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ABSTRACT

In this paper we propose practical algorithms for optimization under

unitary matrix constraint. This type of constrained optimization is

needed in many signal processing applications. Steepest descent and

conjugate gradient algorithms on the Lie group of unitary matrices

are introduced. They exploit the Lie group properties in order to

reduce the computational cost. Simulation examples on signal sep-

aration in MIMO systems demonstrate the fast convergence and the

ability to satisfy the constraint with high fidelity.

Index Terms— Optimization, unitary matrix constraint, array

processing, subspace estimation, source separation

1. INTRODUCTION

Many signal processing applications require optimizing a certain cri-

terion w.r.t a complex-valued matrix, under the constraint that the

matrix has orthonormal columns. Such problems arise in commu-

nications and array signal processing, for example, high-resolution

direction finding, blind and constrained beamforming, and generally

all methods where subspace estimation or tracking is needed. An-

other important class of applications is source separation and Inde-

pendent Component Analysis (ICA). This type of optimization prob-

lems occur also inMultiple-Input Multiple-Output (MIMO) commu-

nication systems. For a recent review, see [1].

Commonly, the problem of optimization under unitary matrix

constraint is solved on the Euclidean space by using classical gra-

dient algorithms. In order to maintain the constraint satisfied, addi-

tional orthogonalization, or some stabilization procedures need to be

applied after every iteration. Consequently, such algorithms expe-

rience slow convergence or deviations from the constraint [1]. The

initial constraint optimization problem may be converted into an un-

constrained one, on an appropriate differential manifold [2,3]. In the

case of unitary matrix constraint, the appropriate parameter space is

the Lie group of n × n unitary matrices U(n). The nice geomet-
rical properties of U(n) may be exploited in order to solve the op-
timization problem efficiently and satisfy the constraint with high

fidelity. Riemannian geometry based algorithms for optimization

with orthogonality constraints are considered in [4]. In [5] a non-

Riemannian approach is introduced. Optimization algorithms oper-

ating on the unitary group are considered in [1,6]. Algorithms in the

existing literature [2–5] are, however, more general in the sense that

they can be applied on more general manifolds than U(n). On the
other hand when applied to U(n), they do not take benefit of the spe-
cial properties arising from the Lie group structure of the manifold.

This work was supported in part by the Academy of Finland and GETA
Graduate School.

In this paper, efficient steepest descent (SD) and conjugate

gradient (CG) algorithms operating on the Lie group of unitary

matrices U(n) are proposed. They move towards the optimum

along geodesics, which on a Riemannian manifold correspond to the

straight line on the Euclidean space. The main contribution in this

paper is that we take full benefit of the geometric properties of the

Lie group, such as simple formulas for geodesics and parallel trans-

port, as well as special matrix structures. Therefore, the resulting

optimization algorithms are computationally efficient.

This paper is organized as follows. In Section 2 we propose

practical steepest descent and conjugate gradient algorithm for op-

timization under unitary matrix constraint. Simulation results are

presented in Section 3. Finally, Section 4 concludes the paper.

2. RIEMANNIAN OPTIMIZATION ALGORITHMS ON

THE UNITARY GROUP

In this section we propose steepest descent (SD) and conjugate gra-

dient (CG) algorithms operating on the Lie group of unitary matri-

ces U(n). The goal is to minimize (or maximize) the real-valued
cost function J of n × n complex matrix argument W, under uni-

tary matrix constraint, i.e, WW
H = W

H
W = I, where I is the

n × n identity matrix. The constrained optimization problem on the
Euclidean space C

n×n may be formulated as an unconstrained one,

on a different parameter space determined by the constraint. The

unitary constraint defines the Lie group of unitary matrices U(n),
which is a differential manifold and a multiplicative matrix group at

the same time. By exploiting the additional group properties of the

manifold of unitary matrices a reduction in complexity is achieved.

2.1. Some key geometrical features of U(n)

This subsection describes briefly some Riemannian geometry con-

cepts related to the Lie group of unitary matrices U(n). We also
show how the properties of U(n) may be exploited in order to re-
duce the complexity of the optimization algorithms.

