(1999) which states that a risk measure is coherent if and only if it can be
presented as the minimum expected value over some set of probability measures.

Lemma 1 Let portfolio X € X, probabilities p € P° and risk-level o € (0,1]. Then

CVaRg[X] = min E,[X], Q) ={g€ P"| ¢ < =}, (6)

qEQy

or equivalently CVaR?[X] = maxyer(t — LE,[max{0,t — X}]), which is the dual of LP
problem (6).

The dual is often used as a definition of CVaR (Rockafellar and Uryasev, 2000;
Dentcheva and Ruszczynski, 2006; Kettunen and Salo, 2008). Yet, we use the repre-
sentation (6) which extends readily to the consideration of incomplete information about
scenario probabilities and makes it possible to limit portfolio risk in Problem (4) without
need for continuous variables. Because the minimum of (6) is always obtained at an ex-
treme point of @5, denoted by ext(Q5) = {q%,...,q'}, t additional constraints in Problem
(4) ensure that the optimal portfolio’s CVaR will exceed a given threshold ~:

_ . (g,
max B [X] = max B 2> pa(s) (7)
CVaRg [X]>~ j=1 =1

Az < B
Z 2; Z 4’ (s;)) = 7V q € ext(QY).
=1 =1



4 Project Portfolio Selection under Incomplete Infor-
mation

4.1 Modeling Incomplete Information

It may be difficult to obtain precise probabilities, because the elicitation of these prob-
abilities may involve considerable costs or time delays; moreover, the experts may hold
diverging beliefs about which scenarios are more probable than others. Thus, instead of
deriving decision recommendations from a single probability estimate, it is instructive to
admit incomplete probability information and to examine what implications are suggested
by it (cf. e.g., White et al., 1981; Hazen, 1986; Moskowitz et al., 1993; Walley, 1991).

In our framework, the set of feasible probabilities is
P:={pe P’ | Ap < B}, (8)

where the matrix A, € R?*™ and the vector B, € R%*! are derived from statements about
scenarios probabilities. For instance, if scenario s; is more likely than scenario s9, we have
the constraint p; > py. Events with multiple scenarios can also be compared: for example,
if the event {si, s} is less likely than the event {ss, s4, s5}, the constraint ps3 + ps + ps >
p1 + p2 holds. If scenario probabilities are derived from statistical analysis, confidence
intervals can be characterized through lower and upper bounds (p < p; < p;) and if
scenario probabilities are estimated by several experts, the set of feasible probabilities
can be defined as the convex hull of their independent estimates (so that the extreme
points of P, denoted by ext(P), correspond to the experts’ estimates).

Likewise, the set of feasible utility functions is U C U°, where
U ={u:R—[0,1] | u(t) >ul')Vt>1t} (9)

We assume that the set U is convex with at least one strictly increasing utility function
(i.e., for any ¢t > ¢’ these exists u € U such that u(t) > wu(t')). If the DM is risk averse,
the set of feasible utility functions is limited to concave functions

A=fueU% | M)+ (1= Nu) uM+1 =)V, €eR Xe[0,1]}.  (10)

The set of feasible utility functions U can be restricted by standard techniques for
the elicitation of risk preferences in which the DM compares alternatives with certain
and uncertain outcomes (see, e.g., Clemen, 1996). Arguably, the elicitation of incomplete
information can be easier, because responses need not to be adjusted until indifference is



reached. Instead any preference for one option over another implies constraints on the
model: for example, if a lottery which yields $1 million with probability of 40% and $50
thousand with probability of 40% is preferred to a certain outcome which yields $100
thousand for sure, all feasible utility functions have to satisfy the constraint «(100) <
0.44(1000) + 0.6u(50)

The information set (which contains information about probabilities and utility func-
tions) is denoted by S = P x U. The largest such set (which reflects no information on
scenario probabilities or utility functions) is denoted by S° = PY x U°.

4.2 Dominance structures

When scenario probabilities and utility functions vary over their respective feasible sets,
different expected utilities are associated with the portfolio X. In order to make conclu-
sions about which portfolios outperform others, we define dominance as follows (cf. White
et al., 1981; Hazen, 1986; Moskowitz et al., 1993).

Definition 2 Portfolio X dominates X' with regard to information set S = P x U,
denoted X =g X' if

E,[u(X)] > E,[u(X")] for all (p,u) € S and
> E,[u(X")] for some (p,u) € S.

Thus, a portfolio dominates another if and only if (i) its expected utility is at least as
great for all feasible scenario probabilities and utility functions and (ii) there exist some
scenario probabilities and utility functions for which its expected utility is strictly greater.

