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ABSTRACT

Salojärvi, J. (2008): Inferring Relevance from Eye Movements with Wrong
Models. Doctoral thesis, Helsinki University of Technology, Dissertations in In-
formation and Computer Science, TKK-ICS-D8, Espoo, Finland.

Keywords: Conditional inference, incorrect model, probabilistic inference, eye
movements, proactive information retrieval.

Statistical inference forms the backbone of modern science. It is often viewed
as giving an objective validation for hypotheses or models. Perhaps for this reason
the theory of statistical inference is often derived with the assumption that the
“truth” is within the model family. However, in many real-world applications the
applied statistical models are incorrect. A more appropriate probabilistic model
may be computationally too complex, or the problem to be modelled may be so
new that there is little prior information to be incorporated. However, in statistical
theory the theoretical and practical implications of the incorrectness of the model
family are to a large extent unexplored.

This thesis focusses on conditional statistical inference, that is, modeling of
classes of future observations given observed data, under the assumption that the
model is incorrect. Conditional inference or prediction is one of the main ap-
plication areas of statistical models which is still lacking a conclusive theoretical
justification of Bayesian inference. The main result of the thesis is an axiomatic
derivation where, given an incorrect model and assuming that the utility is con-
ditional likelihood, a discriminative posterior yields a distribution on model pa-
rameters which best agrees with the utility. The devised discriminative posterior
outperforms the classical Bayesian joint likelihood-based approach in conditional
inference. Additionally, a theoretically justified expectation maximization-type al-
gorithm is presented for obtaining conditional maximum likelihood point estimates
for conditional inference tasks. The convergence of the algorithm is shown to be
more stable than in earlier partly heuristic variants.

The practical application field of the thesis is inference of relevance from eye
movement signals in an information retrieval setup. It is shown that relevance
can be predicted to some extent, and that this information can be exploited in a
new kind of task, proactive information retrieval. Besides making it possible to
design new kinds of engineering applications, statistical modeling of eye tracking
data can also be applied in basic psychological research to make hypotheses of
cognitive processes affecting eye movements, which is the second application area
of the thesis.



TIIVISTELMÄ
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Tilastolliset menetelmät muodostavat modernin tieteen selkärangan. Menetel-
mien ajatellaan usein tarjoavan objektiivisen vahvistuksen hypoteeseille ja malleil-
le, ja ehkä juuri tästä syystä tilastollisen päättelyn teoria onkin kehitetty lähtien
oletuksesta, että “oikea” malli sisältyy käytettyyn malliperheeseen. Monissa käy-
tännön sovelluksissa käytetyt mallit ovat kuitenkin vääriä. Tilannetta parem-
min kuvaava malli voi esimerkiksi olla laskennallisesti liian raskas muodostaa, tai
tutkimusta tehdään uudella alalla, jolloin paremman mallin kehittäminen ei on-
nistu puuttuvan tutkimustiedon takia. Tilastollisen mallituksen teoriassa väärien
mallien käytön teoreettisia ja käytännön vaikutuksia on kuitenkin tutkittu vain
vähän.

Väitöskirjassa tutkitaan ehdollista tilastollista päättelyä, eli havaintojen luo-
kan ennustamista annettuna havaittu mittausaineisto, kun otetaan huomioon se,
että käytetty malli on väärä. Vaikka ehdollinen päättely on yksi tilastollisten
mallien pääsovellusaloista, puuttuu siltä yhä täysi teoreettinen perustelu Bayesi-
laisen mallituksen näkökulmasta. Väitöstyön päätulos on aksiomaattinen todis-
tus sille, että kun käytössä on väärä malli ja tehtävänä on ennustaa ehdollinen
todennäköisyys, niin sanottu ehdollinen likelihood, on diskriminatiivinen poste-
riori parhaiten tehtävään sopiva jakauma mallin parametriavaruudessa. Johdet-
tu jakauma toimii ehdollisessa päättelyssä paremmin kuin klassinen Bayesilainen
yhteisjakaumaan perustuva mallitus. Tämän lisäksi työssä esitellään teoreettisesti
perusteltu expectation-maximization-tyyppinen algoritmi ehdollisen likelihoodin
piste-estimaattien laskemiseen. Algoritmin osoitetaan suppenevan vakaammin kuin
aiempien osittain heurististen menetelmien.

Väitöskirjan käytännön sovellus on mielenkiinnon kohteiden päättely silmän-
liikkeistä tiedonhakutehtävissä. Työssä osoitetaan, että kiinnostuksen päättelemi-
nen on mahdollista, ja että kyseistä tietoa voidaan käyttää hyväksi täysin uuden-
laisessa ennakoivan tiedonhaun sovelluksessa. Väitöstyön toisessa sovelluskohtees-
sa silmänliikkeiden tilastollista mallitusta käytetään psykologiseen perustutkimuk-
seen rakentamaan hypoteeseja silmänliikkeiden taustalla olevista kognitiivisista
prosesseista.



Contents

List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Summary of publications and the author’s contribution . . . . . . . . . . . . . vi
List of abbreviations and symbols . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction 1
1.1 The Main Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . 4

2 Probabilistic Modeling 5
2.1 Modeling Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Setup and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Point Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Marginalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Exponential Model Family . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Bregman Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Conjugate Families . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.5 Posterior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Models with Rich Sufficient Statistics . . . . . . . . . . . . . . . . . . . . . 13
2.4 Latent Variable Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Discriminative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Discriminative Joint Density Models . . . . . . . . . . . . . . . . . . . . . 17

2.6.1 Discriminative vs. Generative: Logistic Regression vs. Naive Bayes 19
2.6.2 Connection to Generalized Linear Models . . . . . . . . . . . . . . 22
2.6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Discriminative Inference with Incorrect Models 25
3.1 Bayesian Views to Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 De Finetti: Rational Decisions . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Cox-Jaynes: Reasonable Expectation . . . . . . . . . . . . . . . . . 27

3.2 Using Incorrect Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 Point Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Discriminative Posterior . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Connection to Bayesian Decision Theory . . . . . . . . . . . . . . . 32
3.2.4 Relation to Cox’s Axioms . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.5 Discriminative versus Generative Models . . . . . . . . . . . . . . . 34

4 Discriminative Probabilistic Inference in Practice 36
4.1 Methods for Probabilistic Inference . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Selecting Model Family . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.2 Point Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.3 Gradient Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ii



4.1.4 Expectation – Maximization . . . . . . . . . . . . . . . . . . . . . 39
4.2 Discriminative Expectation – Maximization . . . . . . . . . . . . . . . . . 42

4.2.1 Derivation of DEM Lower Bound for Exponential Families . . . . . 43
4.2.2 Relation to Other EM-type Approaches . . . . . . . . . . . . . . . 45
4.2.3 Speedups and Alternative Methods . . . . . . . . . . . . . . . . . . 48
4.2.4 Example: DEM for Logistic Regression . . . . . . . . . . . . . . . 49

4.3 Sampling from Posterior Distribution . . . . . . . . . . . . . . . . . . . . . 50
4.3.1 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . 51
4.3.2 Discriminative MCMC . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Probabilistic Modeling of Eye Movements in Information Retrieval
Tasks 54
5.1 Explicit and Implicit Feedback in Information Retrieval . . . . . . . . . . 55
5.2 Eye Movements as an Indicator of Interest . . . . . . . . . . . . . . . . . . 56

5.2.1 Applications Using Eye Movements . . . . . . . . . . . . . . . . . . 58
5.3 Implicit Relevance Feedback from Eye Movements . . . . . . . . . . . . . 59

5.3.1 A Pilot Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.2 Model Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.3 Large-Scale Experiment . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.4 Related Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Proactive Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5 Inferring Cognitive States . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Conclusions 65

References 67



Preface

This thesis work has been carried out in the Adaptive Informatics Research Cen-
tre of the Laboratory of Computer and Information Science and, since 2008, the
Department of Information and Computer Science at the Helsinki University of
Technology. I also have the pleasure of being a part of the Helsinki Institute
for Information Technology. The work has been funded by the Academy of Fin-
land through the PROACT programme and by the European Union under the
PASCAL Network of Excellence, IST-2002-506778. Additionally, I have received
funding from the Helsinki Graduate School in Computer Science and Engineering
(HeCSE).

I wish to thank my supervisor Professor Samuel (Sami) Kaski for providing the
optimal creative environment to work in, allowing me a great degree of scientific
freedom in my research, while at the same time giving me the necessary amount of
much-needed guidance. Without his attitude and understanding of life in general
this work would not have been possible. I would also like to thank Doctor Kai
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Chapter 1

Introduction

All models are wrong, some are useful.

(Box and Draper, 1987)

The goal of science is to develop useful models of reality. A model is infor-
mation distilled from reality; it states an explicit hypothesis, with the aim of
providing generalisation to other similar events. This forms the basis of science:
the constructed models can be directly tested.

The focus of this thesis is on conditional inference with probabilistic models.
The aim of probabilistic modeling is to take into account the randomness in a
system. A deterministic system is a special case where something happens with
probability one (or zero). In the other extreme, the system is uniformly random if
random guessing, a coin flip, performs as well as any model developed for predic-
tion. The use of probabilistic models is often referred to as statistical inference.
Conditional inference is a special case where the probabilistic model is used for pre-
dicting unobserved quantities, given observations which are assumed to be relevant
by the model. A practical example of statistical conditional inference is validation
of a hypothesis by measuring a statistically significant difference between the pre-
dictions of the hypothesis and random behavior. This is a very crude example; the
random behavior, the null hypothesis, can actually be a complex model in itself, if
the most general framework, the so called Bayes factors (Kass and Raftery, 1995)
are applied for determining the difference.

The main focus of this thesis within probabilistic modeling is on conditional
inference in cases where the given model is known to be incorrect. In science,
the model does not have to be the “truth” and, furthermore, it is possible that
the “truth” cannot be modelled (this is why science considers only theories and
hypotheses). As an example from physics, it has turned out that it is not possible
to construct a “true” deterministic model describing the interactions of a system
of particles. The reason lies partly in the computational complexity due to the
multitude of possible interactions, but also at the fundamental level due to the
inaccuracy of measurements; uncertainty in location or momentum according to
Heisenberg’s uncertainty principle. Another situation where the devised model
may be incorrect occurs when a new research area is studied. When little prior
information on the phenomenon is available, the models can naturally be quite far
from being correct.
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CHAPTER 1. INTRODUCTION

Probabilistic inference is often viewed as giving an objective validation of hy-
potheses. Perhaps for this reason the theory of probabilistic inference is derived
under the assumption that the model family contains also the “truth” (Bernardo
and Smith, 2000; Cox, 1946) — an assumption which is not true in most real-world
cases. Probability theory acknowledges the case where inference is done with an
incorrect model, but no conclusive theoretical analysis on its effects has been pre-
sented yet. In this thesis it is assumed that an incorrect probabilistic model is
given, and the goal is to use it for discriminative inference — a special case of
conditional inference where the quantity to be predicted is categorical. The incor-
rect model is known to be useful to some extent; a decent effort has been made in
order to model the underlying phenomenon, but the given model is still known to
be imperfect in some respects. The theoretical development under these assump-
tions leads to a theorem that proves the existence of a discriminative posterior;
a posterior-type distribution in the parameter space of the model which is opti-
mal for conditional inference. To be more precise, optimal conditional inference is
obtained by integrating over this posterior in a Bayesian manner.

The intuition behind the discriminative posterior is that if the true model
cannot be achieved, the best option is to apply the most useful “wrong” model.
Publication 7 considers a general case where, at the beginning before any obser-
vations are made, a distribution describing the initial beliefs on the models is
assumed to exist. Then observations are brought in one at a time, and the intent
is to update the beliefs in such a manner that in light of the observations the most
useful models will gain more weight. Publication 7 provides axioms, a set of basic
assumptions, which are needed in order to update the beliefs in this manner.

What remains to be defined is the usefulness of a model. In case of the above
example from physics, even if the “truth” cannot be modeled, it is still possible to
construct a probabilistic model that describes the general behavior of the system,
such as the distribution of the particles. The model developed for this task is,
in the strict sense, incorrect but still useful since it can be used for predictions.
As another example, it is still possible to gather understanding within new fields
of research even with models that are known to be inadequate, given that they
predict events better than random guessing. Already from these examples it can
be said that usefulness in general is a subjective concept, and depends on the goal
of the modeler.

In Publication 7 the problem is formalized by assuming that a hypothetical
“true” model exists, but it does not necessarily belong to the set of models under
consideration. Both of the above examples can then be interpreted as cases where
the given model is close enough to the “true” model in order to be useful. Fur-
thermore, the usefulness can then be expressed by using the hypothetical “true”
model: the most useful model is the one that minimizes the error between the
predictions by the model and the “true” model.

The error between the models and the “true” model is related to a measure
called expected utility. The term comes from decision-theory, where the rationale
of the decision maker is to maximize this quantity. That is, a rational decision-
maker chooses an action which is expected to result in the best utility at the time
of making the decision. In the case of probabilistic modeling, utility is a real
number output by each of the models when an observation is given as their input
— this is typically the probability of the observation, likelihood. Expected utility
is obtained as a sum of the real numbers, weighed according to the beliefs in each

2



of the models. Expected utility is therefore maximized by a belief distribution
that weighs more those models that have a high utility value.

As said earlier, the beliefs are evolved from initial beliefs by updating them
by the usefulness of the models in earlier similar tasks. In standard Bayesian
inference, the real number output by the model is the joint probability of the
observation, joint likelihood. Therefore the updated beliefs are in agreement with
the performance of the model in modeling the full observation. However, the goal
of conditional inference is different, to predict a certain unobserved quantity given
some already observed quantities. The main message of the thesis is that with
incorrect models, modeling the full distribution does not give beliefs which are
best suited for conditional inference. The reason is that in conditional inference
the utility is different. Beliefs should be thus updated according to the usefulness
of the models in the task which they will eventually be used for. That is, the real
number output by the models should be directly related to the quantity of interest
instead of the probability of full observation. By assuming a “true” model, this
intuition can be expressed more explicitly by requiring that a high utility value is
associated with a small error between the predictions of the given model and the
“true” model.

Discriminative posterior is the main contribution of Chapter 3 of the thesis.
Additionally, the relations to two most famous earlier axiomatic proofs of Bayesian
inference are discussed: the decision-theoretic framework which was originally pre-
sented by de Finetti, and the less rigorous but more intuitive axioms of Cox.

There are cases where, instead of computing a distribution over the different
models, only one specific model is desired. For example, if the model is assumed
to be close enough to the truth, inspection of the model parameters could possibly
bring more understanding to the phenomenon to be modelled. The so-called con-
ditional maximum likelihood estimate is a point estimate from the discriminative
posterior (assuming a uniform prior). The second main contribution of this thesis
is to present a first computationally feasible expectation–maximization (discrim-
inative EM) algorithm for obtaining conditional maximum likelihood estimates.
In addition to presenting the discriminative EM algorithm, Chapter 4 discusses
various numerical methods for making inference within an exponential model fam-
ily. Also Markov chain Monte Carlo methods for sampling from discriminative
posterior are presented.

