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Optimization Under Unitary Matrix
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Abstract

In this paper we introduce a Riemannian algorithm for minimizing (or
maximizing) a real-valued function J of complex-valued matrix argu-
ment W under the constraint that W is an n x n unitary matrix. This
type of constrained optimization problem arises in many array and
multi-channel signal processing applications.

We propose a conjugate gradient (CG) algorithm on the Lie group of
unitary matrices U(n). The algorithm fully exploits the group properties
in order to reduce the computational cost. Two novel geodesic search
methods exploiting the almost periodic nature of the cost function along
geodesics on U(n) are introduced.

We demonstrate the performance of the proposed conjugate gradi-
ent algorithm in a blind signal separation application. Computer sim-
ulations show that the proposed algorithm outperforms other existing
algorithms in terms of convergence speed and computational complex-

ity.

Index Terms: — Optimization, unitary matrix constraint, array process-
ing, subspace estimation, source separation

1 Introduction

Constrained optimization problems arise in many signal processing applica-
tions. In particular, we are addressing the problem of optimization under
unitary matrix constraint. Such problems may be found in communications
and array signal processing, for example, blind and constrained beamform-
ing, high-resolution direction finding, and generally in all subspace-based
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methods. Another important class of applications is source separation and
Independent Component Analysis (ICA). This type of optimization prob-
lems occur also in Multiple-Input Multiple-Output (MIMO) communication
systems. See [1,2], and [3] for recent reviews.

Commonly, optimization under unitary matrix constraint is viewed as
a constrained optimization problem on the Euclidean space. Classical gra-
dient algorithms are combined with different techniques for imposing the
constraint, for example, orthogonalization, approaches stemming from the
Lagrange multipliers method, or some stabilization procedures. If unitarity
is enforced by using such techniques, one may experience slow convergence
or departures from the unitary constraint as shown in [1].

A constrained optimization problem may be converted into an uncon-
strained one on a different parameter space determined by the constrained
set. The unitary matrix constraint considered in this paper determines a
parameter space which is the Lie group of n x n unitary matrices U(n). This
parameter space is a Riemannian manifold [4] and a matrix group [5] under
the standard matrix multiplication at the same time. By using modern tools
of Riemannian geometry, we take full benefit of the nice geometrical proper-
ties of U(n) in order to solve the optimization problem efficiently and satisfy
the constraint with high fidelity at the same time.

Pioneering work in Riemannian optimization may be found in [6-9]. The
optimization with orthogonality constraints is considered in detail in [10].
Steepest descent (SD), conjugate gradient (CG) and Newton algorithms on
Stiefel and Grassman manifolds are derived. A CG algorithm on the Grass-
mann manifold has also been proposed recently in [11]. A non-Riemannian
approach, which is a general framework for optimization, is introduced in [12].
Modified SD and Newton algorithms on Stiefel and Grassman manifolds are
derived. SD algorithms operating on orthogonal group are considered re-
cently in [13-15] and on the unitary group in [1,2]. A CG on the special linear
group is proposed in [16]. Algorithms in the existing literature [6-8,10,12,17]
are, however, more general in the sense that they can be applied on more
general manifolds than U(n). For this reason when applied to U(n), they
do not take full benefit of the special properties arising from the Lie group
structure of the manifold [1].

In this paper we derive a conjugate gradient algorithm operating on the
Lie group of unitary matrices U(n). The proposed CG algorithm provides
faster convergence compared to the existing SD algorithms [1,12] at even
lower complexity. There are two main contributions in this paper. First, a
computationally efficient CG algorithm on the Lie group of unitary matrices
U(n) is proposed. The algorithm fully exploits the Lie group features such
as simple formulas for the geodesics and tangent vectors.



The second main contribution in this paper is that we propose Rieman-
nian optimization algorithms which exploit the almost periodic property of
the cost function along geodesics on U(n). Based on this property we de-
rive novel high accuracy line search methods [8] that facilitate fast conver-
gence and selection of suitable step size parameter. Many of the existing
geometric optimization algorithms do not include practical line search meth-
ods [10,13], or if they do, they are too complex when applied to optimization
on U(n) [12,14]. In some cases, the line search methods are either valid
only for specific cost functions [8], or the resulting search is not highly ac-
curate [1,11,12,14,15]. Because the conjugate gradient algorithm assumes
exact search along geodesics, the line search method is crucial for the perfor-
mance of the resulting algorithm. An accurate line search method exploiting
the periodicity of a cost function which appears on the limited case of spe-
cial orthogonal group SO(n) for n < 3, is proposed in [15] for non-negative
ICA (independent component analysis). The method can also be applied for
n > 3, but the accuracy decreases, since the periodicity of the cost function
is lost.

The proposed high-accuracy line search methods have lower complexity
compared to well-known efficient methods [1] such as the Armijo method [18].
To our best knowledge the proposed algorithm is the first ready-to-implement
CG algorithm on the Lie group of unitary matrices U(n). It is also valid for
the orthogonal group O(n).

This paper is organized as follows. In Section 2 we approach the problem
of optimization under unitary constraint by using tools from Riemannian
geometry. We show how the geometric properties may be exploited in order
to solve the optimization problem in an efficient way. Two novel line search
methods are introduced in Section 3. The practical conjugate gradient al-
gorithm for optimization under unitary matrix constraint is given in Section
4. Simulation results and applications are presented in Section 5. Finally,
Section 6 concludes the paper.