Dominance can be checked by comparing the expected utilities at the extreme points
of the set of feasible scenario probabilities P. Specifically, if there are no constraints on
scenario probabilities (i.e., P = P°), every extreme point of P? is associated with a single
scenario that occurs with probability one. In this case, portfolio X dominates X' if and
only if the value of X is greater than or equal to X’ in all scenarios and strictly greater
at least in one scenario.

Theorem 1 Let P C P°, U C U° and choose portfolios X, X' € X. Then

(1) X =pxv X' & X =cupyxv X'
(ZZ) X = PoxU X & X(Sz) > X/(Si) Vie {]_, . ,n},

where at least one of the inequalities in (ii) is strict for some i € {1,...,n}.



Definition 2 generalizes the notion of stochastic dominance (see, e.g., Levy, 1992)
to incompletely defined scenario probabilities. For increasing utility functions U = U?,
the definition means that first degree stochastic dominance (FSD) holds for all feasible
scenario probabilities. In the modeling of risk aversion with concave utility functions
(U = U#), dominance means that second degree stochastic dominance (SSD) must hold
for all feasible scenario probabilities.

Lemma 2 Let P C P° and portfolios X, X' € X. Then

FSD: X =pypo X' & P(X<t)<P(X'<t)VpePteR
t t
SSD: X =pupa X' & / P(Xéy)dygf P(X' <y)dyVpe P,teR,

—00

where for both equivalence relations there exist some p € Pt € R such that the right side
inequalities are strict.

Second degree stochastic dominance is closely related to the CVaR measure. For fixed
scenario probabilities, portfolio X dominates portfolio X’ with regard to second order
stochastic dominance if and only if CVaR®[X] is greater than CVaR*[X'] at all risk levels
a € (0,1] (Dentcheva and Ruszczynski, 2006). This result can be extended to account for
incomplete information about scenario probabilities.

Lemma 3 Let P C P° and portfolios X, X' € X. Then
X =pypa X' CVaR)[X] > CVaR}[X'] Vp € P, € (0,1],
where the inequality is strict for some p € P, € (0,1].

Hence, the set of feasible utility functions U makes it possible to discard feasible
portfolios that seem too risky in view of incomplete probability information (even in the
CVaR sense). Further analysis can be focused on those feasible portfolios that are not
dominated by any other feasible portfolio: for if a dominated portfolio were selected, it
would be possible to identify another portfolio with greater expected utility for all feasible
probabilities and utility functions.

Definition 3 The set of non-dominated portfolios with information set S = P x U 1is

Xy (S) = {X € X | X’ € X such that X' =g X}
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As a rule, the introduction of additional constraints on feasible scenario probabilities
or utility functions reduces the set of non-dominated portfolios, but cannot generate new
non-dominated portfolios, i.e., if S is a subset of S then Xy(S) is also a subset of Xy (S).
However, if S is a subset of the ‘border’ of S, then there can be two portfolios in Xy (S)
that have a equal expected utility in the border while one is strictly inferior if evaluated
anywhere else in S and thus does not belong to Xy (S). To rule out such situations we

assume that S includes at least some points from the (relative) interior of S.

Theorem 2 Let S C S and int(S) N S # 0, where

int(U) = {ueU|Vu* €UJe > 0 such that u+ e(u —u*) € U}
int(P) = {pe€ P |Vp" € P3e >0 such that p+ €e(p — p*) € P}

and int(S) =int(P)xint(U). Then Xx(S) C Xn(S).

Figure 1 summarizes key relationships among non-dominated portfolios for different
feasible scenario probabilities and utility functions. If there are no constraints on scenario
probabilities and all increasing utility functions are considered, the set of non-dominated
portfolios Xy (P° x U%) corresponds to feasible portfolios such that any other feasible
portfolio has a lower value in at least one scenario. This is implied by Theorem 1, which
also states that if P = P, restrictions on the set of utility functions will not change the
set of non-dominated portfolios, i.e, X (P°? x U%) = Xx(P° x U) for any U.

However, if scenario probabilities are restricted to P C P°, the set of feasible util-
ity functions may impact the composition of the set of non-dominated portfolios. For
instance, if the set of utility functions is not restricted, then for any feasible portfolio
X' ¢ Xn(P x UY), there exists a portfolio X € Xy(P x U°) which dominates X’ with
regard to first order stochastic dominance that holds for all feasible scenario probabilities
(Lemma 2).

