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Abstract— This paper proposes a Riemannian geometry ap-
proach for optimization under unitary matrix constraint. We
introduce two novel line search methods which are used together
with a steepest descent algorithm on the Lie group of unitary
matrices U{n). The proposed approach fully exploits special
properties that only appear on U/(n), and do not appear on
the FEuclidean space or arbitrary Riemannian manifolds. These
properties induce an almost periodic behavior of the cost function
along geodesics. Consequently, the resulting step size selection
rule outperforms efficient methods such as Armijo rule [1] in
terms of complexity.

‘We test the proposed optimization algorithm in a blind source
separation application for MIMO systems by using the joint
diagonalization approach [2]. The proposed algorithm converges
faster than the classical JADE algorithm [2].

I. INTRODUCTION

Unitary matrices play a crucial role in many array and sighal
processing applications. A common problem 18 optimizing
a certain cost function wrt a matrix whose columns are
mutually orthogonal. Some typical applications include blind
beamforming, high-resolution direction finding, and generally
all subspace-based methods. Other straight-forward applica-
tiens are Independent Component Analysis (ICA) and space-
time processing algorithms for Multiple-Input Multiple-Output
(MIMO) commumcation systems. For a recent summary of
such applications we refer to [3]-[5].

Most of the existing algorithms formulate the problem of
optimization under orthogonal/unitary matrix constraint on
the Euclidean space of n x n matrices. Therefore, classical
Steepest Descent (SD) algorithm is used together with separate
orthogonalization procedure applied after each iteration. The
method of Lagrange multipliers has also been used to solve
such problems. These methods are characterized in general by
slow convergence, and/or deviation from the unitary constraint,
as shown in [4], [5]. Major improvements over the classical
methods are obtained by taking into account the geometrical
aspects of the optimization problem. Pioneering work by Luen-
berger [6] and Gabay [7] convert the constrained optimization
problem mto an unconstrained one, on an appropriate differ-
entiable manifold. An extensive treatment of the optimization
with orthogonality constraints is given by Edelman et al. [8] in
a Riemanman context. A general framework for optimization
under unitary matrix constramt is proposed by Manton [9].
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In this paper we propose a Riemannian geometry approach
for minimizing a real-valued functien 7 (W) under unitary
matrix constraint, ie., WHEW = WWH — T, where is the
7 % n identity matrix. The Steepest Descent (SD) algorithm
considered in this paper moves towards the optimum along
so-called geodesics, i.e., the locally length minimizing paths
on the Riemannian manifold We introduce two novel line
search methods on U{n) for selecting the step size parameter.
In general, step size selection is crucial for the performance
of the gradient-type of algorithms. Most of the Riemannian
algorithms in the literature dealing with optimization under
orthogonal constraints do not provide a practical rule for
adaptively selecting the step size [8], [10], [11]. They either
consider a empirical small fixed step, or they are too expen-
sive for practical applications [12]. Step size adaptation may
require expensive computations even for gradient algorithms
operating on Euclidean spaces. This is because most of the
existing line search methods [1] require multiple cost function
evaluations. On Riemanman manifolds the problem becomes
even harder, because every cost function evaluation requires
expensive computations of the local parametrization, which in
our case 1s the exponential map.

The main contribution of this paper consists of two inex-
pensive and accurate methods for searching along geodesics
on U(n). They exploit the Lie group properties such as
the skew-Hermmitian property of the tangent vectors at group
identity. The exponential map mduces an almost periodic
behavior of the cost function along geodesics. This property
leads to considerable complexity reduction compared to the
Armijo rule [1], which is one of the most efficient line search
methods on U (%) [4]. The proposed methods require only one
evaluation of the local parametrization. This benefit is achieved
only on U(n), O(n) (the orthogonal group), or Lie groups
whose Lie algebra is comprised of matrices having purely
maginary eigenvalues. The proposed line search methods
on U(n) are valid for all common optimization algorithms
(steepest descent, conjugate gradient or other gradient-based
methods), with the condition that they move along geodesics.