The third main contribution of this thesis is probabilistic modeling of eye move-
ments in information retrieval tasks, discussed in Chapter 5. A controlled exper-
imental setup is constructed to show that the relevance of text read by the user
can be predicted to some extent. Then a prototype of a proactive information
retrieval application is shown to be feasible. The application predicts the pref-
erences of users by combining relevance predictions inferred from eye movements
with relevance predictions from ratings given by other similar-minded users. The
predictions can then be used in the background, for example for finding more
relevant documents. Finally, probabilistic modelling is applied in psychological
research for inferring cognitive states occurring during information retrieval tasks.
Discriminatively optimized joint density models were applied throughout the work.

Before presenting the contributions of the thesis, the practice of probabilistic
modeling is discussed in Chapter 2, namely the practical tools of Bayesian in-
ference, the exponential family, and different ways of constructing probabilistic
models using this model family.
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CHAPTER 1. INTRODUCTION

1.1 The Main Contributions of the Thesis

Main contributions of the thesis are:

• The theoretical contribution is discriminative modeling when the given model
family is known to be incorrect. It is shown that in this case, a discrimi-
native posterior can be used for conditional inference that is consistent with
conditional (marginal) likelihood.

• Markov Chain Monte Carlo methods are introduced for sampling from the
discriminative posterior.

• The first computationally feasible Expectation-Maximization algorithm for
finding a point estimate for conditional maximum likelihood is presented.

• Advanced machine learning methods are developed and applied for inferring
relevance from eye movements in an information retrieval setup. A controlled
experimental setup is designed where it is shown that relevance of read text
can be inferred from eye movements. The measured eye movement data was
used in a PASCAL Network of Excellence machine learning challenge during
2005.

• A prototype of a proactive information retrieval application is introduced which
combines implicit relevance feedback inferred from eye movements with rele-
vance information from other available sources.

4



Chapter 2

Probabilistic Modeling

Not to be absolutely certain is, I think, one of the essential things in
rationality.

Bertrand Russell

This chapter describes the principles, tools, and practices of probabilistic mod-
eling. The common assumptions and procedures that are usually followed are
discussed first, namely the likelihood principle, point estimates, and the principle
of marginalization. Next, the workhorse of probabilistic modeling is introduced —
the exponential model family. Any distribution can be modeled arbitrarily closely
with exponential family distributions, that is, they are universal density estima-
tors (McLachlan and Peel, 2000). This fact can be seen as the justification for
the choice of using the exponential model family. In principle, any other family
of functions having the same property could be used; the exponential family is
chosen because of mathematical convenience. The basic properties of the model
family will be gone through with some detail, since they will be needed in Chapter
4 discussing different optimization methods for exponential family distributions.
Then two alternative ways of constructing universal density estimators with expo-
nential family models is discussed. In this Chapter, the new contribution of the
thesis is the discussion on discriminative generative models in Section 2.6 from the
point of view of exponential model families. The work was originally presented in
Publication 6.

2.1 Modeling Principles

In general, there are two different philosophies to statistical modeling, frequentist
and Bayesian. In a frequentist framework probabilities are defined as the propor-
tion of successful events to the total amount of events. The setup requires the
assumption that an experiment can be hypothetically repeated an infinite number
of times in a similar setting. The task of the modeler is then to count the number
of successes in order to determine the probabilities.

Bayesian framework, on the other hand, acknowledges that an event can occur
only once. Probabilistic treatment requires the assumption of a prior — initial
(subjective) beliefs on a successful event before observing data. After observing
the event, the prior is then updated to posterior beliefs by using the Bayes formula.

5



CHAPTER 2. PROBABILISTIC MODELING

Frequentist criticism is that because of prior beliefs, the framework cannot be
regarded as fully objective. Subjective Bayesians accept the subjectivity, since all
modeling can be regarded as subjective to some extent; for example the selection
of the model family is a much more restrictive prior. Objective Bayesian answer is
to construct more objective priors, for example by choosing a prior that maximizes
the amount of information that can be gained from a future experiment (Bernardo
and Smith, 2000), a reference prior. Further discussion on the subjectivity of
Bayesian inference and its implications is left out of this thesis, since it is a deep
research question considered in a multitude of publications over the last 80 years,
and therefore a brief discussion would not do full justice to the topic. In practical
data analysis, either one of the modelling approaches can be assumed. With large
amounts of data frequentist and Bayesian inference give similar results, but with
small data sets the results differ, often to the benefit of Bayesian modeling.

In this thesis the Bayesian point of view is assumed because of pragmatic con-
siderations. Besides being better in practice for small data sets, the treatment of
complex (hierarchical) models is more intuitive in Bayesian modeling; all variables
are treated in the same manner instead of having to divide them to fixed or random
effects.

According to Gelman et al. (2003), Bayesian data analysis proceeds in the
following steps:

1. Construct a joint distribution for all observable and unobservable variables.

2. Condition on observed data: calculate and interpret the appropriate poste-
rior distribution, the conditional distribution of the unobserved quantities of
ultimate interest, given observed data.

3. Evaluate (the fit of) the model. If necessary, alter or expand the model and
repeat the three steps.

In the following it is assumed that the modeling step 1 has been already carried
out, and the aim is to do statistical inference given the model.

2.1.1 Setup and Notation

In the following sections, the general methodology of probabilistic modeling is
discussed. Data are denoted by D = {xi}N

i=1 or, in case of conditional inference,
D = {ci,xi}N

i=1. Unless stated otherwise, discriminative inference is considered:
the task is to predict the values ci of a categorical variable C, given the associated
variables X = xi.

The model parameters are denoted by θ, and they are assumed to belong to
a modeling manifold Θ, the model family. The manifold itself belongs to a larger
space Θ consisting of all possible models. This includes also the “true” model,
denoted by θ̃. The view is slightly controversial, since in reality no probabilistic
model is perfectly true and all models are false to some extent. Therefore the
“true” model θ̃ cannot be attained. This can be taken into account by assuming
that the data has not been generated by a model in our model family, θ̃ /∈ Θ. The
situation is illustrated also in Figure 2.1.
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2.1. MODELING PRINCIPLES

Θ

Θ
_

θ~

θ

Θ

Figure 2.1: An illustration of the modeling setup. Θ denotes the set of all models. The set of
realizable models, the selected model family, is a manifold plotted with gray colour and denoted
by Θ. θ ∈ Θ defines a model with parameter values θ. The “true” model is denoted by θ̃.

2.1.2 Objective Function

A central quantity in all probabilistic modeling is the likelihood function L(D; θ)
of data D and parameters θ. Frequentist axiomatizations, for example Birn-
baum (1962), justify the likelihood function, whereas Bayesian axiomatic systems
(Bernardo and Smith, 2000; Cox, 1946) justify the posterior

p(θ | D) =
L(D; θ)p(θ)∫
dθL(D; θ)p(θ)

, (2.1)

which is proportional to the likelihood multiplied by a prior p(θ).
Usually in modeling an assumption of exchangeability of data points is made

at some level. In this case the likelihood factorizes, that is, it is expressed as a
multiplication of the probabilities p(xi|θ) given by the model to each of the data
points D = {xi}N

i=1:
L(D; θ) =

∏
i

p(xi|θ) . (2.2)

Since multiplication is a commutative operation, the order of the operands can be
changed without altering the end result.

The selection of the objective function is made by the modeler. In case of
conditional inference where the interest is to predict the values of C given X,
using conditional likelihood

L(C|X; θ) =
∏

i

p(ci|xi, θ) (2.3)

as an objective function has given good results.

2.1.3 Point Estimates

Once the objective function of a probabilistic model is defined, the model param-
eters can be optimized. One common approach is to compute a point estimate,
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CHAPTER 2. PROBABILISTIC MODELING

that is, the parameter values that maximize the objective function. The parameter
values maximizing the likelihood function are called a maximum likelihood (ML)
estimate, that is

θ̂ML = arg max
θ
L(D; θ) = arg max

θ

∏
i

p(xi|θ) . (2.4)

The values maximizing the posterior are called maximum a posteriori (MAP) esti-
mate. At the limit of infinite data the two estimates are the same, assuming that
the support of the prior is the entire model space Θ.

In case of conditional likelihood, the obtained point estimate is conditional
maximum likelihood (CML)

θ̂CML = arg max
θ
L(C|X; θ) = arg max

θ

∏
i

p(ci|xi, θ) . (2.5)

2.1.4 Marginalization

In Bayesian inference, all random variables in the model have a probability dis-
tribution, making it possible to compute expectations over the random variables.
Integration, or marginalization, is therefore the natural means of getting rid of
“nuisance” variables which are not needed in predictions. For example, consider a
case where the value of c∗ needs to be predicted, given observations x∗ and a model
p(c | x, θ). The predictive distribution p(c∗|x∗,D) can be computed by carrying
out the integration

p(c∗|x∗,D) =
∫
p(c∗|x∗, θ)p(θ|D)dθ , (2.6)

where

p(θ|D) =
L(D; θ)p(θ)∫
L(D; θ)p(θ)dθ

(2.7)

is the posterior obtained from earlier data D = {xi, ci}N
i=1. In this case, the model

parameters θ are “nuisance” variables that can be integrated out by computing an
expectation over the parameter distribution p(θ|D).

The above Equation (2.7) provides also the means for sequential updates of
beliefs in model parameters; the prior describes the initial beliefs and the posterior
the beliefs after seeing the data. When new data is gathered, the posterior from
earlier step is used as a new prior. Equation (2.7) is referred to as the Bayes
formula.

Frequentist inference is sometimes seen as a special case of Bayesian inference
where uniform priors and delta function posteriors are used. If the support of the
prior covers the whole model parameter space, the two approaches are asymptoti-
cally (with infinite data) the same, since in this case the posterior reduces into a
single peak at the maximum likelihood parameter values.

2.2 Exponential Model Family

Practical implementation of probabilistic inference requires that a certain paramet-
ric form of the model for p(x|θ) or p(c,x|θ) is assumed. In this thesis we assume
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2.2. EXPONENTIAL MODEL FAMILY

that modeling is carried out with exponential family models. The motivation for
using this specific model family is that it allows to form a universal density esti-
mator; all distributions can be approximated arbitrarily closely with some specific
type of an exponential family distribution (Altun et al., 2004; McLachlan and Peel,
2000). It is therefore safe to consider modeling within the exponential family with-
out losing any generality. In this section a short review of theory of exponential
families originally introduced by Barndorff-Nielsen (1978) is given. See (Barndorff-
Nielsen, 1978; Buntine, 2002; Efron, 1978; Wainwright and Jordan, 2003; Jordan,
2004) for further references and discussion. The properties of the exponential
family are discussed below with some detail. These properties will become useful
in Section 4 when deriving different optimization methods for exponential family
models.

The exponential family is formally defined as

Definition 2.2.1 (Canonical exponential family model) A model p(x | θ)
belongs to the exponential family if the model can be expressed in the canonical
form

p(x | θ) = b(x)eθT T (x)−κ(θ) , (2.8)

where θ is a vector of natural parameters, and T (x) the corresponding vector of
sufficient statistics. The b(x) is the base measure, and κ(θ) a convex normalization
term.

In literature, κ(.) is known as the log-partition function, moment generating func-
tion, or cumulant function. The selection of κ(.) defines the exponential family.

For simplicity, the thesis concentrates on models that belong to regular expo-
nential families

Definition 2.2.2 If the parameter space θ is open, that is, if θ ∈ interior(Θ), the
model is called a regular exponential family (Wainwright and Jordan, 2003).

and use minimal sufficient statistics, that is, the sufficient statistic has the smallest
possible dimensionality (Bernardo and Smith, 2000).

Examples of exponential family distributions include Gaussian, multinomial
and exponential models. Table 2.1 gives parametrizations of the Gaussian and
multinomial distributions, the exponential family distributions applied in this the-
sis. Most of the distributions used in probabilistic modeling belong to the ex-
ponential family. Some exceptions of course occur such as uniform, Student-t,
and Cauchy distributions. These can however be approximated with exponential
family distributions1.

2.2.1 Convexity

In exponential family models, the log-partition function κ(θ) is a convex function
in the convex domain θ. Therefore the following results apply. See (Rockafellar,
1970; Boyd and Vandenberghe, 2004) for a detailed introduction to convex analysis.

First, the domain of θ, the subset of Rn where κ is defined, forms a convex set:

1For example the Student-t can be modeled as an infinite mixture of Gaussians all having the
same mean but different standard deviations.
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CHAPTER 2. PROBABILISTIC MODELING

Table 2.1: Canonical representation of some exponential family distributions. The left column
shows the notation in a canonical representation of an exponential family model. Notation in case
of Gaussian: µ mean, σ standard deviation. Notation in case of Multinomial: It is assumed that
the multinomial consists of k ∈ 1 . . . K slots. nk is the count for a slot k, πk the corresponding dual
parameter, interpreted as the probability of picking the slot. N is the total count, N =

P
k nk.

Gaussian Multinomial
T (x)

(
x2 x

)
nk

θ
(
− 1

2σ2
µ
σ2

)
log πk

κ(θ) − µ2

2σ2 − log σ log (
∑
eπk)

log b(x) − 1
2 log 2π logN !−

∑
k log nk!

Definition 2.2.3 (Convex set (Boyd and Vandenberghe, 2004)) A set S is
convex if the line segment between any two points in S lies in S, that is, if for any
x1,x2 ∈ S and any ξ with 0 ≤ ξ ≤ 1, the condition

ξx1 + (1− ξ)x2 ∈ S

is fulfilled.

After defining a convex set, convexity itself can be defined.

Definition 2.2.4 (Convexity) A function f : Rn 7→ R is convex if the domain
domf is a convex set and if for all x,y ∈ domf , and ξ with 0 ≤ ξ ≤ 1, we have

f(ξx + (1− ξ)y) ≤ ξf(x) + (1− ξ)f(y).

In exponential families, the κ is twice differentiable, so the following two lemmas
hold.

Lemma 2.2.5 (Convexity; differentiable function)
Assume a differentiable function f : Rn 7→ R. Then f is convex if and only if the
domain domf is a convex set and if for all x,y ∈ domf

f(y) ≥ f(x) +∇f(x)T (y − x)

holds.

Lemma 2.2.6 (Convexity; twice differentiable function)
Assume a twice differentiable function f : Rn 7→ R. Then f is convex if and only
if the domain domf is a convex set and its Hessian is positive semidefinite, that
is, for all x ∈ domf

∇2f(x) � 0
holds.

A result of particular interest in convex algebra and in exponential families
(Wainwright and Jordan, 2003) is the Legendre-Fenchel transformation

κ∗(µ) = sup
θ∈Θ

{θTµ− κ(θ)} . (2.9)

The κ∗(µ) is often referred to as the convex conjugate of κ(θ), and it is again a
convex function.

The conjugate of a conjugate is again the function itself, that is,

κ∗∗(θ) = sup
µ∈M

{θTµ− κ∗(µ)} = κ(θ) . (2.10)
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2.2.2 Duality

The cumulant-generating function κ can also be used to obtain a dual parametriza-
tion of exponential models in terms of expected sufficient statistics µ and their
covariance matrix Σ (Efron, 1978),

µ = Ep(x|θ) {T (x)} = ∂κ
∂θ , (2.11)

Σ = Ep(x|θ)

{
(T (x)− µ) (T (x)− µ)T

}
= ∂2κ

∂θ∂θ = ∂µ
∂θ . (2.12)

In cases where the exponential model family is regular, µ forms a dual parametriza-
tion of the exponential family model referred to as the mean value parametrization.
The benefit of the dual parametrization is that natural parameters of the expo-
nential families do not in general (with Gaussian being the exception) lie within
the same space as the sufficient statistics (Efron, 1978), complicating their use and
interpretation. However, the dual parameters lie in the same space as the mean of
the sufficient statistics, which is why the dual parameters µ are the parameters we
usually associate with exponential distributions (and sometimes they are referred
to as expected sufficient statistics, for obvious reasons).

