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Abstract— In many engineering applications we deal with
constrained optimization problems w.r.t. complex valued ma-
trices. This paper proposes a Riemannian geometry approach
for optimization of a real valued cost function J of complex
valued matrix argument W, under the constraint that W is an
n×n unitary matrix. An approximate steepest descent algorithm
based on Taylor series expansion is developed. The approximation

satisfies the unitary matrix constraint accurately even if low order
approximation is used. Armijo adaptive step size rule [1] is used
while moving towards the optimum. In the simulation examples,
the proposed algorithm is applied to array signal processing and
communications problems. The method outperforms other widely
used algorithms.

I. INTRODUCTION

Constrained optimization problems arise in many applica-

tions. In particular, we are addressing the problem of opti-

mization under unitary matrix constraint. Such problems may

be found in communications and array signal processing, for

example, blind and constrained beamforming, high-resolution

direction finding (e.g. MUSIC and ESPRIT), and generally all

subspace-based methods where subspace tracking is needed. In

addition, this type of optimization problems occur in Multiple-

Input Multiple-Output (MIMO) communication systems and

blind signal separation. See, [2] for recent review. Typically

in communications and signal processing applications we are

dealing with complex matrices and signals. Consequently,

the methods derived for real-valued signals and orthogonal

matrices may not be applicable. The extension from real [3]

to complex case and unitary matrices is not trivial. It is not

obtained just by replacing the transposition operation by the

Hermitian transposition and the real derivative by the complex

derivative, respectively.

Commonly, a cost function with unitary matrix constraint

is minimized in the space of n× n matrices using a classical

Steepest Descent Algorithm (SDA) with separate orthogonal-

ization step applied in each iteration [4], [5]. The method of

Lagrange multipliers where deviations from the unitarity prop-

erty are penalized has also been employed in such problems

[6]. A major improvement over the classical methods above

is proposed in [7]. This differential geometry based method

performs the optimization under unitary matrix constraints in

an appropriate parameter space.

In this paper we propose an algorithm stemming from

differential geometry for optimization of a real-valued cost

1This work was supported by the Academy of Finland and GETA Graduate
School.

function J : Cn×n → R subject to WWH = WHW =
I. This constrained optimization problem in Cn×n may be

translated into an unconstrained one in a different parameter

space, i.e., the Lie group of n × n unitary matrices U(n). A

steepest descent algorithm operating in such parameter space

is proposed. The exact method proposed in our earlier work [8]

performs geodesic motion, i.e., it moves along locally length-

minimizing paths towards the optimum. It requires the com-

putation of a matrix exponential which may be too expensive

in certain applications. In order to reduce the computational

cost, we propose an approximate method that uses truncated

Taylor series expansion. Even a low order model may be

used since the approximate method does not suffer from error

propagation. Consequently, the unitary matrix constraint may

be satisfied with high fidelity in adaptive algorithms.

This paper is organized as follows. In Section II we in-

troduce the Riemannian gradient in the unitary group and a

steepest descent algorithm employing Taylor series expansion

is derived. Simulation results and array signal processing

and communications applications are presented in Section III.

Finally, Section IV concludes the paper.

II. ALGORITHM

In this section we propose a steepest descent algorithm

operating in the Lie group of n × n unitary matrices U(n).
In order to reduce the computational cost, we propose an

approximate alternative to the exact algorithm proposed in

[8]. The exact algorithm optimizes constrained cost function

J (W) along geodesics on U(n). The Riemannian gradient of

the cost function evaluated at W and translated to identity is

given by:

G(W) � Γ
W

WH − WΓH
W

, ∈ TIU(n), (1)

where Γ
W

= ∇J (W) is the gradient of J in the R2n×2n

Euclidean space [9] at a given W. The cost function J (W)
is minimized iteratively, and the geodesic motion may be

described by using an exponential map:

Wk+1 = expm(−µGk)Wk � RkWk, (2)

where Gk = G(Wk) (1), the parameter µ > 0 controls

the algorithm convergence speed and Rk is unitary (rotation)

matrix. Note that the argument of the matrix exponential

operation is a skew-Hermitian matrix. The equation (2) is the

exact update from [8]). This exploits the fact that the unitary

matrices form a Lie group under the multiplication operation.