2.1.1. Tangent vectors and tangent spaces

The tangent space is a n2-dimensional real vector space attached

to every point W ∈ U(n), and it may be identified with the ma-

trix space TWU(n) � {X ∈ C
n×n|XH

W + W
H
X = 0}. The

tangent space at the group identity I is the real Lie algebra of skew-

Hermitian matrices u(n) � TIU(n) = {S ∈ C
n×n|S = −S

H}.

����������������������������������,((( ,&$663�����



manifold

contours

of

MINIMUM

Wk

Wk+1

Wk+2

−G̃k

−τG̃k
−G̃k+1

J (W)

Fig. 1. The SD algorithm takes ninety-degree turns at every iteration,

i.e., 〈−G̃k+1, −τG̃k〉Wk+1
= 0, where τ denotes the parallelism

w.r.t. the geodesic connectingWk andWk+1.

2.1.2. Riemannian metric and gradient on U(n)

The gradient vector can only be defined after endowing U(n) with
a Riemannian metric. The inner product given by 〈X,Y〉

W
=

1

2
ℜ

˘

trace{XY
H}

¯

,X,Y ∈ TWU(n) induces a bi-invariant met-
ric on U(n). Therefore, the right (and also the left) translation pre-
serves the inner product, i.e., 〈X,Y〉

W
= 〈XV,YV〉

WV
, ∀V ∈

U(n). This property is called isometry, and it is very useful for per-
forming translations of the tangent vectors (gradients and search di-

rections) from a tangent space to another. The Riemannian gradient

at a pointW ∈ U(n) is:

∇̃J(W) � Γ
W

− WΓ
H

W
W, (1)

where Γ
W

= dJ
dW∗

(W) is the gradient of J on the Euclidean space

at a givenW [1].

2.1.3. Geodesics and parallel translation on U(n)

Intuitively, geodesics on a Riemannian manifold are the locally

length minimizing paths. On U(n) they have simple expressions
described by the exponential map. The fact that the right trans-

lation is an isometry enables simple parallel transport of the tan-

gent vectors along geodesics, via matrix multiplication. When

performing the geodesic optimization on U(n), due to computa-
tional reasons it is more convenient to translate all tangent vec-

tors into u(n) whose elements correspond to skew-Hermitian
matrices. Because an isometry maps geodesics into geodesics,

the right multiplication also allows translating geodesics from

one point to another. The geodesic emanating from the iden-

tity element of U(n) in the direction of S ∈ u(n) is given by
GI(t) = exp(tS). Using the right translation, a geodesic emanat-
ing from an arbitrary W ∈ U(n) in the direction SW is given

by GW(t) = exp(tS)W, SW ∈ TWU(n), t ∈ R. Conse-
quently, the tangent direction S ∈ u(n) is transported along the
geodesic toW and the resulting tangent vector is SW ∈ TWU(n).
Conversely, ifX ∈ TWU(n), thenXW

H ∈ u(n).

2.2. Steepest descent algorithm on U(n)

The unitary optimization can be solved in an iterative manner, by

using a steepest descent algorithm along geodesics on U(n). The
corresponding rotational update at iteration k is given by:

Wk+1 = exp(−µkGk)Wk, k = 0, 1, . . . (2)

whereGk� ∇̃J(W)WH =Γ
W

W
H
k −WkΓ

H
W

∈ u(n) is the Rie-
mannian gradient of J (W) atWk translated to the group identity,
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Fig. 2. The CG takes a search direction −H̃k+1 at Wk+1 which

is a combination of the new SD direction −G̃k+1 at Wk+1 and

the current search direction −H̃k translated to Wk+1 along the

geodesic connecting Wk and Wk+1. The new Riemannian steep-

est descent direction −G̃k+1 at Wk+1 will be orthogonal to the

current search direction −Hk at Wk translated to Wk+1, i.e.,

〈−G̃k+1, −τH̃k〉Wk+1
= 0.