This paper is organized as follows. In Section II, we present
the proposed approach for optimization under unitary matrix
constraint. Two novel line search methods are introduced
together with a Riemannian steepest descent on U(n) [4].
Simulation results are presented in Section III. The proposed
algorithm is used to solve the unitary matrix optimization
problem of the JADE algorithm which is applied to blind



source separation in a MIMO system. Finally, Section TV
concludes the paper.

II. ALGORITHM

In this section we propose an efficient Riemannian approach
for unitary optimization. First, a steepest descent (SD) algo-
rithm on the Lie group of unitary matrices U(n) is considered
in Subsection IT-A. In Subsection IT-B we present a key feature
of U(n) necessary in our derivations. The novel line search
methods are introduced in Subsection II-C

A. SD algorithm on U(n)

The cost function (W) may be minimized iteratively by
using the steepest descent (SD) algorithm on U (n) derived in
[4]. The Riemannian gradient of [J (W) at Wy, translated to
the group identity element is given by

Gr=T\ WE-W,TZ, (h

where by ', = %(W) we denote the Euclidean gradient
of J(W) at Wy. The kth iteration corresponding to a SD
algorithm along geodesics on [/{n) is given by

Wk+1 = exp(f,uka)Wk, k :O,l,... (2)

A typical initial value is Wo = I The rotatienal update (2)
maintains W4 unitary at each iteration. The step size jx >
0 controls the convergence speed and needs to be computed
at each iteration. Two novel inexpensive step size selection
methods are proposed in Subsection TI-C.

B. Almost periodic cost function along geodesics on U(n)

An unexploited feature of U/{(n) is that smooth cost fune-
tions are almost periodic along geodesics. This is a key prop-
erty which we exploit in this paper. The rotational update given
in (2) is written in terms of an exponential of a skew-Hermitian
matrix. The corresponding geodesic curve emanating form
Wi e Uln), 15

Win) = exp(—puGr) Wi, Greun), pekR  (3)

Tt is important to note that the gradient Gy (1) is a skew-
Hermitian, ie., G = —Gf. This 1s due to the fact that
the tangent space at the identity element of U(n) is the Lie
algebra of skew-Hermitian matrices u(n) [4]. Skew-Hermitian
matrices have purely imaginary eigenvalues of form jw;, i =
1,...,n. Therefore, the eigenvalues of the matrix exponential
exp(pGy) are complex exponentials of form e**#. Conse-
quently, the cost function along geodesics given by

() = TV () 4

18 an almost periodic function [13], and therefore it may be
expressed as a sum of periodic functions of g Also its deriva-
tives are almost periodic functions of . The almost periodic
property of the cost function and its derivatives appears only
in the case of exponential map, unlike other parametrizations.
This property motivates the fact that the optimization on U(n)
should be carmried along geodesics. Moreover, this special
property appears only on certain manifolds, such as the umtary
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group U(n) and the orthogonal group O(n) and it doees
not appear on Euclidean spaces or on general Riemanman
manifolds. The almost-periodic behavior of the cost function
along geodesics may be used to perform geodesic search on
U(n). This it will be shown in Subsection II-C where two
novel step size selection methods are introduced.

C. Efficient geodesic search methods on U(n) — the step size
selection

In general, the step size adaptation may be computationally
expensive even in the case of gradient algorithms operating
on Euclidean spaces. This is due to the fact that most of
the methods [1] require multiple cost function evaluations.
On Riemannian manifolds the step size selection problem
becomes even harder because every cost function evaluation
requires expensive computations of the local parametrization.
In [4], Ammijo method is efficiently used since only few
computations of the matnx exponential are needed n average
per iteration. The complexity issues of the Armijo method are
treated in detail in [4].