2 Optimization on the Unitary Group U(n)

In this section we show how the problem of optimization under unitary matrix
constraint can be solved efficiently and in an elegant manner by using tools
of Riemannian geometry. In Subsection 2.1 we review some important prop-
erties of the unitary group U(n) which are needed later in our derivation.
Few important properties of U(n) that are very beneficial in optimization
are pointed out in Subsection 2.2. The difference in behavior of the steepest



descent and conjugate gradient algorithm on Riemannian manifolds in ex-
plained in Subsection 2.3. A generic conjugate gradient algorithm on U(n)
is proposed in Subsection 2.4.

2.1 Some key geometrical features of U(n)

This subsection describes briefly some Riemannian geometry concepts related
to the Lie group of unitary matrices U(n) and show how they can be exploited
in optimization algorithms. Consider a real-valued function J of an n X
n complex matrix W, i.e., J : C"™" — R. Our goal is to minimize (or
maximize) the function J = J(W) under the constraint that WW# =
WHW =1, ie., W is unitary. This constrained optimization problem on
C™™ may be converted into an unconstrained one on the space determined
by the unitary constraint, i.e., the Lie group of unitary matrices. We view
our cost function J as a function defined on U(n). The space U(n) is a real
differential manifold [4]. Moreover, the unitary matrices are closed under the
standard matrix multiplication, i.e., they form a Lie group [5]. The additional
properties arising from the Lie group structure may be exploited to reduce
the complexity of the optimization algorithms.

2.1.1 Tangent vectors and tangent spaces

The tangent space TwU (n) is an n?-dimensional real vector space attached to
every point W € U(n). At the group identity I, the tangent space is the real
Lie algebra of skew-Hermitian matrices u(n) = TiU(n) = {S € C™"|S =
—SH}. Since the differential of the right translation is an isomorphism,
the tangent space at W € U(n) may be identified with the matrix space
TwU(n) £ {X € C™"XHW + WX = 0}.

2.1.2 Riemannian metric and gradient on U(n)

After U(n) is equipped with a Riemannian structure (metric), the Rieman-
nian gradient on U(n) can be defined. The inner product given by

(X, Y )y = %%{trace{XYH}}, X,Y € TwlU(n) (1)

induces a bi-invariant metric on U(n). This metric induced from the em-
bedding Euclidean space is also the natural metric on the Lie group, since
it equals the negative (scaled) Killing form [19]. The Riemannian gradient
gives the steepest ascent direction on U(n) of the function J at some point
W e U(n):

VI(W)£T,, - WL W, (2)
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where I',, = d“l;g* (W) is the gradient of J on the Euclidean space at a given
W, defined in terms of real derivatives with respect to real and imaginary

parts of W [20].

2.1.3 Geodesics and parallel transport on U(n)

Geodesics on the Riemannian manifold are curves such that their second
derivative lies in the normal space. Locally, they are also the length minimiz-
ing curves. Their expression is given by the Lie group exponential map [19,
Ch. II, §1]. For U(n) this coincides with the matrix exponential, for which
stable and efficient numerical methods exist (see [1] for details). The geodesic
emanating from W in the direction S = SW is given by

Gw(t) =exp(tS)W, S ecu(n), teR. (3)

The parallelism on a differentiable manifold is defined with respect to an
affine connection [4,19,21]. Usually the Levi-Civita connection [8,17] is used
on Riemannian manifolds. Now, the parallel transport of a tangent vector
X = XW € Tw, X € u(n), wr.t. the Riemannian connection along the
geodesic (3) is given by [19]

7X(t) = exp(tS/2) X}, exp(—1S/2)Gw (1), (4)

where 7 denotes the parallel transport. In the important special case of
transporting the velocity vector of the geodesic, i.e., X = S, Eq. (4) simply
reduces to the right multiplication by W2 Gw ():

7S(t) = SGw (t) = SWHGw(1). (5)

2.2 Almost periodic cost function along geodesics

In this subsection we present an important property of the unitary group,
i.e., the behavior of a smooth cost function along geodesics on U(n). A
smooth cost function J : U(n) — R takes predictable values along geodesics
on U(n). This is a consequence of the fact that geodesics (3) are given by
matrix exponential of skew-Hermitian matrices S € u(n). Such matrices
have purely imaginary eigenvalues of form jw;,2 = 1,...,n. Therefore, the
eigenvalues of the matrix exponential exp(tS) are complex exponentials of
form e*i*. Consequently, the composed cost function J(t) = J(Gw(t)) is
an almost periodic function, and therefore it may be expressed as a sum of
periodic functions of . J(t) is a periodic function only if the frequencies
wi, © = 1,...,n are in harmonic relation [22]. This happens for SO(2) and
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SO(3) as noticed in [15], but not for U(n) with n > 1, in general. The
derivatives of the cost function are also almost periodic functions. The al-
most periodic property of the cost function and its derivatives appears in the
case of exponential map. This is not the case for other common parametriza-
tions such as the Cayley transform or the Euclidean projection operator [1].
Moreover, this special property appears only on certain manifolds such as
the unitary group U(n) and the special orthogonal group SO(n), and it does
not appear on Euclidean spaces or on general Riemannian manifolds. The
almost-periodic behavior of the cost function along geodesics may be used to
perform geodesic search on U(n). This will be shown later in Section 3 where
two novel line search methods for selecting a suitable step size parameter are
introduced.

