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Abstract— We investigate whether it is possible
to infer from implicit feedback what is relevant for a
user in an information retrieval task. Eye movement
signals are measured; they are very noisy but poten-
tially contain rich hints about the current state and
focus of attention of the user. In the experimental set-
ting relevance is controlled by giving the user a specific
search task, and the modeling goal is to predict from
eye movements which of the given titles are relevant.
We extract a set of standard features from the signal,
and explore the data with statistical information vi-
sualization methods including standard self-organizing
maps (SOMs) and SOMs that learn metrics. Relevance
of document titles to the processing task can be pre-
dicted with reasonable accuracy from only a few fea-
tures, whereas prediction of relevance of specific words
will require new features and methods.

1 Introduction

In proactive information retrieval, the system adapts
to the interests of the user that are inferred from either
explicit or implicit feedback. Explicit feedback by in-
dicating which documents are relevant to the query is
naturally more accurate but the users often consider it
too laborious and time-consuming. The usability and
accuracy of information retrieval applications would be
greatly enhanced by complementing explicit feedback
with implicit feedback signals measured from the user
and the interface. Research on implicit feedback po-
tentially has even wider-ranging implications. If it is
reliable enough, it will be useful in a range of other
applications as well. Ultimately, a genuine personal
assistant could adapt to the goals and interests of the
user and learn to disambiguate her vague commands
and anticipate her actions.

In this paper, we try to infer relevance of read docu-
ments based on eye movements measured during read-
ing. Eye movements contain potentially lots of use-
ful information about the user and her interests. The
problem is that it is hard to extract the task-relevant
characteristics from among all the other variation in

eye movements, for example measurement noise, cal-
ibration errors, and personal reading and searching
strategies.

While it is hard to define interestingness or relevance
in general, we construct a controlled experimental set-
ting in which it is known which documents are rele-
vant, and try to learn relevance from data. The user
is instructed to find an answer to a specific question,
and some of the given document titles are known to be
relevant.

In this first feasibility study we extract a set of stan-
dard features from eye movements for each title and
word, and correlate the features to the known rele-
vance. The two goals are (i) to find out whether rel-
evance can be estimated based on these features, and
(ii) which features are important in making the pre-
diction. The data is explored with standard unsuper-
vised information visualization methods (linear princi-
pal component analysis and non-linear self-organizing
maps [7]), and corresponding discriminative methods
(linear discriminant analysis and self-organizing maps
that learn metrics [6, 9]).

This paper serves additionally as a case study for the
learning metrics principle that has been developed for
precisely this kind of tasks. Data needs to be explored
since it is not known a priori which dimensions of the
primary data (here the eye movements) are relevant. It
is known, however, that variation in the primary data
is relevant to the extent that it correlates with certain
auxiliary data, here an indicator of whether the title is
relevant or not.

2 Eye movements: background

Psychologists have studied eye movements as an indi-
cator of different cognitive processes for decades [10].
However, few engineering applications exploiting eye
movements have been introduced. Most of them have
used eye movements as a controlling interface (for ex-
ample for eye typing [13]). This kind of approach may
easily lead to a problem known as ’Midas touch’; the
user needs to control her eye movements consciously in



order to avoid initiating unintended commands. How-
ever, as a source of implicit feedback, eye movements
are a self-evident candidate since gaze is by far one of
the most important nonverbal signs of human atten-
tion.

2.1 The eye

The neuroanatomical basis for the importance of gaze
direction lies in the structure of the retina and the vi-
sual pathway. Image is converted into neural signals
in the retina and subsequently processed by the brain.
Retinal sampling density is uneven: the density is high
in the central retina (fovea, only 1-2 degrees of visual
angle) and decreases rapidly towards the periphery. In
the primary visual cortex the processing of the input
from fovea has been alloted more space than processing
of the peripheral retina. Functionally, this means that
with a single glimpse the human vision can obtain in-
formation with high resolution only from a very small
central area of the visual field. As a result, gaze direc-
tion provides a good indicator of the target of subject’s
attention in intensive visual tasks such as reading, vi-
sual search, or working with computers.