In this section, we propose two novel methods for perform-
mg high-accuracy one-dimensional search along geodesics
on U{r). They rely on the fact that smooth functions are
almost periodic along geodesics on U/(n). The first method
18 based on a polynomial approximation of the first-order
derivative of the cost function along geodesics. The second
one is a Discrete Fourier Transform (DFT) based approach.
We emphasize the fact that the proposed methods require
only one evaluation of the matrix exponential. Therefore,
they outperform significantly the Armijo method in terms of
complexity.

The main goal is find a step size pup > 0 along the
geodesic curve W(jz) (3) which minimizes the composed cost
function J (1) = J(W(x)). The direction —Gx € u(n) in
(3) corresponds to a steepest descent algorithm. The proposed
line search methods are also valid for conjugate gradient,
or any other gradient-type of algorithm along geodesics on
U(n). Therefore, instead of limiting our line search method
to the steepest descent, we consider a general search direction
—Hg e u(n)

Consider two successive points on U (n) such that Wy =
W(0) and Wy 41 = Wi(yy). Finding the step value p = ju,
that minimizes .7 (1) may be done by computing the first-order
derivative 4.7 fely and setting it to zero. By using the chain
rule for the composed function J (W (1)), we get

4 8
%(p)z—?%{trace{a—v‘;(‘?z(p)wk) WE’RH(/.L)H}?}} (5

The first-order derivative (5) is also an almost periodic func-
tion. Periodicity may be exploited in many ways in order
to find the zeros of the derivative corresponding to local
minima of the cost function along geodesics. We present two
different approaches. The first one finds only the first positive
zero-crossing value of the first-order derivative by using a
polynomial approximation of the derivative. The second one
finds several zero-crossing values of the denivative and 13 based



The JADE cost function along geodesic

cost funetion 7 (z)

first-order derivative d.f Jdu

| +=1='="polynomial approximation of dj/d,u
= === DFT- based apprommatlon of dj/d,u

-
L]
T

=
D

(), 4 /dp, approximations of 4.7 /du

DFT Qoprox wmdow

L2

s

0 T
Latne
; - : 3 3 :
HE i l 4 eqm-fpaced‘.‘. :
‘h-ﬁ’i‘”? ,,,,, i & samplmg N JC )
= | 1 | 1 1 i 1
0 1 2 3 4 5 6
]
Fig. 1. Performing the geodesic search for the JADE [2] cost function. The

almost periodic behavior of the function 7(x) and its first-order derivative
dj/d,u (5) along geodesic W{u) (3) may be noticed. A fourth-order
polynormal is used to approximate dj/d,u and find the first local minimum
af .’j"(u) This corresponds to the smallest positive zero-crossing value of
dj/d,u,, i.e., the desired step size riz. A DFT-based approxn'nanon of dj/d,u
(dashed lme) is used to find several local minima of J’(,u) along geodesic
and select the best one.

on a Fourier series approximation. Other approaches may also
be possible, and they have been under our investigation.

1) Method 1 - FPolynomial approximation approach : The
goal of the first step size selection method proposed in this
paper is to find the first local mininmm of the cost function
along a given geodesic. The main argument for the present
approach 1s the computational benefit, 1.e., only one evaluation
of the matrix exponential is needed. Finding the first minimum
of the cost function along a given geodesic corresponds to
finding the smallest positive zero-crossing value of the first-
order denvative of the cost function, which is alse almost
periodic. In this purpose we use a low-order polynomial
approximation of the derivative and find its smallest positive
zero-crossing value. The approximation range of the derivative
is determined from its spectral content. The full method is
explained in detail below.