2.3 SD vs. CG on Riemannian manifolds

The Conjugate Gradient (CG) algorithm provides typically faster conver-
gence compared to the Steepest Descent (SD) algorithm not only on the Eu-
clidean space, but also on Riemannian manifolds. This is due to the fact that
Riemannian SD algorithm has the same drawback as its Euclidean counter-
part, i.e., it takes ninety degree turns at each iteration [8]. This is illustrated
in Figure 1 (top), where the contours of a cost function are plotted on the
manifold surface. The steps are taken along geodesics, i.e., the trajectory
of the SD algorithm is comprised of geodesic segments connecting successive
points Wi, Wy, 1, W5 on the manifold. The zig-zag type of trajectory de-
creases the convergence speed, e.g., if the cost function has the shape of a
“long narrow valley”. The conjugate gradient algorithm may significantly re-
duce this drawback Figure 1 (bottom). It exploits the information provided
by the current search direction —ﬂk at Wy, and the SD direction _Gk+1 at
the next point Wy, ;. The new search direction is chosen to be a combina-
tion of these two, as shown in Figure 1 (bottom). The difference compared
to the Euclidean space is that the current search direction —Hj and the gra-
dient Gy at the next point lie in different tangent spaces, Tw, and Tw,_ ,
respectively. For this reason they are not directly compatible. In order to
combine them properly, the parallel transport of the current search direction
—H, from W, to W1 along the corresponding geodesic is utilized. The
new search direction at Wy (see Figure 1 (bottom)) is

_I:Ik—l—l = _Gk+1 - %Tﬁk, (6)

where 7Hj, is the parallel transport (5) of the vector H, into Tw,,,- The
weighting factor 7, is determined such that the directions 7Hy and Hy,; are
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Figure 1: SD (top) vs. CG (bottom) on Riemannian manifolds. SD algorithm
takes ninety-degree turns at every iteration, i.e., (—Gpyy1, —Ték>wk+1 =0,
where 7 denotes the parallelism w.r.t. the geodesic connecting Wy and
Wi.1. CG takes a search direction —I:Ikﬂ at Wy, which is a combination
of the new SD direction _Gk+1 at Wy, and the current search direction
—ICIk translated to Wy, along the geodesic connecting W, and Wy, ;. The
new Riemannian steepest descent direction _Gk+1 at Wy, will be orthog-
onal to the current search direction —Hj at Wy translated to Wy, i.e.,

(—Gr1, —Tﬁk)wkﬂ =0



Hessian-conjugate [8,10], i.e.,

_Hess j(TI:Ik, Gk-‘,—l)
Hess J (THy, THy,)

Ve =

2.4 Conjugate Gradient Algorithm on U(n)

In the exact conjugacy formula (7), only the special case of vector trans-
portation (5) is needed. However, the factor v, contains the computationally
expensive Hessian, and therefore, as usual, it is approximated. Using the
crucial assumption that W1 is a minimum point along the geodesic Gw (t)
and the first-order Taylor series approximation of the first differential form
of J(Wyy1), the Polak-Ribierre approximation formula for the factor 7y is
obtained [8,10]:

(Grr1 = TGk, Grst)w,

<Gk7 Gk)wk
The parallel transport for Gy, could be obtained from (4), but we choose to

approximate it by using the right multiplication by WHZ W, leading to the
approximate Polak-Ribierre formula.

(Git1 — G, Giga)g
— 9
T (G, Gy ©)

(8)

Ve =

If H, = Gy, then by (5) formulae (8) and (9) become equal. In our simula-
tions (8) and (9) have given identical results, and therefore we propose the
computationally simpler formula (9).

Finally, the conjugate gradient step is taken along the geodesic emanating
from W, in the direction —Hj = —H,W,, ie.,

W1 = exp(—puHy) Wi (10)

A line search needs to be performed in order to find the step size p; which
corresponds to a local minimum along the geodesic.

3 Line Search on U(n). Step size selection

Step size selection plays a crucial role in the overall performance of the CG
algorithm. In general, selecting an appropriate step size may be computa-
tionally expensive even for the Euclidean gradient algorithms. This is due
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to the fact that most of the line search methods [18] require multiple cost
function evaluations. On Riemannian manifolds, every cost function evalu-
ation requires expensive computations of the local parametrization (in our
case, the exponential map). In [11], a conjugate gradient on the Grassmann
manifold is proposed. The line search method is exact only for the convex
quadratic cost functions on the Euclidean space. The difficulty of finding
a closed-form solutions for a suitable step size is discussed in [11]. A one-
dimensional Newton method which uses the first-order Fourier expansion to
approximate the cost function along geodesics on SO(n) is proposed in [15].
It requires computing the first and the second-order derivatives of the cost
function along geodesics. The method exploits the periodicity of the cost
function along geodesics on SO(2) and SO(3). For n > 3 the accuracy of the
approximation decreases, since the periodicity of the cost functions is lost.
The method avoids computing the matrix exponential by using the closed-
form Rodrigues formula, valid for SO(2) and SO(3) only. In case of U(2)
and U(3) and in general for n > 1, the Rodrigues formula cannot be applied.
In this section, we propose two novel methods for performing high-
accuracy one-dimensional search along geodesics on U(n). They rely on the
fact that smooth functions as well as their derivatives are almost periodic [22]
along geodesics on U(n). The first method is based on a polynomial approx-
imation of the first-order derivative of the cost function along geodesics. The
second one is based on an approximation using Discrete Fourier Transform
(DFT). We choose to approximate the derivative of the cost function along
geodesics and find the corresponding zeros, instead of approximating the cost
function itself and finding the local minima as in [15]. Moreover, compared
to [15] the proposed method does not require the second-order derivative.
The main goal is to find a step size py > 0 along the geodesic curve