The set of non-dominated portfolios X (P x U*4) includes all portfolios that a risk-
averse DM would consider, regardless of whether risk aversion is defined in terms of (i)
preferences for certain outcomes over uncertain outcomes with equal expected value or
(ii) preferences for an increase in the portfolio’s CVaR at any risk level o (Lemma 3).
Furthermore, Xy (P x U#) includes all portfolios that maximize the expected portfolio
value subject to constraints on the portfolio CVaR, no matter what scenario probabilities
in p € P, risk levels a € (0, 1] and threshold levels v € R are chosen.
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( 3
t"{:l.'
Xn(P° x U)
i ™\
Xn(P x UY)
i )
Yn(P X [q)
L An(PxU) argmax E,[X] |
P | Vi :
i f xr CVaR2[X]>~ |
o argmax E}_}[u(‘\ )] o [X] E
pep a € (0,1]
! ueU ~eR
0\‘_'_'_'_'_'_'_'_'_'_‘_'_'_'_'_'_'_'_-_-_-:‘ ______________________ )
LL JJ

Figure 1: Relationship among sets of non-dominated portfolios when P ¢ P®and U c U4 c U°.
Sets marked with dashed-lines may intersect depending on the problem instance.
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4.3 Risk Measures under Incomplete Information

With incomplete information about scenario probabilities, the portfolio risk consists of
two components: the portfolio can have a low value in the scenario that obtains (scenario
risk), or the ‘true’ scenario probabilities are such that the expected value of the portfolio
will be low (parametric risk). This latter type of risk can be measured by the minimum
expected portfolio value when scenario probabilities vary with in the set P. The resulting
risk measure is also coherent.

Lemma 4 Minimum ezpected value MEp[X] = min,cp E,[X] is a coherent risk-measure
for any P C P°.

With incompletely defined scenario probabilities, the scenario risk can be cap-
tured by the minimum CVaR value over all feasible probabilities, i.e, WCVaR%[X]| =
min,e pCVaRS[X]. Because WCVaR corresponds to a minimum expected value over a
specific set of probabilities, it is a coherent measure of risk based on Lemma, 4.

Lemma 5 For a risk level o € (0,1] and set of feasible probabilities P C P° the Worst-
case Conditional Value-at -Risk for a portfolio X € X is a solution to the LP-problem
WCVaR$[X] = mg?n E,[X], Q% = {q € P" | Ip € P such that aq < p},
qeQF

P

which is a coherent risk measure and P C Q%.

Given a probability set P the WCVaR measures the worst case expected portfolio value,
not over P, but over a larger set of feasible probabilities Qp 2 P. In case of exact

probabilities P = {p} WCVaR is equal to CVaR.

WCVaR coincides with the absolute robustness-measure (i.e., the worst scenario spe-
cific value) of robust discrete optimization (Kouvelis and Yu, 1997) when (i) no restrictions
are placed on scenario probabilities or (ii) « tends to zero. In these cases, the least risky
portfolio (measured through WCVaR) is the maximin portfolio. At the other extreme,
portfolio’s WCVaR with o = 1 is equal to the portfolio’s minimum expected value over
the feasible scenario probabilities P.

Lemma 6 Let X € X° and P C P°. Then
(i) WCVaR% [ X] = migX(si) Vo€ (0,1]
8;€

(ii) lim WCVaR%[X] = min X (s;), if P Nint(P°) # ()

a—0t $;€Q

(i) ~ WCVaRp[X] = MEp[X].
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4.4 Implications for Decision Support

A risk averse DM can be advised to focus on the set of non-dominated portfolios X (P x
U?), because (i) this set contains all rational choices for a risk averse DM (see Figure
1) and (ii) all other feasible portfolios have a lower ME and WCVaR$ for any « € (0, 1]
(Lemma 3).

Next, the DM can be presented with the risk levels of non-dominated portfolios, after
which she can interactively screen portfolios by varying WCVaR thresholds for different
risk-levels a. At any stage, the projects that belong to non-dominated portfolios can be
shown to the DM to highlight which projects are included in all non-dominated portfolios
and should therefore be selected; or conversely, which projects are not contained in any
non-dominated portfolios, and which should therefore be rejected. Also, by varying the
level of risk constraints in these analysis helps illustrate how the recommendations depend
on the level of acceptable portfolio risk.

In group settings where the DMs may hold different views about the scenario probabil-
ities, the set of feasible scenario probabilities P can be taken to be the convex combination
of the DM’s estimates; in essence, this is a conservative approach as it assumes that all
DMs may be ‘correct’ in their estimates. The same approach can be used also in the
elicitation of feasible utility functions. In either case, rather than arguing about which
scenario probabilities (or risk preferences) should be used, the DMs can negotiate about
the performance of non-dominated portfolios X (P x U). This set includes optimal port-
folios in view of each individual probability estimate as well as rational compromises,
because the expected utility of any dominated feasible portfolio could be improved with
regard to allindividual scenario probability estimates. Furthermore the composition of the
non-portfolios may be similar, in which case the different views on scenario probabilities
possibly have an impact on decisions about few investment projects only.