In Figure 1 we take as an example the JADE cost function
used to perform the joint diagonalization for blind separation
in [2]. A practical application of the proposed algorithm
to blind separation by optimizing the JADE criterion will
be given later in Section III. The cost function J(u) is
represented by black continuous curve in Figure 1. Tts first-
order derivative d.J /dyi 1s represented by the gray continuous
curve in Figure 1. The first local minimum of the cost function
1s attained where the first-order derivative crosses zero for the
first time. Since the direction —Hji € w(n) correspends to
a descent direction at W, the first-order derivative dJ Jdu
is always negative at the origin (at g = 0). Therefore, the
cost function 7 (1) is monotonically decreasing up to the first
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positive zero-crossing value of dJ /du. This value corresponds
to a local minimum of J (1) along geodesic (3) (or seldom
to a saddle point). In order to find the first positive zero-
crossing value we use a low-order polynomial approximation
of the first-order derivative 4.7 /du. The approximation range
18 determined from the spectral content of the derivative, as
described below.

Due to differentiation, the spectrum of d7 /dyi is the high-
pass filtered spectrum of J {14). The frequency components
are determined by the purely imaginary eigenvalues of —Hg,
as shown 1n Subsection II-B. Therefore, the cost function
as well ag its derivative possess discrete frequency spectra.
For our task at hand, we are not interested in the complete
spectrum of d7 /du, we are only interested in the smallest
zero-crossing value of the derivative. This is determined by
the highest frequency component in the spectrum of df Jdu
m the following way. In the interval of ¢ which 18 equal to one
period corresponding to the highest frequency in the spectrum,
the function d.f /du has at most one complete cycle on that
frequency, and less than one on other frequencies. The highest
7 , where sy 18
the eigenvalue of Hj having the highest magnmitude, and g
is the order of the cost function' in coefficients of W. The
corresponding period 18

2
_— 6
Q|Wma)£| ©

The highest frequency component is amplified the most due
to differentiation (high-pass filtering). Therefore, the first-
order derivative dj /di crosses zero at most twice within
the interval [0,7,). The presence of the zero is detected as
sign change of the derivative within the interval T}, Since
d.J /dp varies very slowly within the interval [0, T.) and due
to the almost periodic property of the derivative, a low-order
polynomial approximation of the derivative is sufficient to
determine the corresponding root (see Figure 1).

The approximation requires evaluating the cost function at
least at P points, where P is the order of the polynomial. In
order to reduce corr_}plemty, the derivative is evaluated at equi-
spaced points {0, 2%, —Pfi, .o, 2y} Consequently, only one
computation of the matrix exponentlal Rip) = exp{—pHy)
1s needed at u = T,/ P, and the next (P — 1) values are the
powers of R.{x). This is based on the desirable property of the
matrix exponential that exp(—muHy) = [exp(—#Hg)]™. The
whole procedure requires one matrix exponential and (P — 1)
matrix multiplications. Since P 1s very low, this procedure has
reasonably low complexity. We also emphasize the fact that
when evaluating the approximation interval T, by using (&),
only the magnitude of the maximum eigenvalue w,, of —Hj
needs to be computed and not the full eigen-decomposition.
Having the first-order derivative evaluated at equi-spaced

T, =

IThe order ¢ correspends to the highest degree that £ appears on in the
expansion J (W + tZ). Due to the fact that the local parametrization is the
exponential map, the order of the cost function coincides with the order of its
derivative and it is assumed to be finite (most of the practical cost functions).
In the case that ¢ is not finite, a finite order of the expansion needs to be
used to approximate the cost function.



points, we can approximate it by using a polynomial of order

P

Ty 2 ﬂmao+aly+...+ap,ttp.
dp

In Figure 1, a fourth order approximating polynomial is
used at equi-spaced points within the interval [0,T,). The
approximation is represented by thick dashed line. Because
the function 77{) is very slowly varying within the interval
[0,T},), the smallest real and positive root of the approximating
polynomial is practically the step size i corresponding to an
exact line search, as shown in Figure 1. In terms of complexity
the proposed geodesic search method 1s more efficient than the
Armijo method [1] which requires multiple evaluations of the
matrix exponential at every iteration [4].

