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Abstract: In the selection of investment projects, it is important to account for 

exogenous uncertainties (such as macroeconomic developments) 
which may impact the performance of projects. These uncertainties 
can be addressed by examining how the projects perform across a set 
of scenarios; but it may be difficult to assign well-founded probabilities 
to such scenarios, or to characterize the decision makers' risk 
preferences through a uniquely defined utility function. Motivated by 
these considerations, we develop a portfolio selection framework 
which (i) uses set inclusion to admit incomplete information about 
scenario probabilities and utility functions, (ii) identifies all the non-
dominated project portfolios in view of available information, and (iii) 
offers consequent decision support for the selection and rejection of 
projects. The proposed framework enables interactive decision 
support processes where the implications of introducing additional 
probability and utility information or further risk constraints are shown 
in terms corresponding decision recommendations. 
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S
enario-Based Portfolio Sele
tion of Investment Proje
ts withIn
omplete Probability and Utility InformationSeptember 3, 2008Juuso Liesiö and Ahti SaloSystems Analysis LaboratoryHelsinki University of Te
hnologyP.O. Box 1100, 02015 TKK, Finlandemail: �rstname.lastname�tkk.�Abstra
tIn the sele
tion of investment proje
ts, it is important to a

ount for exogenousun
ertainties (su
h as ma
roe
onomi
 developments) whi
h may impa
t the per-forman
e of proje
ts. These un
ertainties 
an be addressed by examining how theproje
ts perform a
ross a set of s
enarios; but it may be di�
ult to assign well-founded probabilities to su
h s
enarios, or to 
hara
terize the de
ision makers' riskpreferen
es through a uniquely de�ned utility fun
tion. Motivated by these 
onsid-erations, we develop a portfolio sele
tion framework whi
h (i) uses set in
lusion toadmit in
omplete information about s
enario probabilities and utility fun
tions, (ii)identi�es all the non-dominated proje
t portfolios in view of available information,and (iii) o�ers 
onsequent de
ision support for the sele
tion and reje
tion of proje
ts.The proposed framework enables intera
tive de
ision support pro
esses where theimpli
ations of introdu
ing additional probability and utility information or furtherrisk 
onstraints are shown in terms 
orresponding de
ision re
ommendations.Keywords: de
ision analysis, proje
t portfolio sele
tion, risk, s
enarios, sto
hasti
dominan
e, in
omplete information, utility theory, Conditional Value-at-Risk.



11 Introdu
tionIndustrial and publi
 organizations take 'go/no go' de
isions about investment proje
tswith un
ertain future 
onsequen
es. Typi
ally these de
isions are 
ompli
ated by thepresen
e of multiple attributes, several resour
es 
onstraints, proje
t interdependen
ies,and balan
e requirements a
ross te
hnologies and business areas. These 
ompli
ations,along with the importan
e of the proje
t portfolio sele
tion problem, have fostered thedevelopment of de
ision analyti
 methods whi
h have found high-impa
t appli
ationsin domains su
h as R&D proje
t portfolio sele
tion (Golabi et al., 1981; Beaujon etal., 2008), 
apital budgeting in health
are (Kleinmuntz, 2008), and military resour
eallo
ation (Ewing et al., 2006).In the sele
tion of investment proje
ts, exogenous un
ertainties (whi
h are not in�u-en
ed by the proje
ts, e.g., rate of industry growth) are 
ru
ial, be
ause they may impa
tmany proje
ts, even to the point where unfavorable developments de
rease the value of ev-ery proje
t in the portfolio. Su
h un
ertainties 
an be 
aptured through a set of s
enarios(see, e.g., Bunn and Salo, 1993; Poland, 1999) and by 
ombining s
enario-based proje
tanalyses with models for risk preferen
es and risk 
onstraints (see, e.g., Gustafsson andSalo, 2005). However, well-founded information about the s
enario probabilities or thede
ision makers' (DM) risk preferen
es may be di�
ult to eli
it: for example, the DMsmay have 
on�i
ting views about these probabilities, and they may also exhibit di�erentrisk attitudes. It is therefore important to explore how de
isions 
an be supported on thebasis of in
omplete information, also in view of positive experien
es from the use of su
hinformation in multi-attribute proje
t sele
tion problems (Stummer and Heidenberger,2003; Liesiö et al., 2007, 2008; Lindstedt et al., 2008).In this paper, we develop a de
ision analyti
 framework for s
enario-based sele
tionof portfolios of investment proje
ts based on in
omplete probability and utility informa-tion. We model in
omplete information through set in
lusion and solve multiple obje
tivezero-one linear programming problems to determine all the 
orresponding non-dominatedportfolios in re
ognition of relevant logi
al, resour
e, and risk 
onstraints as well as proje
tinterdependen
ies. Then, de
ision re
ommendations about individual proje
ts are derivedby examining whi
h proje
ts are 
ontained in all, some, or none of non-dominated port-folios; this approa
h applies the 
on
epts of 
ore, borderline and exterior proje
ts fromRobust Portfolio Modeling (Liesiö et al., 2007) to s
enario-based de
ision analyses. Fur-thermore, the DMs are allowed to provide information about s
enario probabilities andtheir risk preferen
es intera
tively, and to examine the impli
ations of this for de
isionre
ommendations.The rest of this paper is stru
tured as follows. Se
tion 2 dis
usses earlier approa
hesfor the proje
t portfolio sele
tion. Se
tion 3 presents our analyti
al framework. Se
tion 4



2extends this framework to settings with in
omplete information, presents 
orrespondingdominan
e stru
tures and des
ribes approa
hes to de
ision support. Se
tion 5 devel-ops 
omputational methods for the identi�
ation of non-dominated portfolios. Se
tion 6presents an illustrative example in R&D portfolio sele
tion.2 Earlier Approa
hes to Proje
t Portfolio Sele
tionThe sele
tion of investment proje
ts involves usually estimates about the DM's preferen
esand the proje
ts' future performan
e. De
ision support for this problem needs to bealigned with the possibilities of eli
iting su
h estimates; in parti
ular, the usability ofhighly sophisti
ated optimization models that assume 
omplete information and o�erunique `optimal' solutions may be limited if the requisite inputs 
annot be eli
ited with ahigh level of 
on�den
e (Kleinmuntz, 2008; Cooper et al., 1999). For example, Stummerand Heidenberger (2003) note that DMs may �nd it di�
ult to provide exa
t informationabout their preferen
es. Motivated by this re
ognition, they develop an approa
h for R&Dproje
t portfolio sele
tion based on the 
omputation of all Pareto-optimal portfolios inview of multiple attributes (i.e. portfolios that 
annot be improved with regard to allattributes). They also des
ribe a dedi
ated de
ision support software whi
h allows theDMs to set aspiration levels for the attributes and to seek intera
tively portfolios that are
onsistent with their preferen
es.Even if 
onsensus estimates about the investments' expe
ted values 
an be obtained,un
ertainties about these estimates 
ontribute to portfolio risk. For example, Beaujon etal. (2008) evaluated risks arising from un
ertain proje
t values in R&D portfolio sele
tion.Spe
i�
ally, they �rst obtained the optimal portfolio with mixed integer programming andthen used Monte Carlo simulation to explore how the value of the optimal portfolio variessubje
t to random errors in the proje
ts' value estimates. In their sensitivity analysis,the portfolio value was 
lose to the optimum even with rather large errors. This is notsurprising, be
ause the independently distributed random errors (an assumption whi
h
an be questioned in many 
ases) are likely to 
an
el out ea
h other, when the portfoliovalue is 
omputed as the sum of proje
ts' values.In their 
ase study on strategi
 produ
t portfolio development, Lindstedt et al. (2008)used Robust Portfolio Modeling (RPM; Liesiö et al., 2007, 2008) to 
apture di�erent viewson the produ
ts' future values in order to identify most attra
tive 
ombinations of te
h-nologies and market segments. In RPM, the possibility to admit in
omplete informationthrough feasible sets of parameters value was harnessed to a

ount for di�erent viewswithin the management team. Based on the 
omputation of all non-dominated portfolios(i.e. portfolios for whi
h a better portfolio for all allowed parameter values 
annot be