1 Initialization: k = 0 ,Wk = I

2 Compute the Riemannian gradient directionGk:

Γk = ∂J
∂W∗

(Wk), Gk = ΓkW
H
k − WkΓ

H
k

3 Evaluate 〈Gk,Gk〉I = (1/2)trace{GH
k Gk}. If it is suffi-

ciently small, then stop

4 Determine µk = arg minµ J (exp(−µGk)Wk)
5 Update: Wk+1=exp(−µkGk)Wk

6 k :=k + 1 and go to step 2

Table 1. Steepest descent (SD) algorithm along geodesics on U(n)

and Γ
W

= ∂J
∂W∗

(Wk) is the Euclidean gradient at Wk . The nota-

tion exp(·) stands for the matrix exponential. The rotational update
(2) maintainsWk+1 unitary at each iteration. The step size µk > 0
controls the convergence speed and needs to be computed at each it-

eration. In [1], Armijo step size rule [7] is efficiently used. The step

size evolves in a dyadic basis. Therefore, when doubling the step

size, only a matrix squaring is needed instead of computing a new

matrix exponential. In this way the complexity is reduced approxi-

mately by half [1], compared to the SD in [5] using also the Armijo

rule. Other approaches from the Euclidean space [7] may also be

adapted. The proposed SD algorithm is summarized in Table 1.

2.3. Conjugate gradient algorithm on U(n)

The Conjugate Gradient (CG) algorithm provides typically faster

convergence compared to the Steepest Descent (SD) algorithm not

only on the Euclidean space, but also on Riemannian manifolds.

This is due to the fact that the Riemannian SD algorithm suffers

from the same deficiency as its Euclidean counterpart, i.e., it takes

ninety degree turns at each iteration [3]. This fact is illustrated in

the left plot of Figure 1 by plotting the cost function level sets on

the manifold surface. The conjugate gradient algorithm may signifi-

cantly reduce this drawback. Moreover, CG provides an inexpensive

alternative to Newton algorithm. The new search direction is cho-

sen to be a combination of the current search direction at Wk and

the gradient at the next point Wk+1, as illustrated in Figure 2. The

difference compared to the Euclidean space is that the two vectors

lie in different tangent spaces. For this reason they are not directly

compatible. The fact that U(n) is a Lie group enables simple par-
allel translation of tangent vectors from a tangent space to another.

It is desirable to translate all the tangent directions (steepest descent

and search directions) to the same tangent space. Due to compu-
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1 Initialization: k = 0 ,Wk = I

2 Compute the Riemannian gradient direction Gk and the search

directionHk:

if (k modulo n2) == 0
Γk = ∂J

∂W∗
(Wk)

Gk = ΓkW
H
k − WkΓ

H
k

Hk := Gk

else

Gk := Gk+1

Hk := Hk+1

3 Evaluate 〈Gk,Gk〉I = (1/2)trace{GH
k Gk}. If it is suffi-

ciently small, then stop

4 Determine µk = arg minµ J (exp(−µHk)Wk)
5 Update: Wk+1 = exp(−µkHk)Wk

6 Compute the Riemannian gradient direction Gk+1 and the

search directionHk+1:

Γk+1 = ∂J
∂W∗

(Wk+1)

Gk+1 = Γk+1W
H
k+1 − Wk+1Γ

H
k+1

γk =
〈Gk+1−Gk,Gk+1〉I

〈Gk,Gk〉
I

Hk+1 = Gk+1 + γkHk

7 k := k + 1 and go to step 2

Table 2. Conjugate gradient algorithm along geodesics on U(n)
using the Polak-Ribièrre formula (CG-PR)

tational reasons, the tangent space at the group identity element is

preferred [6]. Then, all the tangent vectors belong to the Lie al-

gebra u(n) and they are represented by skew-Hermitian matrices.
The computation of the exponential of skew-Hermitian matrices and

its approximations have been thoroughly studied in the literature,

see [1]. The new search direction translated into u(n) is

Hk+1 = Gk+1 + γkHk, Hk,Hk+1, Gk+1 ∈ u(n) (3)

where Hk is the old search direction at Wk, translated into u(n).
The weighting factor γk may be determined for example, by using

the Polak-Ribièrre formula γk = 〈Gk+1 −Gk,Gk+1〉I/〈Gk,Gk〉I
[3]. The conjugate gradient step is taken along the geodesic emanat-

ing fromWk in the direction −H̃k = −HkWk, i.e.,

Wk+1 = exp(−µkHk)Wk, k = 0, 1, . . . . (4)

Analogous to the Euclidean CG, it is desirable to reset the search

direction −Hk to the gradient direction −Gk after each n2 steps,

which is the dimension of U(n). This may enhance the conver-
gence speed. The proposed CG algorithm on U(n) using the Polak-
Ribièrre formula is summarized in Table 2.