An exponential family model can also be expressed in a mixed parametrization
consisting of natural parameters as well as mean value parameters (Wainwright
and Jordan, 2003).

2.2.3 Bregman Divergence

Bregman divergence (Bregman, 1967; Banerjee et al., 2005) is a distance measure
which is closely connected to exponential family models. The formal definition is

Definition 2.2.7 The Bregman divergence for a convex function κ(θ) is:

Dκ(θ1, θ2) = κ(θ1)− κ(θ2)−∇κ(θ2)(θ1 − θ2). (2.13)

The divergence is always non-negative due to convexity of κ, and Dκ(θ̂, θ̂) =
∂
∂θ Dκ(θ, θ̂)

∣∣∣
θ=θ̂

= 0.

The relation to exponential family models is shown in Banerjee et al. (2005),
who prove that there exists a one-to-one mapping between exponential families
and Bregman divergences:

Theorem 2.2.8 (Banerjee et al. (2005))
There is a bijection between regular exponential families and regular Bregman di-
vergences.

The regularity of a Bregman divergence is defined in terms of an open input pa-
rameter space in a similar manner to the regularity of an exponential family, see
Definition 2.2.2. For an exact definition, see Banerjee et al. (2005).

The mapping can be shown to exist for example in the following way. Consider
a model P0(x | θ∗) within the exponential model family where the value θ∗ is
a value of the natural parameter corresponding to the sufficient statistics T (x),
found by solving a mapping ∂

∂θκ(θ)
∣∣
θ=θ∗

= µ(θ∗) = T (x). Then, by Equation
(2.8) we have (Barndorff-Nielsen, 1978; Efron, 1978)

P (x | θ)
P0(x | θ∗)

= exp{−(κ(θ)− κ(θ∗)− T (x)T (θ − θ∗))} = e−Dκ(θ,θ∗). (2.14)
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Since κ is a convex function, the term in the exponential corresponds to a (minus)
Bregman divergence (Bregman, 1967) between the θ and θ∗, denoted by Dκ(θ, θ∗).
This leads to an alternative representation of exponential family models (see Efron
(1978), for example) by p(x|θ) = e−Dκ(θ,θ∗)P0(x | θ∗). In this respect the Bregman
divergence is the natural distance measure for the selected exponential family.

The second derivative of Bregman divergence is the Fisher information, denoted
by Σ here.

Kullback-Leibler Divergence. The Kullback-Leibler divergence,

DKL(p, q) =
n∑

i=1

p(i) log
p(i)
q(i)

,

where p and q are n-dimensional vectors of probabilities and i an index over the
components of the vectors, is an example of the Bregman divergence. This can be
verified by setting θ1 = log q, θ2 = log p, κ(θ1) = log

∑
i e

θ1(i) = log
∑

i q(i) = 0,
and, in a similar manner, κ(θ2) = 0. Additionally, ∇κ(θ2(i)) = eθ2(i)P

i eθ2(i) = p(i).

2.2.4 Conjugate Families

A conjugate family for minimal canonical representations of the form in Equation
(2.8) is defined to be

p(θ | %, χ) = d(%, χ)eχT θ−%κ(θ) , (2.15)

where % ∈ R, χ ∈ Rk are parameters and d(%, χ) a normalizing constant. The
conjugate family obviously depends on the chosen minimal canonical representa-
tion.

2.2.5 Posterior

For an exponential family model, complemented with a conjugate prior distribu-
tion, the posterior is of the form

p(θ|X, %, χ) =
∏N

i=1 p(xi|θ)p(θ|%, χ)∑
θ

∏
i p(xi|θ)p(θ|%, χ)

. (2.16)

By noting the denominator by Z(X), since it is constant with respect to θ, we
may write the posterior in an exponential family notation by

p(θ|X, %, χ) =

b(x)d(%, χ)
Z(x)

exp

{
θT

(
N∑

i=1

t(xi) + χ

)
− (N + %)κ(θ)

}
.

(2.17)

The equation gives a full description of the posterior and is of the same form as
the conjugate prior distribution.
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2.3 Models with Rich Sufficient Statistics

One way of modeling with exponential family distributions is to use rich sufficient
statistics. A rich sufficient statistic is defined in a (possibly) infinite-dimensional
feature space. Practical modeling in an infinite dimensional space can be made
feasible by using the so-called kernel trick (Schökopf and Smola, 2002).

A theorem by Altun et al. (2004) states that an exponential family with rich
sufficient statistics is a universal density estimator, that is, all distributions can
be approximated arbitrarily closely with an exponential family model with rich
sufficient statistics. The theory and implementation of such a model is beyond
the scope of this thesis, an interested reader should see for example Schökopf and
Smola (2002); Herbrich (2002).

2.4 Latent Variable Models

Instead of applying an exponential family model with rich sufficient statistics,
an alternative method for obtaining a universal density estimator is to construct
(possibly an infinite) mixture of simple exponential family distributions. Modeling
with mixtures can be justified for example by the celebrated theorem of de Finetti
(1931) (here we present the formulation of Bernardo and Smith (2000)):

Theorem 2.4.1 (Representation theorem for 0-1 random vectors)
If x1, x2, . . . is an infinitely exchangeable sequence of 0-1 random quantities with

probability measure P, there exists a distribution function Q such that the joint
mass function p(x1, . . . , xn) for x1, . . . , xn has the form

p(x1, . . . , xn) =
∫ 1

0

n∏
i=1

θxi(1− θ)1−xidQ(θ) ,

where Q(θ) = limn→∞ P [yn/n ≤ θ], with yn = x1+. . .+xn, and θ = limn→∞ yn/n.

In Bernardo and Smith (2000) a sequence is defined to be infinitely exchangeable if
every finite subsequence is exchangeable. Exchangeability in turn means that un-
der the given model (probability measure), all permutations of the subsequence are
equally probable, that is, p(x1, . . . , xn) = p(xπ(1), . . . , xπ(n)) for all permutations
π defined on the set {1, . . . , n}.

The above theorem states that all exchangeable binary sequences can be rep-
resented as a mixture of Bernoulli distributions (the mixture is infinite and thus
denoted by an integral in Theorem 2.4.1). The assumption of exchangeability thus
corresponds to modeling with a mixture: it corresponds to assuming that there is
an underlying (latent) random variable, and the data are conditionally indepen-
dent given the values of the random variable. Extensions to several different types
of exchangeability assumptions exist (Bernardo and Smith, 2000). For example, if
complete exchangeability of data items is assumed, a mixture of multinomials fol-
lows; on the other hand, if a centred spherical symmetry is assumed, a mixture of
Gaussians follows. The components of the resulting mixtures belong to the expo-
nential family, which motivates modeling with common exponential family models.
Therefore, a proper mixture fulfilling the exchangeability assumptions made on the
data will model the distribution arbitrarily closely. The Theorem 2.4.1 is also used
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as a general justification of the Bayesian approach of modeling with a prior dis-
tribution. For more discussion on the topic see for example (Bernardo and Smith,
2000; Koivisto, 2004).

When computing the likelihood of the data or making predictions, the latent
variable is treated as a “nuisance” parameter and integrated out. Accurate mod-
eling of data may require a large amount of mixture components. In practice a
finite amount of mixture components is used, even in so-called infinite mixtures
where the amount of mixture components is selected with a random process prior.
Discussion on this topic is beyond the scope of the thesis; an interested reader
should see for example Dirichlet process (Ferguson, 1973; Sethuraman, 1994) and
Indian buffet process priors (Griffiths and Ghahramani, 2006).

The remainder of the thesis concentrates on modeling with finite mixture mod-
els. Generality is again not compromised, since for example all continuous dis-
tributions can be approximated arbitrarily well by a finite mixture of Gaussians
with common variance or covariance matrix (McLachlan and Peel, 2000). Writ-
ten in terms of minimal canonical exponential family models, a mixture model is
expressed as:

p(xi|Θ) =
∑
j∈Sπ

exp{θT
πj
T (πj)−κ(θπ)+θT

x,jT (xi)−κ(θx,j)− log b(xi, j)} , (2.18)

where θπj
are the natural parameters of choosing the mixture component j, T (πj)

is the sufficient statistics of picking a component j, κ(θπ) is the partition function;
θx,j are the natural parameters of the mixture component j that models x, T (xi)
the sufficient statistics of data xi, κ(θx,j) is the partition function, and log b(xi, j)
is the base measure. Sπ denotes the set of mixture components, j ∈ 1 . . . J .

Example: Hidden Markov Model. Hidden Markov models (see Figure 2.2
for an illustrative example) are a special type of mixture models, applied when
modeling data which comes in the form of a sequence, for example in a case where
the statistical properties of a signal change over time. The model explains these
changes by a switching of a hidden (latent) state si i ∈ {1 . . . S} within the model,
where S is the number of hidden states. Each of the states addresses an associated
observation distribution p(x|θi, si), from which the data is generated. While the
general functional form of the observation distribution is assumed to remain the
same, the parameters θi model a different distribution in each state. The changes
in the distributions of the observations are thus associated with transitions between
hidden states. The transitions are probabilistic and defined by a transition matrix
B containing bij as its elements — the probabilities of making a transition from
state i to state j. A full definition of HMMs requires one more set of parameters,
π(i), i = 1 . . . S, which are the probabilities of initiating the observation sequence
at state i.

Usually a first-order Markov property for the transitions is assumed, where the
transition to the next state s(t+ 1) depends only on the current state s(t) at time
t, that is, p(s(t+ 1)|s(t), . . . , s(0)) = p(s(t+ 1)|s(t)). The main reason for making
the assumption is to reduce the amount of parameters in the model; the model is
still rather flexible even after this simplification.

For a time series x0...T = {x(0), . . . ,x(T )} of observations, the full likelihood
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Figure 2.2: A graphical illustration of a hidden Markov model. Hidden states are denoted by
si, i ∈ {1, 2, 3}. Transition probabilities from a hidden state si to a state sj are denoted by
bij . The entries bij form a transition matrix B. The xi are observations which are modelled
according to the observation distribution associated with the hidden state si. The probabilities
of beginning the observation sequence from state si are denoted by πi.

of the HMM is then

p(x0...T |Θ) =
∑
S
π(s(0))p(x(0)|s(0))

T∏
t=1

p(x(t)|s(t))p(s(t)|s(t− 1)), (2.19)

where S denotes all “paths” through the model, that is, all ST+1 combinations of
hidden states for a sequence of length T + 1, and x(t) is the measured observation
vector at time t. By inspecting an observation sequence x0...T as one data point,
we can see that the HMM is a (complex) mixture model:

p(x0...T |Θ) =
∑

s0...T∈S
p(x0...T |s0...T ,Θ)p(s0...T |Θ) , (2.20)

where a path through the model is a mixture component. Usually all the proba-
bility distributions within the HMM are assumed to be of the exponential family.
With the notation of the exponential families, a HMM can therefore be written as

p(x0...T |Θ) =
∑

s0...T∈S
exp{θT

π t(π)− κ(θπ)+

+
T∑

t=1

θT
st
t(st; st−1)− κ(θst

) + θT
xt
t(xt)− κ(θxt

)− log b(xt)} .

(2.21)

The formula simplifies somewhat by taking into account that for multinomial mod-
els κ(θ) = 0; in this case κ(θπ) = κ(θst

) = 0.
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2.5 Discriminative Models

The above discussion has concentrated on generative models, a category of models
which model the full generative process of the data. This is the approach rec-
ommended in standard Bayesian data analysis (Gelman et al., 2003). The reason
for this type of modeling is that uncertainty in all variables can then be taken
into account. Interestingly enough, there are many practical cases where Bayesian
modeling does not proceed as recommended.

Instead of a joint model, Bayesian regression is known to give best results for
prediction purposes. Such regression models are referred to as as discriminative
models in the following (see e.g. Gelman et al. (2003); Hastie et al. (2001); McCul-
lagh and Nelder (1990); Sutton and McCallum (2006)). Difference to joint density
models is that discriminative models use some of the data as covariates, meaning
that the distribution of some part of the data is not modelled; the associated data
values are assumed to be given. In other words, instead of modelling the distri-
bution of, say, random variables C and X jointly by p(C,X), a discriminative
model predicts the conditional probability p(C|X), where X = x are covariates.
Instead of likelihood, the objective function of discriminative models contains the
conditional likelihood function,

∏N
i=1 p(ci | xi, θ).

The predictions made by discriminative models are in practice often superior
to generative modeling. Intuitively the reason for this is that the discriminative
model is optimized to give best predictions of the dependent variable C, whereas a
joint model is optimized to predict the joint distribution including also the margin
p(X).

In practice, with large amounts of data, generative models are inferior to dis-
criminative models, since the assumed model is almost always incorrect, but with
small sample sizes generative models may show better performance (Ng and Jor-
dan, 2002). Section 2.6.1 provides more discussion on the topic.

An example class of discriminative models is the generalized linear model (Mc-
Cullagh and Nelder, 1990), of which the logistic regression is a special case.

Example: Logistic Regression. Logistic regression is perhaps the best-known
discriminative model. It computes the probability of a class j ∈ 1 . . . C for a data
item xi by

p(C = j|xi,B) ≡ pji =
eβT

j,xxi+βj,0

1 +
∑C−1

j′=1 e
βT

j′,xxi+βj′,0
, (2.22)

where xi is the vector of independent variables, covariates, and βj the vector of
coefficients for a given class, separated into a vector βj,x that multiplies the covari-
ates, plus a constant βj,0. Furthermore, we denote all βj by matrix B consisting of
βj as its columns. To avoid overparametrization βC,x, βC,0 are set to zero (Gelman
et al., 2003; Hastie et al., 2001).

Each observation ci can be considered as a draw from a multinomial, and hence
the log-likelihood is

logL(C|X;B) =
N∑

i=1

C∑
j=1

δ(ci, j)(βT
j,xxi + βj,0)− log

1 +
C−1∑
j′=1

eβT
j′,xxi+βj′,0

 ,

(2.23)
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where δ(ci, j) picks the class index j corresponding to the class of sample i, and
βC,x, βC,0 are set to zero.

The benefit of the logistic regression model is that its objective function is
concave and therefore has one unique global maximum.

2.6 Discriminative Joint Density Models

There are two differences between generative and discriminative models:

1. Discriminative models optimize the conditional likelihood instead of joint like-
lihood.

2. Discriminative models do not form a model for the margin p(X).

A joint density model can be converted into a discriminative model by changing
the objective function from the joint likelihood

∏
i p(ci,xi|θ) to the conditional

likelihood
∏

i p(ci|xi, θ) and transforming the model accordingly by applying the
Bayes formula. In Publication 6 such models are referred to as discriminative joint
density models. The conditional maximum likelihood estimate of a joint density
model, a discriminative joint density model, has been used extensively for example
in speech processing, where discriminative hidden Markov models (Schlüter and
Macherey, 1998; Povey et al., 2003) are the current state-of-the-art.