Foveal vision and serial scrutiny of stimuli are needed
when analyzing objects with small details such as texts,
numbers, and parts of diagrams. The main compo-
nents of this serial processing are fixations (stops) and
saccades (rapid jumps) of the eye. The retinal image is
transmitted to the brain during fixations but not dur-
ing saccades. It is also evident that when the object
under scrutiny (e.g. a word) is complex, the duration
of fixation is longer than when the object is simple [10].

2.2 Eye movements and reading

In a typical reading situation, the reader fixates on
each word sequentially. Some of the words are skipped,
some fixated twice and some trigger a regression to
preceding words (approx. 15 % of the saccades). The
reader is often not conscious of these regressions. The
typical duration of fixations varies between 60-500 ms,
being 250 ms on the average [8].

In psychological literature, several models for read-
ing have been proposed. Almost all concentrate on
modeling reading at the basic level, as a series of se-
quential fixations occurring from left to right without
regressions which are generally assumed to be associ-
ated with higher order cognitive processes. The du-
rations of the fixations are correlated with word oc-
currence frequency [11], that is, the access time for
the concepts concerning more rarely occurring words
is longer than the access time for more frequently
occurring words (however, similar correlations with
word predictability and word length have also been
reported). In a more recent publication [3] this cor-
relation is extended to explain also regressions as oc-
curring to those words which did not receive enough
processing time during the first pass reading.

3 Eye movements and relevance

Few attempts to infer different higher order cognitive
processes (such as relevance determination) from eye
movements can be found in literature. An interest-
ing publication is [12], where different cognitive pro-
cesses are modelled with Hidden Markov Models in a
simple equation-solving task. A setup most similar to
relevance determination is introduced in [4], where a
translator is activated if the reader encounters a word
which she has difficulties (these are inferred from eye
movements) in understanding.

In order to determine relevance from eye movements
in an information retrieval task, we devised an experi-
mental setup where the relevant items are known, and
then measured the eye movements of test subjects dur-
ing the experiment.

3.1 Experimental setup

Subjects’ eye movements were recorded with a head-
mounted gaze tracking system (iView from SensoMo-
toric Instruments GmbH, Germany). It has two small
video cameras; one of them monitored the scene in
front of the subjects’ eyes and the other one, a small
infrared-sensitive camera, monitored the dominant eye
while an infrared LED illuminated the eye. Video
images of the pupil and corneal reflections of the in-
frared LED were captured at 50 Hz by the eye tracker,
and the gaze points and pupil diameter were computed
from that data. Calibration of the eye movement sys-
tem (using a set of nine screen locations) was carried
out several times during an experiment. The subject’s
head was stabilized with a chin rest to improve the
accuracy of calibration and measurements. After cali-
bration the participant was asked not to move.

Three subjects participated in the experiments.
Each experiment consisted of twenty sets, each con-
taining two displays; in the first one a task assignment
and twelve titles were shown, in the second one num-
bers for identification were added to the screen. The
subjects task was to (i) read the assignment and de-
cide whether there was a title containing the answer to
the task assignment, and (ii) tell the number of that
title. Eye movements were recorded during reading the
first display (i). From the twelve titles, four (including
the one containing an answer) were relevant, i.e. dealt
with the same topic as the question, and eight were
non-relevant. For control purposes some of the assign-
ments did not have a title containing the answer. The
experiments were carried out in Finnish, the mother
tongue of the subjects. Newspaper headlines were used
as titles.

3.2 Common measures from eye move-
ments during reading

From a psychological perspective, the experimental
setup described above measures browsing, an interme-



diate between reading and visual search. Psychologi-
cal research has mainly focused on visual search and
reading, for which several different measures have been
devised [2, 10]; the validity of these features for brows-
ing is yet to be determined. We chose a comprehensive
set of reading measures in order to find out which of
them would be feasible for determining relevance in
the experimental setup (see the Appendix for brief de-
scriptions of the measures).