5 Computation of Non-Dominated Portfolios

The non-dominated portfolios Xy (P x U) can be determined by first computing the set
Xn(P°x U%) and by then discarding the portfolios that are dominated with regard to the
information set P x U, because Xy (PxU) C Xy(P°xU°) by Theorem 2. By Property (ii)
of Theorem 1, the set Xy (P°xU®) can be determined by computing all the Pareto-optimal
solutions to the multiple objective zero-one linear programming (MOZOLP) problem

v—max{Cz | Az < B, z € {0,1}"}, (11)
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where the coefficient matrix C' € R™™ with [C];; = 27(s;) contains the projects’ scenario-
specific values. Any Pareto-optimal solution z to (11) is a non-dominated portfolio X such
that 27 € X if and only if z; = 1. Several MOZOLP algorithms are available (Villareal
and Karwan, 1981; Kiziltan and Yucaoglu, 1983; Liesit et al., 2007, 2008).

For risk neutral utility functions U = U* = {u(t) = at +b | a,b € R,a > 0}, portfolio
X dominates X' if and only if the expected value of portfolio X is greater in every extreme
point of P and strictly greater in at least one extreme point (cf. Theorem 1). In this case,
the set of non-dominated portfolios Xy (P x UL) can be computed from the MOZOLP
problem (11) by replacing the matrix C' with C’ € R™”™ that contains the expected values
of the investment projects 27 at the extreme points of set of feasible scenario probabilities
P (i.e, [C");i = Eyi(a?), {p",...,p'} = ext(P)).

In the general case P x U C P° x U°, dominated portfolios can be discarded from
Xn(PY x UY) with a linear programming model that determines the maximum and min-
imum expected utility difference for pairs of portfolios X and X’ at each extreme point
p € ext(P). Specifically, let © € R" contain the scenario-specific values of portfolios X
and X’ in an increasing order so that v = SORT({X(s;) | s; € QY U{X'(s;) | s; € Q}).
By construction, v; < 0,41 for all j = 1,...,h —1 and h < 2n. The expected utility
difference of portfolios X and X' is

Ep[u(X)] = Ep[u(X")] = Zpiu(X(si)) - ZPiU(X/(Sz‘))

Gl > opi— ) pz’]ZZAa‘ﬁj’

1 X(si)=0; X' (s1)=0;

J

where u(0;) = 4; and A; = ZX(SZ_):{)J_ i — ZX,(SZ_):{)J_ pi. For any given scenario probabili-
ties p € ext(P), the minimum and maximum expected utility differences over u € U° can
be obtained from LP-problems

h
min /max {>_ Aji; [ @€ [0,1]", @; < iy Vj=1,... . h—1} (12)

=1

For example, consider a two-scenario problem with feasible scenario probabilities P =
{p = (p1,p2) € P° | p; €]0.4,0.5]} and corresponding extreme points p* = (0.4,0.6) and
p? = (0.5,0.5)). If the scenario-specific values of portfolios X, X" are X (s1) = 5, X(s2) = 3
and X'(s;) = 2, X(sy) = 5, respectively, we have © = (2,3,5)7. At the extreme point
p', the difference in the expected utilities of these portfolios is Ei[u(X)] — Epfu(X')] =
ij:l Aji; = —0.4u(2) + 0.6u(3) — 0.2u(5), where A = (—0.4,0.6, —0.2)". For increasing
utility functions, U = U°, this expression attains its minimum —0.2 at @ = (0,0, 1)T.
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Thus, because the expected utility of portfolio X at p' can be strictly lower than that of
X', portfolio X does not dominate X".

The set of feasible utility functions can be restricted with further constraints on (12).
For instance, linear constraints
Uj — Uj—q _ Ujyr — Uy
b Iml s It Ty =9 h—1,
Uj+1 — Y5

UV —Uj—1

can be introduced to model risk averse preferences with concave utility functions U = U“.
Even in this case, sufficient and necessary condition for dominance can be established by
solving the minimum and maximum of LP problem (12) at every extreme point of P.

Theorem 3 Let X, X' € X and S =P xU. Then X =g X' if and only if the minimum
of LP-problem (12) is non-negative for all p € ext(P) and the mazimum is strictly positive
for some p € ext(P).

6 An Illustrative Example

Because the commercial success of R&D projects is often contingent on enabling tech-
nologies, we present an illustrative example where a high-technology Company chooses
an R&D portfolio from 30 project proposals. The projected cash flows of the projects
depend on the two enabling technologies, labeled A and B. Every project is related to one
(but not both) of these technologies.

For both technologies, the Company builds three scenarios (pessimistic, neutral, and
optimistic) to describe how successful the technology will be over a five-year planning
horizon; these scenarios are denoted by w4~ w4% wAt and WP, wP% WP, respectively.
Thus, for every proposal, three cash flow estimates are elicited to describe how the project
will perform depending on the success of its enabling technology (see Table 1). Taken
together, the three scenarios for technologies A and B define nine joint scenarios sy, . . ., Sg
(see Table 2).