In case of point estimates and given an incorrect model, the conditional likeli-
hood and joint likelihood estimates differ asymptotically. The reason is that the
objective functions are different (likelihood vs. conditional likelihood). The fact
that the estimates differ can be shown for example by looking at the asymptotical
behavior of the objective function of the joint likelihood. In this case the joint like-
lihood can be written as a Kullback-Leibler divergence between the model p(c,x|θ)
and the assumed “true” model p(c,x|θ̃),

DKL(θ̃, θ) =
∑

c∈C,x∈X

p(c,x|θ̃) log
p(c,x|θ̃)
p(c,x|θ)

=

∑
C,X

p(c,x|θ̃) log
p(c|x, θ̃)
p(c|x, θ)

+
∑
X

p(x|θ̃) log
p(x|θ̃)
p(x|θ)

,

(2.24)

where the first term is the conditional likelihood. If the true model is included
in the model family, the latter term can be made to vanish through optimization,
but otherwise, in case of an incorrect model, it is always larger than zero for joint
likelihood models (this follows from the non-negativity of the Kullback-Leibler
divergence). When the true model is not within the model family, the ML estimate
is asymptotically always worse than the CML estimate (Nádas et al., 1988). On the
other hand, if the model family is correct, ML estimate is better. The estimates are
the same, but the asymptotic variance of ML estimate is lower than the asymptotic
variance of a CML estimate (Nádas, 1983).

Compared to a fully discriminative model, a discriminative joint density model
states a more specific hypothesis on the data, since a parametric shape of the
margin p(X) is assumed. Since the cost function is conditional on x, the distri-
bution of x is not modelled, but the assumption restricts the parameter space of
the model (shown below in this section). Therefore a discriminative joint density
model can work better with a small number of data items if the assumed model
family is reasonably close to truth.
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CHAPTER 2. PROBABILISTIC MODELING

Model Specification. The general description of the discriminative joint den-
sity models considered in this thesis is presented in Publication 6.

The discriminative generative model is formed from a full generative model of
the observed (categorical) variable C and the associated measurements X. The
generative model is assumed to be a mixture; X is modelled using an exponential
family distribution, given the mixture component l. In the generative process, a
component l responsible for generating the data is picked first with probabilities
π(l), l ∈ 1 . . . L. For simplicity it is assumed that the mixture component contains
a direct mapping to the observed class variable ci. The set of components, values
of latent variable, associated with the value ci are denoted by S(ci). Given the
component, each measurement xi consists of M different kinds of data sources
indexed by m, each modelled with an appropriate exponential family distribution.
Their parameters are denoted by θl,m,x.

The model is made discriminative by optimizing the conditional likelihood

L(C | X; θ) =
N∏

i=1

p(ci|xi, θ) =
∏

i

∏
k

(∑
l∈S(ck) π(l)

∏
m p(xi,m|θl,m,x)

)δ(ci,k)

∑
l′∈S π(l′)

∏
m p(xi,m|θl′,m,x)

,

(2.25)
where the θ = {π, θl,m,x} denote the parameters of the model. The model structure
described above can be extended to more general cases, but this is left for further
work. In principle, restricting the inspection to mixture models does not affect the
generality, since a mixture model is a uniform density estimator, as discussed in
Section 2.4.

Example: Discriminative Hidden Markov Model. A practical example of
a discriminative joint density model is the discriminative hidden Markov model
(dHMM), used in Publications 3, 5, and 8. The objective function of dHMM is
conditional likelihood,

L(C|X; θ) =
∏

i

p(ci|xi
0...T , θ) =

∏
i

p(ci,xi
0...T |θ)

p(xi
0...T |θ)

, (2.26)

where

p(ci,xi
0...T |θ) =

∑
s0...T∈S(ci)

exp{θT
π T (π)− κ(θπ)+

+
T∑

t=1

θT
st
T (st; st−1)− κ(θst

) + θT
xt
T (xt)− κ(θxt

)− log b(xt)} ,

(2.27)

and

p(x0...T |θ) =
∑

s0...T∈S
exp{θT

π T (π)− κ(θπ)+

+
T∑

t=1

θT
st
T (st; st−1)− κ(θst

) + θT
xt
T (xt)− κ(θxt

)− log b(xt)} .

(2.28)
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2.6.1 Discriminative vs. Generative: Logistic Regression
vs. Naive Bayes

In literature, for example in Ng and Jordan (2002), naive Bayes is referred to as
the generative counterpart of logistic regression model; meaning that the difference
between the models is the optimization criterion. Publication 6 inspects the topic
more closely and shows that there is a subtle difference between the models: due
to the distributional assumption of the naive Bayes model, its parameters actually
form a subspace within the wider parameter space of logistic regression model.
The fact has been known but the exact connection has not been explored, for
example Sutton and McCallum (2006) refer to this as “added flexibility”. The
connection between logistic regression and naive Bayes models was discussed in
Publication 6. In an independent work, Roos et al. (2005) reported similar results,
but the application was different. The work concentrated on the correspondence
between conditional Bayesian networks and logistic regression model, showing that
in some cases a global optimum of a conditional Bayesian network can be found by
mapping its parameters to those of the logistic regression model and solving the
optimization problem there, by finding the unique global optimum of the logistic
regression model.

Recently, the logistic regression model has been inspected in more detail by
Banerjee (2007); the result is that by using a logistic regression model, we assume
that the underlying generative distribution is a mixture of exponential family dis-
tributions where each mixture component has the same form. Logistic regression
however does not fix the parametric form of the mixture components. Naive Bayes
model makes a further assumption by fixing the parametric form of the mixture
components, which restricts the parameter space. We discuss this in the following.

Naive Bayes and its Discriminative Version

The generative model behind naive Bayes models is a mixture model with one
mixture component per class,

p(xi|θ) =
∑

j∈1...C

exp{θT
πj
T (πj)−κ(θπj )+θ

T
x,jT (xi)−κ(θx,j)−log b(xi, j)} , (2.29)

where π(j) is the prior class probability, θπj
the corresponding natural parameters,

and κ(θπj ) the convex cumulant-generating function. Sufficient statistics are de-
noted by T (xi), the natural parameters of the data generating mixture component
j by θx,j , and the respective cumulant-generating function by κ(θx,j).

As an example, a special case of the naive Bayes is the Linear Discriminant
Analysis (LDA; Sharma (1996)). In its classical form it assumes that data for each
class is generated from a Gaussian distribution where all of the classes share the
same within-class covariance S. LDA is optimized by computing a joint density
maximum likelihood estimate: mean is estimated from class centroids, and variance
by the within-class covariance.

After learning a classifier, classes for data samples are predicted with an a
posteriori decision rule

p(C = j|xi) =
exp{θT

πj
T (πj) + θT

x,jT (xi)− κ(θx,j)}∑
j′∈1...C exp{θT

πj′
T (πj′) + θT

x,j′T (xi)− κ(θx,j′)}
, (2.30)
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Figure 2.3: Difference of class distributions of LDA trained by maximizing conditional or joint
likelihood. Discriminative modeling is optimal for predicting c (Left). In a joint likelihood model
the class difference is optimized only implicitly, resulting in softer class borders (Right). In this
toy example both models have the same covariance matrix, the within-class covariance, and only
the class centroids are optimized. The contour plot shows the probability p(c|x) in 0.1 intervals.
“X” and “O” denote samples from the different classes.

where the common terms of the components cancel out; compare to Equation
(2.29).

If the main use of a model is to predict the class c given x, optimizing a
model by using the objective function derived from Equation (2.30) seems more
straightforward, and conditional likelihood the obvious choice. In case of point
estimates, the solutions obtained by maximizing joint likelihood or conditional
likelihood are asymptotically the same if the “true” data distribution follows the
assumptions of the model. Otherwise the solutions differ (see Figure 2.3 for a toy
example).

Connection

The relationship between discriminative naive Bayes and logistic regression models
is shown next. A mapping between the parameters of naive Bayes and logistic
regression is derived first. The derivation begins from the conditional log-likelihood
of naive Bayes, written using Equation (2.30),

logL(C|X; Θ) =
N∑

i=1

C∑
j=1

δ(ci, j){θT
πj
T (πj) + θT

x,jT (xi)− κ(θx,j)}

− log
∑

j′∈1...C

exp{θT
πj′
T (πj′) + θT

x,j′T (xi)− κ(θx,j′)} .

(2.31)

To make the equations analogous to logistic regression models, the component C is
taken as a common term, that is, exp{θT

πC
T (πC)+ θT

x,CT (xi)−κ(θx,C)}. Skipping
details, this results in

logL(C|X; Θ) =
N∑

i=1

C−1∑
j=1

δ(ci, j){log
πj

πC
+ (θx,j − θx,C)TT (xi)− κ(θx,j) + κ(θx,C)}

− log{1 +
∑

j′∈1...C−1

exp{log
πj

πC
+ (θx,j − θx,C)TT (xi)− κ(θx,j) + κ(θx,C)}} .

(2.32)

20
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By comparing this to the corresponding log-likelihood of the logistic regression
model in Equation (2.23), the following mapping can be found

xi = T (xi) (2.33)
βj,x = θx,j − θx,C (2.34)

βj,0 = log
πj

πC
− κ(θx,j) + κ(θx,C) . (2.35)

The difference between the two models is that in logistic regression the components
of the vector βj,x are independent and can be freely set with no restrictions,
whereas in naive Bayes the θx,j are dependent through κ(θx,j).

For example, in a multinomial the dual parameters µx,j of θx,j must sum to
one. The natural parameter space of the multinomial is thus restricted because of
the mapping between the two parameter spaces; θx,j = logµx,j .

Effectively, the condition
∑

j µx,j = 1 removes one degree of freedom from the
model. For example, setting one mixture component βj,x(i) to − logµx,C(i) (that
is, the corresponding dual parameter is set to one) requires that others are set to
−∞ (the corresponding dual parameters are set to zero). Sketch of proof:

Lemma 2.6.1 Multinomial mixture model has one degree of freedom less per mix-
ture component than its logistic regression counterpart.

Proof Assume a multinomial naive Bayes model with κ(θj,x) = log
∑d

l=1 e
θj,x(l) ,

where d is the dimensionality of x. For simplicity, assume input data
x = (0 . . . 010 . . .)T . Add a displacement λ to θj,x. The effect on an individual
mixture component j of the naive Bayes model in Equation (2.32) is

log
πj

πC
+ (θx,j + λ1− θx,C)TT (x)− log

d∑
l=1

eθj,x(l)+λ + κ(θx,C) ⇔

log
πj

πC
+ (θx,j − θx,C)TT (x) + λ− log eλ − log

d∑
l=1

eθj,x(l) + κ(θx,C) ⇔

log
πj

πC
+ (θx,j − θx,C)TT (x)− log

d∑
l=1

eθj,x(l) + κ(θx,C) ,

where λ1TT (x) = λ1T (0 . . . 010 . . .)T = λ. Therefore λ does not affect predictions.
Logistic regression does not have the same restriction, as can be seen by adding a
similar displacement to βk,x. Prediction for a class ci is then

C∑
j=1

δ(ci, j)(βT
j,xxi + βj,0) + δ(ci, k)λ− log

1 +
C−1∑
j′=1

eβT
j′,xxi+βj′,0+δ(j′,k)λ

 ,(2.36)

where the λ doesn’t cancel out.

The proof shows that there is a direction (an equipotential curve) in the space of
natural parameters of multinomial mixture model where the probabilities given
by the model do not change. Logistic regression does not have such equipotential
curves and therefore has one additional degree of freedom.
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2.6.2 Connection to Generalized Linear Models

In generalized linear models (GLM; McCullagh and Nelder (1990)), the depen-
dent variable c is modelled with an exponential family distribution of the form
p(ci|xi,B) = exp{T (ci)T (BT xi) − F (BT xi) − log b(ci)}. The objective function
to be optimized is the conditional likelihood,

L(C|X,B) =
N∏

i=1

p(ci|xi,B) =
N∏

i=1

exp{T (ci)T (BT xi)− F (BT xi)− log b(ci)} .

(2.37)
The GLM thus assumes a mapping θ = BT x to natural parameters. Since the
GLM is an exponential family distribution, the function F (·) is convex, and cor-
responds to the log-partition function κ(·) of ordinary exponential family models.

Analogously to exponential family models, the function µ = f(θ) = ∂
∂θF (θ)

provides a mapping to dual parameters. In GLM nomenclature, f(θ) is called the
inverse of a link function. Most often used is the canonical link function which is
obtained if the log-partition function is selected. That is, the inverse of the link is
f(θ) = ∂

∂θκ(θ). The link g(θ) is solved from g(θ) = f−1(θ).

Generative Model for Generalized Linear Models

A parametric mapping can be established also between discriminative generative
models and the GLM model class. The connection was shown in case of logistic
regression model in Section 2.6.1, and now we continue by showing the mapping in
a more general setting. For simplicity it is assumed below that exactly one mixture
component k corresponds to each class label c. However, the theory applies to more
general cases as well.

The conditional likelihood of discriminative joint density models in Equa-
tion (2.25) can be written as

L(C | X; θ) = exp
{ N∑

i=1

C∑
k=1

δ(ci, k) log
(
π(k)

M∏
m=1

p(xi,m|θk,m,x)
)

− log
K∑

k′=1

π(k′)
∏
m

p(xi,m|θk′,m,x)
}

,

(2.38)

where the model in Equation (2.25) has been simplified such that the component
k corresponds the class label c, that is, k ∈ {1 . . . C}, where C is the number of
classes. The N is the number of data items and M the number of exponential
family distributions used for modelling x.

By comparing Equations (2.38) and (2.2.1), we notice that Equation (2.38)
corresponds to an exponential distribution with the mapping

θik = log

(
π(k)

∏
m

p(xi,m|θk,m,x)

)
(2.39)

T (ci) = δ(ci, k)

κ(θi) = log
∑
k′

eθik′ (2.40)
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The log b(ci) is omitted, since it can be considered a constant. By using the
exponential family notation, Equation (2.39) can be written as

θik =
∑
m

T (xi,m)T θk,m,x − κ(θk,m,x)− log b(xi,m) + θπk
− κ(θπ) . (2.41)

The log b(xi)-term and κ(θπ) are cancelled out, since they are the same for all
components k and can therefore be taken out of the summation in κ(θi) in Equation
(2.40).

Inserting Eq. (2.41) into Eq. (2.38) results in

L(C|X; θ) =
∏

i

p(ci|xi, θ) =
∏

i

exp{T (ci)T
(
T (xi)T θx − κ(θk,x) + θπk

)
−κ(θi)} ,

(2.42)
where the vector T (xi) is formed by concatenation, T (xi) = [T (xi,1) . . . T (xi,M )].
The matrix θx consists of vectors θk,x = [θk,1,x . . . θk,M,x] as its columns. Finally,
κ(θk,x) = [

∑
m κ(θ1,m,x) . . .

∑
m κ(θK,m,x)], and the log-partition function κ(θi) =

log
∑

k′∈S π(k′)
∏

m p(xi,m|θk′,m,x).
The similarity between the generative model and GLM can be seen by com-

paring Equations (2.42) and (2.37). First, the mapping between the parameters
of GLM and discriminative joint density models is

BT xi 7→ T (xi)T θx − κ(θk,x) + θπk
,

corresponding to the log-probabilities of the mixture components of the discrimi-
native joint density model.