We additionally implemented three new features:
Mean pupil width and standard deviation during the
reading of a word (since pupil size correlates with work-
load [1]), and the first fixation duration within a word
divided by the total duration of fixations in each set
(i.e. the proportion of total processing time a word
receives when first encountered). Pupil size changes
quite slowly with a delay of approximately one second;
hence an effect could possibly be discernible in the level
of sentences.

4 Data Analysis

Since hardly anything was known about the data, we
began by exploration, “looking at the data.” We first
applied unsupervised methods to learn about correla-
tions between the variables and cluster structures of
the data. Classical principal component analysis and
self-organizing maps in the normal Euclidean metric
were applied. In the second stage we used discrimina-
tive methods to visualize how well the relevant and ir-
relevant titles can be distinguished, and which features
are required for the discrimination. We used here as
well a linear method, the classical linear discriminant
analysis (LDA), and a new nonlinear method, SOM
that learns metrics.

4.1 Preprocessing

The raw eye movement data was mapped to fixa-
tions using software from the eye movement measur-
ing equipment manufacturer (SMI). The preprocessing
is not perfect: since the software is mainly aimed at
finding fixations, the saccade measures computed from
the fixation data were somewhat inaccurate (for exam-
ple, blinks will be classified as saccades). The software
also smoothes the data temporally and spatially, which
means that very short saccades cannot be detected.

The most severe source of errors in the measure-
ments is inaccurate calibration. In order to mini-
mize its effects, eye movement data of each scene was
matched to the display by manually finding an affine
transformation. In future experiments the matching
will naturally be automated. Automatic adjustment
of calibration (possibly during a measurement) will be
a challenging research problem in itself.

Fixations were mapped to the nearest word. To dis-
card outliers, a fixation was not assigned to any word
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Figure 1: Projection of eye movement data of all sub-
jects to two principal components. Non-relevant titles
were from a different topic, relevant from the correct
topic but did not contain an answer to the posed ques-
tion, answer were relevant and contained the answer.

if the distance to the closest word was 1.5 times the
length of the longest word.

Features were computed for each individual word on
the display. In order to reduce noise in the experi-
ments, features computed for the words in each title
were averaged to a title-specific feature vector. The
relevance of each title was specified manually. In or-
der to facilitate the task of finding relevance, the sets
where the subject answered incorrectly or where no ti-
tle containined the answer were left out from the initial
data analysis. Before analysing the data, each feature
was standardized to have zero mean and unit variance.
Due to small amount of data (379 in total; only 41
were associated with titles containing an answer), the
number of features was reduced to 21 by leaving out
highly correlated features.

4.2 Exploration

We began our analysis with unsupervised methods in
Euclidean metrics in order to find out whether there
were any ’natural’ clusters in the data. We first ap-
plied principal component analysis (PCA) to each test
subject separately. Since the eigenvectors of all test
subjects looked quite similar, we proceeded by com-
bining the data. The first look at the data was then
taken by projecting it onto the two principal axes (Fig-
ure 1).

Judging from the PCA plot, there seem to be two
clusters: One that contains mainly non-relevant titles
and another one that is a mixture. Most titles con-
taining the answer belong to the latter cluster together
with the other relevant titles. Hence separating them
is likely to be a more difficult task. Different users are
not separated into clusters, indicating that the used set
of standard features is not severely affected by different
reading behaviors and strategies.