W() = exp(—pHp) Wy = R(1)Wy, R(u) C U(n), (11)
which minimizes the composed function
T (1) & TW(w)). (12)

The direction —Hj; € u(n) in (11) may correspond to a steepest descent,
conjugate gradient, or any other gradient-type of method. Consider two
successive points on U(n) such that Wy = W(0) and Wiy = W(u).
Finding the step size y = p that minimizes J (1) may be done by computing
the first-order derivative d.J /dp and setting it to zero. By using the chain
rule for the composed function J(W(u)), we get

a7

L )=—2{trace{ T (RGown) WERMOH] ). (13)

ow-
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Almost periodicity may be exploited in many ways in order to find the zeros
of the first-order derivative corresponding to the desired values of the step
size. We present two different approaches. The first approach finds only
the first zero of the derivative by using a polynomial approximation of the
derivative. The second one finds several zeros of the derivative and is based
on a Fourier series approximation. Other approaches may also be possible,
and they are being investigated.

3.1 Line search on U(n) by using polynomial approxi-
mation approach

The goal of the polynomial approximation approach is to find the first local
minimum of the cost function along a given geodesic. This corresponds to
finding the first zero-crossing value of the first-order derivative of the cost
function, which is also almost periodic. In this purpose we use a low-order
polynomial approximation of the derivative and find its smallest positive
root. The approximation range of the derivative is determined from its spec-
tral content. The method provides computational benefits since only one
evaluation of the matrix exponential is needed. The method is explained in
detail below.

The direction —ICIk is a descent direction at Wy, otherwise it will be
reset to the negative gradient. Therefore, the first-order derivative dJ /du
is always negative at the origin (at g = 0) and the cost function J () is
monotonically decreasing up to the first zero-crossing of d.J /dp. This value
corresponds to a local minimum of J () along geodesic (11) (or seldom to a
saddle point). Due to differentiation, the spectrum of dJ /dy is the high-pass
filtered spectrum of J (). The frequency components are determined by the
purely imaginary eigenvalues of —Hj as shown in Subsection 2.2. Therefore,
the cost function as well as its derivative possess discrete frequency spectra.
For our task at hand, we are not interested in the complete spectrum of
dJ /dp, but the main interest lies in the smallest zero-crossing value of the
derivative. This is determined by the highest frequency component in the
spectrum of dJ /dp in the following way. In the interval of y which is equal
to one period corresponding to the highest frequency in the spectrum, the
function dJ /du has at most one complete cycle on that frequency, and less
than one on other frequencies. The highest frequency component of dJ /du
iS ¢|Wmax|, Where wp.x is the eigenvalue of Hy having the highest magnitude,
and ¢ is the order of the cost function. The order ¢ corresponds to the highest
degree that t appears on in the Taylor series expansion of J (W +tZ) about
to = 0, and it is assumed to be finite (most of the practical cost functions).
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geodesic search for the JADE cost function

cost function J ()
first-order derivative d.J /du
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Figure 2: Performing the line search for the JADE [23] cost function. The
almost periodic behavior of the function J(u) and its first-order derivative
dJ /dp (13) along geodesic W(y) (11). The first zero-crossing of dJJ /du
corresponds to the first local minimum of J (1), i.e., the desired step size py.
This first zero-crossing value is obtained by using a fourth-order polynomial
approximation of dJ /dp at equi-spaced points within the interval 7),.
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Otherwise, a truncated Taylor series may be used. The period corresponding
the the highest frequency component is

2
T =—— (14)

QW]

The highest frequency component is amplified the most due to differentiation
(high-pass filtering). The other components have less than one cycle within
that interval as well as usually smaller amplitudes. Therefore, the first-order
derivative d.J /dyu crosses zero at most twice within the interval [0,7},). The
presence of the zeros of the derivative are detected as sign changes of the
derivative within [0,7},). Since dJ/du varies very slowly within the inter-
val [0,7},) due to the almost periodic property of the derivative, a low-order
polynomial approximation of the derivative is sufficient to determine the cor-
responding zero-crossing value. The approximation requires evaluating the
cost function at least at P points, where P is the order of the polynomial,
resulting into at most P zero-crossings for the approximation of the deriva-
tive. In order to reduce complexity, the derivative is evaluated at equi-spaced
points {0, %, 2%, ..., T, }. Consequently, only one computation of the ma-
trix exponential R(p) = exp(—pHy) is needed at p = T,/P, and the next
(P — 1) values are the powers of R(p). The polynomial coefficients may be
found by solving a set of linear equations.

In Figure 2 we take as an example the JADE cost function used to per-
form the joint diagonalization for blind separation in [23]. A practical ap-
plication of the proposed algorithm to blind separation by optimizing the
JADE criterion will be given later in Section 5.2. The cost function J(p) is
represented by black continuous curve in Figure 2. Its first-order derivative
dJ /du is represented by the gray continuous curve in Figure 2. The interval
T,, where the derivative needs to be approximated is also shown in Figure 2.
In Figure 2, a fourth-order polynomial approximation at equi-spaced points
within the interval [0, 7),) is used. The approximation is represented by thick
dashed line. The steps of the proposed geodesic search algorithm based on
polynomial approximation are given in Table 1.