The difference between the models is also visible in the mapping, the log-
partition functions κ(θk,x) in Equation (2.42). As shown earlier, in case of multi-
nomial distribution, the κ(.) removes one degree of freedom in the model. Anal-
ogously to the logistic regression case, the GLM, in contrast, does not have such
a restriction. Since the parameter space is smaller, a discriminative joint density
model should therefore perform better than a discriminative model with small
amounts of data, assuming that the model family is approximately correct.

The difference between the models can be interpreted as introducing addi-
tional prior information into GLMs: it is assumed that the generative model for
the margin of x comes from a mixture of exponential family distributions, where
the parametric form of the distribution is known. This restricts the (effective)
parameter space β of the generalized linear model making the model simpler to
optimize.

2.6.3 Conclusion

Section 2.6 presents the characterization of discriminative joint density models,
originally discussed in Publication 6. The models are obtained from joint density
models p(c,x|θ) by first forming a predictive distribution p(c|x, θ) with the Bayes
formula, and then optimizing the conditional likelihood. The general formalization
of discriminative joint density models in Section 2.6 is a mixture where the identity
of the mixture component is associated with the class c. However, the restricted
model structure does not affect the generality, since mixture model (at the limit of
infinite components) is a universal density estimator, as discussed in Section 2.4.

As discussed in Section 2.5, in case of conditional inference, discriminative
models often perform better than joint density models in practice. Sections 2.6.1
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and 2.6.2 show that the discriminative generative models are related to discrimina-
tive models. Section 2.6.1 shows the connection, the parametric mapping between
two special cases, discriminative naive Bayes and logistic regression models. The
more general case is then discussed in Section 2.6.2, where the connection between
discriminative joint density models and generalized linear models is shown. It is
shown that the correspondence between the mappings is close, but the parameter
space of the discriminative generative models is more restricted. The restriction is
due to the normalization term κ(θ) which makes the parameters θ dependent. In
the corresponding discriminative model the parameters are independent. This is
shown for the special case of multinomial naive Bayes in Section 2.6.1. Since the
effective parameter space of discriminative joint density models is smaller, they
are assumed to perform better with a small number of data items, if the assumed
model is close to “true” model. Initial empirical evidence is shown in Publication
6.

Discriminative joint density modeling as a concept is not new. For example,
in speech recognition the approach has been used for more than 25 years. The
contribution of the thesis is to formalize the approach such that a connection to
the discriminative models can be made, and to show that the parameter space
of discriminative joint density models is more restricted. A related result is by
Banerjee (2007), who shows the correspondence in an alternative manner — the
model family of logistic regression incorporates the model family of any generative
exponential family (mixture) model.
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Chapter 3

Discriminative Inference
with Incorrect Models

Statistics owes its central presence in science and life to the facts that
(i) it is enormously useful for prediction; (ii) it is viewed as providing an
objective validation for science.

(Berger, 2006)

One of the most fundamental questions arising from Section 2 is how does dis-
criminative modeling, that is, modeling of p(c | x) directly, fit into the framework
of Bayesian data analysis. After all, the first step of Bayesian modeling, as rec-
ommended for example by Gelman et al. (2003) (see Section 2.1) is to construct a
joint distribution p(c,x) of the whole system to be modelled. The reason for doing
this is certainly sound, since that way all uncertainty concerning a phenomenon
can be taken into account. However, practice has shown that discriminative mod-
els often perform better in conditional inference. This may seem odd, since the
models do not have a generative model of the covariates x, and thus would seem
directly applicable only in experimental setups where there is no noise associated
with the covariates.

Discriminative modeling has been justified from the Bayesian generative model-
ing point of view by making the assumption that the generative models for p(c | x)
and p(x) have different parameters which are independent also in the prior, that
is, p(c | x, θ)p(x | ψ)p(θ)p(ψ). Then also the posteriors separate, and the gener-
ative distribution of p(x) can be left out from modeling p(c | x) (Gelman et al.,
2003). This still leaves open the more general case where the parameters are not
independent.

A solution to the more general case is proposed in Publication 7. In the problem
setup, a full generative model of p(c,x) is assumed to be given, and the task is to do
discriminative inference, that is, model the p(c | x). If the given generative model
is incorrect, it will turn out that a new kind of posterior, called discriminative pos-
terior, is optimal for modeling p(c | x). An intuitive explanation is that the utility
(cost) function is different in discriminative inference, which results in preferring
different models in the posterior than in standard joint density modeling. In order
to prove the result, a new axiomatic derivation of probabilistic inference is given,
bearing resemblance to the derivation of Cox (1946). The resulting posterior is a
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function of the conditional likelihood, and gives a justification for discriminative
modeling as a special case. Before going more deeply into the theoretical results,
the general setup and earlier derivations of probabilistic inference are discussed.

3.1 Bayesian Views to Inference

Probability is, in general, a measure of uncertainty. It rises in cases where our
knowledge of a system is either incomplete, or the system itself in non-deterministic.

There exist two definitions of probability. The first one determines probabilities
in terms of frequencies. A probability defines the proportion of successful events,
given an infinite (or a very large) amount of repeats. This frequentist interpretation
makes it simple to derive the rules of computing probabilities by simple arithmetics.

However, probabilities can be defined also in cases where an infinite amount of
repeats is not available, not even hypothetically (Cox, 1946). The notion gives rise
to the second definition of probabilities, which is that probability is a subjective
evaluation of the amount of randomness in a system. The definition makes it
possible to assign probabilities on different possible outcomes even before anything
of the system is observed — a prior. This will bring up another problem: if the
probabilities are subjective, how should they be updated when observations of the
system are made?

In order to restrict the scope of the thesis, the discussion will be restricted to
two most famous derivations of probabilistic inference. Both proofs are axiomatic
— they try to define a minimal set of assumptions from which probabilistic infer-
ence can be derived. Before going deeper into the axiomatic systems of Bernardo
and Smith (2000) or Cox (1946), we try to provide an overview of what needs to be
defined in general for deriving probabilistic inference. Both of the aforementioned
approaches define these, but the formalizations differ largely.

First of all, the general setup needs to be defined; the set of events that are
under consideration and their properties. After this a model can be defined. The
model provides a mapping from the set of events to real numbers, that is, a model
is an entity that outputs a number that can be converted into a probability of a
given event. A model can be for example a mathematical function (of the type
considered in this thesis) or it can be an individual describing his beliefs on the
probabilities of events.

Depending on the axiomatic system, the update of beliefs as such can be seen
as the main objective of probabilistic inference (Cox, 1946), or a further goal can
be defined. For example, in Bernardo and Smith (2000) the goal is defined by
expected utility, an objective function to be maximized.

3.1.1 De Finetti: Rational Decisions

The general setup of Bayesian decision theory (Bernardo and Smith, 2000) consid-
ers situations where the decision maker chooses an action a from a set of possible
actions A, producing events e ∈ E and consequences. The action requires a (ra-
tional) decision, but the following events and consequences are beyond the control
of the decision maker. There is no uncertainty associated with the consequences,
that is, once an action is taken and an event has happened, a certain consequence
will follow. In probabilistic modeling, this means that for a given event and model
a certain real number will always result.
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Uncertainty in the framework is manifested in (our subjective evaluation of) the
probability of event-consequence pairs. In probabilistic modeling this corresponds
to the beliefs in different models.

Bernardo and Smith (2000) show that Bayesian inference follows from the fol-
lowing five axioms:

1. An order of preference can be expressed for the possible consequences.

2. The actions are transitive. If action a2 should be preferred over a1, and a3

over a2, then a3 should be preferable to a1. That is, if a1 ≤ a2 and a2 ≤ a3,
then a1 ≤ a3.

3. The order of preference between consequences is fixed; it is invariant of the
state of information concerning relevant events.

4. There exists a standard event S in event space and a function ϑ that maps the
event into a real number between [0, 1].

5. The set of standard events provides a scale against which every consequence
can be precisely measured.

See Bernardo and Smith (2000) for more rigorous definitions and proofs.
The goal of the decision maker is to maximize the utility function assigning

an order of preference for the actions, given event-consequence pairs. That is,
utility u is a function that maps the actions and events A× E into real numbers.
Bayesian inference can then be derived as maximizing the expected utility of the
decision maker, defined as:

Definition 3.1.1 (Expected utility) For a given action a ∈ A and events ej ∈
E, with j ∈ J , where J is a finite partition of an (un)certain event into event-
consequence pairs,

ūp(a) =
∑
j∈J

u(a, ej)p(ej)

is the expected utility of the action a.

Although the selection of utility function is subjective, two general requirements
for utility function are usually acknowledged; the utility should be proper, meaning
that the utility is maximized if “true” beliefs are reported, and it should be local,
meaning that only the observed events affect the utility. These considerations
motivate the selection of a utility function of form A logP (ej) +B, justifying the
use of log-likelihood as utility, see Bernardo and Smith (2000).

3.1.2 Cox-Jaynes: Reasonable Expectation

One of the most widely known and perhaps most intuitive justifications of Bayesian
inference is presented by Cox (1946). The general setup considers beliefs in events.
The approach bypasses the complex definitions of Bernardo and Smith (2000) with
the first axiom — beliefs in events can be described by real numbers. The second
axiom considers how the beliefs should be related to each other; the complement
of a belief should be able to be expressed as a function of the belief. The third
required axiom is that the joint belief in two events V and V ′ can be expressed as
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a function of two beliefs; the belief in V and the belief in V ′, conditional on V .
More formally, using the formulation of Halpern (1999)1:

1. Assume a (belief) function Bel that associates a real number with each pair
(U, V ) of subsets of a domain W such that U 6= ∅. That is, Bel(V | U) ∈ R

2. There is a twice differentiable function S such that belief in complement V̄ of
V in W can be expressed as Bel(V̄ | U)) = S(Bel(V | U)) if U 6= ∅.

3. Given two events V ′ and V in W , there is a twice differentiable function F ,
with a continuous second derivative, such that the joint belief in the events
can be computed as Bel(V ∩ V ′ | U) = F (Bel(V ′ | V ∩ U), Bel(V | U)), if
V ∩ U 6= ∅.

Under these assumptions Cox shows that Bel is isomorphic to a probability dis-
tribution, that is, there is a continuous one-to-one function g : R → R such that
g ◦Bel is a probability distribution on W , and

g(Bel(V | U)) · g(Bel(U)) = g(Bel(V ∩ U)) if U 6= ∅ .

Convention is to choose g to be the identity function.
It is known that the set of Cox’s axioms is not sufficient for justifying Bayesian

inference in a more general case (e.g. in case of discrete variables), as a recent
counter example (Halpern, 1999) shows. Despite serious effort on fixing the axioms,
no satisfying solution has been found so far.

3.2 Using Incorrect Models

The reason why incorrect models have not been considered profoundly in Bayesian
inference is perhaps the deep belief that given enough prior information, a model
which is arbitrarily close to the “truth” can be obtained. Thus the sole reason why
the model performs poorly is that it does not contain enough prior information,
and therefore a natural solution in case of a poorly performing model is to design
a better one. This is however not always possible or feasible. For example, no
additional prior information to be used for improving a model may be available,
or a more accurate model may be computationally infeasible.

Publication 7 studies discriminative modeling with incorrect models. As dis-
cussed in the introduction of this Chapter, conditional models often perform better
than joint density models in discriminative tasks. Intuitively the reason for better
performance is simple; a generative model of a joint distribution needs to divide
its modeling power to all variables, whereas the conditional model can concen-
trate more on modeling the distributions of the variables of interest. The result
has been proven already two decades ago for maximum likelihood and conditional
maximum likelihood point estimates (Nádas, 1983; Nádas et al., 1988), but no
theoretical proof in case of distributions has been shown.

As discussed earlier in Section 2.6, a joint density model can be learned either
by conventional joint density modeling or by converting it to a discriminative joint
density model. The interpretation in Publication 7 is that the selection corresponds
to choosing the utility function. In joint density modeling the utility is to model the
full distribution p(c,x) as accurately as possible, which corresponds to computing

1This is because Cox doesn’t state his axioms explicitly
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the standard posterior incorporating the likelihood function. In discriminative
learning the utility is to model the conditional distribution of p(c | x), and the
result is a discriminative posterior incorporating the conditional likelihood.

The key result in Publication 7 is the proof of discriminative posterior, pre-
sented below in Theorem 3.2.3. The posterior can be used to prove the following
two claims:

Claim 3.2.1 (Well-known) Given a discriminative model, a model p(c | x; θ)
for the conditional density, Bayesian regression results in consistent conditional
inference.

Claim 3.2.2 (New) Given a joint density model p(c,x | θ) , discriminative pos-
terior results in consistent conditional inference.

Inference is said to be consistent if the utility is maximized with large data sets
(Vapnik, 1995). Notice that although the first claim is well known, it has not been
proven, aside from the special case where the priors for the margin x and c | x are
independent, as discussed above and in Gelman et al. (2003). Claim 3.2.2 proves
this more general case.

The discriminative posterior — the axiomatic proof that it works, and meth-
ods for computing the posterior are the contributions of Publication 7. Earlier,
Grünwald et al. (2002) suggested the posterior in an extended abstract. However,
no empirical or theoretical proof of the posterior was given. First empirical vali-
dation that the discriminative posterior works in practice has been presented by
Cerquides and Mántaras (2005) in case of maximum a posteriori point estimates.
In Publication 7 we show that similar results are obtained when considering the
full posterior by applying Markov chain Monte Carlo sampling.

3.2.1 Point Estimates

The derivation of the discriminative posterior can be motivated by inspecting point
estimates. At the limit of infinite amount of data, the joint posterior distribution
p(θ | D) ∝ p(θ)

∏
(c,x)∈D p(c,x | θ) becomes a point solution, p(θ | D) = δ(θ − θ̂).

Therefore, a proper utility function minimizing the approximation error DJOINT

between the point estimate θ̂JOINT and the “true” model θ̃ is

θ̂JOINT = arg min
θ∈Θ

DJOINT (θ̃, θ) where

DJOINT (θ̃, θ) =
∑

c

∫
p(c,x | θ̃) log

p(c,x | θ̃)
p(c,x | θ)

dx. (3.1)

If the “true” model is in the model family, that is, θ̃ ∈ Θ, Equation (3.1) can be
minimized to zero and the resulting point estimate is effectively the maximum a
posteriori solution (with infinite data the effect of prior is insignificant). On the
other hand, if the “true” model is not in the model family, θ̃ /∈ Θ, the resulting
point estimate is the most accurate description of the “true” joint distribution
p(c,x | θ̃) with respect to DJOINT .

In case of conditional inference, the problem is to find the best point estimate
θ̂COND for the conditional distribution p(c | x, θ). The average Kullback-Leibler
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-divergence between the “true” conditional distribution at θ̃ and its estimate at θ
is given by

DCOND(θ̃, θ) =
∫
p(x | θ̃)

∑
c

p(c | x, θ̃) log
p(c | x, θ̃)
p(c | x, θ)

dx , (3.2)

and the best point estimate with respect to DCOND is

θ̂COND = arg min
θ∈Θ

DCOND(θ̃, θ) . (3.3)

By Equations (3.1) and (3.2), we may write

DJOINT (θ̃, θ) = DCOND(θ̃, θ) +
∫
p(x | θ̃) log

p(x | θ̃)
p(x | θ)

dx . (3.4)

Therefore the point estimates θ̂JOINT and θ̂COND are different in general. If the
model that has generated the data does not belong to the model family, that
is θ̃ /∈ Θ, then by Equation (3.4) the joint estimate is generally worse than the
conditional estimate in conditional inference, measured in terms of conditional
likelihood.