���������������������������������,(((



Product of unitary matrices is a unitary matrix. Hence, the

multiplicative update in (2) satisfies the constraint in each step.

Finding the rotation matrix Rk requires the computation of the

matrix exponential operation (expm). The expm operation may

be too expensive in some applications.

We propose a low complexity approximate algorithm based

on Taylor series expansion of the expm operation. The effect

of the approximation order is studied. Approximate algorithms

do not necessarily satisfy the unitary matrix constraint exactly.

However, already a low order approximation (order 3 to 5)

produces accurate results. The truncated Taylor series approx-

imation of expm of order ω is

expm(A) ≈
ω

∑

m=0

Am

m!
. (3)

The corresponding approximate update is Wk+1 = R̃kWk,

where R̃k is the approximate rotation matrix. For example,

the second order approximation is

R̃k = I − µGk +
µ2

2
G2

k, (4)

where µ is the step size. After expanding the expression of

the Riemannian gradient Gk, the corresponding update is:

Wk+1 = Wk − µ
[

ΓkW
H
k Wk − WkΓ

H
k Wk

]

(5)

+
µ2

2

[

(ΓkW
H
k )2Wk + (WkΓ

H
k )2Wk

− ΓkW
H
k WkΓ

H
k Wk − WkΓ

H
k ΓkW

H
k Wk

]

.

The multiplicative update in (2) turns into an additive update.

The error propagation is an important practical issue. Since

the unitary constraint is satisfied only approximately, the

weighting factor WH
k Wk in equation (5) is different from

the identity matrix. This weighting factor affects directly the

unitary property of Wk+1. If the weighting factor is ignored

in eq. (5) (i.e., if we assume WH
k Wk = I), then even

more severe degradation in the performance and departure

from the unitarity property is experienced. The weighting

factor improves the accuracy of the update in terms of unitary

criterion similarly to the self-stabilized gradient algorithms in

[10]. One important advantage of the proposed approximate

algorithm is that the deviation from unitarity remains constant

after a number of iterations, and it does not accumulate error

as it can be seen in simulation results. This is due to the fact

that the gradient (1) is always skew-Hermitian. The remaining

error depends on the truncation order of the Taylor series.

For a small step size, the third order truncated Taylor series

approximates the matrix exponential with high fidelity. This

is shown in [11], and verified by our simulations.

The proposed approximation of the matrix exponential

operation requires (ω−1)[n3+2n2] operations (multiplications

and additions). This takes into account the the special skew-

Hermitian structure of Gk. The approximation requires com-

puting matrix powers in (3) which may be done very efficiently

for skew-Hermitian matrices. The odd powers of Gk are

also skew-Hermitian and the even powers are Hermitian.

Consequently, the complexity of computing matrix powers is

reduced approximately by half. The GPD method in [12] used

to compute the matrix exponential requires 10n3 operations for

skew-Hermitian matrices. Hence, Taylor series approximation

of order ω ≤ 10 is justified.

An optimal value of the step size µ is difficult to determine

in practice, since the matrices involved in the cost function

may be random. Moreover, they may be time-varying. An

adaptive step size is a reliable choice. It is known that the

steepest descent algorithm together with the Armijo rule [1]

for choosing the step size almost always converges to a local

minimum if not initialized at a stationary point.

The proposed algorithm is summarized in Table I using a

third order Taylor series approximation of the matrix expo-

nential. The step size µ evolves in a dyadic basis. If it is too

small, it will be doubled, or if it is too high it will be halved.

The criteria for choosing the step size value are defined by

two inequalities, the steps 6 and 7, respectively.

1 Initialization: k = 0 ,Wk = I and µ = 1
2 Compute the gradient of the cost function in the Euclidean

space: Γk = ∂J

∂W∗
(Wk)

3 Compute the gradient direction in the Riemannian space:
Gk = ΓkW

H

k − WkΓ
H

k

4 Evaluate ‖Gk‖
2
Wk

= trace{GkG
H

k }. If it is sufficiently
small, then STOP.