3found), de
ision re
ommendations for the produ
t strategy were developed in an inter-a
tive de
ision workshop. Be
ause many produ
ts were in
luded in all non-dominatedportfolios and some in none, the dis
ussion 
ould be fo
used on those `borderline' prod-u
ts in
luded in some but not all non-dominated portfolios. Thus, instead of requiring alengthy debate on what the `
orre
t' values for model parameters would be, RPM helpeddemonstrate whi
h produ
t de
isions were supported by the available and partly in
om-plete information.Poland (1999) reports positive experien
es from the use of de
ision trees in the develop-ment of a business portfolio strategy. In his model, the exogenous (or global) un
ertainties(e.g., gross domesti
 produ
t, interest rates) were 
aptured by s
enarios and asso
iatedprobabilities, whi
h were then harnessed in the analysis of 20 businesses. Based on theseresults, multiple relevant portfolio strategies were stru
tured, whi
h spe
i�ed strategywithin ea
h business. Yet, instead of 
omputing a single portfolio strategy, several nearlyoptimal portfolios were presented to the senior managers who then sele
ted the �nal port-folio strategy. In the �nal sele
tion, they also debated those goals and 
onstraints thatwere not expli
itly in
luded in the pre
eding analyses.In dynami
 de
ision problems with dozens of proje
ts, it is impossible to examine allportfolio strategies by inspe
tion, and hen
e optimization approa
hes are needed. Con-tingent Portfolio Programming (CPP; Gustafsson and Salo, 2005), for example, 
apturesexogenous un
ertainties through a multi-period s
enario tree with known probabilitiesand investments' s
enario-spe
i�
 
ash �ows, and determines the optimal portfolio strat-egy in sense of expe
ted 
ash position at the terminal period from a mixed integer lin-ear programming problem. In the CPP framework, it is also possible to introdu
e risk
onstraints based on various risk measures, for example by imposing bounds on the Con-ditional Value-at-Risk levels at di�erent time periods or 
on�den
e levels (Kettunen andSalo, 2008).3 Portfolio Sele
tion under Risk3.1 Portfolio Value and FeasibilityThe m investment proje
ts X0 = {x1, . . . , xm} represent dis
rete `go/no-go' de
ision al-ternatives with out
omes in n disjoint s
enarios Ω = {s1, . . . , sn}. The value of proje
t
xj in s
enario si, denoted by xj(si), 
an represent the net present 
ash �ow of the proje
tin s
enario si, or the 
ardinal multi-attribute value of the proje
t, as obtained from 
on-ventional MAVT analysis (see, e.g., Keeney and Rai�a, 1976), for instan
e.



4An investment portfolio X is a subset of available investment proje
ts X0 and hen
ethe set of all possible portfolios is X = {X | X ⊆ X0}. Ea
h portfolio X implies areal-valued random variable X : Ω → R whi
h represents the portfolio's value:
X(si) =

∑
xj∈X

xj(si). (1)The probability of s
enario si is pi. The s
enario probabilities p = (p1, . . . , pn)T belongto the set
P 0 = {p ∈ Rn | pi ≥ 0,

n∑
i=1

pi = 1}. (2)For any p ∈ P 0, the probability of the event ω ⊆ Ω is P(ω) =
∑

si∈ω pi. For brevity,we write P(X ≤ t) = P({si ∈ Ω | X(si) ≤ t}). The expe
ted value of portfolio X is
Ep[X] =

∑n

i=1 piX(si), and Ep[X | ω] =
∑

si∈ω(pi/P(ω))X(si) is the expe
ted portfoliovalue 
onditioned on the event ω ⊆ Ω (with notational 
onvention Ep[X | ∅] = 0).The set of feasible portfolios XF ⊆ X 
an be restri
ted by various 
onstraints (e.g.,availability of resour
es, proje
t interdependen
ies, requirements of balan
e; see Stummerand Heidenberger, 2003; Liesiö et al., 2008). These 
onstraints are modeled through linearinequalities so that
XF = {X ∈ X |Az(X) ≤ B}, (3)where the 
oe�
ients for the q 
onstraints are 
ontained in the matrix A ∈ Rq×m and theve
tor B ∈ Rq. In (3), the binary ve
tor z(X) ∈ {0, 1}m is su
h that zj(X) = 1 if andonly if xj ∈ X.A risk neutral DM with 
omplete information about s
enario probabilities (in the sensein a single point estimate) seeks to maximize the expe
ted value of the portfolio. Thismaximum 
an be solved from the linear zero-one programming (ZOLP) problem

max
X∈XF

Ep[X] = max
z∈{0,1}m

{
m∑

j=1

zj

n∑
i=1

pix
j(si)) | Az ≤ B}. (4)3.2 Portfolio RiskEspe
ially for large non-re
urring investment proje
ts the assumption of risk neutralityis not tenable. In the Expe
ted Utility Theory (von Neumann and Morgenstern, 1947),the DM's risk preferen
es are 
aptured by a stri
tly in
reasing utility fun
tion u thatmaps the portfolio values to utilities. Thus, instead of expe
ted value, the DM seeks to



5maximize the expe
ted utility of the portfolio so that (4) be
omes a non-linear zero-oneprogramming problem
max
X∈XF

Ep[u(X)] = max
z∈{0,1}m

{
n∑

i=1

piu(
m∑

j=1

zjx
j(si)) | Az ≤ B}. (5)In some situations it may be more 
onvenient to use risk-measures and asso
iated risk
onstraints rather than utility fun
tions to model risk aversion. A risk-measure ρ mapsea
h portfolio to a real-valued measure for risk. Sin
e our model builds on maximizationof value rather than minimization of losses, following Dent
heva and Rusz
zynski (2006)we de�ne that portfolio X is less or equally risky than X ′ if ρ[X] ≥ ρ[X ′] . We would liketo emphasize that this is matter of de�nition and does not 
hange any pra
ti
al aspe
ts ofmeasuring risk. Su
h a risk measure is 
oherent if for any X, X ′ ∈ X it satis�es (Artzneret al., 1999)Translation invarian
e: ρ[X + λ] = ρ[X] + λ ∀ λ ∈ RPositive homogeneity: λρ[X] = ρ[λX] ∀ λ ≥ 0Superadditivity: ρ[X + X ′] ≥ ρ[X] + ρ[X ′]Monotoni
ity: X(si) ≥ X ′(si) ∀ si ∈ Ω ⇒ ρ[X] ≥ ρ[X ′].Translation invarian
e and positive homogeneity guarantee that the ordering of port-folios based on their riskiness will not 
hange if their values are subje
ted to posi-tive a�ne transformations. Superadditivity implies that diversi�
ation does not in-
rease risk: for example, if there are two equally risky portfolios X and X ′ su
h that

ρ[X] = ρ[X ′], then doubling either one of these portfolios results in a portfolio that iseither more or equally risky than a diversi�ed portfolio formed from X and X ′, be
ause
ρ[2X ′] = 2ρ[X ′] = ρ[X ′] + ρ[X] ≤ ρ[X ′ + X]. Monotoni
ity, in turn, ensures that if aportfolio X yields at least as mu
h value as X ′ in all s
enarios, it 
annot be the morerisky.In our framework, we use the Conditional Value-at-Risk (CVaR) measure, whi
h is
oherent. For a �xed 
on�den
e level α, CVaR is the expe
ted portfolio value, 
onditionalto that the value realizes from the worst α-quantile, i.e., CVaR[X] = E[X|X ≤ t], where
t is su
h that P(X ≤ t) = α. However, P(X ≤ t) = α may have no solution, be
ausethe 
umulative probability distribution P(X ≤ t) is dis
ontinuous in t. Therefore analternative de�nition is used, whi
h 
oin
ides to the interpretation above if P(X ≤ t) = αhas a solution.De�nition 1 Let portfolio X ∈ X , probabilities p ∈ P 0 and risk-level α ∈ (0, 1]. Lets
enarios be indexed so that X(si−1) ≤ X(si) for all i ∈ {2, ..., n} and denote ω0 = ∅,