3.2.2 Discriminative Posterior

In Publication 7 the point estimate θ̂COND presented above is generalized to a
discriminative posterior distribution over θ ∈ Θ:

Theorem 3.2.3 (Discriminative posterior distribution)
It follows from axioms 1–6 listed below that, given data D = {(ci,xi)}n

i=1, the
discriminative posterior distribution pd(θ | D) is of the form

pd(θ | D) ∝ p(θ)
∏

(c,x)∈D

p(c | x, θ) .

The predictive distribution for new x̃, obtained by integrating over this posterior,
p(c | x̃,D) =

∫
pd(θ | D)p(c | x̃, θ) dθ, is consistent for conditional inference. That

is, pd is consistent for the utility of conditional likelihood.

Inference is consistent if the utility is maximized with large data sets (Vapnik,
1995).

The axioms leading to the discriminative posterior are

1. The posterior pd(θ | D) can be represented by non-negative real numbers that
satisfy

∫
Θ
pd(θ | D)dθ = 1.

2. A model θ ∈ Θ can be represented as a function h((c,x), θ) that maps the
observations (c,x) to real numbers.

3. The posterior, after observing a data set D followed by an observation (c,x),
is given by pd(θ | D ∪ (c,x)) = F (h((c,x), θ), pd(θ | D)), where F is a twice
differentiable function in both of its parameters.
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4. Exchangeability: The value of the posterior is independent of the ordering
of the observations. That is, the posterior after two observations (c,x) and
(c′,x′) is the same irrespective of their ordering:
F (h((c′,x′), θ), pd(θ | (c,x) ∪ D)) = F (h((c,x), θ), pd(θ | (c′,x′) ∪ D)).

5. The posterior must agree with the utility. For θ̃ ∈ Θ, and θ1, θ2 ∈ Θ, the
following condition is satisfied:

pd(θ1 | Dθ̃) ≤ pd(θ2 | Dθ̃) ⇔ DCOND(θ̃, θ1) ≥ DCOND(θ̃, θ2) ,

where Dθ̃ is a very large data set sampled from p(c,x | θ̃). We further as-
sume that the discriminative posteriors pd at θ1 and θ2 are equal only if the
corresponding conditional KL-divergences DCOND are equal.

6. For fixed x the model reduces to the standard posterior. For the data set
Dx = {(c,x′) ∈ D | x′ = x}, the discriminative posterior pd(θ | Dx) matches
the standard posterior, that is, for px(c | θ) ≡ p(c | x, θ), pd(θ | D) = p(θ | D)

The proof that the discriminative posterior results from these axioms is given in
Publication 7. Here the emphasis is on the intuition behind each of the axioms,
why each of them is needed.

Axioms 1 and 2 define the general setup (see Figure 2.1 for an illustration).
The manifold Θ consists of the set of all different models that can be realized by
the model family. Each of the models is a mapping from the event space into a
non-negative real number. The mapping does not have to be one-to-one; it can
be injective or surjective as well. When an event occurs, the corresponding non-
negative real number output by the model describes the belief in the model. By
axiom 1 the real numbers output by the models are normalized into a distribution.

After introducing the general setup, what remains to be defined is how the
distribution should be updated when more events are observed. Axiom 3 states
a sequential update of the beliefs in models; the updated distribution should be
a function of the earlier beliefs and the real numbers output by the models for
the current event. The desired item here is that the updated distribution contains
all the information conveyed by a new observation. Axiom 3 makes also technical
assumptions which are needed in proofs (assumption that second derivatives exist).
The assumption is similar to the one made by Cox (Cox, 1946), and therefore the
proof of the discriminative posterior holds in the same scope; see Halpern (1999).

Axiom 4 is a further requirement; it states that the events should be exchange-
able — the belief in the model should be the same after observing two events,
irrespective of the order in which they were observed. That is, all events must
contain the same amount of information. The axioms 1–4 can be used to derive
probabilistic inference — how beliefs should be updated. The proofs bear resem-
blance to proofs of Cox, but the setup is slightly different, since in discriminative
posterior updates beliefs in models instead of beliefs in events used by Cox.

Axiom 5 requires that the posterior should agree with the utility of the modeler;
the models that result in high utility should have a larger value in the posterior.
The utility inspected in Publication 7 is the Kullback-Leibler divergence between
the predictions p(c | x, θ̃) of the “true” model and the given model p(c | x, θ).

Finally, the axiom 6 effectively states that the choice of utility function coin-
cides with the standard Bayesian inference for a fixed x.

31



CHAPTER 3. DISCRIMINATIVE INFERENCE WITH INCORRECT MODELS

3.2.3 Connection to Bayesian Decision Theory

Discriminative modeling with incorrect models can be considered also from within
the decision-theoretic framework of Bernardo and Smith (2000). The standard
Bayesian approach needs only two modifications:

• The utility is changed from (log) likelihood into (log) conditional likelihood.

• The model family is considered to be an approximation of the “true” model.

The general setup of Bernardo and Smith (2000) is similar to the setup of discrim-
inative posterior, that is, the framework of Bernardo and Smith (2000) allows also
making the assumption that a “true” joint density model (true beliefs) exists.

Notation. The expected utility was defined in Section 3.1.1 as

ūp(a) =
∑
j∈J

u(a, ej)p(ej) ,

where {ej} is a partition of event-consequence pairs. This can be expressed in
a more familiar notation by noting that an event consists of generation of data
{ci,xi} and the selection of a model, let us denote it here by θk. The beliefs in
events p(ej) are then the probabilities of generating data and selecting a model
θk, that is, p(ej) = p(ci,xi, θk). If the “true” model is assumed to exist, all
probability is concentrated on θ̃, that is, p(θ) = δ(θ̃ − θ). Therefore the utility
reduces to summation over observed data, ū =

∑
i u(a, ci,xi, θ̃)p(ci,xi, θ̃). The

“true” model is denoted by p(ci,xi|θ̃) in the following.

Utility. A discriminative task can be formulated in the decision-theoretic frame-
work of Bernardo and Smith (2000) by describing the events in a sequential form
where first the outcome of set X of events is observed, and then a set C of events.
In this case the expected utility can be written as

ū =
∑

i

u(a, ci,xi, θ̃)p(ci|xi, θ̃)p(xi|θ̃).

The partitioning of the event-consequence space corresponds to the one in joint
density modeling, it is only treated in a hierarchical manner.

As discussed in Section 3.1.1, the requirements of a proper, local utility justify
the use of (log)likelihood u(a, ci,xi, θ̃) = log p(ci,xi|θ̃) as utility. If X is always
observed before the action needs to be chosen, it is reasonable to change the utility
accordingly, from u(a,xi, ci, θ̃) = log p(ci,xi|θ̃) to ud(a,xi, ci, θ̃) = log p(ci|xi, θ̃),
since it is known that when predicting C there will be no uncertainty associated
with X. The resulting expected utility is thus

ūd =
∑

i

p(ci|xi, θ̃)p(xi|θ̃) log p(ci|xi, θ̃) .

Incorrect Model. When working with incorrect or approximate models of the
“true” model, the suggested functional form for a proper, local utility function
(see page 75 of Bernardo and Smith (2000)) is

ūp(q) = −
∑
j∈J

pj log
pj

qj
. (3.5)
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The beliefs reported by the approximate model are denoted by q and the true
beliefs by p. J is the partition of event-consequence pairs as earlier. The utility
can be written also as the difference between the utilities of “true” model and the
approximate model,

ūp(q) =
∑
j∈J

−pj log pj +
∑
j∈J

pj log qj . (3.6)

In case of joint density modeling, the expected utility with a given incorrect
model q(ci,xi|θ) is therefore

ū(θ) = −
∑

i

p(ci,xi|θ̃) log
p(ci,xi|θ̃)
q(ci,xi|θ)

= const.+
∑

i

p(ci,xi|θ̃) log q(ci,xi|θ),

which justifies modeling with maximum likelihood.
In a similar manner, in discriminative tasks the utility function for a given

incorrect model q(ci|xi, θ) is

ūd(θ) = −
∑

i

p(ci,xi|θ̃) log
p(ci|xi, θ̃)
q(ci|xi, θ)

= const.+
∑

i

p(ci,xi|θ̃) log q(ci|xi, θ) ,

which justifies conditional maximum likelihood modeling.
Discriminative posterior is then a distribution on parameter space Θ of the

incorrect model θk ∈ Θ which maximizes the utility,

ūd =
∑

k

ūd(θk)q(θk, ci,xi),

This is the same as the expected approximation error of discriminative posterior,
see Equation (3.7) below.

3.2.4 Relation to Cox’s Axioms

Compared to discriminative posterior, the axioms presented by Cox consider only
updating beliefs, and do not take the utility into account. Therefore the Cox’s
axioms should be contrasted to axioms 1–4 of the discriminative posterior. The
axioms 1–2 together correspond to the axiom 1 by Cox. In discriminative posterior,
axiom 2 by Cox is not stated explicitly. However, the requirement of axiom 1 that
pd is a probability distribution implicitly requires this. Axioms 3 and 4 together
make up for axiom 3 of Cox. The difference is that instead of associativity, the
discriminative posterior requires exchangeability. Proof goes in a very similar
manner, and the end result is the same, multiplicativity.

There is additionally a slight difference in the general setups of the two ax-
iomatizations. Instead of assuming beliefs in events, the discriminative posterior
assumes beliefs in different models instead (Fine has presented similar assumptions
earlier (Halpern, 1999)). The assumption of a continuous parameter space for the
beliefs in models made by the discriminative posterior is perhaps more reasonable
assumption than continuity of beliefs in events as in Cox’s case.
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3.2.5 Discriminative versus Generative Models

After introducing the discriminative posterior, the distinction between discrimina-
tive and generative models can be stated more clearly. The argument in Publica-
tion 7 is that the main difference between the two models is the utility function.
The requirement of axiom 5 that the utility should agree with the posterior will
eventually lead to the proper form of the posterior. In Publication 7 conditional
inference was chosen as the utility, and a discriminative posterior was obtained.
If the utility had been joint modeling of (c,x), the standard posterior would have
resulted. If the given model is incorrect the different utilities therefore lead to
different learning schemes, discriminative or generative modeling.

The same problem can be formulated also in a different manner. It can be
assumed that the utility of the modeler is always the same, joint density mod-
eling. The resulting problem is then to find a proper way of extending a dis-
criminative model into a joint density model, leading to the earlier justifica-
tion of discriminative modeling as discussed in Gelman et al. (2003). Lasserre
et al. (2006) extend this traditional generative view of discriminative modeling by
extending a given generative model family (also (Kelm et al., 2006; Bouchard,
2007) use a similar approach). In their approach, the conditional model for
p(c | x, θ) is complemented with a model for p(x | θ′) to form a joint density
model p(c,x | θ, θ′) = p(c | x, θ)p(x | θ′). The conditional density model p(c | x, θ)
is derived by Bayes rule from the given joint density model, p(c,x | θ), and the
model for the marginal p(x | θ′) is obtained by marginalizing it. In effect, a larger
model family is postulated with additional parameters θ′ for modeling the marginal
x. The approach of Lasserre et al. (2006) contains the discriminative posterior dis-
tribution as a special case in the limit where the priors are independent, that is,
p(θ, θ′) = p(θ)p(θ′) where the parameters θ and θ′ can be treated independently.

Also Lasserre et al. (2006) can be viewed as giving a theoretical justification
for Bayesian discriminative learning, based on generative modeling. The work
introduces a method of extending a fully discriminative model into a generative
model, making discriminative learning a special case of optimizing the likelihood
(that is, the case where priors separate). However, since discriminative modeling is
fit into the standard Bayesian framework of joint density modeling, the approach
of Lasserre et al. (2006) is principled only if the “true” model belongs to the
postulated larger model family p(c,x | θ, θ′).

From a practical point of view it does not matter which philosophical view
the modeler assumes, since both result in the same type of modeling. However,
it is the view of the author that the discriminative posterior will eventually have
more theoretical implications; first of all, in probabilistic modeling utility can be
different from the one in joint density modeling, and secondly, the framework
considers modeling also with incorrect models.

Performance Comparison. As discussed in Section 2.6, discriminative joint
density models have a more restricted model structure than Bayesian regression
models. Therefore, if the assumed generative model is close enough to the “truth”,
it is expected to perform better with small amounts of data. A full set of exper-
iments validating this claim must be left for further work, but the initial experi-
ments presented in Publication 7 seem to support the claim.

The claim can be backed up also by theoretical arguments. Since the discrimi-
native posterior in Theorem 3.2.3 is normalized to unity,

∫
θ∈Θ

pd(θ | D)dθ = 1, the
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values of the posterior are generally smaller for larger model families (they define
a larger manifold Θ). The expected approximation error of a model family can be
formed by using Equation (3.2):

Epd(θ|D)

[
KCOND(θ̃, θ)

]
= −

∫ ∑
c

p(x, c | θ̃)pd(θ | D) log p(c | x, θ)dxdθ + const.

(3.7)
The error is small when both the discriminative posterior distribution pd(θ | D) and
the conditional likelihood p(c | x, θ) are large at the same time. For small amounts
of data, if the model family is too large, the values of the posterior pd(θ | D) are
small. Since the discriminative joint density model has a more restricted model
family than Bayesian regression, the values of the posterior are larger.

If the model is approximately correct, the discriminative joint density model
will have a smaller approximation error than the Bayesian regression, that is,
p(c | x, θ) is large somewhere in Θ. This is analogous to selecting the model family
that maximizes the evidence (in our case the expected conditional log-likelihood)
in Bayesian inference; choosing a model family that is too complex leads to small
evidence (see, e.g., Bishop (2006)). An interesting prospect of future work would
be to study the extension of this view into model selection.

The frameworks of model selection have been divided in Bernardo and Smith
(2000) into three categories; M-closed, M-completed, and M-open. In the M-
closed case the “true” model is assumed to belong to the candidate models under
consideration. In M-completed case the models under consideration are approx-
imations of the truth. The “true” model itself is known but it is not modelled
because of for example computational reasons. The models under consideration
are assumed to be derived with the knowledge of this “true” model. Finally, in
the M-open case the truth is not known. The setup considered in Publication 7
would correspond to model selection in the M-open or in some special cases the
M-completed case.
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Chapter 4

Discriminative Probabilistic
Inference in Practice

In this section, the practical implementation of probabilistic modeling is discussed.
The focus is on different optimization methods, mainly on the new optimization
methods presented in Publications 5 and 7. The aim is to place the methods into
a wider perspective with respect to other optimization methods for exponential
models. For this means the general approach of presenting optimization methods
in terms of Legendre-Fenchel transforms is assumed, as in Wainwright and Jordan
(2003); Jordan (2004). See also Beal (2003) for related issues.

The section gives also a simple demonstration of the discriminative EM algo-
rithm, which was left out from the original publications due to space limitations.

4.1 Methods for Probabilistic Inference

Before discussing the contributions of this thesis, the common steps of data anal-
ysis are discussed. The focus is on the first two steps of data analysis: model
construction and optimization.