Remarks: The SD algorithm in Table 1 is designed to minimize

a cost function. It may converted into a steepest ascent (SA) algo-

rithm for solving maximization problems, by changing the update

step 5 intoWk+1 = exp(+µkHk)Wk. The same change needs to

be applied to the CG-PR in Table 2, step 5, in order to solve max-

imization problems. Additionally, the step 4 in Table 2 needs to be

replaced by µk = arg maxµ J (exp(+µHk)Wk).

3. SIMULATION RESULTS AND APPLICATIONS

In this section we test the proposed Riemannian algorithms on two

different optimization problems on U(n). The first one is a classical
test function for optimization under orthogonal matrix constraint [3].

The second one is the JADE cost function [8] which is a practical

application of the proposed algorithms to blind source separation.
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Fig. 3. Comparison between different SA (steepest ascent) and CG

algorithms: the geodesic SA obtained for the SD in Table 1, the non-

geodesic SA as in [5] and the CG-PR algorithm given in Table 2,

which uses the Polak-Ribièrre formula (CG-PR). The geodesic and

the non-geodesic SA algorithms perform the same, but the geodesic

SA algorithm has lower complexity. The CG provides faster conver-

gence compared to the geodesic SA at comparable complexity.

3.1. Diagonalization of a Hermitian Matrix

The diagonalization of a Hermitian matrix Σ can be achieved by

maximizing the Brockett criterion [3]

JB(W) = tr{WH
ΣWN}, subject to W ∈ U(n). (5)

The matrix W converges to the eigenvectors of Σ sorted accord-

ing to the ascending order of the eigenvalues, provided that N is a

diagonal matrix with the diagonal elements 1, . . . , n. This type of
optimization problem arises in many signal processing applications

such as blind source separation, subspace estimation, high resolution

direction finding as well as in communications applications. This

example of computing the eigenvectors of a Hermitian matrix (such

as a covariance matrix) is chosen for illustrative purposes since it is

well known by most of the readers. A more practical application is

the blind source separation problem is considered in Subsection 3.2.

The Euclidean gradient of the Brockett function is ΓW = ΣWN.

The performance is studied in terms of convergence speed consid-

ering a diagonality criterion, ∆, and in terms of deviation from the
unitary constraint using a unitarity criterion Ω, defined as

∆ = 10 lg
off{WH

ΣW}

diag{WHΣW}
, Ω = 10 lg ‖WW

H − I‖2
F , (6)

where off{·} operator computes the sum of the squared magnitudes
of the off-diagonal elements of a matrix, and diag{·} does the same
operation, but for the off-diagonal ones. The diagonality criterion

measures the departure of the matrix W
H
ΣW from the diagonal

property, in logarithmic scale. The unitarity criterion is the squared

Frobenius norm of the deviation from the unitarity property in a loga-

rithmic scale. The results are averaged over 100 random realizations

of the 6 × 6 Hermitian matrix Σ. In order to maximize the criterion

(5), the SD in Table 1 and CG-PR in Table 2 need minor modifica-

tions (see Remarks at the end of Subsection 2.3). In Figure 3, we

compare three algorithms. The first one is the geodesic steepest as-

cent (SA) obtained from the SD in Table 1. The second algorithm

is the non-geodesic SA obtained from SD in [5]. The third one is

the CG algorithm in Table 2 which uses the Polak-Ribièrre formula

(CG-PR). The step size for all three algorithms is chosen by using

the Armijo rule [7] as in [1]. In the left plot of Figure 3 we observe

that the geodesic and the non-geodesic SA algorithms perform the
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same, but the geodesic SA algorithm has lower complexity, espe-

cially when Armijo step is used [1]. The CG-PR algorithm outper-

forms both the geodesic and the non-geodesic SA algorithms, with

comparable computational complexity. In terms of satisfying the

unitary constraint, all algorithms provide good performance as it is

shown in the right subplot of Figure 3.