6
ωi = {s1, . . . , si} for all i ∈ {1, ..., n}. The Conditional Value-at-Risk is de�ned as

CVaRα
p [X] = λEp[X|ωk−1] + (1 − λ)Ep[X|{sk}],where k = max{k ∈ {1, . . . , n} | P(ωk−1) ≤ α} and λ = P(ωk−1)/α ∈ (0, 1].The CVaR measure 
an be 
omputed as the minimum expe
ted value over a set ofs
enario probabilities, whi
h is a linear programming (LP) problem. This follows fromArtzner et al.(1999) whi
h states that a risk measure is 
oherent if and only if it 
an bepresented as the minimum expe
ted value over some set of probability measures.Lemma 1 Let portfolio X ∈ X , probabilities p ∈ P 0 and risk-level α ∈ (0, 1]. Then

CVaRα
p [X] = min

q∈Qα
p

Eq[X], Qα
p = {q ∈ P 0 | q ≤

p

α
}, (6)or equivalently CVaRα

p [X] = maxt∈R(t − 1
α
Ep[max{0, t − X}]), whi
h is the dual of LPproblem (6).The dual is often used as a de�nition of CVaR (Ro
kafellar and Uryasev, 2000;Dent
heva and Rusz
zynski, 2006; Kettunen and Salo, 2008). Yet, we use the repre-sentation (6) whi
h extends readily to the 
onsideration of in
omplete information abouts
enario probabilities and makes it possible to limit portfolio risk in Problem (4) withoutneed for 
ontinuous variables. Be
ause the minimum of (6) is always obtained at an ex-treme point of Qα

p , denoted by ext(Qα
p ) = {q1, . . . , qt}, t additional 
onstraints in Problem(4) ensure that the optimal portfolio's CVaR will ex
eed a given threshold γ:

max
X∈XF

CVaRα
p [X]≥γ

Ep[X] = max
z∈{0,1}m

m∑
j=1

zj

n∑
i=1

pix
j(si) (7)

Az ≤ B
m∑

j=1

zj

n∑
i=1

qix
j(si) ≥ γ ∀ q ∈ ext(Qα

p ).



74 Proje
t Portfolio Sele
tion under In
omplete Infor-mation4.1 Modeling In
omplete InformationIt may be di�
ult to obtain pre
ise probabilities, be
ause the eli
itation of these prob-abilities may involve 
onsiderable 
osts or time delays; moreover, the experts may holddiverging beliefs about whi
h s
enarios are more probable than others. Thus, instead ofderiving de
ision re
ommendations from a single probability estimate, it is instru
tive toadmit in
omplete probability information and to examine what impli
ations are suggestedby it (
f. e.g., White et al., 1981; Hazen, 1986; Moskowitz et al., 1993; Walley, 1991).In our framework, the set of feasible probabilities is
P := {p ∈ P 0 | App ≤ Bp}, (8)where the matrixAp ∈ Rqp×n and the ve
tor Bp ∈ Rqp×1 are derived from statements abouts
enarios probabilities. For instan
e, if s
enario s1 is more likely than s
enario s2, we havethe 
onstraint p1 ≥ p2. Events with multiple s
enarios 
an also be 
ompared: for example,if the event {s1, s2} is less likely than the event {s3, s4, s5}, the 
onstraint p3 + p4 + p5 ≥

p1 + p2 holds. If s
enario probabilities are derived from statisti
al analysis, 
on�den
eintervals 
an be 
hara
terized through lower and upper bounds (p
i
≤ pi ≤ pi) and ifs
enario probabilities are estimated by several experts, the set of feasible probabilities
an be de�ned as the 
onvex hull of their independent estimates (so that the extremepoints of P , denoted by ext(P ), 
orrespond to the experts' estimates).Likewise, the set of feasible utility fun
tions is U ⊂ U0, where

U0 = {u : R → [0, 1] | u(t) ≥ u(t′) ∀ t ≥ t′}. (9)We assume that the set U is 
onvex with at least one stri
tly in
reasing utility fun
tion(i.e., for any t > t′ these exists u ∈ U su
h that u(t) > u(t′)). If the DM is risk averse,the set of feasible utility fun
tions is limited to 
on
ave fun
tions
UA := {u ∈ U0 | λu(t) + (1 − λ)u(t′) ≤ u(λt + (1 − λ)t′) ∀ t, t′ ∈ R λ ∈ [0, 1]}. (10)The set of feasible utility fun
tions U 
an be restri
ted by standard te
hniques forthe eli
itation of risk preferen
es in whi
h the DM 
ompares alternatives with 
ertainand un
ertain out
omes (see, e.g., Clemen, 1996). Arguably, the eli
itation of in
ompleteinformation 
an be easier, be
ause responses need not to be adjusted until indi�eren
e is



8rea
hed. Instead any preferen
e for one option over another implies 
onstraints on themodel: for example, if a lottery whi
h yields $1 million with probability of 40% and $50thousand with probability of 40% is preferred to a 
ertain out
ome whi
h yields $100thousand for sure, all feasible utility fun
tions have to satisfy the 
onstraint u(100) ≤
0.4u(1000) + 0.6u(50)The information set (whi
h 
ontains information about probabilities and utility fun
-tions) is denoted by S = P × U . The largest su
h set (whi
h re�e
ts no information ons
enario probabilities or utility fun
tions) is denoted by S0 = P 0 × U0.4.2 Dominan
e stru
turesWhen s
enario probabilities and utility fun
tions vary over their respe
tive feasible sets,di�erent expe
ted utilities are asso
iated with the portfolio X. In order to make 
on
lu-sions about whi
h portfolios outperform others, we de�ne dominan
e as follows (
f. Whiteet al., 1981; Hazen, 1986; Moskowitz et al., 1993).De�nition 2 Portfolio X dominates X ′ with regard to information set S = P × U ,denoted X ≻S X ′ if

Ep[u(X)] ≥ Ep[u(X ′)] for all (p, u) ∈ S and

Ep[u(X)] > Ep[u(X ′)] for some (p, u) ∈ S.Thus, a portfolio dominates another if and only if (i) its expe
ted utility is at least asgreat for all feasible s
enario probabilities and utility fun
tions and (ii) there exist somes
enario probabilities and utility fun
tions for whi
h its expe
ted utility is stri
tly greater.Dominan
e 
an be 
he
ked by 
omparing the expe
ted utilities at the extreme pointsof the set of feasible s
enario probabilities P . Spe
i�
ally, if there are no 
onstraints ons
enario probabilities (i.e., P = P 0), every extreme point of P 0 is asso
iated with a singles
enario that o

urs with probability one. In this 
ase, portfolio X dominates X ′ if andonly if the value of X is greater than or equal to X ′ in all s
enarios and stri
tly greaterat least in one s
enario.Theorem 1 Let P ⊆ P 0, U ⊆ U0 and 
hoose portfolios X, X ′ ∈ X . Then
(i) X ≻P×U X ′ ⇔ X ≻ext(P )×U X ′

(ii) X ≻P 0×U X ′ ⇔ X(si) ≥ X ′(si) ∀ i ∈ {1, . . . , n},where at least one of the inequalities in (ii) is stri
t for some i ∈ {1, . . . , n}.