The selection of projects is constrained by the R&D budget (1.2 million euros) and
the availability of human resources (50 man-years; see Table 1). In addition there are
other project interactions. First, both of projects A7 and B5 can be implemented in
two variants, which requires two linear constraints to ensure only one of the variants can
be included in the portfolio. Second, Project A4.1 is a follow-up to Project A4.0, and
thus Project A4.1 cannot be selected unless Project 4.0 is also selected. Third, the joint
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Table 1: Project candidates

Name 21 (s),s € wir™  2I(s),s € w0 2I(s),s € wT | Cost HR
Project Al 0 0 380 44 5
Project A2 0 0 420 31 5
Project A3 0 10 540 30 6

Investment A1-3 0 0 0 80 0
Project A4.0 80 100 520 79 6
Project A4.1 20 130 690 85 6

Project A5 70 110 360 142 2
Project A6 130 230 230 121 2
Project AT7a 0 10 460 132 6
Project A7b 30 60 420 111 8
Project A8 40 40 440 87 6
Project A9 60 70 420 132 9
Project A10 60 70 450 117 8
Project All 150 180 180 96 6
Project A12 40 190 190 145 8
Project A13 100 230 230 101 2

I(s),s €wP™ 2I(s),s € WP 2I(s),s € WBT

Project B1 80 110 200 98 2
Project B2 60 150 190 182 4
Project B3 70 150 240 183 6
Project B4 140 160 270 224 2
Project Bba 40 220 230 105 9
Project B5b 50 170 290 157 10
Project B6 200 230 260 177 3
Project B7 40 240 310 139 4
Project B8 120 260 320 184 9
Project B9 230 270 320 157 7
Project B10 200 260 330 254 2
Project B11 60 250 360 224 4
Project B12 130 240 380 224 5
Project B13 180 370 480 331 8

execution of projects Al, A2, and A3 calls for an additional investment into new research
equipment. This is modeled with the help of a dummy project which has a positive cost
but no projected cash flows (cf. Investment A1-3) and a linear constraint which ensures
that the portfolio can contain any of the projects Al, A2 and A3 only if the dummy
project is also included. Taken together, the model has two resource constraints and four
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Table 2: Technology success and model scenarios; For instance, w4~ = {s, s4, 57} wB’ =
{54, S5, S6}-
A= A0 AT
wb- S1 So S3
LUBO S4 S5 S¢
wB+ ST S8 S9

Table 3: Scenario probability estimates (%)

pF o5 oh b pE pE pE ok
pl 125 5 15 5 225 30 5 10 5
p | 2 5 16 5 20 20 10 20 2
pPl 4 2 8 4 35 20 10 16 1
p*l 1 4 12 3 30 225 5 20 25
pPl3 7 15 5 25 15 10 15 5

other feasibility constraints.

Without any information about scenario probabilities or risk preferences, the set
Xn(PY x U°) includes 329 non-dominated portfolios. These were computed in less than
a minute on a laptop computer (1.83GHz, 1GB memory) with the MOZOLP algorithm
of Liesio et al. (2008). The corresponding aggregate portfolio cash flows vary from $0.44
to $4.63 million across the nine scenarios and all non-dominated portfolios.

Information about scenario probabilities py, . . ., pg is elicited by consulting five experts.
These experts believe it is unlikely that the pessimistic scenarios will obtain for both
technologies, because there is a market for the products enabled by these technologies; but
because the technologies compete with each other, the joint occurrence of the optimistic
scenarios is also unlikely, too. These considerations are reflected in the low probabilities
of scenarios s; and sg in Table 3.

It is assumed that the probability estimate of each expert may be the correct one.
The set of feasible scenario probabilities is therefore defined as the convex combination
of these estimates p',...,p° so that P = {p = >0 \p’ | 37, A\ = 1,A > 0}. When
the scenario probabilities are restricted to this set P, the number non-dominated optimal
portfolio declines to 317 from the initial 329.

When risk-seeking preferences are excluded by considering only linear or concave utility
functions Xy (P x U?), the number of non-dominated portfolios drops to sixty. The
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Figure 2: Portfolios in Xy (P x U4). White ones become dominated with U, gray ones with
the linear utility function.

intervals of corresponding expected portfolio cash flows, scenario-specific portfolio cash
flows and WCVaR"2-values are shown in Figure 2. Here, the portfolios are indexed in
an increasing order of WCVaR%2, which reflects the worst-case expected cash flow of the
portfolio, conditioned on the occurrence of the worst 20% of outcomes.