3.2 Line search on U(n) by using a DFT-based ap-
proach.

The goal of our second line search method is to find multiple local minima

of the cost function along a given geodesic and select the best one. The

main benefit of this method is that it allows large steps along geodesics. The
proposed method requires also only one evaluation of the matrix exponential,
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1| Given Wy, € U(n), —Hj, € u(n), compute the eigenvalue of Hy, of highest magnitude

| Wmax |

2| Determine the order ¢ of the cost function J(W) in the coefficients of W, which
is the highest degree that t appears in the Taylor expansion of J(W + tZ), t €
R,Z € C™"

3| Determine the value: 7T, = 27/(q|wmax]|)
4| Choose the order of the approximating polynomial: P = 3, 4, or 5.
5| Evaluate R(u) = exp(—pHy) at equi-spaced points u; € {0,7,/P,21,/P,...,T,}
as follows:
Ro = R(0) =1
Ry 2 R(%) = exp (-~ GH)
R, 2 R(224) =RiRy,. ..,

Rp 2 R(T,) =Rp_1Ry.

6| By using the computed values of R;, evaluate the first-order derivative of J(u) at
wi, for i =0,....p: j’(pi):—QR{trace{%(RiWk) WIRIHI 1}

7| Compute the polynomial coefficients ag,...,ap: ap = J'(0) and
P =1 4
ay H1 Ni s My J'(p1)—ao
: : TS o
ap pp_ fp - Hp J'(pp)—ao

8| Find the smallest real positive root pmin of ag + aip + ... + aput = 0. If it exists,
then set the step size to pp = pmin. Otherwise set up = 0.

Table 1: Proposed geodesic search algorithm on U(n) based on polynomial
approximation.
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but more matrix multiplication operations. The basic idea is to approximate
the almost periodic function d.J /du (13), by a periodic one, using the classical
Discrete Fourier Series (DFT) approach. The method is explained next.
First, the length of the DFT interval Tppr needs to be set. The longer
DFT interval is considered, the better approximation is obtained. In prac-
tice we have to limit the length of the DFT interval to few periods 7}, (14)
corresponding to the highest frequency component (minimum one, maximum
depending on how many minima are targeted). Once the DFT interval length
is set, the derivative dJ /dp needs to be sampled at Nppr equi-distant points.
According to the Nyquist sampling criterion, K > 2 samples must be taken
within an interval of length 7},. Therefore, if Ny periods 7T}, are considered,
the DFT length Nppr > 2N7. Due to the fact that 7, does not necessarily
correspond to any almost period [22] of the derivative, its values at the edges
of the DFT interval may differ. In order to avoid approximation mismatches
at the edges of the DFT interval, a window function may be applied [24].
The chosen window function must be strictly positive in order to preserve
the position of the zeros of the first-order derivative that we are interested
in. In our approach we choose a Hann window h(i) [24] and discard the
zero-values at the edges. This type of window minimizes the mismatches at
the edges of the window. Therefore, instead of approximating the first-order
derivative (13), it is more desirable to approximate the windowed derivative

D(p;) = h(i)%(ﬂi)a t=0,...,Nppr — 1 as

(NprT+1)/2

D(p) ~ Z L exp (jj%ﬂk ,u), (15)

DFT
k=—(NprT—1)/2

where Nppr is chosen to be an odd number. Again, in order to avoid com-
puting the matrix exponential, the derivative dJ /du is evaluated at points
i € {0, TDFT/NDFTa ceey (NDFT — 1)TDFT/NDFT}- After determining the
Fourier coefficients ¢, the polynomial corresponding to the Fourier series
approximation (15) is set to zero. The roots of the polynomial (15) which
are close to the unit circle need to be determined, i.e., p; = €™, | < 2Np. A
tolerance § from the unit circle may be chosen experimentally (e.g., 6 < 1%).
The values of p corresponding to those roots need to be found. Given a
descent direction —Hyp, the smallest step size value p; corresponds to a mini-
mum (or seldom to a saddle point). If no saddle points occur within the DET
window, all the step size values p; with [ odd, correspond to local minima
and the even ones correspond to maxima. Within the interval Tppr there
are at most Ny minima, and it is the possible to choose the best one. There-
fore, the global minimum within the DF'T window can be chosen in order to
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geodesic search for the JADE cost function
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Figure 3: Performing the line search for the JADE [23] cost function. The
almost periodic behavior of the function J(u) and its first-order derivative
dJ /dp (13) along geodesic W(y) (11) may be noticed. The odd zero-crossing
values of dJ /dp correspond to local minima of J (1), i.e., to desired values of
the step size ug. They are obtained by DFT-based approximation of dJ /du
at equi-spaced points within the interval Tppr.

reduce the cost function as much as possible at every iteration. Finding the
best minimum would require evaluation the cost function, therefore comput-
ing the matrix exponential for all p; with odd [, which is rather expensive.
A reasonable solution is in this case to use the information on the sampled
values of the cost function. Therefore, the step size is set to the root which
is closest to the value that achieves a minimum of the sampled cost function.
In Figure 3, we consider the JADE cost function [23], analogously to the
example in Figure 2. The steps of the proposed geodesic search algorithm
based on discrete Fourier series (DFT) approximation are given in Table 2.
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Given Wy € U(n), —Hj; € u(n), compute the eigenvalue of Hj of highest
magnitude |wmax|

Determine the order ¢ of the cost function J(W) in the coefficients of W,
which is the highest degree that ¢ appears in the Taylor expansion of
J(W +tZ), teR,ZeCr™m

Determine the value: 7T}, = 27/(q|wmax|)

Choose the sampling factor K = 3,4, or 5. Select the number of periods 7},
for the approximation, Np = 1,2, ...

Determine the length of the DFT interval Thpr = N7T),, and the DFT length
Nppr = 2| KNr/2| + 1, where |-] denotes the integer part.