9De�nition 2 generalizes the notion of sto
hasti
 dominan
e (see, e.g., Levy, 1992)to in
ompletely de�ned s
enario probabilities. For in
reasing utility fun
tions U = U0,the de�nition means that �rst degree sto
hasti
 dominan
e (FSD) holds for all feasibles
enario probabilities. In the modeling of risk aversion with 
on
ave utility fun
tions(U = UA), dominan
e means that se
ond degree sto
hasti
 dominan
e (SSD) must holdfor all feasible s
enario probabilities.Lemma 2 Let P ⊆ P 0 and portfolios X, X ′ ∈ X . Then
FSD : X ≻P×U0 X ′ ⇔ P(X ≤ t) ≤ P(X ′ ≤ t) ∀ p ∈ P, t ∈ R

SSD : X ≻P×UA X ′ ⇔

∫ t

−∞

P(X ≤ y)dy ≤

∫ t

−∞

P(X ′ ≤ y)dy ∀ p ∈ P, t ∈ R,where for both equivalen
e relations there exist some p ∈ P, t ∈ R su
h that the right sideinequalities are stri
t.Se
ond degree sto
hasti
 dominan
e is 
losely related to the CVaR measure. For �xeds
enario probabilities, portfolio X dominates portfolio X ′ with regard to se
ond ordersto
hasti
 dominan
e if and only if CVaRα[X] is greater than CVaRα[X ′] at all risk levels
α ∈ (0, 1] (Dent
heva and Rusz
zynski, 2006). This result 
an be extended to a

ount forin
omplete information about s
enario probabilities.Lemma 3 Let P ⊆ P 0 and portfolios X, X ′ ∈ X . Then

X ≻P×UA X ′ ⇔ CVaRα
p [X] ≥ CVaRα

p [X ′] ∀p ∈ P, α ∈ (0, 1],where the inequality is stri
t for some p ∈ P, α ∈ (0, 1].Hen
e, the set of feasible utility fun
tions U makes it possible to dis
ard feasibleportfolios that seem too risky in view of in
omplete probability information (even in theCVaR sense). Further analysis 
an be fo
used on those feasible portfolios that are notdominated by any other feasible portfolio: for if a dominated portfolio were sele
ted, itwould be possible to identify another portfolio with greater expe
ted utility for all feasibleprobabilities and utility fun
tions.De�nition 3 The set of non-dominated portfolios with information set S = P × U is
XN (S) = {X ∈ XF | ∄X ′ ∈ XF such that X ′ ≻S X}



10As a rule, the introdu
tion of additional 
onstraints on feasible s
enario probabilitiesor utility fun
tions redu
es the set of non-dominated portfolios, but 
annot generate newnon-dominated portfolios, i.e., if S̃ is a subset of S then XN(S̃) is also a subset of XN (S).However, if S̃ is a subset of the `border' of S, then there 
an be two portfolios in XN (S̃)that have a equal expe
ted utility in the border while one is stri
tly inferior if evaluatedanywhere else in S and thus does not belong to XN(S). To rule out su
h situations weassume that S̃ in
ludes at least some points from the (relative) interior of S.Theorem 2 Let S̃ ⊆ S and int(S) ∩ S̃ 6= ∅, whereint(U) = {u ∈ U | ∀u∗ ∈ U∃ǫ > 0 such that u + ǫ(u − u∗) ∈ U}int(P ) = {p ∈ P | ∀p∗ ∈ P∃ǫ > 0 such that p + ǫ(p − p∗) ∈ P}and int(S) =int(P )×int(U). Then XN (S̃) ⊆ XN (S).Figure 1 summarizes key relationships among non-dominated portfolios for di�erentfeasible s
enario probabilities and utility fun
tions. If there are no 
onstraints on s
enarioprobabilities and all in
reasing utility fun
tions are 
onsidered, the set of non-dominatedportfolios XN (P 0 × U0) 
orresponds to feasible portfolios su
h that any other feasibleportfolio has a lower value in at least one s
enario. This is implied by Theorem 1, whi
halso states that if P = P 0, restri
tions on the set of utility fun
tions will not 
hange theset of non-dominated portfolios, i.e, XN (P 0 × U0) = XN (P 0 × U) for any U .However, if s
enario probabilities are restri
ted to P ⊂ P 0, the set of feasible util-ity fun
tions may impa
t the 
omposition of the set of non-dominated portfolios. Forinstan
e, if the set of utility fun
tions is not restri
ted, then for any feasible portfolio
X ′ /∈ XN(P × U0), there exists a portfolio X ∈ XN(P × U0) whi
h dominates X ′ withregard to �rst order sto
hasti
 dominan
e that holds for all feasible s
enario probabilities(Lemma 2).The set of non-dominated portfolios XN(P × UA) in
ludes all portfolios that a risk-averse DM would 
onsider, regardless of whether risk aversion is de�ned in terms of (i)preferen
es for 
ertain out
omes over un
ertain out
omes with equal expe
ted value or(ii) preferen
es for an in
rease in the portfolio's CVaR at any risk level α (Lemma 3).Furthermore, XN (P × UA) in
ludes all portfolios that maximize the expe
ted portfoliovalue subje
t to 
onstraints on the portfolio CVaR, no matter what s
enario probabilitiesin p ∈ P , risk levels α ∈ (0, 1] and threshold levels γ ∈ R are 
hosen.
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Figure 1: Relationship among sets of non-dominated portfolios when P ⊂ P 0 and U ⊂ UA ⊂ U0.Sets marked with dashed-lines may interse
t depending on the problem instan
e.



124.3 Risk Measures under In
omplete InformationWith in
omplete information about s
enario probabilities, the portfolio risk 
onsists oftwo 
omponents: the portfolio 
an have a low value in the s
enario that obtains (s
enariorisk), or the `true' s
enario probabilities are su
h that the expe
ted value of the portfoliowill be low (parametri
 risk). This latter type of risk 
an be measured by the minimumexpe
ted portfolio value when s
enario probabilities vary with in the set P . The resultingrisk measure is also 
oherent.Lemma 4 Minimum expe
ted value MEP [X] = minp∈P Ep[X] is a 
oherent risk-measurefor any P ⊆ P 0.With in
ompletely de�ned s
enario probabilities, the s
enario risk 
an be 
ap-tured by the minimum CVaR value over all feasible probabilities, i.e, WCVaRα
P [X] =

minp∈PCVaRα
p [X]. Be
ause WCVaR 
orresponds to a minimum expe
ted value over aspe
i�
 set of probabilities, it is a 
oherent measure of risk based on Lemma 4.Lemma 5 For a risk level α ∈ (0, 1] and set of feasible probabilities P ⊆ P 0 the Worst-
ase Conditional Value-at -Risk for a portfolio X ∈ X is a solution to the LP-problem

WCVaRα
P [X] = min

q∈Qα
P

Eq[X], Qα
P = {q ∈ P 0 | ∃p ∈ P such that αq ≤ p},whi
h is a 
oherent risk measure and P ⊆ Qα

P .Given a probability set P the WCVaR measures the worst 
ase expe
ted portfolio value,not over P , but over a larger set of feasible probabilities QP ⊇ P . In 
ase of exa
tprobabilities P = {p} WCVaR is equal to CVaR.WCVaR 
oin
ides with the absolute robustness-measure (i.e., the worst s
enario spe-
i�
 value) of robust dis
rete optimization (Kouvelis and Yu, 1997) when (i) no restri
tionsare pla
ed on s
enario probabilities or (ii) α tends to zero. In these 
ases, the least riskyportfolio (measured through WCVaR) is the maximin portfolio. At the other extreme,portfolio's WCVaR with α = 1 is equal to the portfolio's minimum expe
ted value overthe feasible s
enario probabilities P .Lemma 6 Let X ∈ X0 and P ⊆ P 0. Then
(i) WCVaRα

P 0[X] = min
si∈Ω

X(si) ∀ α ∈ (0, 1]

(ii) lim
α→0+

WCVaRα
P [X] = min

si∈Ω
X(si), if P ∩ int(P 0) 6= ∅

(iii) WCVaR1
P [X] = MEP [X].