Interestingly, the level of portfolio risk — as measured by WCVaR%? - can be be reduced
by diversifying among projects that relate to technologies A and B. This can be seen from
Figure 3 which shows the proportion of funds that are allocated to Technology A and
Technology B related projects: for instance, in portfolio #1 — which has the greatest
possible expected cash flow ($2.8 million) — about 80% of the budget is allocated to
projects in Technology A; but in the least risky portfolio (#60) only some 33% of budget
is allocated to projects in Technology A.
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Figure 3: Budget allocation between projects in Technologies A and B in the non-dominated
portfolios X (P x U4).
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Next, the Company management places an upper bound on the level of risk aversion
by specifying that the certainty equivalent of a fifty-fifty gamble between the worst ($0.44
million) and the best ($4.63 million) portfolio cash flows is at least $1.8 million. In the
set of exponential utility functions u®(t) = [e~440% — e=] /[~ 4100 — ¢=46304] that normalize
the worst and best cash flows onto the range [0, 1], this corresponds to the coefficient
a = 0.00037 as u°(1800) = 0.5. The set of feasible utility functions thus becomes

Ul ={uecU?|0<u(t) <u'(t) Ve [440,4630]}, (13)
as illustrated in Figure 4.

For the utility functions in U, nine out of the previously computed portfolios are
non-dominated; and five of these are non-dominated when the portfolios are evaluated
with a risk-neutral linear utility function (see Figure 5).
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Figure 5: Portfolios in X (P x U'). Black ones are non-dominated also with the linear utility
function.

The WCVaR"2-values for nine portfolios in Xy (P x U') range between $0.8 and $1.5
million. The Company agrees that an acceptable WCVaR"2 level is over $1 million, which
makes it possible to discard portfolios #1 #2 and #3. Furthermore, portfolios #30, #34
and #53, although acceptable in terms of their risk level, offer much less upside potential
with smaller minimum expected cash flows than those of other portfolios. Thus, the final
selection is restricted to portfolios #8, # 15 and #29 which differ in terms of few projects
only (Figure 6). Specifically, because they all include the investment into new research
equipment (Investment A1-3), portfolio #8 is recommended for selection because it makes
the most use of this investment by including projects Al, A2 and A3.
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Figure 6: Composition of portfolios in Xy (P x U'). Black ones are non-dominated also with
the linear utility function.
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7 Conclusions

The framework developed in this paper extends scenario-based project appraisal to the
selection of project portfolios in the presence of incomplete information about scenario
probabilities and risk preferences. This framework ensures that scenarios (see, e.g., Bunn
and Salo, 1993) are explicitly considered in the appraisal of investment projects; it also
synthesizes results from such an appraisal into well-founded decision recommendations.
In general, the framework thus extends scenario analyses to problems where (i) several
investment projects are selected at the same time, (ii) complete information about scenario
probabilities or risk preferences is difficult or impossible to obtain, and (iii) the projects
may have complex interdependencies.

The proposed framework captures risk preferences through utility functions, which
can be elicited with well-established techniques based on the comparison of lotteries with
certain and uncertain outcomes. In the comparison of such lotteries, the DM may provide
ordinal preference statements or specify upper and lower bounds on certainty equivalents.
The framework also permits the specification of risk constraints, most notably through
bounds on the CVaR risk measure at different confidence levels.

The framework also supports the interactive exploration of the possibilities offered
by the proposed investment projects. Such support can be offered by computing all the
project portfolios that are non-dominated in view of available information about feasible
scenario probabilities and risk preferences. When additional information is elicited during
the decision support process, or when additional risk constraints are introduced, the set of
non-dominated portfolios becomes smaller and more conclusive decision recommendations
can be given about which projects should be selected or rejected. Even though the
determination of non-dominated portfolios may necessitate intensive computations, these
computations can be usually carried out in advance with efficient algorithms for general
multi-objective integer linear programming problems (see, e.g., Zitzler and Thiele, 1999).
In the screening phase, the final dominance checks among the portfolios can be carried
out efficiently, which makes it possible to offer interactive decision support in a workshop
setting.

This work suggests several avenues for future research. First, the framework could
be extended to multi-period portfolio models (cf. Contingent Portfolio Programming;
Gustafsson and Salo, 2005) to account for incomplete information about scenario proba-
bilities and risk preferences. Second, the modeling of project-specific uncertainties can be
important, too. However, the need to limit the total number of scenarios (resulting from
both exogenous and endogenous uncertainties) suggests that project-specific uncertain-
ties may be best characterized not through conventional decision trees but, rather, with
the help of intervals for which the corresponding non-dominated portfolios can then be
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computed (Liesio et al., 2008). Third, the potential of the proposed framework needs to
be explored in the context of case studies that shed light on its benefits in practice.
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Appendix