5 Determine the approximate rotation matrices:

R̃k = I−µGk +(µGk)2/2−(µGk)3/6, Q̃k = R̃kR̃k

6 While J (Wk) − J (Q̃kWk) ≥ µ‖Gk‖
2
Wk

R̃k := Q̃k, Q̃k = R̃kR̃k, µ := 2µ

7 While J (Wk) − J (R̃kWk) < (µ/2)‖Gk‖
2
Wk

R̃k = I− µGk + (µGk)2/2 − (µGk)3/6, µ := µ/2

8 Update: Wk+1 = R̃kWk and go to step 2, k := k + 1

TABLE I

THE PROPOSED APPROXIMATE ALGORITHM. THE TAYLOR SERIES

APPROXIMATION ORDER IS ω = 3

This type of step adaptation allows reducing the complexity.

When the step size needs to be doubled (step 6), the com-

putation of the Taylor series approximation in not needed,

because the rotation matrix Q̃k ≈ expm(−2µGk), may be

obtained by squaring the matrix R̃k ≈ expm(−µGk). This

it is a realistic assumption even though we deal with an

approximation, because for normal matrices, the approximate

expm computation via matrix squaring (when doubling the

step size) prevents the roundoff error accumulation [11]. An

Armijo type of update algorithm enjoys this benefit, since the

argument of the matrix exponential is skew-Hermitian, i.e. a

normal matrix. Larger step size causes larger approximation

error in the Taylor series. This may be avoided by using the

scaling and squaring approach (Method 3 from [11]).

III. APPLICATION EXAMPLES

In this section we test the proposed algorithm in two

different examples of signal processing applications. The first

application example is a subspace-based direction of arrival
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(DOA) estimation used in smart antenna systems. The second

one is a subspace method for (semi)blind channel estimation

in MIMO OFDM systems.

1) Subspace-based direction of arrival estimation: The

method requires the computation of the signal or noise sub-

space. Here, the subspaces are estimated using a diagonal-

ization approach. The antenna array covariance matrix Σ

is diagonalized by finding diagonal matrix D = WHΣW

such that W is a unitary matrix. The matrix D contains the

eigenvalues of Σ and W is a unitary matrix whose columns

are the eigenvectors of Σ. They may be found iteratively by

minimizing the off-diagonal elements of WHΣW, w.r.t. W,

under the unitarity constraint on W. This is equivalent to

minimizing the following cost function:

J (W) = ‖WHΣW − I ⊙ (WHΣW)‖2
F , (6)

where ⊙ denotes the elementwise matrix multiplication. The

gradient of (6) is ΓW = 2ΣW
[

WHΣW− I⊙ (WHΣW)
]

.

In the first simulation the impact of the Taylor series approx-

imation order ω is studied, for ω = 2, 3, 5. The performance

is studied in terms of convergence speed. Obviously, faster

methods for finding the DoA are used in practice. Two figures

of merit are considered: a diagonality criterion ∆ and the

unitarity criterion Ω. The diagonality criterion is defined

as a ratio of two squared Frobenius norms, i.e., the one

corresponding to the off-diagonal vs. the one corresponding

to the diagonal elements of D, in logarithmic scale, i.e.,

∆ = 10 lg[‖off(D)‖2
F /‖diag(D)‖2

F ]. The unitarity criterion

is defined as the squared Frobenius norm of the deviation

from the unitarity property also in a logarithmic scale, i.e.,

Ω = 10 lg ‖WWH − I‖2
F . The results are depicted in Fig. 1.
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Fig. 1. The performance of the proposed algorithm (Table I) using the
truncated Taylor series approximation of the matrix exponential operation.
The diagonality criterion ∆ (left) and the unitarity criterion Ω (right) vs. the
iteration step. The unitarity criterion stabilizes to a steady-state value after
few iterations. This value depends on the approximation order.

We may notice that approximation order does not impact the

diagonality criterion significantly, see Fig. 1 (left). However,

the approximation order plays a significant role in satisfying

the unitarity property which is crucial in many applications,

see, Fig. 1 (right).