In order to find out whether there were non-linear
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Figure 2: Above: Plot of SOM component planes (see
the Appendix). Below: Hits on the SOM of non-
relevant and relevant titles, and titles containing the
answer. The size of the shadowed hexagon shows the
number of data points.

effects in the data, and to evaluate the contribution
of each component to clusters, data exploration with
SOM was then carried out. Plots of the component
planes and the U-matrix are shown in Figure 2. The
two clusters which were visible in the PCA plot can be
seen also in the U-matrix. Titles of the different de-
grees of relevance are fairly well separated on the SOM,
judging from the classification accuracy that was 82.6
% for the training data. From the component plane
plots, it can be seen that the features associated with
titles containing the answer are ’fixation count’, ’total
fixation duration’, and ’regression duration’, whereas
the features associated with relevant titles are ’prob-
ability of fixation during first pass’, ’previous fixation
duration’, and ’time percentage’.

4.3 Discriminative components

The clusters found by unsupervised methods already
showed an ability to discriminate relevance. Linear dis-
criminant analysis (LDA) was carried out next, since
besides (linear) classification, it can also be used for
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Figure 3: Above: Projection of eye movement data
to two discriminative directions (LDA). Below: The
normalized eigenvectors of the two discriminative di-
rections. Each bar shows the value of one variable (in
the order given in the Appendix) in the eigenvector.

visualizing the data and for evaluating which features
are the most important in discriminating the classes.
A plot of the data, a projection on the plane defined by
the (non-orthogonal) eigenvectors of the best separat-
ing directions is shown in Figure 3. The eigenvectors
have been plotted as well, indicating that less than ten
features seem to be important in the LDA.

From the LDA visualization in Figure 3, it seems
that the three classes can be separated. However,
since the assumptions of LDA (normal distribution
with equal covariances in all classes) are heavily vi-
olated in this data, the next step was to test whether
the results did truly show an effect by carrying out
classification with leave-out data (results are shown in
Table 1).

4.4 Supervised exploration

Linear discriminant analysis showed that relevance can
be determined to a certain extent with our set of stan-
dard features. However, the classification accuracy is
not perfect and as the results of SOM already show,
there are also non-linear effects in the data. Hence a
non-linear method, a SOM that learns metrics, was ap-
plied to learn more about which kinds of features are



Table 1: LDA classification to titles containing an-
swer, relevant titles, and non-relevant titles. Results
were obtained using leave-one-out validation assuming
equal priors for different classes. Boldface: statistically
significant difference against a dumb classifier (McNe-
mar’s test).

Subject Accuracy % (p-val)

Subject 1 79.7 (0.018)
Subject 2 68.6
Subject 3 77.8 (0.024)
All subjects 80.5 (< 0.001)

useful.
The metric is constructed using auxiliary data, in

our case the associated relevance. We first form a con-
ditional probability density estimator for p(c|x), where
x is the original feature vector and c the associated
relevance. A local metric matrix is then formed of the
Fisher information matrix

J(x) = −Ep(c|x)

[
∂2

∂x2
log p(c|x)

]
, (1)

with which we can evaluate distances between x and
x+dx by dxT J(x)dx. SOM learning is then carried out
in this metric (for a detailed description of the method,
see [6, 9]).

The results are visualized in Figure 4. Both rele-
vant and answer titles form a focused cluster on the
SOM, and non-relevant titles have been scattered onto
the top region. The displays of relative importances
(the contribution to the metric) of each feature show
where the feature is an important factor in explain-
ing class changes. Many of the displays are non-linear,
indicating non-linear effects in the data. Many fea-
tures contribute to separating the relevant titles from
the various kinds of non-relevant titles, and some (e.g.
’mean fixation duration’ and ’regression duration’) to
separating the answer titles from the relevant ones. A
detailed analysis of different (sub)clusters of data and
contributions of features in them will be left for fur-
ther publications. The selection and implementation
of a non-linear classifier will also be studied in the fu-
ture.

Interestingly, the pupil size measures seem to be rel-
evant for relevance, an effect which was not visible
on the ordinary SOM. Results backing up this find-
ing have been reported in [5] where other factors af-
fecting the pupil size, such as luminosity, were more
strictly controlled (this level of control is not realizable
in practical applications such as proactive information
retrieval). Different clusters were more clearly sepa-
rated in the learned rather than the Euclidean metric;
classification accuracy for the training data was now
86.8 %.