3.2. Joint Approximate Diagonalization of a set of Hermitian

Matrices. Minimizing the JADE criterion on U(m)

In this subsection we test the proposed SD and CG algorithms in

a practical application of blind source separation (BSS) of commu-

nication signals by using a joint diagonalization approach [8]. We

show that the proposed algorithms outperform the classical JADE

algorithm [8]. A number of m = 20 independent 16-QAM sig-

nals are separated blindly from their r = 20 mixtures. A total of
N = 15000 snapshots are collected and the results are averaged
over 100 independent realizations of the r ×mmixture matrix. The

signal-to-noise-ratio is 20dB. The blind recovery of the desired sig-
nals is based on statistical properties and it is done in two stages. The

first one is a whitening operation, which can be done by diagonaliz-

ing the sample covariance matrix as in Subsection 3.1. The second

stage is the joint diagonalization of a set of eigenmatrices M̂i which

are estimated from the fourth order cumulants of the whitened sig-

nals. In [8], this is done by using Givens rotations. In this paper we

find the unitary rotation by minimizing the JADE criterion [8] which

penalizes the deviation of eigen-matrices from the diagonal property.

JJADE(W) =
m

X

i=1

off{WH
M̂iW} subject to W ∈ U(n). (7)

The gradient of the JADE cost function on the Euclidean space is

ΓW = 2
Pm

i=1
M̂iW

ˆ

W
H
M̂iW − I ⊙ (WH

M̂iW)
˜

, where ⊙
denotes the elementwise matrix multiplication.

In Figure 4 we compare the classical JADE algorithm to the pro-

posed SD and CG algorithms on U(m). The performance measure
for the optimization problem is the JADE criterion (7). The per-

formance index used for the entire blind separation problem is the

Amari distance. The geodesic SD and the CG-PR algorithm have

similar convergence speed and they outperform the classical JADE

algorithm [8]. The non-geodesic SD [5] (not shown in Figure 4)

performs the same as the geodesic SD. The geodesic algorithms on

U(m) take benefit of the Lie group properties of U(m) in order to
reduce complexity. The proposed SD and CG-PR algorithms have

complexity of O(m3) per iteration and only few iterations are re-
quired to achieve convergence. Moreover, the number of iterations

needed to achieve convergence stays almost constant when increas-

ing m. The Givens rotation approach in [8] has a total complexity
of O(m4), since it updates not only the unitary rotation matrix, but
also the full set of eigen-matricesMi. Therefore, the total complex-

ity of the proposed algorithms is lower, especially when the number

of signals m is very large. The proposed algorithms converge faster

at similar computational cost/per iteration. Therefore, they are suit-

able for blind separation applications, especially when the number

of signals to be separated is large.

4. CONCLUSIONS

In this paper, Riemannian steepest descent and conjugate gradient al-

gorithms for optimization under unitary matrix constraint were pro-

posed. They operate on the Lie group of n×n unitary matrices and it
exploits the geometrical properties of U(n), such as simple geodesic
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Fig. 4. The classical JADE algorithm [8] vs. SD and CG algorithms

onU(20): the geodesic SD in Table 1 and the CG-PR in Table 2. The
geodesic SD and the CG-PR algorithm perform similarly in terms of

JADE criterion and Amari distance. They outperform the classical

JADE algorithm [8], especially when the number of signal sources is

large. In this application the CG did not improve convergence speed

of the SD.

formulas and parallel transport in order to reduce the complexity.

For this reason their complexity is lower than the non-geodesic SD

in [5] at the same convergence speed. The algorithms provide a re-

liable solution to the joint diagonalization problem for blind separa-

tion and outperforms the widely used Givens rotations approach, i.e.,

in the classical JADE algorithm [8]. It may be applied, for example,

to smart antenna algorithms, wireless communications, biomedical

measurements, signal separation, subspace estimation and tracking

tasks where unitary matrices play an important role in general.
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