In the second simulation we show the importance of uni-

tarity and how it reflects on the DOA estimates. A 6-element

uniform linear array (ULA) is used. The “true” DOAs are

θ1 = 87o and θ2 = 92o. The separation angle is 5o,

hence the high resolution property is needed. The obtained

eigenvectors are plugged into standard MUSIC algorithm. We

compare three algorithms: the classical steepest descent (SD)

method which enforces unitarity in every iteration as in [4],

a Lagrangian type of method as in [6], and the proposed

approximate algorithm (Table I). We plot the spatial pseudo-
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Fig. 2. The estimated DOAs (solid line) vs. the true DOAs: θ1 = 87o and
θ2 = 92o , (marked by dashed lines). The MUSIC algorithm is applied to a 6-
element ULA at SNR=15dB. The eigendecomposition is obtained iteratively
by minimizing the cost function (6), based on three different algorithms: a)
The classical SD with enforcing unitarity every iteration b) The Lagrangian
SD algorithm c) The proposed algorithm (Table I). The classical algorithms
a), b) lose the high-resolution property. The proposed algorithm c) can solve
closely-spaced DOA angles.

spectrum after 200 iterations for all methods. The classical

SD algorithm produces the pseudo-spectrum in Fig. 2-a). It

fails to detect both sources. This method converges to an

accurate estimate only after several thousands of iterations.

The Lagrangian method yields eigenvectors where the unitary

property does not hold. Therefore, the orthogonality property

of signal and noise subspaces is degraded and high resolution

property is lost as well. See Fig. 2-b) where closely spaced

sources remain unresolved. The proposed algorithm finds both

signals as it is shown in Fig. 2-c). The peaks are high and well

separated. This is obtained even if very poor initial estimates of

the eigenvectors are used, i.e., the identity matrix. The method

performs reliably in subspace-based estimation and tracking

tasks where the unitarity property plays a crucial role.

2) Subspace method for semi-blind channel estimation in

MIMO OFDM systems: In this example we consider the

channel estimation algorithm for multi-user MIMO OFDM

systems proposed in [13]. The same simulation parameters

as in Example 2 in [13] are considered. The MIMO system
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has K = 2 transmit antennas and J = 3 receive antennas.

All the MIMO channel branches are frequency selective and

have order L < 10. The corresponding taps are zero-mean

complex Gaussian, mutually independent generated accord-

ing to the exponential power-delay profile E[|h(j,k)(l)|2] =
exp(−0.64l), l = 0, . . . , L. The OFDM block contains N =
32 sub-symbols belonging to 16-QAM constellation. Each

block is zero-padded, resulting to a block of length M = 41.

The blind channel identification algorithm proposed in [13]

is based on second order statistics of the received signal.

The algorithm consists of the following steps. First, a sample

estimate of the auto-correlation matrix R̂x is computed based

on a finite number of received OFDM blocks. Ideally, the auto-

correlation matrix is given by Rx = E[xix
H
i ] = HRuH

H +
σ2

νIJM , where xi is the receive antenna array output and H

is the JM ×KN block-Toeplitz matrix modeling the MIMO

channel. Ru is the auto-correlation matrix of the transmitted

signals and σ2
ν is the noise variance. The noise subspace is

identified from the eigendecomposition (ED) of R̂x. There are

q = JM − KN eigenvectors βi corresponding to the noise

subspace, therefore the classical subspace unitarity property

βi
HH = 0 holds. In the next step, each eigenvector βi is

re-arranged into a N × (L + 1)J block-Toeplitz matrix Gi,

and and the resulting matrices are stacked into a large matrix

G. The MIMO channel coefficients are also reshaped in a

J(L + 1) × K matrix H̄. An equivalent unitarity equality

GH̄ = 0 is obtained. The matrix H̄ may be determined

up to a K × K ambiguity matrix B, i.e., H̄ = H̄0B. The

matrix H̄ is a basis of the right null space of G. This can be

obtained from the singular value decomposition (SVD) of G.

Therefore, the columns of H̄0 are formed by the right singular

vectors corresponding to the K smallest singular values. The

ambiguity matrix B may be removed based on pilot data, i.e.,

at least K sub-symbols in one OFDM block must be known.

In conclusion, the channel estimation method proposed in [13]

requires one ED of the auto-correlation matrix Rx, followed

by a SVD of the matrix G formed with the eigenvectors βi.