2} Method 2 - DFT approximation approach @ The goal
of our second step size selection method 1s to find rudtiple
local minima of the cost function along a given geodesic.
The method requires also only one evaluation of the matrix
exponential, but more matrix squaring operations. The basic
idea is to approximate the almost periodic function d./ Jdu (5),
by a penodic one, using the classical Discrete Fourier Series
(DFT) approach. This is shown in Figure 1, where the JADE
cost function [2] is considered, analogously to the example in
Figure 1.

First, the length of the DFT interval Thrr needs to be set.
The longer DFT interval is considered, the better approxima-
tion 18 obtained. In practice we have to limit the length of the
DFT interval to several periods T, (6) corresponding to the
highest frequency component. Once the DFT interval length is
set, the derivative dj/d,u needs to be sampled at Nppr points.
According to the Nyquist sampling theorem, K > 2 samples
must be taken in an mterval of length 7,. Therefore, if Nt
periods T}, are considered, the DFT length is Nppr > 2Ny,
Due to the fact that T, does not necessarily correspend to
any almost period of the derivative, the values at the edges of
the DFT interval may differ. In order to avoid approximation
mismatches at the edges of the DFT interval, a window
function may be applied [14]. The chosen window function
must be strictly positive, in order to preserve the position of
the zeros we are interested in. In our approach we choose a
Hann window and discard the zero-values at the edges, ie.,
h() = 0.5 — 0.5cos (QWNJ;F;T_), ¢ =0,...,Nppr — L
Therefore, instead of approximating the first-order denva-
tive (5), it is more desirable to approximate the windowed
derivative Dip;) = h(i)%\g(,ui), i=10,...,Nppr — 1. The
approximating Fourier series of the first-order derivative after
the windowing operation may be written as:

(7)

(Nppr+1)/2

>

k:—(NDpT—l)/Q

D(p) ~= (8)

2rk

The DFT-based approximation of 4./ /dp 1s shown in Figure
1 by the thick dashed line.

First, evaluating the derivative 4. /du at points p; &
{O, TDFT/NDFTy [N 7(NDFT - 1)TDFT/NDFT} and applymg
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the Hann window is needed. After determining the Fourier
coefficients ¢z, the polynomial corresponding to the Fourier
series approximation (8) 18 set to zero. The roots of the
polynomial (8) which are close to the umt circle need to
be determined, i.e., g = e, I < 2Np. The values of u
corresponding to those roots are:

(%)

wid]
Mz:(ﬂ TS B

2 )modulo I'nrT

Given a descent direction —Hyp, the smallest step size value
4 corresponds to @ mimimum (or seldom to a saddle point).
If no saddle points occur within the DFT window, all the
step size values j with { odd, correspond to local minima.
The even ones correspond to maxima. This may be noticed
m Figure 1. Within the interval Tpr there are at most Ny
minima, and there is the possibility to choose the best one.
Therefore, the global minimum within the DFT window can
be chosen in order to reduce the cost function as much as
possible at every iteration. Finding the best minimum would
require additional evaluations of the cost function. Therefore,
it would involve computing the matrix exponential for all gy
with odd [, which is preferable to be avoided since this is
computationally rather expensive. A reasonable solution is in
this case using the information on the sampled values of the
cost function. Therefore, the step size is set to the root which
18 closest to the value that achieves a minimum of the sampled
cost function.

III. SIMULATION RESULTS AND APPLICATIONS

In this section, we test how the proposed method performs
mn a blind source separation application for MIMO systems.
More applications may be found in [3]-{5].

Separating signals blindly in a MIMO commumnication sys-
tem may be done by exploiting the statistical information
of the transmitted signals. The JADE (Joint Approximate
Diagonalization of Eigen-matrices) algorithm [2] is a reliable
choice. After pre-whitening of the received signal a unmitary
rotation 13 needed. The problem is formulated as a unitary
optimization which can be efficiently solved by using the
proposed algorithm. The complexity per iteration 1s lower
compared to more general optimization algorithms [8], [9]
which do not exploit the additional group structure of U(n).