Evaluate the rotation R(u) = exp(—pHy) at equi-spaced points
122 S {0, TDFT/NDFT7 ey (NDFT — 1)TDFT/NDFT} as fOHOWSZ
Ro 2 R(0) =1

R1 2 R(Tprr/Norr) = exp (— 22ELH,,),

Nprr

R, £ R(2Tprr/Norr) = RiRy, .. .,
Ryper—1 = R((Nprr — 1)Torr/Norr) = Ryvper—2Ra.

By using R; computed in step 6, evaluate the first-order derivative of J(u) at
Wi, for it =0,..., Nppp — 1: j’(ui):—%‘%{trace{f—v‘&(mwk) WER{{HkH}}

Compute the Hann window: h(i) = 0.5 — 0.5cos (2%#;“), i =
0,...,Nprr — 1.

Compute the windowed derivative: D(u;) = h(i)J' (i), i =0,..., Nppr — 1

10

For k = —(Nprr —1)/2,...,+(Nprr — 1)/2 compute the Fourier coefficients:

Nprr—1

27
Cp = Z D(p:) exp (—J k)
— Nppr

11

Find the roots p; of the approximating Fourier polynomial

(NprT+1)/2

27k
P(u) = Z Ck €Xp (+]T ,u> ~ D(u)
k=—(Nppr—1)/2 DFT
DFT

close to the unit circle with the radius tolerance §. If there are not roots of
form p; = €/ then set the step size to pux = 0 and STOP.

12

If there are roots of form p; &~ e/ compute the corresponding zero-crossing

values of P(u): i = [wiTprr/(27)]modulo Topr-
Order py; in ascending order and pick the odd values pg11,l = 0,1, ....

13

By using R; computed in step 6, find the value of 1 which minimizes the
function J(p) at p;:  pix = argming,, J(RiWy,), i =0,..., Nppr — 1.
Set the step size to ui = arg ming,, |ftix — tor41]-

Table 2: Proposed geodesic search algorithm on U(n) based on DFT approx-
imation.
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3.3 Computational aspects

Both the polynomial approach and the DFT-based approach require several
evaluations of the cost function 7 (u) and its first-order derivative d.J /du (13)
within the corresponding approximation interval. However, they require only
one computation of the matrix exponential. The desirable property of the
matrix exponential that exp(—muHy) = [exp(—pHy)]™ is used to evaluate
the rotation matrices at equi-spaced points. We also emphasize the fact that
for both methods, when evaluating the approximation interval 7, by using
(14), only the largest eigenvalue |wyax| of Hy needs to be computed and not
the full eigen-decomposition (nor the corresponding eigen-vector) which is
of complexity of O(n) [8]. The major benefit of the DFT method is that
multiple minima are found and the best minimum can be selected at every
iteration (which is not necessarily the first local minimum). In conclusion,
in terms of complexity both proposed geodesic search methods are more
efficient than the Armijo method [18] which requires multiple evaluations of
the matrix exponential at every iteration [1] Unlike the method in [15], the
proposed method does not require computing any second-order derivatives,
which in some cases may involve large matrix dimensions, or they may be
non-trivial to calculate (e.g. the JADE criterion (18)).

4 The practical conjugate gradient algorithm
on U(n)

In this section we propose a practical conjugate gradient algorithm operat-
ing on the Lie group of unitary matrices U(n). By combining the generic
conjugate gradient algorithm proposed in Subsection 2.4 which uses the ap-
proximated Polak-Ribierre formula with one of the the novel geodesic search
algorithms described in Subsection 3.1 and 3.2, we obtain a low complex-
ity conjugate gradient algorithm on the unitary group U(n). The proposed
CG-PR algorithm on U(n) is summarized in Table 3.

Remark 1 The line search algorithms in Table 1 and Table 2 and the CG
algorithm in Table 3 are designed for minimizing a function defined on U(n).
They may be easily converted into algorithms for mazimizing a function on
U(n). The rotation matrix Ry in the step 5 (Table 1) needs to be replaced
by Ry = exp[(+7,/p)Hy] and the sign of the derivative J'(u;) in step 6
needs to be changed, i.e., J'(u;) =+2R{trace{ 2L r.w,) WIRIHI}}. In
Table 2, the same sign changes are needed in steps 6, 7. Additionally, in step
13, the value p;, = argmax,, J(R;W},). Similarly, for the CG algorithm in
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1| Initialization: k. =0, Wy =1
2| Compute the Euclidean gradient at Wj. Compute the Riemannian gra-
dient and the search direction at Wy, translated to the group identity:
if (k modulo n?) ==
T} = = (Wi)
G, =T W —w,r#

H, =G,
3| Evaluate (Gy, Gp)1 = (1/2)trace{GIGy}. If it is sufficiently small,
then STOP.

4| Given a point Wy, € U(n) and the tangent direction —Hy € u(n) de-
termine the step size uj along the geodesic emanating from Wy, in the
direction of —Hp Wy, by using the algorithm in Table 1 or the algorithm
in Table 2

5| Update: Wy = exp(—pupHg) Wy

6| Compute the Euclidean gradient at Wy1. Compute the Riemannian
gradient and the search direction at Wy, 1, translated to the group iden-
tity:

Tii1 = = (W)
Grp1 =Ty Wi — W I

_ (Gr41-G,Grp1)g
Tk = TG Gy

Hit1 = Gigr +eHy
7| If <Hk+1, Gk+1>1 = %%{trace{HfﬂGkH}} < 0, then Hk-i—l = Gk-i—l
8| k:=k—+1 and go to step 2

Table 3: Conjugate gradient algorithm on U(n) using the Polak-Ribierre
formula — CG-PR
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Table 3, the update in step 5 would be Wy, 1 = exp(+upHy) Wy.