Proof of Lemma 1. Let k = max{k € {1,...,n} | P(w*?!) < a}: The optimum
k=1

mingeqq Ey[X] is obtained by setting ¢; = p;/a foralli=1,...k—1, ¢ =1-37"/ ¢
and qZ = 0 for all « = £+ 1,...,n, which is a feasible solution since qZ < ZZ A

Z =1 p,/a+( Z =1 pz/a) = 1 Then Eg- [(X] = 25:1 %X(Si)‘l'( Z =1 p,/a) (s )
wk—1 X (s k—1 _ wk—1)
P D R X0 4 (P () = BOR, [X Wb (1 2R, [X | {5y}, Thus

CVaRj[X] = mingeqq E [ X]

n

:mln{z% D)10<q< "Vie{l,...,n}, Zqi:1}7

€Rn
1 i—1

which is a bounded and feasible LP-problem, and thus its dual

max t+ E —zZ
zZERM

teR
zi—l—th(si)ViE{l,...,n}

yields same optimum. To maximize the dual for a fixed ¢, variables z; are set to their
upper bound, i.e, z;(t) = min{0, X(s;) — t} = —max{0,t — X (s;)}, which gives

CVaR[X] = max(t — —sz max{0,t — X(s;)}) = max(t — lIE »max{0,t — X}]).

teR teR
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Proof of Theorem 1. i) ‘=": Assume X =ext(P)xu X' which implies
B [u(X)] > Eyfu(X)]Vpe{p',....p'}, uel

where {p',...,p'} =ext(P). Any p € P is a linear combination of these extreme points,
ie., p=>r_, arp®, where oy > 0. For any (p,u) € P x U:

Ep[u(X)] = Ep[u(X)] = Zpi[U(X(Sz')) — u(X'(s:))]

= 3 (X () ~ u(X(50)]

1=1 k=1

= Y oY pFulX(s:) — u(X'(s:))]
k=1 =1

- Zak(Ep’“ [u(X)] — Epr[u(X")]) >0
k=1

since all terms of the sum are non-negative. Thus E,[u(X)] > E,[u(X")] for all (p,u) €
(P x U) and the inequality is strict for some p € ext(P) C P and u € U, which implies
X =pxv X'

‘=" Assume X >pyp X', which implies E,[u(X)] > E,[u(X")] for all (p,u) € ext(P) x U,
since ext(P) C P. Furthermore, exists p € P, p = 22:1 ap®, such that 0 < E,[u(X)] —
E,[u(X")] = Y iy an(Ep[w(X)] — Ep[u(X")]). Thus Ejxfu(X)] > Ex[u(X")] for some
p¥ €ext(P) which implies X =ext(P)xU X -

ii) Since the extreme points {p',...,p"} of P° are of the form p! = 1,p§ =0Vj #i, i)
implies that dominance X >poy;y X’ holds if and only if u(X(s;)) > uw(X'(s;)) Vi €
{1,...,n},u € U (with the inequality strict for some i and ). Since U C U° contains
only increasing utility functions (and at least one strictly increasing) the condition is equal
to X(s;) > X'(s;) Vie{l,...,n} with a strict inequality for at least one 1. O

Proof of Lemma 2. It is well-known (see, e.g., Hanoch and Levy, 1969) that for a fixed
pe P

E[u(X)] > Eu(X)|Vuel® & PX<t)<PX'<t)VteR
t t
E,[u(X)] > B, fu(X)] Vuc U4 « / P(X < y)dy < / P(X' < y)dy V¢ € R.
If the expected utility inequalities are strict for some u, the right-hand-side inequalities
are strict for some t. The lemma results directly from these results. 0
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Proof of Lemma 3. It is easy to verify that ffoo P(X < y)dy = > y(s)<ePilt —
X(s1)) = maxo<r<p p iy it — X(si)) = —ming<,<p[d 50, 7iX (si) — ¢ 327, 7i]. Denot-
ing G(X,p,t) = ming<,<p[> iy 7:X(s;) —t Y ., r;] and using property ii) of Lemma 2
gives

X =pa X' & G(X,p,t) > G(X',p,t)Vp € P,t € R,
with the inequality strict for some p € P,t € R. Furthermore, denote

n

F(X,p,a) = aCVaR}[X] = min E agX(s;)) = min ri X (s;).
0<ag<p 0<r<p
Y 4=t =1 Y ri=a i=1

For any p € P,a € (0,1], X € X it holds that

F(X,p,a) > G(X,p,t)+atVteR
G eRst. F(X,pa) = G(X,p,t7) + at”,

since the dual of LP problem F(X,p, @) is max;er[G(X,p,t) + at]. To prove the lemma
it is thus sufficient to show that

G(X,p,t)

& F(X,p, )

G(X',p,t)Vpe PteR (14)

>
> F(X',p,a)Vpe Pac(0,1], (15)

and that inequality (14) is strict for some p € P,t € R if and only if the inequality (15)
is strict for some p € P, € (0, 1].