134.4 Impli
ations for De
ision SupportA risk averse DM 
an be advised to fo
us on the set of non-dominated portfolios XN(P ×
UA), be
ause (i) this set 
ontains all rational 
hoi
es for a risk averse DM (see Figure1) and (ii) all other feasible portfolios have a lower ME and WCVaRα

P for any α ∈ (0, 1](Lemma 3).Next, the DM 
an be presented with the risk levels of non-dominated portfolios, afterwhi
h she 
an intera
tively s
reen portfolios by varying WCVaR thresholds for di�erentrisk-levels α. At any stage, the proje
ts that belong to non-dominated portfolios 
an beshown to the DM to highlight whi
h proje
ts are in
luded in all non-dominated portfoliosand should therefore be sele
ted; or 
onversely, whi
h proje
ts are not 
ontained in anynon-dominated portfolios, and whi
h should therefore be reje
ted. Also, by varying thelevel of risk 
onstraints in these analysis helps illustrate how the re
ommendations dependon the level of a

eptable portfolio risk.In group settings where the DMs may hold di�erent views about the s
enario probabil-ities, the set of feasible s
enario probabilities P 
an be taken to be the 
onvex 
ombinationof the DM's estimates; in essen
e, this is a 
onservative approa
h as it assumes that allDMs may be `
orre
t' in their estimates. The same approa
h 
an be used also in theeli
itation of feasible utility fun
tions. In either 
ase, rather than arguing about whi
hs
enario probabilities (or risk preferen
es) should be used, the DMs 
an negotiate aboutthe performan
e of non-dominated portfolios XN (P ×U). This set in
ludes optimal port-folios in view of ea
h individual probability estimate as well as rational 
ompromises,be
ause the expe
ted utility of any dominated feasible portfolio 
ould be improved withregard to all individual s
enario probability estimates. Furthermore the 
omposition of thenon-portfolios may be similar, in whi
h 
ase the di�erent views on s
enario probabilitiespossibly have an impa
t on de
isions about few investment proje
ts only.5 Computation of Non-Dominated PortfoliosThe non-dominated portfolios XN(P × U) 
an be determined by �rst 
omputing the set
XN(P 0×U0) and by then dis
arding the portfolios that are dominated with regard to theinformation set P×U , be
ause XN(P×U) ⊆ XN(P 0×U0) by Theorem 2. By Property (ii)of Theorem 1, the set XN(P 0×U0) 
an be determined by 
omputing all the Pareto-optimalsolutions to the multiple obje
tive zero-one linear programming (MOZOLP) problem

v−max
z

{Cz | Az ≤ B, z ∈ {0, 1}m}, (11)



14where the 
oe�
ient matrix C ∈ Rn×m with [C]ij = xj(si) 
ontains the proje
ts' s
enario-spe
i�
 values. Any Pareto-optimal solution z to (11) is a non-dominated portfolioX su
hthat xj ∈ X if and only if zj = 1. Several MOZOLP algorithms are available (Villarealand Karwan, 1981; Kiziltan and Yu
aoglu, 1983; Liesiö et al., 2007, 2008).For risk neutral utility fun
tions U = UL = {u(t) = at + b | a, b ∈ R, a > 0}, portfolio
X dominates X ′ if and only if the expe
ted value of portfolioX is greater in every extremepoint of P and stri
tly greater in at least one extreme point (
f. Theorem 1). In this 
ase,the set of non-dominated portfolios XN(P × UL) 
an be 
omputed from the MOZOLPproblem (11) by repla
ing the matrix C with C ′ ∈ Rt×m that 
ontains the expe
ted valuesof the investment proje
ts xj at the extreme points of set of feasible s
enario probabilities
P (i.e, [C ′]ji = Epi(xj), {p1, . . . , pt} = ext(P )).In the general 
ase P × U ⊆ P 0 × U0, dominated portfolios 
an be dis
arded from
XN(P 0 × U0) with a linear programming model that determines the maximum and min-imum expe
ted utility di�eren
e for pairs of portfolios X and X ′ at ea
h extreme point
p ∈ ext(P ). Spe
i�
ally, let v̂ ∈ Rh 
ontain the s
enario-spe
i�
 values of portfolios Xand X ′ in an in
reasing order so that v̂ = SORT({X(si) | si ∈ Ω} ∪ {X ′(si) | si ∈ Ω}).By 
onstru
tion, v̂j < v̂j+1 for all j = 1, . . . , h − 1 and h ≤ 2n. The expe
ted utilitydi�eren
e of portfolios X and X ′ is

Ep[u(X)] − Ep[u(X ′)] =
n∑

i=1

piu(X(si)) −
n∑

i=1

piu(X ′(si))

=
h∑

j=1

u(v̂j)[
∑

X(si)=v̂j

pi −
∑

X′(si)=v̂j

pi] =
h∑

j=1

∆j ûj,where u(v̂j) = ûj and ∆j =
∑

X(si)=v̂j
pi −

∑
X′(si)=v̂j

pi. For any given s
enario probabili-ties p ∈ ext(P ), the minimum and maximum expe
ted utility di�eren
es over u ∈ U0 
anbe obtained from LP-problems
min

û
/ max

û
{

h∑
j=1

∆j ûj | û ∈ [0, 1]h, ûj ≤ ûj+1 ∀ j = 1, . . . , h − 1} (12)For example, 
onsider a two-s
enario problem with feasible s
enario probabilities P =
{p = (p1, p2) ∈ P 0 | p1 ∈ [0.4, 0.5]} and 
orresponding extreme points p1 = (0.4, 0.6) and
p2 = (0.5, 0.5)). If the s
enario-spe
i�
 values of portfoliosX, X ′ are X(s1) = 5, X(s2) = 3and X ′(s1) = 2, X(s2) = 5, respe
tively, we have v̂ = (2, 3, 5)T . At the extreme point
p1, the di�eren
e in the expe
ted utilities of these portfolios is Ep1 [u(X)] − Ep1[u(X ′)] =∑3

j=1 ∆j ûj = −0.4u(2) + 0.6u(3)− 0.2u(5), where ∆ = (−0.4, 0.6,−0.2)T . For in
reasingutility fun
tions, U = U0, this expression attains its minimum −0.2 at û = (0, 0, 1)T .



15Thus, be
ause the expe
ted utility of portfolio X at p1 
an be stri
tly lower than that of
X ′, portfolio X does not dominate X ′.The set of feasible utility fun
tions 
an be restri
ted with further 
onstraints on (12).For instan
e, linear 
onstraints

ûj − ûj−1

v̂j − v̂j−1
≥

ûj+1 − ûj

v̂j+1 − v̂j

∀ j = 2, . . . , h − 1,
an be introdu
ed to model risk averse preferen
es with 
on
ave utility fun
tions U = UA.Even in this 
ase, su�
ient and ne
essary 
ondition for dominan
e 
an be established bysolving the minimum and maximum of LP problem (12) at every extreme point of P .Theorem 3 Let X, X ′ ∈ X and S = P ×U . Then X ≻S X ′ if and only if the minimumof LP-problem (12) is non-negative for all p ∈ ext(P ) and the maximum is stri
tly positivefor some p ∈ ext(P ).6 An Illustrative ExampleBe
ause the 
ommer
ial su

ess of R&D proje
ts is often 
ontingent on enabling te
h-nologies, we present an illustrative example where a high-te
hnology Company 
hoosesan R&D portfolio from 30 proje
t proposals. The proje
ted 
ash �ows of the proje
tsdepend on the two enabling te
hnologies, labeled A and B. Every proje
t is related to one(but not both) of these te
hnologies.For both te
hnologies, the Company builds three s
enarios (pessimisti
, neutral, andoptimisti
) to des
ribe how su

essful the te
hnology will be over a �ve-year planninghorizon; these s
enarios are denoted by ωA−, ωA0, ωA+ and ωB−, ωB0, ωB+, respe
tively.Thus, for every proposal, three 
ash �ow estimates are eli
ited to des
ribe how the proje
twill perform depending on the su

ess of its enabling te
hnology (see Table 1). Takentogether, the three s
enarios for te
hnologies A and B de�ne nine joint s
enarios s1, . . . , s9(see Table 2).The sele
tion of proje
ts is 
onstrained by the R&D budget (1.2 million euros) andthe availability of human resour
es (50 man-years; see Table 1). In addition there areother proje
t intera
tions. First, both of proje
ts A7 and B5 
an be implemented intwo variants, whi
h requires two linear 
onstraints to ensure only one of the variants 
anbe in
luded in the portfolio. Se
ond, Proje
t A4.1 is a follow-up to Proje
t A4.0, andthus Proje
t A4.1 
annot be sele
ted unless Proje
t 4.0 is also sele
ted. Third, the joint