Remark 2 1In step 7, if the CG search direction in not a descent/ascent
direction when minimizing/maximizing a function on U(n), it will be reset
to the steepest descent/ascent direction. This step remains the same both
when minimization or maximization is performed since the inner product
(Hgy1, Gryq)1 needs to be positive.

5 Simulation Examples

In this section we apply the proposed Riemannian conjugate gradient algo-
rithm to two different optimization problems on U(n). The first one is the
maximization of the Brockett function on U(n), which is a classical example
of optimization under orthogonal matrix constraint [9,17]. The second one is
the minimization of the JADE cost function [23] which is a practical applica-
tion of the proposed conjugate gradient algorithm to blind source separation.
Other possible signal processing applications are considered in [1-3].

5.1 Diagonalization of a Hermitian Matrix. Maximiz-
ing the Brockett criterion on U(n)

In this subsection we maximize the Brockett criterion [9,17], which is given
as:

Ts(W) = tr{WH7EZWN}, subject to W € U(n). (16)
The matrix 3 is a Hermitian matrix and N is a diagonal matrix with the di-
agonal elements 1,...,n. By maximizing? (16), the matrix W will converge

to the eigenvectors of ¥ and the matrix D = W#XW will converge to a
diagonal matrix containing the eigenvalues of ¥ sorted in the ascending order
along the diagonal. This type of optimization problem arises in many signal
processing applications such as blind source separation, subspace estimation,
high resolution direction finding as well as in communications applications [2].
This example is chosen for illustrative purposes. The order of the Brockett
function is ¢ = 2. The Euclidean gradient is given by I'y = ¥WN. The
performance is studied in terms of convergence speed considering a diagonal-
ity criterion, A, and in terms of deviation from the unitary constraint using
a unitarity criterion €2, defined as

of [ WHEW}

A =101
Ve e WisWY

Q=10lg|WWH — 1%, (17)

2See Remark 1 in Section 4
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Figure 4: A comparison between the steepest ascent algorithm (SA) on U(n)
and the proposed conjugate gradient algorithm on U(n) in Table 3, using
Polak-Ribierre formula (CG-PR). Five line search methods for selecting the
step size parameter are considered: the Armijo method [18], the grid search,
the line search method in Table 1 which is based on polynomial approxima-
tion the line search method in Table 2 which is based on DFT approximation,
and the line search method proposed for SO(n) in [15]. The performance
measure is the diagonality criterion A vs. the iteration step.

where off{-} operator computes the sum of the squared magnitudes of the
off-diagonal elements of a matrix, and diag{-} does the same operation, but
for the off-diagonal ones [25]. The diagonality criterion A (17) measures the
departure of the matrix W#XW from the diagonal property in logarithmic
scale and it is minimized when the Brockett criterion (16) is maximized.
The results are averaged over 100 random realizations of the 6 x 6 Hermitian
matrix 3.

In Figure 4, we compare two different optimization algorithms. The first
algorithm is the geodesic steepest ascent on U(n) (SA) obtained from the
algorithm in CG-PR Table 3 by setting v, to zero at every iteration k. The
second algorithm is the CG-PR algorithm in Table 3 (see Remark 1, Section
4).

For both algorithms (SA, CG-PR) five different line search methods for
selecting the step size parameter are compared. The first one is the Armijo
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method [18] used as in [1,12]. The second is an exhaustive search along
geodesics W(uu) (11) by using a linear grid p € [0, 10] for the parameter .
A sufficiently large upper limit of the interval has been set experimentally
in order to ensure that the interval contains at least one local maximum at
every iteration. The lower limit has been set to ensure a reasonable resolution
(107%). The grid search method is very accurate, but extremely expensive
and it has been included just for comparison purposes. The third line search
method is the polynomial approximation approach proposed in Table 1. The
fourth one is the DFT approximation approach in Table 2. The fifth one is the
line search method proposed for SO(n) in [15]. It is based on a Newton step
which approximates the cost function geodesics by using a first-order Fourier
expansion. For the proposed line search methods a polynomial order P = 5
has been used (see Table 1). The parameters used in the DFT approach are
the sampling factor K = 3 and Ny = 10 periods 7}, (see Table 2).

It may be noticed in Figure 4 that the CG-PR algorithm outperforms
significantly the steepest ascent (SA) algorithm for all line search methods
considered here, except the proposed DFT-based approach. The polynomial
approximation approach proposed in Table 1 performs equally well as the
method in [15], and the grid search method when used with the SA. The
proposed DFT-based line search approach in Table 2 outperforms signifi-
cantly the method in [15] when used with the SA algorithm, and achieves
a convergence speed comparable to the one of the CG-PR algorithm. The
convergence of SA algorithm with Armijo line search method [18] is better
than the proposed polynomial approach and worse than the DFT approach.
When used with the CG-PR, all methods achieve similar convergence speed,
but their complexities differs. In terms of satisfying the unitary constraint,
all algorithms provide good performance. The unitarity criterion (17) is close
to the machine precision as also shown in [1].