4.1.1 Selecting Model Family

The first task of the modeller in data analysis is to form a generative model of the
data that incorporates as much prior information into the model as possible. For
this means, the initial step is the selection of model families and modeling struc-
tures to be considered. This stage requires a considerable amount of subjective
evaluations, and is often in practice done by data exploration – “looking at the
data”. Model building begins by considering the properties of the data; what are
the possible dependency structures in the data, that is, how can exchangeability be
implemented within the model; do the consecutive items depend on each other, do
the individual dimensions within the data item depend on each other, and within
one dimension, can the values be considered exchangeable or do they share some
underlying latent variable. An example of methods for data exploration are differ-
ent kinds of visualizations, such as principal component analysis (PCA) (Hotelling,
1933) or self-organizing maps (SOM) (Kohonen, 2001). The selection of the used
method affects heavily the end result of visualization (Venna and Kaski, 2007).
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Once a set of model families are chosen, there are several ways of choosing
the best one, such as Bayes factors (Kass and Raftery, 1995), Bayesian Deviance
Criterion (Spiegelhalter et al., 2002), expected (predictive) utility (Vehtari and
Lampinen, 2004), or older information-theoretic criteria such as Bayesian Infor-
mation Criteria (Schwartz, 1978) or Akaike’s Information Criteria (Akaike, 1974).
The suitability and correctness of the criteria depends on the data at hand. In
practice, the model is often validated by posterior predictive checking (Gelman
et al., 2003), that is, subjective evaluation.

4.1.2 Point Estimates

Once a model family is chosen, the parameters of the model need to be optimized.
An asymptotically consistent way is to find a point estimate, since with infinite
data the posterior distribution reduces to a point estimate.

For example, in case of a single exponential family model with a conjugate
prior, Equation (2.17) in Section 3 gives a full description of the posterior and is
of the same form as the conjugate prior distribution, that is,

p(θ|X, %, χ) =
1
Z

exp{θT (
N∑

i=1

T (xi) + χ)− (N + %)κ(θ) + log b(xi) + log d(%, χ)}.

(4.1)
One possibility of optimizing a model is to solve the parameter values that

maximize the posterior probability, that is, the maximum a posteriori (MAP)
point estimate. The MAP estimate can be found by first taking a logarithm of
Equation (4.1) and dropping out the terms not depending on θ

log p(θ|X, %, χ) ∝ θT (
N∑

i=1

T (xi) + χ)− (N + %)κ(θ) .

Since this is a concave function, the maximum occurs where the derivative with
respect to θ is zero:

(
N∑

i=1

T (xi) + χ)− (N + %)µ(θ) = 0 ⇔

µ(θ) = (
N∑

i=1

T (xi) + χ)/(N + %) . (4.2)

Here Equation (2.11) is applied to express the maximum in terms of dual parame-
ters µ. For a single exponential family model the MAP solution is unique. Latent
variable models usually have several local maxima.

Maximum Likelihood and Conditional Maximum Likelihood

From the point of optimization, computing a maximum likelihood estimate of a
joint density model is far more simpler than computing a conditional maximum
likelihood estimate.

As discussed in the earlier sections, the conditional (log) likelihood of the dis-
criminative joint density model is

N∑
i=1

log p(ci|xi, θ) =
N∑

i=1

log p(ci,xi|θ)−
N∑

i=1

log
K∑

k=1

p(c = k,xi|θ) . (4.3)
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The first term is the (log) likelihood. The second term is the normalization, p(x)
obtained through marginalization. This term is the reason why maximum likeli-
hood and conditional maximum likelihood have a different maxima, and also the
reason why conditional maximum likelihood estimates are harder to compute.

4.1.3 Gradient Methods

The simplest method of optimizing a model is to use the so called batch gradient
update; the derivative of the objective function is set to zero and the parameter
values are solved. For example, in a mixture model the derivative will be

∂

∂θπk

:
∑

i

∑
j

p(j|θ, xi) {δ(j, k)− µπk
} =

∑
i

Ep(j|θ,xi) {δ(j, k)− µπk
}(4.4)

∂

∂θxk

:
∑

i

p(j|θ, xi)
{
T (xi)− µθxj

}
=
∑

i

Ep(j|θ,xi)

{
T (xi)− µθxj

}
,(4.5)

where i indexes the data item and j the mixture component, and

p(j|θ, xi) =
exp{θT

π T (πj)− κ(θπ) + θxj
T (xi)− κ(θxj

) + log b(xi)}∑
k exp{θT

π T (πk)− κ(θπ) + θxk
T (xi)− κ(θxk

) + log b(xi)}
.

If the parameters cannot be solved in a closed form, a gradient ascent update is
used; update the parameters towards the gradient direction. The problem common
to the simple gradient ascent-based algorithms is that the update step length
needs to be selected empirically. Too optimistic step lengths may overshoot the
local optimum resulting in a decrease of the objective function (and hence slower
convergence), whereas too pessimistic step lengths lead to slow convergence. Line-
search -based methods, such as conjugate gradient, try to cope with the problem
by finding the maximum value of the cost function along the direction of the
gradient (or some other direction, defined as a function of the gradient, as in
conjugate gradient method). The optimal increase is found by carrying out for
example a golden section search along the line. However, line search methods are
not particularly suitable for cases where the computational cost of evaluating the
objective function is high, since for example the conjugate gradient method requires
an accurate line search, meaning several evaluations of the objective function.

So-called second order gradient ascent algorithms take a different approach.
The methods try to take into account the curvature of the model and adjust
the step length accordingly. This type of optimization methods are referred to
as (quasi-)Newton methods. The classic Newton method constructs a (concave)
quadratic approximation of the objective function and then jumps to the unique
maximum of the approximation. This automatic step length selection may be
costly in terms of computation since inversion of the Hessian matrix (second deriva-
tive of the objective function) of the model is required.

Quasi-Newton methods do not compute the Hessian, but rather maintain an
approximation of the inverse of Hessian. A so-called BFGS algorithm, an acronym
of Broyden-Fletcher-Goldfarb-Shanno (Broyden, 1970; Fletcher, 1970; Goldfarb,
1970; Shanno, 1970), obtains a numerical approximation of the curvature using
only gradient information, and uses this information to optimize the model pa-
rameters along the approximate natural gradient directions. The method carries
out a line search along the natural gradient direction. A benefit of the Quasi-
Newton methods is that the line search need not be as accurate.

38



4.1. METHODS FOR PROBABILISTIC INFERENCE

4.1.4 Expectation – Maximization

Expectation-maximization (EM) algorithm is the most common algorithm used
for optimizing latent variable models. It is a special case of the Quasi-Newton
approach and operates by constructing a global lower bound for the objective
function, likelihood where the latent variables have been marginalized out, with
the aid of Jensen’s inequality. The bound is tight (that is, the approximation and
the true objective function have the same value) at the current values of the model
parameters, θ̂, and its gradient equals that of the objective function at that point.
The lower bound is global, and therefore it is guaranteed that optimizing the bound
always increases the value of the objective function. Furthermore, the lower bound
is concave, and can therefore be optimized with one (Newton) iteration. Since the
gradients of the objective function and its lower bound are equal at θ̂, the EM
can be interpreted as a kind of gradient ascent algorithm with automatic selection
of step length. The main benefit of EM-type algorithms is therefore that the
optimization can be carried out with less evaluations of the value of the objective
function, which makes it suitable for optimizing complex models.

In (marginalized) joint likelihood latent variable models the cost function is∑
i

log p(xi|θ) =
∑

i

log
∑

h

p(xi, h|θ) , (4.6)

where xi, i = 1, . . . , N is the data, h the values of latent variable(s), and θ the
model parameters. Below, p(x, h|θ) is assumed to belong to the exponential family.

The objective function of the EM algorithm is a global lower bound for log p(x|θ),
obtained with the aid of Jensen’s inequality (Buntine, 2002):

log p(x|θ) = log
∑

h

p(x, h|θ) ≥ F(θ)

= log p(x|θ)−DKL(q(h), p(h|x, θ)) (4.7)
= Eq(h){log p(x, h|θ)}+H(q(h)) , (4.8)

whereDKL(·, ·) denotes the Kullback-Leibler divergence andH(·) the entropy. The
globality of the lower bound is easy to see from Equation (4.7), since DKL(·, ·) is
always ≥ 0.

The EM algorithm operates by iteratively minimizing the Kullback-Leibler di-
vergence of Equation (4.7) with respect to the distribution over the latent variable,
q(h), at θ = θ̂, and then optimizing the likelihood, Equation (4.8), with respect to
θ, keeping q(h) fixed. In an EM algorithm there is always a distribution q(h) such
that the bound is tight (equality), making the bound tangential to the likelihood
at θ = θ̂ (Buntine, 2002).

If the distribution family q(h) is not rich enough to include p(h|x, θ̂), i.e. the
Kullback-Leibler divergence of Equation (4.7) cannot generally be made to vanish,
a variational algorithm results, where q(h) is the variational approximation. EM
algorithm is thus a special case of the variational method, see for example Beal
(2003). The convergence guarantee of the EM algorithm can be shown to hold also
when the update is applied only to subsets of the model parameters. The update
scheme is then referred to as the generalized EM (Neal and Hinton, 1999).
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Interpretation in Terms of Exponential Families

For simplicity, let us inspect the case of a simple mixture model∏
i

∑
j

p(xi, hj |θ) =

∏
i

∑
j

exp{θT
π T (πj)− log

∑
j′

eθπ(j) + θx(j)T (xi)− κ(θx(j))− log b(xi)} ,

(4.9)

where θπ are the natural parameters of the probability of choosing a mixture com-
ponent, the sufficient statistics T (πj) is a 0-1 vector which picks a mixture compo-
nent j from θπ, θx(j) denotes the natural parameters of a distribution generating
x in a component j, and κ(θx(j)) is the corresponding log-partition function. b(xi)
is again a constant.

Distribution. EM produces a global lower bound for the likelihood via Jensen’s
inequality for convex functions φ(xi),∑

i qiφ(xi)∑
qi

≥ φ

(∑
i

qi∑
qi′

xi

)
. (4.10)

The inequality can be applied to Equation (4.9) by introducing a latent variable
Q. For each data item i the realization of Q is a J-dimensional multinomial. The
slots of the multinomial are denoted by q(i, j). Equation (4.9) can therefore be
written as∏

i

∑
j

eθT
π T (πj)−log

P
j′ eθπ(j)+θx(j)T (xi)−κ(θx(j))−b(xi) q(i, j)

q(i, j)
≥

∏
i

e
P

j q(i,j)(θT
π T (πj)−log

P
j′ eθπ(j)+θx(j)T (xi)−κ(θx(j))−b(xi)−log(q(i,j)))(4.11)

=
∏

i

e
P

j q(i,j) log p(xi,hj |θ)−q(i,j) log q(i,j) . (4.12)

From Equation (4.12) the correspondence to Equation (4.8) is already easy to see.
Equation (4.12) forms also an exponential family distribution, expressed in terms
of dual parameters, q = µ. The distribution can be expressed also in terms of
natural parameters θq by computing the conjugate function via Legendre-Fenchel
transformation,

κ(θ)∗ = sup
µ
{q(i, ·)T θqi

− q(i, ·)T log q(i, ·)} = log
∑

j

eθqi
(j). (4.13)

The canonical representation of the EM lower bound is therefore

e
P

i(
P

j θqi
(j) log p(xi,hj |θ)−log

P
j eθqi

(j)) = eθT
q T (log p(x,h|θ))−κ(θq) , (4.14)

which forms a distribution that resembles to a multinomial1. The lower bound thus
corresponds to defining a single exponential family model for the whole likelihood
with rich sufficient statistics.

1However, the support of sufficient statistics is not positive integers, but the complete axis of
real values
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E-step. Finding a distribution q such that Equation (4.12) is maximized forms
the expectation step in the EM algorithm,

E : κ(log p(x, h·|θ))∗ = sup
q(i,·)

{q(i, ·) log p(x, h·|θ)− q(i, ·) log q(i, ·)} . (4.15)

This is a Legendre-Fenchel transformation (see Wainwright and Jordan (2003) for
additional discussion). Theory of convex functions (Rockafellar, 1970; Barndorff-
Nielsen, 1978) can be used to show that the supremum is unique.

By solving the maximization problem and inserting q back into Equation (4.15),
we get

κ(log p(x, h·|θ))∗ = log
∑

j

p(x, hj |θ) , (4.16)

that is, the distribution q that maximizes Equation (4.15) gives the log likelihood
of a mixture model in Equation (4.9), as it should.

M-step. After solving the distribution of latent variables in the E-step, model
parameters can be optimized. This is done in the maximization step. To see how
the updates look like, we continue from Equation (4.11), assuming that q(i, j)
are known and fixed. By taking a logarithm and omitting the terms that do not
depend on parameters θ, we may write

∑
i

∑
j

q(i, j)

θT
π T (πj)− log

∑
j′

eθπ(j) + θx(j)T (xi)− κ(θx,j)

 =

θT
π

∑
i

q(i, ·)−N log
∑
j′

eθπ(j)+
∑

j

θx(j)

(∑
i

q(i, j)T (xi)

)
−
∑

i

q(i, j)κ(θx,j) .

Since a non-negative weighted sum of convex functions is convex (Boyd and Van-
denberghe, 2004), the optimization problem can again be formalized as finding the
Legendre-Fenchel conjugate, that is, for the case of parameters θx,j

sup
θx,j

{θx,j

∑
i

q(i, j)T (xi)− (
∑

i

q(i, j))κ(θx,j)} = sup
θx,j

{θx,jµ
′
x,j − κ′(θx,j , Q)}

and similarly for θπ. The solution is again unique as in the E step.
Update rules are obtained by requiring that the derivatives with respect to

each of the variables are zero. Updates are expressed in terms of dual variables,
that is,

µπ,j =
1
N

∑
i

q(i, j) (4.17)

µx,j =
∑

i q(i, j)T (xi)∑
i q(i, j)

(4.18)
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Connection to Gradient Ascent

We next show the connection between the EM algorithm and gradient ascent. If we
assume that all the probabilities within the model are expressed using exponential
family distributions, the derivative of the model is

∂

∂θ

∑
i

log
∑

h

p(xi, h|θ) =
∑
i,h

p(h|xi, θ){T (xi)− µ(θ)}, (4.19)

by using Equation (2.11), and denoting sufficient statistics associated with the
current observation i by T (xi).

Gradient ascent operates by iterating

µ(θ) = µ(θ̂) + γ−1 ∂

∂θ

∑
i

log
∑

h

p(xi, h|θ),

where γ−1 is a small value. Inserting Equation (4.19) and evaluating the derivative
at θ̂, we may solve for µ(θ), resulting in

µ(θ) =
γµ(θ̂) +

∑
i,h p(h|xi, θ̂)T (xi)

γ +
∑

i,h p(h|xi, θ̂)
. (4.20)

This is similar to EM update rules. The difference is that in gradient ascent the
update step length is regularized with γ.