A number of m = 20 independent 16-QAM signals are
sent through each of the sixteen transmit antennas and they
are received by r = 20 receive antennas. The signal-to-noise
ratio 1s 20dB. The frequency-flat Rayleigh MIMO channel
is represented by a 20 x 20 mixing matrix. We perform the
blind separation and co-charmnel signal cancellation. The goal
18 to determine a umtary matrix W such that the fourth-order
cumulant matrices comresponding to the whitened signals are
jointly diagonalized, i.e., the JADE criterion [2] is minimized.

The performance 15 studied in terms of convergence speed
considering the goodness of the optimization solution (J4DE
criterion) and the goodness of the solution of the entire blind
source separation problem (Amari distance). The two criteria
versus the number of iterations are shown in Figure 2. We



compare the Riemannian SD in [4] which uses the Armijo step
size selection method to the two proposed methods, i.e, the
polynomial and the DFT-based approximations, respectively.
The proposed DFT and polynomial-based approaches converge
at the same speed as Armijo method, but their computational
complexity is much lower. This is because only one matrix
exponential is computed per iteration, while for the Amijo
method several computations are needed. This is validated also
by simulations. In Table I, we may notice that the number of
matrix exponentials for the Armijo method is higher by one
order of magnitude compared to the proposed methods. For
more details on the computational complexity of the Armijo
method, see [4].

In Figure 2, the three Riemannian algorithms are also com-
pared to the classical JADE solution which performs the joint
diagonalization by using Givens rotations. The Riemannian
steepest descent algorithms converge faster than the classical
JADE algorithm [2] at comparable cost per iteration. The
Riemannian algorithms have ({m?) complexity per iteration,
while the classical JADE algorithm [2] has a total complexity
of O(m*). The number of iterations required for the Rie-
marnmian algorithms to achieve convergence remains almost
constant with m, unlike the Givens rotations approach [2],
whose number of iterations increases linearly with m. There-
fore, using a Riemanman approach for joint diagonalization
is justified when the number of signals m to be separated is
relatively large.

Minimizing the JADE criterion
Givens rotations
= = = S - DFT approach
S0 - palynomial approach
SD - Armijo

Givens rotations

.| === 5D - DFT approach

= — = 8D - palynamial approach
SD - Armija

JADE criterion [dB]

!
o

| N T R R T e
10 40

20 20 40
iteration k

10 50 20 30
iteration k

Fig. 2. The JADE criterion and the Amari distance vs. the iteration step.
Riemannian steepest descent on U (+12) using three different methods for step
size selection: the Armijo method [1], the proposed polynomial approach and
the proposed DFT-based approach. The solution is achieved in few iterations
all three methods, but the two proposed methods are less cormplex compared
to the Armijo method. All three Riemannian algorithms converge faster that
the clagsical JADE algorithun [2] based on Givens rotations, at comparable
cost per iteration.

Number of matrix exponenhal operations/iteration
Armijo method Proposed methods
polynomial approach | DFT-based approach
1 1

952

TABLE I
STMULATED AVERAGE COMPUTATIONAT COMPLEXITY (1000 RUNE).
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IV. CONCLUSIONS

In this paper, a Riemannian approach for optimization
under unitary matrix constraint is proposed. We ntroduce
two mexpensive line search methods coupled with a steepest
descent algorithm on the Lie group of n x n unitary ma-
trices U(n). The proposed line search methods exploit the
properties of certain Lie groups such as the unitary group
U(n) and orthogonal group O(n). This advantage may not
be achieved in the Euclidean space or in arbitrary Riemannian
manifolds. The almost periodic property of the cost function
along geodesics 1s exploited, resulting to two low-complexity
step size adaptation methods. The proposed algorithm solves
efficiently the jomnt diagonalization problem. Other possible
applications are smart antenna algorithms, wireless commu-
nications, biomedical measurements and signal separation,
where unitary matrices play an important role in general.
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