16Table 1: Proje
t 
andidatesName xj(s), s ∈ ωA− xj(s), s ∈ ωA0 xj(s), s ∈ ωA+ Cost HRProje
t A1 0 0 380 44 5Proje
t A2 0 0 420 31 5Proje
t A3 0 10 540 30 6Investment A1-3 0 0 0 80 0Proje
t A4.0 80 100 520 79 6Proje
t A4.1 20 130 690 85 6Proje
t A5 70 110 360 142 2Proje
t A6 130 230 230 121 2Proje
t A7a 0 10 460 132 6Proje
t A7b 30 60 420 111 8Proje
t A8 40 40 440 87 6Proje
t A9 60 70 420 132 9Proje
t A10 60 70 450 117 8Proje
t A11 150 180 180 96 6Proje
t A12 40 190 190 145 8Proje
t A13 100 230 230 101 2
xj(s), s ∈ ωB− xj(s), s ∈ ωB0 xj(s), s ∈ ωB+Proje
t B1 80 110 200 98 2Proje
t B2 60 150 190 182 4Proje
t B3 70 150 240 183 6Proje
t B4 140 160 270 224 2Proje
t B5a 40 220 230 105 9Proje
t B5b 50 170 290 157 10Proje
t B6 200 230 260 177 3Proje
t B7 40 240 310 139 4Proje
t B8 120 260 320 184 9Proje
t B9 230 270 320 157 7Proje
t B10 200 260 330 254 2Proje
t B11 60 250 360 224 4Proje
t B12 130 240 380 224 5Proje
t B13 180 370 480 331 8exe
ution of proje
ts A1, A2, and A3 
alls for an additional investment into new resear
hequipment. This is modeled with the help of a dummy proje
t whi
h has a positive 
ostbut no proje
ted 
ash �ows (
f. Investment A1-3) and a linear 
onstraint whi
h ensuresthat the portfolio 
an 
ontain any of the proje
ts A1, A2 and A3 only if the dummyproje
t is also in
luded. Taken together, the model has two resour
e 
onstraints and four



17Table 2: Te
hnology su

ess and model s
enarios; For instan
e, ωA− = {s1, s4, s7} ωB0 =
{s4, s5, s6}.

ωA− ωA0 ωA+

ωB− s1 s2 s3

ωB0 s4 s5 s6

ωB+ s7 s8 s9Table 3: S
enario probability estimates (%)
pk
1 pk

2 pk
3 pk

4 pk
5 pk

6 pk
7 pk

8 pk
9

p1 2.5 5 15 5 22.5 30 5 10 5
p2 2 5 16 5 20 20 10 20 2
p3 4 2 8 4 35 20 10 16 1
p4 1 4 12 3 30 22.5 5 20 2.5
p5 3 7 15 5 25 15 10 15 5other feasibility 
onstraints.Without any information about s
enario probabilities or risk preferen
es, the set

XN(P 0 × U0) in
ludes 329 non-dominated portfolios. These were 
omputed in less thana minute on a laptop 
omputer (1.83GHz, 1GB memory) with the MOZOLP algorithmof Liesiö et al. (2008). The 
orresponding aggregate portfolio 
ash �ows vary from $0.44to $4.63 million a
ross the nine s
enarios and all non-dominated portfolios.Information about s
enario probabilities p1, . . . , p9 is eli
ited by 
onsulting �ve experts.These experts believe it is unlikely that the pessimisti
 s
enarios will obtain for bothte
hnologies, be
ause there is a market for the produ
ts enabled by these te
hnologies; butbe
ause the te
hnologies 
ompete with ea
h other, the joint o

urren
e of the optimisti
s
enarios is also unlikely, too. These 
onsiderations are re�e
ted in the low probabilitiesof s
enarios s1 and s9 in Table 3.It is assumed that the probability estimate of ea
h expert may be the 
orre
t one.The set of feasible s
enario probabilities is therefore de�ned as the 
onvex 
ombinationof these estimates p1, . . . , p5 so that P = {p =
∑5

i=1 λip
i |

∑n

i=1 λi = 1, λ ≥ 0}. Whenthe s
enario probabilities are restri
ted to this set P , the number non-dominated optimalportfolio de
lines to 317 from the initial 329.When risk-seeking preferen
es are ex
luded by 
onsidering only linear or 
on
ave utilityfun
tions XN(P × UA), the number of non-dominated portfolios drops to sixty. The
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Figure 2: Portfolios in XN (P × UA). White ones be
ome dominated with U1, gray ones withthe linear utility fun
tion.intervals of 
orresponding expe
ted portfolio 
ash �ows, s
enario-spe
i�
 portfolio 
ash�ows and WCVaR0.2-values are shown in Figure 2. Here, the portfolios are indexed inan in
reasing order of WCVaR0.2, whi
h re�e
ts the worst-
ase expe
ted 
ash �ow of theportfolio, 
onditioned on the o

urren
e of the worst 20% of out
omes.Interestingly, the level of portfolio risk � as measured by WCVaR0.2 � 
an be be redu
edby diversifying among proje
ts that relate to te
hnologies A and B. This 
an be seen fromFigure 3 whi
h shows the proportion of funds that are allo
ated to Te
hnology A andTe
hnology B related proje
ts: for instan
e, in portfolio #1 � whi
h has the greatestpossible expe
ted 
ash �ow ($2.8 million) � about 80% of the budget is allo
ated toproje
ts in Te
hnology A; but in the least risky portfolio (#60) only some 33% of budgetis allo
ated to proje
ts in Te
hnology A.
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hnologies A and B in the non-dominatedportfolios XN (P × UA).
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Figure 4: Set of feasible utility fun
tions U .Next, the Company management pla
es an upper bound on the level of risk aversionby spe
ifying that the 
ertainty equivalent of a �fty-�fty gamble between the worst ($0.44million) and the best ($4.63 million) portfolio 
ash �ows is at least $1.8 million. In theset of exponential utility fun
tions ue(t) = [e−440a − e−at]/[e−440a − e−4630a] that normalizethe worst and best 
ash �ows onto the range [0, 1], this 
orresponds to the 
oe�
ient
a = 0.00037 as ue(1800) = 0.5. The set of feasible utility fun
tions thus be
omes

U1 = {u ∈ UA | 0 ≤ u(t) ≤ ue(t) ∀ t ∈ [440, 4630]}, (13)as illustrated in Figure 4.For the utility fun
tions in U1, nine out of the previously 
omputed portfolios arenon-dominated; and �ve of these are non-dominated when the portfolios are evaluatedwith a risk-neutral linear utility fun
tion (see Figure 5).
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Figure 5: Portfolios in XN (P × U1). Bla
k ones are non-dominated also with the linear utilityfun
tion.The WCVaR0.2-values for nine portfolios in XN (P ×U1) range between $0.8 and $1.5million. The Company agrees that an a

eptable WCVaR0.2 level is over $1 million, whi
hmakes it possible to dis
ard portfolios #1 #2 and #3. Furthermore, portfolios #30, #34and #53, although a