5.2 Joint Approximate Diagonalization of a set of Her-
mitian Matrices. Minimizing the JADE criterion
on U(m)

In this subsection we apply the proposed CG-PR algorithm together with
the two novel line search methods to a practical application of blind source
separation (BSS) of communication signals. A number of m = 16 indepen-
dent signals are separated from their » = 18 mixtures based on the statistical
properties of the original signals. Four signals from each of the following con-
stellations are transmitted: BPSK, QPSK, 16-QAM and 64-QAM. A total of
5000 snapshots are collected and 100 independent realizations of the r x m
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mixture matrix are considered. The signal-to-noise-ratio is SNR= 20dB.
The blind recovery of the desired signals may be done in two stages by using
the JADE approach [23]. It can be done up to a phase and a permutation
ambiguity, which is inherent to all blind methods. The first stage is the pre-
whitening of the received signals based on the subspace decomposition of the
received correlation matrix, and it could also be formulated as a maximiza-
tion of the Brockett function (16) as shown in Section 5.1. The second stage
is a unitary rotation operation which needs to be applied to the whitened sig-
nals. It is formulated as an optimization under unitary constraint and solved
by using the approach proposed in Table 3. The function to be minimized is
the joint diagonalization criterion [23]

Jiape(W) = ZOH{WHMZW} subject to W € U(m). (18)

i=1

The eigenmatrices M, which are estimated from the fourth order cumulants.
The criterion penalizes the departure of all eigen-matrices from the diagonal
property [25]. The order of the function (18) is ¢ = 4, and the Euclidean
gradient of the JADE cost function is given in [1].

In Figure 5-a) we show four of the eighteen received signals, i.e., noisy
mixtures of the transmitted signal. Four of the sixteen separated signals are
shown in Figure 5-b).

In the the first simulation we study the performance of the proposed Rie-
mannian algorithms in terms of convergence speed considering the JADE
criterion (18). This JADE criterion (18) is a measure of how well the eigen-
matrices M; are jointly diagonalized.

The whitening stage is the same for both the classical JADE and the Rie-
mannian algorithms. The unitary rotation stage differs. The classical JADE
algorithm in [23] performs the approximate joint diagonalization task by us-
ing Givens rotations. Three different Riemannian optimization algorithms
are considered. The first one is the steepest descent (SD) on U(m) obtained
from the CG algorithm in Table 3 by setting v to zero at every iteration k.
The line search method in Table 2, which is based on DFT approximation
approach is used. The second one is the CG-PR algorithm in Table 3 with
the line search method proposed in Table 1 (polynomial approximation ap-
proach). The third algorithm is the CG-PR algorithm in Table 3 with the
line search method proposed in Table 2 (DFT approximation approach).

In Figure 6 it may noticed that all three Riemannian algorithms out-
perform the classical Givens rotations approach used in [23]. Again CG
algorithm convergences faster compared to the SD algorithm, with both pro-
posed line search methods (Table 1 and Table 2). The parameters used in
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Figure 5: The constellation patterns corresponding to a) 4 of the 18 received
signals and b) 4 of the 16 recovered signals by the CG-PR algorithm proposed
in Table 2 with the novel line search method in Table 1. Since the method
is blind there is inherent phase ambiguity, as well as permutation ambiguity.

this simulation for line search methods in Table 1 and 2 are the same as in
the previous simulation (Subsection 5.1). All three Riemannian algorithms
have complexity of O(m?) per iteration and only few iterations are required
to achieve convergence. Moreover, the number of iterations needed to achieve
convergence stays almost constant when increasing m. The Givens rotation
approach in [23] has a total complexity of O(m?), since it updates not only the
unitary rotation matrix, but also the full set of eigen-matrices M;. Therefore,
the total complexity of the proposed algorithm is lower, especially when the
number of signals m is very large. The proposed algorithms converge faster
at similar computational cost per iteration. Therefore, they are suitable for
blind separation applications, especially when the number of signals to be
separated is very large m > 10.

6 Conclusions

In this paper, a Riemannian conjugate gradient algorithm for optimization
under unitary matrix constraint is proposed. The algorithm operates on
the Lie group of m x n unitary matrices. In order to reduce the complex-
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Figure 6: A comparison between the classical JADE algorithm in [23] based
on Givens rotations and other three different optimization algorithms: SD
on U(m) (in Table 3 by setting 7, = 0) + line search method in Table 2
(DFT method), CG-PR algorithm on U(m) in Table 3 + line search method
in Table 1 (polynomial method), CG-PR algorithm on U(m) in Table 3 +
line search method in Table 2 (DFT method). The performance measures
are the JADE criterion (18) vs. the iteration step. All three Riemannian
algorithms outperform the classical Givens rotation approach used in [23].
CG-PR converges faster than SD for both proposed line search methods.

24



ity, it exploits the geometrical properties of U(n) such as simple formulas
for the geodesics and the tangent vectors. The almost-periodic behaviour
of smooth functions and their derivatives along geodesics on U(n) is shown.
Two novel line search methods exploiting this property are introduced. The
first one used a low-order polynomial approximation for finding the first local
minimum along geodesics on U(n). The second one uses a DFT-based ap-
proximation for finding multiple minima along geodesics and selects the best
one unlike the Fourier method in [15], which finds only one minimum. Our
method models better the spectral content of the almost periodic derivative
of the cost function. The two proposed line search methods outperform the
Armijo method [18] in terms of computational complexity and provide bet-
ter performance. The proposed Riemannian CG algorithm not only achieves
faster convergence speed compared to the SD algorithms proposed in [1,12],
but also has lower computational complexity. The proposed Riemannian CG
algorithm also outperforms the widely used Givens rotations approach used
for jointly diagonalizing Hermitian matrices, i.e., in the classical JADE al-
gorithm [23]. It may be applied, for example, to smart antenna algorithms,
wireless communications, biomedical measurements, signal separation, sub-
space estimation and tracking tasks where unitary matrices play an impor-
tant role in general.
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