Finally, previously discarded data from the sets
where the subject answered incorrectly or where there
was no answer, was mapped to the SOM that has
learned metrics. Number of data samples in each SOM
unit, “hits”, are shown in Figure 5. The display hints
at that the relevant items may get hits closer to the
answer area; the reason is possibly that more process-
ing was required from the subjects to ascertain that
there really was no answer. The titles containing cor-
rect answers became mapped to the non-relevant re-
gion, which is in agreement with the users’ own deci-
sion. Analogously, the titles incorrectly classified by
the user as containing the answer became mapped to
the answer area. In conclusion, the system monitors
the attention of the user, even when she makes mis-
takes.

5 Discussion

We have introduced an experimental setup for finding
relevance from eye movements during a browsing task.
Several standard measures used for analysing reading
behavior were taken as features and then data analy-
sis was carried out to learn whether it is possible to
determine relevance from eye movements, and which
features are most important for doing this. In the fu-
ture we intend to repeat the experiment with more
subjects and more assignments.

In this feasibility study we verified that the setup
and the standard features are sufficient for determin-
ing relevance to some extent for titles (sentences). The
ability to estimate relevance for individual words would
be desirable as well. For this task, new features need to
be introduced, possibly taking into account the corre-
lation of fixation time with word occurrence frequency.
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Appendix
The eye movement features used in this paper:

fixCount: Total number of fixations to the word; FirstPass-

Cnt: Number of fixations to the word when the word is first en-

countered; P1stFixation: Did a fixation to a word occur when

the sentence that the word was in was encountered for the first

time; prevFixLen: Duration of the previous fixation when the

word is first encountered; firstFixDur: Duration of the first

fixation when the word is first encountered;. firstPassFixDur:

Sum of durations of fixations to a word when it is first encoun-

tered; nextFixDur: Duration of the next fixation when the gaze

initially moves on from the word; firstSaccLen: Distance (in

pixels) between the first fixation on the word and the previous

fixation; lastSaccLen: Distance (in pixels) between the last fix-

ation on the word and the next fixation; prevFixPos: Distance

between the fixation preceding the first fixation on a word and

the beginning of the word (in pixels); landingPosition: Dis-

tance of the first fixation on the word from the beginning of the

word (in pixels); leavingPosition: Distance between the last

fixation before leaving the word and the beginning of the word

(in pixels); totalFixDur: Sum of all durations of fixations to

the word; meanFixDur: Mean duration of the fixations to the

word; nRegressionsFrom: Number of regressions leaving from

the word; regressLen: Sum of durations of fixations during re-

gressions initiating from the word; nextWordRegress: Did a

regression initiate from the following word; regressDur: Sum

of the durations of the fixations on the word during a regression;

pupilDiamX: Mean horizontal pupil diameter during fixations

on the word minus mean pupil diameter of the subject during the

experiment; pupilDiamStd: Standard deviation of the pupil

horizontal diameter during fixations on the word; timePrctg:

First fixation duration divided by the total duration of fixations

on the display.

fixCount 1stPassCnt P1stFixation prevFixDur 1stFixDur

1stPassFixDur nextFixDur firstSaccLen lastSaccLen prevFixPos

landingPos leavingPos totalFixDur meanFixDur nRegrFrom

regressLen nextWordRegr regressDur pupilDiamXpupilDiamStd

timePrctg
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Figure 4: Above: Visualization of the relative con-
tribution of each feature to the approximative Fisher
metric at each SOM unit. Center: A plot of conditional
probability densities in each node for non-relevant and
relevant titles, and titles containing the answer. Below:
Number of data points in each SOM unit.

1 2 3 4

Figure 5: Hits on SOM with learning metrics for data
where there was no answer or where the subject’s an-
swer was incorrect. 1: non-relevant titles, 2: relevant
titles, 3: titles containing an answer, 4: incorrect an-
swers of the subjects.
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