eptable in terms of their risk level, o�er mu
h less upside potentialwith smaller minimum expe
ted 
ash �ows than those of other portfolios. Thus, the �nalsele
tion is restri
ted to portfolios #8, # 15 and #29 whi
h di�er in terms of few proje
tsonly (Figure 6). Spe
i�
ally, be
ause they all in
lude the investment into new resear
hequipment (Investment A1-3), portfolio #8 is re
ommended for sele
tion be
ause it makesthe most use of this investment by in
luding proje
ts A1, A2 and A3.
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237 Con
lusionsThe framework developed in this paper extends s
enario-based proje
t appraisal to thesele
tion of proje
t portfolios in the presen
e of in
omplete information about s
enarioprobabilities and risk preferen
es. This framework ensures that s
enarios (see, e.g., Bunnand Salo, 1993) are expli
itly 
onsidered in the appraisal of investment proje
ts; it alsosynthesizes results from su
h an appraisal into well-founded de
ision re
ommendations.In general, the framework thus extends s
enario analyses to problems where (i) severalinvestment proje
ts are sele
ted at the same time, (ii) 
omplete information about s
enarioprobabilities or risk preferen
es is di�
ult or impossible to obtain, and (iii) the proje
tsmay have 
omplex interdependen
ies.The proposed framework 
aptures risk preferen
es through utility fun
tions, whi
h
an be eli
ited with well-established te
hniques based on the 
omparison of lotteries with
ertain and un
ertain out
omes. In the 
omparison of su
h lotteries, the DM may provideordinal preferen
e statements or spe
ify upper and lower bounds on 
ertainty equivalents.The framework also permits the spe
i�
ation of risk 
onstraints, most notably throughbounds on the CVaR risk measure at di�erent 
on�den
e levels.The framework also supports the intera
tive exploration of the possibilities o�eredby the proposed investment proje
ts. Su
h support 
an be o�ered by 
omputing all theproje
t portfolios that are non-dominated in view of available information about feasibles
enario probabilities and risk preferen
es. When additional information is eli
ited duringthe de
ision support pro
ess, or when additional risk 
onstraints are introdu
ed, the set ofnon-dominated portfolios be
omes smaller and more 
on
lusive de
ision re
ommendations
an be given about whi
h proje
ts should be sele
ted or reje
ted. Even though thedetermination of non-dominated portfolios may ne
essitate intensive 
omputations, these
omputations 
an be usually 
arried out in advan
e with e�
ient algorithms for generalmulti-obje
tive integer linear programming problems (see, e.g., Zitzler and Thiele, 1999).In the s
reening phase, the �nal dominan
e 
he
ks among the portfolios 
an be 
arriedout e�
iently, whi
h makes it possible to o�er intera
tive de
ision support in a workshopsetting.This work suggests several avenues for future resear
h. First, the framework 
ouldbe extended to multi-period portfolio models (
f. Contingent Portfolio Programming;Gustafsson and Salo, 2005) to a

ount for in
omplete information about s
enario proba-bilities and risk preferen
es. Se
ond, the modeling of proje
t-spe
i�
 un
ertainties 
an beimportant, too. However, the need to limit the total number of s
enarios (resulting fromboth exogenous and endogenous un
ertainties) suggests that proje
t-spe
i�
 un
ertain-ties may be best 
hara
terized not through 
onventional de
ision trees but, rather, withthe help of intervals for whi
h the 
orresponding non-dominated portfolios 
an then be
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omputed (Liesiö et al., 2008). Third, the potential of the proposed framework needs tobe explored in the 
ontext of 
ase studies that shed light on its bene�ts in pra
ti
e.A
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ademy of Finland and the Finnish FundingAgen
y for Te
hnology and Innovation (Tekes). We are grateful to Antti Punkka for hisinsightful 
omments.AppendixProof of Lemma 1. Let k = max{k ∈ {1, . . . , n} | P(ωk−1) ≤ α}: The optimum
minq∈Qα

p
Eq[X] is obtained by setting q∗i = pi/α for all i = 1, ..., k − 1, q∗k = 1 −

∑k−1
i=1 q∗iand q∗i = 0 for all i = k + 1, ..., n, whi
h is a feasible solution sin
e q∗i <

∑k

i=1 q∗i =∑k−1
i=1 pi/α+(1−

∑k−1
i=1 pi/α) = 1. Then Eq∗ [X] =

∑k

i=1
pi

α
X(si)+(1−

∑k−1
i=1 pi/α)X(sk) =

P(ωk−1)
α

∑k
i=1 piX(si)

P(ωk−1)
+(1− P(ωk−1)

α
)X(sk) = P(ωk−1)

α
Ep[X|ωk−1]+(1− P(ωk−1)

α
)Ep[X|{sk}]. Thus

CVaRα
p [X] = minq∈Qα

p
Eq[X]

= min
q∈Rn

{
n∑

i=1

qiX(si) | 0 ≤ qi ≤
pi

α
∀ i ∈ {1, ..., n},

n∑
i=1

qi = 1},whi
h is a bounded and feasible LP-problem, and thus its dual
max
z∈Rn

t∈R

t +
n∑

i=1

pi

α
zi

zi + t ≤ X(si) ∀ i ∈ {1, . . . , n}

zi ≤ 0 ∀ i ∈ {1, . . . , n}yields same optimum. To maximize the dual for a �xed t, variables zi are set to theirupper bound, i.e, zi(t) = min{0, X(si) − t} = −max{0, t − X(si)}, whi
h gives
CVaRα

p [X] = max
t∈R

(t −
1

α

n∑
i=1

pi max{0, t− X(si)}) = max
t∈R

(t −
1

α
Ep[max{0, t− X}]).

�



25Proof of Theorem 1. i) `⇐': Assume X ≻ext(P )×U X ′ whi
h implies
Ep[u(X)] ≥ Ep[u(X ′)] ∀ p ∈ {p1, . . . , pt}, u ∈ Uwhere {p1, . . . , pt} =ext(P ). Any p ∈ P is a linear 
ombination of these extreme points,i.e., p =

∑t

k=1 αkp
k, where αk ≥ 0. For any (p, u) ∈ P × U :

Ep[u(X)] − Ep[u(X ′)] =

n∑
i=1

pi[u(X(si)) − u(X ′(si))]

=
n∑

i=1

t∑
k=1

αkp
k
i [u(X(si)) − u(X ′(si))]

=

t∑
k=1

αk

n∑
i=1

pk
i [u(X(si)) − u(X ′(si))]

=

t∑
k=1

αk(Epk [u(X)] − Epk [u(X ′)]) ≥ 0sin
e all terms of the sum are non-negative. Thus Ep[u(X)] ≥ Ep[u(X ′)] for all (p, u) ∈
(P × U) and the inequality is stri
t for some p ∈ ext(P ) ⊂ P and u ∈ U , whi
h implies
X ≻P×U X ′.`⇒': Assume X ≻P×U X ′, whi
h implies Ep[u(X)] ≥ Ep[u(X ′)] for all (p, u) ∈ ext(P )×U ,sin
e ext(P ) ⊂ P . Furthermore, exists p ∈ P , p =

∑t

k=1 αkp
k, su
h that 0 < Ep[u(X)] −

Ep[u(X ′)] =
∑t

k=1 αk(Epk [u(X)] − Epk [u(X ′)]). Thus Epk [u(X)] > Epk [u(X ′)] for some
pk ∈ext(P ) whi
h implies X ≻ext(P )×U X ′.ii) Sin
e the extreme points {p1, . . . , pn} of P 0 are of the form pi

i = 1, pi
j = 0 ∀j 6= i, i)implies that dominan
e X ≻(P 0×U) X ′ holds if and only if u(X(si)) ≥ u(X ′(si)) ∀ i ∈

{1, . . . , n}, u ∈ U (with the inequality stri
t for some i and u). Sin
e U ⊆ U0 
ontainsonly in
reasing utility fun
tions (and at least one stri
tly in
reasing) the 
ondition is equalto X(si) ≥ X ′(si) ∀ i ∈ {1, . . . , n} with a stri
t inequality for at least one i. �Proof of Lemma 2. It is well-known (see, e.g., Hano
h and Levy, 1969) that for a �xed
p ∈ P 0

Ep[u(X)] ≥ Ep[u(X)] ∀ u ∈ U0 ⇔ P(X ≤ t) ≤ P(X ′ ≤ t) ∀ t ∈ R

Ep[u(X)] ≥ Ep[u(X)] ∀ u ∈ UA ⇔

∫ t

−∞

P(X ≤ y)dy ≤

∫ t

−∞

P(X ′ ≤ y)dy ∀ t ∈ R.If the expe
ted utility inequalities are stri
t for some u, the right-hand-side inequalitiesare stri
t for some t. The lemma results dire
tly from these results. �



26Proof of Lemma 3. It is easy to verify that ∫ t

−∞
P(X ≤ y)dy =

∑
X(si)≤t pi(t −

X(si)) = max0≤r≤p

∑n

i=1 ri(t − X(si)) = −min0≤r≤p[
∑n

i=1 riX(si) − t
∑n

i=1 ri]. Denot-ing G(X, p, t) = min0≤r≤p[
∑n

i=1 riX(si) − t
∑n

i=1 ri] and using property ii) of Lemma 2gives
X ≻P×UA X ′ ⇔ G(X, p, t) ≥ G(X ′, p, t)∀p ∈ P, t ∈ R,with the inequality stri
t for some p ∈ P, t ∈ R. Furthermore, denote

F (X, p, α) = αCVaRα
p [X] = min

0≤αq≤p∑n
i=1

qi=1

n∑
i=1

αqiX(si) = min
0≤r≤p∑n
i=1

ri=α

n∑
i=1

riX(si).For any p ∈ P, α ∈ (0, 1], X ∈ X it holds that
F (X, p, α) ≥ G(X, p, t) + αt ∀t ∈ R

∃t∗ ∈ R s.t. F (X, p, α) = G(X, p, t∗) + αt∗,sin
e the dual of LP problem F (X, p, α) is maxt∈R[G(X, p, t) + αt]. To prove the lemmait is thus su�
ient to show that
G(X, p, t) ≥ G(X ′, p, t) ∀p ∈ P, t ∈ R (14)

⇔ F (X, p, α) ≥ F (X ′, p, α) ∀p ∈ P, α ∈ (0, 1], (15)and that inequality (14) is stri
t for some p ∈ P, t ∈ R if and only if the inequality (15)is stri
t for some p ∈ P, α ∈ (0, 1].`(14)⇒ (15)': For any p ∈ P, α ∈ (0, 1] exists t∗ ∈ R su
h that F (X ′, p, α) = G(X ′, p, t∗)+
αt∗ ≤ G(X, p, t∗) + αt∗ ≤ F (X, α, p).`(15) ⇒ (14)': Take p ∈ P, t ∈ R. Let α∗ =

∑n

i=1 r∗i , where r∗ solves the optimizationproblem G(X, p, t). Then G(X, p, t)+α∗t =
∑n

i=1 r∗i X(si) ≥ F (X, p, α∗) ≥ F (X ′, p, α∗) ≥
L(X ′, p, t) + α∗t.Finally, 
orresponden
e between stri
t inequalities holds sin
e ∃p ∈ P, t ∈
R s.t. G(X, p, t) > G(X ′, α, p, t) ⇔ ¬(G(X ′, p, t) ≥ G(X, p, t) ∀p ∈ P, t ∈ R) ⇔
¬(F (X ′, p, α) ≥ F (X, p, α) ∀p ∈ P, α ∈ (0, 1]) ⇔ ∃p ∈ P, α ∈ (0, 1] s.t. F (X, p, α) >
F (X ′, p, α). �Proof of Theorem 2. Assume X ′ ∈ XF \ XN(S). Then exists X ∈ XN(S) su
h that
X ≻S X ′. Sin
e S̃ ⊆ S, Ep[u(X)] ≥ Ep[u(X)] ∀ (p, u) ∈ S̃ and exists (u∗, p∗) ∈ S su
hthat Ep∗ [u

∗(X)] > Ep∗ [u
∗(X ′)]. For any (p, u) ∈int(S) ∩ S̃, exists ǫ > 0 su
h that

p′ = p + ǫ(p − p∗) ∈ P

u′ = u + ǫ(u − u∗) ∈ U.



27Sin
e S = P × U , (p′, u∗) ∈ S and (p∗, u′) ∈ S. Denoting β = ǫ/(1 + ǫ) yields u =
(1 − β)u′ + βu∗ and p = (1 − β)p′ + βp∗, wherefore

Ep[u(X)]

= β2E′
p[u

′(X)] + β(1 − β)E′
p[u

∗(X)] + β(1 − β)Ep∗[u
′(X)] + (1 − β)2Ep∗ [u

∗(X)]

≥ β2E′
p[u

′(X ′)] + β(1 − β)E′
p[u

∗(X ′)] + β(1 − β)Ep∗ [u
′(X ′)] + (1 − β)2Ep∗ [u

∗(X)]

> β2E′
p[u

′(X ′)] + β(1 − β)E′
p[u

∗(X ′)] + β(1 − β)Ep∗ [u
′(X ′)] + (1 − β)2Ep∗ [u

∗(X ′)]

= Ep[u(X ′)],sin
e β > 0 and 1 − β > 0. Thus X ≻S̃ X ′ wherefore X ′ /∈ XN(S̃). �Proof of Lemma 4. Sin
e ME is a LP problem, translation invarian
e and positivehomogeneity are trivial. Superadditivity:
MEP [X + X ′] = min

p∈P
Ep[X + X ′] = min

p∈P
(Ep[X] + Ep[X

′])

= min
p1,p2∈P

p1=p2

(Ep1[X] + Ep2[X ′]) ≥ min
p1,p2∈P

(Ep1[X] + Ep2[X ′])

= min
p1∈P

E1
p[X] + min

p2∈P
E2

p[X
′] = MEP [X] + MEP [X ′],sin
e {p1, p2 ∈ P | p1 = p2} ⊆ {p1, p2 ∈ P}. Monotoni
ity: X(si) ≥ X ′(si) ∀ si ∈ Ω ⇒

Ep[X] ≥ Ep[X
′] ∀ p ∈ P 0 ⇒ minp∈P Ep[X] = Ep∗ [X] ≥ Ep∗ [X

′] ≥ minp∈P Ep[X
′] ⇒

MEP [X] ≥ MEP [X ′]. �Proof of Lemma 5 By de�nition
WCVaRα

P [X] = min
p∈P

CVaRα
p [X] = min

p∈P
min
q∈Qα

p

Eq[X]

= min
p∈P,q∈Qα

p

Eq[X] = min
q∈Qα

P

Eq[X],whi
h is a LP problem sin
e Qα
P = {q ∈ P 0 |αq ≤ p, p ∈ P} is a polyhedral set. Sin
eWCVaRα

P [X] = MEQα
P
[X], Lemma 4 implies that WCVaR is a 
oherent risk measure.Furthermore, for any p ∈ P, αp ≤ p wherefore p ∈ Qα

P and thus P ⊆ Qα
P . �Proof of Lemma 6. By Lemma 5

WCVaRα
P (X) = min

q∈Qα
P

Eq[X], Qα
P = {q ∈ P 0 | αq ≤ p, p ∈ P}and minq∈P 0 Eq[X] = minsi∈Ω X(si) (see proof of by Theorem 1). i) If P = P 0 then byLemma 5 P 0 ⊆ Qα

P 0 and by 
onstru
tion Qα
P 0 ⊆ P 0, whi
h together imply Qα

P 0 = P 0. ii)Take any p ∈ P∩int(P 0), whi
h implies pi > 0∀i = 1, .., n. For any q ∈ P 0, qi ≤ 1 ≤ pi/α



28for all i = 1, ...n, α ∈ (0, mini pi]. Thus, P 0 ⊆ Qα→0
P ⊆ P 0, i.e., Qα→0

P = P 0. iii) If α = 1,the 
onstraint αq = q ≤ p holds only for p = q, wherefore Q1
P = P . �Proof of Theorem 3. By Theorem 1 X ≻P×U X ′ if and only if Ep[u(X)] ≥ Ep[u(X ′)] forall p ∈ {p1, . . . , pt}, u ∈ U with a stri
t inequality for some p ∈ {p1, . . . , pt}, u ∈ U . This
ondition 
an be 
he
ked by minimizing and maximizing the expe
ted utility di�eren
e

Ep[u(X)] − Ep[u(X ′)] for ea
h p ∈ {p1, . . . , pt} subje
t to u ∈ U , whi
h is equal to theLP-problem (12). �Referen
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