The proposed approximate algorithm reduces the complex-

ity with a small performance degradation. First, we compare

the complexity of the algorithm proposed in [13] by using the

exact ED and SVD operations to the proposed iterative algo-

rithm. An exact ED of the JM×JM matrix Rx requires about

13(JM)3 ≈ 24 · 106 operations including both additions and

multiplications. The exact SVD of the Nq × (L + 1)J matrix

G requires about 2(Nq)[(L+1)J ]2+11[(L+1)J ]3 ≈ 3.7·106

operations [14]. By using the proposed approximate algorithm

(Table I) a complexity reduction may be achieved. We assume

low approximation orders, i.e., ω1 = 4 for the ED of the Rx

matrix and ω2 = 5 for the SVD of G. The approximation of

the ED operation reduces the complexity more than four times,

i.e., about (ω1 − 1)[(JM)3 + 2(JM)2] ≈ 5.7 · 106 operations

are required. Moreover, the SVD operation is converted to an

ED operation. Instead of computing the right singular vectors

of a large tall matrix G of size Nq × (L + 1)J = 1288× 30,

we compute the eigenvectors of a smaller matrix GHG of

size 30 × 30. In this way we further reduce the complexity.

The multiplication GHG requires about 1
2 (JM − KN)(L +

1)[J2N(L + 2) − J(J − 1)] + 1
2 [(L + 1)J ]4 ≈ 1.3 · 106

operations by exploiting the block-Toeplitz structure of G.

Finding the eigenvalues and the associated eigenvectors by

using the proposed iterative approximation requires about

(ω2 − 1)[((L + 1)J)3 + 2((L + 1)J)2] ≈ 0.1 · 106 opera-

tions. Therefore, the SVD may be approximated in 1.4 · 106

operations which is less than half of the complexity of the

exact method.

We compare the exact and the approximated algorithms in

order to evaluate the performance loss due to the approxima-

tion. In this simulation we perform both the ED and the SVD

by using the proposed iterative approximation. The sample

estimate of the auto-correlation matrix Rx is computed by

using 200 received OFDM blocks. The number of iterations

for the computation of the ED is also equal to 200, for both

EDs.

After the MIMO channel is estimated, the equalization is

performed in time domain and the ambiguity B due to the

blind identification is removed as in [13]. The error is averaged

over 50 Monte Carlo realizations. In Fig. 3 the performance of

the proposed approximation is compared to the exact method

[13] in terms of root mean-square error (RMSE) in the channel

coefficients, as a function of the signal-to-noise ratio (SNR).

Both the SNR and the channel RMSE are defined in [13]. The

symbol RMSE is defined in the same manner for each user, and

the average value over all users is considered. The performance

degradation on the channel estimate due to the approximation

may be noticed at high SNR. In terms of symbol RMSE

the gap between the exact method [13] and the proposed

approximate algorithm is not very significant, as it is shown

in Fig. 4. The demodulated constellation patterns for the two

users for the exact method and for the approximate method

are shown in Fig. 5-a) and Fig. 5-b), respectively. The SNR

is 21.4 dB, as in [13].
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Fig. 3. The channel estimation RMSE as a function of SNR.

The algorithm convergence speed is also evaluated in terms

of both channel RMSE and symbol RMSE. It may be noticed

in Fig. 6 that after approximately 10 iterations both the

channel and the symbol RMSE decrease significantly. This

is due to the fact that after a certain number of iterations
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Fig. 5. The constellation patterns corresponding to the two users at SNR=21.4
dB. a) The exact method [13]. The channel RMSE is equal to 0.04 and the
symbol RMSE is equal to 0.11. b) The proposed approximate algorithm from
Table I. The channel RMSE is equal to 0.11 and the symbol RMSE is equal
to 0.19.

the smallest eigenvalues may be distinguished easily and the

proper eigenvectors are plugged in the algorithm.

IV. CONCLUSIONS

In this paper, an approximate Riemannian optimization

algorithm under unitary matrix constraint is proposed. The

truncated Taylor series approximation reduces the complexity

and is very robust in the face of error propagation. Armijo

step size [1] as well as more classical adaptation rules

may be used in the update. The proposed method may be

applied, for example, to smart antenna algorithms, wireless

communications, biomedical measurements, signal separation,

subspace estimation and tracking tasks where unitary matrices

play an important role in general. Comparison to classical

steepest descent and Lagrangian methods in given as well.
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The proposed algorithm provides significant advantages over

the classical methods in terms of computational complexity.

In terms of accuracy the approximation approaches the exact

method.
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