‘(14) = (15)": Forany p € P,a € (0, 1] exists t* € R such that F(X',p,a) = G(X',p,t")+
at* < G(X,p, t*) + at* < F(X,a,p).

‘(15) = (14): Take p € P,t € R. Let o* = > ", r¥, where r* solves the optimization

=1 z?
problem G(X,p,t). Then G(X,p,t)+a’t =37 i X(s;)) > F(X,p,a*) > F(X',p,a*) >
L(X',p,t) + a’t.

212

Finally, correspondence between strict inequalities holds since dp € Pt €
R st. G(X,p,t) > G(X' a,p,t) & =(G(X',p,t) > G(X,p,t) Vp € Pt € R) &
-(F(X',p,a) > F(X,p,a) Vp € Pa € (0,1]) & dp € P,a € (0,1] s.t. F(X,p,a) >
F(X' p,a). O

Proof of Theorem 2. Assume X' € Xp \ Ay(S5). Then exists X € Xy(S) such that
X =g X'. Since S C S, Ej[u(X)] > Ep[u(X)] V (p,u) € S and exists (u*,p*) € S such
that E,«[u*(X)] > Ep«[u*(X")]. For any (p,u) €int(S) N S, exists € > 0 such that

pPo= ptep—p)er
v = u+elu—ut)eU.
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Since S = P x U, (p/,u*) € S and (p*,u’) € S. Denoting § = €¢/(1 + ¢€) yields u =
(1 —=p)u' + pu* and p = (1 — B)p' + Bp*, wherefore

Ep[u(X)]
= FE /(X)) + B(1 = B)E[u" (X)] + B(1 = B)Ep[u(X)] + (1 = B) Epe [u"(X)]
> BB [ (X)) + B(1 = BE [u(X)] + B(1 = B)Ep- [/ (X')] + (1 — B)*Epe [u” (X)]
> FE (X)) + A1 = BB, [u(X)] + B(1 = B)Epe [u (X)] + (1 = B) Epe [u™ (X))
= Ep[u(X')],
since 3> 0 and 1 — 3> 0. Thus X =z X’ wherefore X’ ¢ Xy(S). O

Proof of Lemma 4. Since MFE is a LP problem, translation invariance and positive
homogeneity are trivial. Superadditivity:

MEp(X + X'] = minE,[X + X'] = min(E,[X] + E,[X"])
peEP peEP
= min (Ep[X]+E2[X']) > min (E,[X]+E2[X'])
P11_2€2P pl,p2eP
— r?el% E,[X] + rgel% EZ[X'] = MEp[X] + MEp[X'],

since {p',p? € P | p' = p?} C {p',p* € P}. Monotonicity: X(s;) > X'(s;) Vs; € Q =
E,[X] > E,[X']V p € P* = mingepE,X] = Ep[X] > Ep:[X'] > mingep E)[X] =
MEp[X] > MEp[X]. O
Proof of Lemma 5 By definition

WCVaRp[X] = min CVaR)[X] = min min E,[X]

peP peEP qeQY
= min E/[X]= min E,[X],
PEPEQY 9€QP

which is a LP problem since Q% = {q € P° |ag < p, p € P} is a polyhedral set. Since
WCVaR%[X] = MEge [X], Lemma 4 implies that WCVaR is a coherent risk measure.
Furthermore, for any p € P, ap < p wherefore p € % and thus P C Q%. O

Proof of Lemma 6. By Lemma 5

WCVaRE(X) = min E,[X], Qp ={q € P’ ag<ppeP}
and mingepo E,[X] = ming,cq X (s;) (see proof of by Theorem 1). i) If P = P° then by
Lemma 5 P° C Q%, and by construction Q% C P°, which together imply Q%, = P°. ii)
Take any p € PNint(P°), which implies p; > 0Vi = 1,..,n. For any ¢ € P°, ¢; <1 < p;/«
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foralli =1,..n, @ € (0,min; p;]. Thus, P’ C Q¥ C PY ie., Q370 = PO iii) If a = 1,
the constraint aq = ¢ < p holds only for p = ¢, wherefore QL = P. O

Proof of Theorem 3. By Theorem 1 X >p,py X'if and only if E,[u(X)] > E,[u(X")] for
all p € {p',...,p'}, u € U with a strict inequality for some p € {p',...,p'}, v € U. This
condition can be checked by minimizing and maximizing the expected utility difference
E,[u(X)] — E,[u(X")] for each p € {p',...,p'} subject to u € U, which is equal to the

LP-problem (12). O
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