4.2 Discriminative Expectation – Maximization

In case of discriminative joint density models the objective function to be opti-
mized, the conditional likelihood, is a rational function,

L(C|X; θ) =
N∏

i=1

p(ci|xi, θ) =
N∏

i=1

p(ci,xi|θ)
p(xi|θ)

. (4.21)

The computational complexity of conditional likelihood is higher than that of like-
lihood, since the denominator contains a marginalization over the variable C, that
is, p(xi|θ) =

∑
k p(c = k,xi|θ). Therefore line-search -based methods requiring

several evaluations of the objective function can be infeasible in case of complex
models. One solution is to incorporate more information of the model into the
optimization by taking into account the curvature of the objective function.

The EM algorithm as such is not applicable, but an EM-type algorithm can be
derived by forming a global lower bound as a combination of an EM-type lower
bound for the numerator and an upper bound for the denominator. The approach,
termed Conditional EM (CEM), was first presented and studied rigorously by Je-
bara and Pentland (2001); Jebara (2001). The resulting formulas, however, turned
out to be very complicated, hindering their practical use, and obtaining even a con-
servative estimate of the bound was computationally demanding (Jebara, 2001).
Moreover, the bounds allow only a very small step size which makes optimization
slow and hence further increases computational demands. So far the only appli-
cation of the CEM is Afify (2005), who applied the method for Gaussian mixture
models.
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In Publication 5, a faster EM-type algorithm (discriminative EM) for optimiz-
ing conditional likelihoods is proposed. The algorithm uses the same intuition as
the CEM, but instead of guaranteed convergence, the DEM relies on local ap-
proximations which are considerably faster to compute. The trade-off is that the
convergence is not always globally guaranteed (depending on the chosen approx-
imation type). The computational complexity of the resulting DEM algorithm is
somewhat bigger than the ordinary EM (O(S3T 2) vs. O(S2T ), where S is the
number of states and T the length of the data sequence), but it is already feasible
for many model structures, such as hidden Markov models. The algorithm can be
used in the same way as an ordinary EM.

We discuss the derivation of the discriminative EM algorithm in the following.
As in the earlier CEM algorithm (Jebara and Pentland, 2001), the problematic part
is the construction of an upper bound for the denominator in Equation (4.21). An
insight to the problem can be obtained by looking at the second derivative of the
log-likelihood.

Derivative and Curvature of Log-Likelihood

For a mixture model, the second order gradient, the curvature, of log-likelihood is

∂2

∂θπk
∂θπj

L(X; θ) =
∑

i

Ep(j|θ,xi){δ(j, l)− µπl
}{δ(j, k)− µπk

}+

−
(
Ep(j|θ,xi){δ(j, l)− µπl

}
) (
Ep(j|θ,xi){δ(j, k)− µπk

}
)

− Ep(j|θ,xi){Σπkl
} = C(T (x), µπkl

)− Σπkl

(4.22)

∂2

∂θxk,1θxk,2
L(X; θ) :

∑
i

Ep(j|θ,xi){T (xi)− µθxk,1}{T (xi)− µθxk,2}+

−
(
Ep(j|θ,xi){T (xi)− µθxk,1}

)(
Ep(j|θ,xi){T (xi)− µθxk,2}

)
− Ep(j|θ,xi){Σθxk,12} = C(T (x), µθxk,12)− Σθxk,12

(4.23)

Here the Σπkl
= ∂2

∂θπk
∂θπl

κ(θπ) are elements of Fisher information matrix Σ which
does not depend on data, and C(T (x), µπkl

) are elements of the expected covariance
matrix C(T (x), µ) of the data, computed over latent variables. Both matrices are
positive definite and hence convex (Boyd and Vandenberghe, 2004), see also Section
2.2.1. The curvature of log-likelihood therefore alternates, with C(T (x), µ) forming
an upper bound and Σ a lower bound for the curvature. The curvature of the EM
lower bound is Σ. The benefit of the lower bound thus is that it depends only on
the chosen model, not data. The upper bound C(T (x), µ) is more problematic,
since it depends both on data and on parameters.

4.2.1 Derivation of DEM Lower Bound for Exponential Fam-
ilies

The upper and lower bounds of log-likelihood are next used for deriving the DEM
algorithm in case of discrete latent variables. The derivation begins from the
log-conditional likelihood,

logL(C|X; θ) =
∑

i

log p(ci,xi|θ)− log p(xi|θ) = F (C,X; θ)−G(X; θ) . (4.24)
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Here we denote by F (C,X; θ) the joint log-likelihood and byG(X; θ) the marginalised
log-likelihood. As mentioned earlier, in order to obtain a global lower bound for
log-conditional likelihood, a lower bound for F (C,X; θ) and an upper bound for
G(X; θ) is required.

A lower bound for F (C,X; θ) is simple to construct since it is a normal EM
lower bound, obtained by Jensen’s inequality,∑

i

log p(ci,xi|θ) =∑
i

log
∑

j∈Jc,i

exp{θT
π T (πj)− log

∑
j′

eθπ(j) + θx(j)T (xi)− κ(θx(j))− b(xi)} ≥∑
i

∑
j

q(i, j)
(
θT

π T (πj)− log
∑
j′

eθπ(j) + θx(j)T (xi)

− κ(θx(j))− b(xi)− log(q(i, j))
)
.

(4.25)

As already mentioned in Section 4.1.4, the resulting EM lower bound has the
following properties:

1. The bound is tight at current parameter values θ̂.

2. The bound has the same gradient as the original function at θ̂.

3. The curvature of the bound is a lower bound of the curvature of the likelihood
– it is equal to Σ in Equation (4.23).

Since the curvature of the lower bound is always less (or equal) than the curvature
of the log-likelihood, the bound is global.

The difficult part in forming an EM-type algorithm for the conditional likeli-
hood is to construct an upper bound for G(X; θ). The requirements for the bound
should naturally mirror those of the lower bound, that is:

1. The bound is tight at current parameter values θ̂.

2. The bound has the same gradient as the original function at θ̂.

3. The curvature of the bound is an upper bound of the curvature of the likelihood
– it is greater than or equal to C(T (x), µ) in Equation (4.23).

Additionally, the upper bound should preferably be of the same functional form
as the EM lower bound in Equation (4.25), consisting of a a linear term plus a
convex function θT (xi) + κ(θ), since the form is known to be simple to optimize
and results in low computational complexity of the algorithm. In Publication 5,
the upper bound is found by solving a trial function which is of the desired form.
The resulting upper bound has the functional form

log p(x|θ) = G(X; θ) ≤ log p(x|θ̂) +
∑

h

p(h|x, θ̂)(T (x)− µ(θ̂))(θ − θ̂)

+ ΛD(θ, θ̂) .
(4.26)

The first term makes the bound tight at θ̂, and the second term makes the gradient
equal to that of the original function at θ̂. In the last term, the Λ is an appropriate
constant and D(θ, θ̂) a distance function. Since the first terms already match the
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function value and its gradient, it is naturally required that the distance function
fulfills the conditions D(θ̂, θ̂) = ∂

∂θD(θ, θ̂)
∣∣
θ=θ̂ = 0. Even though there exist also

other function classes fulfilling this condition, the Bregman divergences are a form
that result in simple update rules for the exponential family models. The second
role of function D(θ, θ̂) is to take care of the curvature of the bound outside of θ̂.
The constant Λ is the curvature of the upper bound. The requirement is that it is
an upper bound of the curvature of the log-likelihood at θ̂; Λ ≥ C(T (x), µ).

The DEM algorithm was applied to discriminative HMMs in Publication 5.

4.2.2 Relation to Other EM-type Approaches

Relation to Extended Baum-Welch

The current state-of-the-art optimization method in speech recognition with hid-
den Markov models is called extended Baum-Welch, EBW (Gopalakrishnan et al.,
1991; Povey et al., 2003). The algorithm was first presented by Gopalakrish-
nan et al. (1991) for multinomial observation distributions, and extended by Nor-
mandin (1991) to Gaussian distributions.

The EBW can be easily extended to optimize mixture models, for example the
Gaussian mixture model (Klautau, 2003), by assuming that instead of time series,
the data consists of N samples of length one. The algorithm of Klautau (2003)
uses the same heuristics as EBW.

The update rules of EBW resemble those of the EM algorithm, plus some
heuristics, which have been developed experimentally during the last seventeen
years. From our point of view, the algorithm can be interpreted to lower bound
both log p(c,x|θ) and log p(x|θ) using Jensen’s inequality. Using Equation (4.7),
the result is

log p(c, x|θ)−DKL(qC(h), p(h|c,x, θ))+
− log p(x|θ) +DKL(qF (h), p(h|x, θ)) ,

where qC(h), qF (h) denote the latent variable distributions in cases where c is
known (“clamped”), or marginalized out (“free”), respectively. Since the last term
is positive, the globality of the lower bound cannot be guaranteed.

By looking at the derivatives of the EBW upper bound, the following can be
said:

1. The bound is tight at current parameter values θ̂.

2. The bound has the same derivative as the original function at θ̂.

3. The curvature of the bound is assumed to be an upper bound of the curvature
of log-likelihood, that is, Σ + γ ≥ C(T (c,x), µ)−Σ in Equation (4.23), where
γ is heuristic.

Therefore, a regularization term γ is needed in the update formulas, result-
ing in a functional form similar to Equation (4.20). Gopalakrishnan et al. (1991)
present a formula for computing a regularization value γ which is large enough such
that convergence can be guaranteed. However, the resulting value is so large that
even in the original publication approximations needed to be made for practical
implementation of EBW. As noted in Section 4.1.4, a large regularization coeffi-
cient reduces the EBW to a gradient ascent-type optimization algorithm which is
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known to converge to a local optimum. Since the original publication, choosing
the proper amount of regularization has been under considerable debate.

Assuming diagonal covariances, the update rules in EBW are of form

µ =
∑

(qC − qF )T (x) +Bµ̂∑
(qC − qF ) +B

(4.27)

σ2 =
∑

(qC − qF )T (x2) +B(σ̂2 + µ̂2)∑
(qC − qF ) +B

− µ2. (4.28)

The update of σ2 can be understood as an update by estimating the second mo-
ment, that is, σ2 = E[x2]− E[x]2.

Currently the best heuristics for choosing B are reported in Woodland and
Povey (2002), where B are set on a per-Gaussian level to the larger of i) twice
the smallest value needed to ensure positive variances, or ii)

∑
qF times a further

constant E, which is generally set to 1 or 2.

EBW and TM Algorithms in Terms of a Log-Linear Upper Bound

Edwards and Lauritzen (2001) have presented a TM algorithm (possibly from
Tilted Maximization) which constructs a linear approximation of the numerator,
G(X; θ). In case of exponential family models, the algorithm is very close to EBW
with a certain type of heuristics, as shown next.

The approximate bound can be explained alternatively as a method where
first a log-linear upper bound is formed of the individual components in the joint
likelihood log p(xi, h|θ), and then a Jensen lower bound of the upper bound is
computed.

Each of the components are first upper bounded by applying the following
lemma:

Lemma 4.2.1 (Log-linear upper bound for exponential family models)
Due to the convexity of the log-partition function κ(θ), exponential family distri-
butions have a log-linear upper bound of the form

exp{T (x)T θ − κ(θ)− log b(x)} ≤

exp{(T (x) + µ(θ̂))T (θ̂ − θ)− κ(θ̂)− log b(x)}.
(4.29)

Proof The term in the exponential is a Bregman divergence. Proof follows directly
from the property that the Bregman divergence is always ≥ 0

This eventually yields update formulas of type:

µ =
∑

(qC − qF )T + qF µ̂∑
qC

=
∑

(qC − qF )T + qF µ̂∑
(qC − qF ) + qF

, (4.30)

giving the EBW heuristic where B =
∑
qF .

This upper bound has two desirable properties:

1. The bound is tight at θ̂.

2. The bound has the same derivative as the original function at θ̂.
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However, since the bound is a lower bound of an upper bound, nothing general
can be said about its general behavior with respect to the original function. This
is also acknowledged in Edwards and Lauritzen (2001).

The difference between EBW and the TM algorithm is that TM can be applied
to more general models than exponential families, since it does not assume that
F (C,X; θ) needs to be lower bounded. After computing the gradient using the
approximation described above the algorithm proceeds by a line search along that
direction. In this respect it is worse than DEM which tries to take into account
the model curvature to compute the best step length.

Relation Between Discriminative EM and Conditional Expectation Max-
imization

In conditional EM, Jebara and Pentland (1999) bound the log p(x|θ) by the func-
tion itself (plus a constant), p(x|θ) + 1, and thus achieve a global lower bound.
However, the resulting update rules are complicated, which hinders their practical
use.

The next development in Jebara and Pentland (2001) is to solve the upper
bound by taking a trial function which has the same functional form as the lower
bound, that is, for arbitrary data item y:∑

h

q(h) [T (y)θ − logZ(θ)]− log b(y),

and solve its coefficients q(h), T (y), log b(y) so that (i) the bound is tight at θ̂
(thus getting log b(y)), and (ii) has the same derivative as the log-likelihood at θ̂
(getting T (y)).

Inserting log b(y) and T (y), and regrouping the variables results in

log p(x|θ̂) +
∑

h

p(h|x, θ̂)(T (x)− µ(θ̂))(θ − θ̂)

+ q(h)B(θ, θ̂) ,

(4.31)

where T (x) and µ(θ̂) are the observed and expected sufficient statistics, respec-
tively. The term B(θ, θ̂) is the Bregman divergence between θ and θ̂. Jebara and
Pentland (2001) proceed by mapping the Bregman distances to a parabola (since
every convex function has a diffeomorphic mapping to a parabola), and solve the
remaining values, q(h). It turns out that the mapping need not be solved ex-
plicitly. However, the mapping affects the resulting update rules by restricting
the allowed values for q(h), making optimisation difficult. Furthermore, although
guaranteed, the speed of convergence and especially the computational demands
reported in Jebara (2001) leave room for improvement.

The reason for the high computational complexity is that in order to obtain a
global upper bound, the worst-case curvature of C(T (x), µ) from Equation (4.23)
needs to be found, resulting in another optimization problem. The curvature de-
pends on the data and the current parameter values µ, and needs to be computed
after each maximization step. Since curvature is a worst case estimate, it is nec-
essarily large. As a result, the step length of the reverse Jensen approach is short,
and the convergence of the algorithm thus slow. Figure 4.1 illustrates the fact.

Instead of finding the worst-case curvature, DEM estimates a local upper bound
for the curvature. The estimated curvature is therefore not as pessimistic as in
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CEM, and thus results in longer step lengths. The curvature can be computed
directly using current parameter values, which results in lower computational com-
plexity. The possible pitfall of the method is that convergence is not guaranteed,
since the model could be (at least initially) close to the area of considerably higher
curvature. However, as the optimization proceeds towards a local optimum, the
overall curvature of the log-likelihood should be negative. Therefore the possibil-
ity of decreasing the likelihood because of choosing upper bounds with too low
curvature should decrease as optimization is closer to convergence.

Θp(x|    )

Θ

Point of worst−case curvature

Figure 4.1: The reverse Jensen upperbound (Jebara and Pentland, 2001) searches a global upper
bound for p(x), shown in solid line. The DEM searches a local upper bound, plotted with dashed
line. The curvature of the upper bound is directly related to the step length of an EM update,
that is, how much the parameters are updated from their original values. Since the curvature of
reverse Jensen is larger, the algorithm results in shorter step lengths and slower convergence.

4.2.3 Speedups and Alternative Methods

The benefits of the DEM over CEM are the simpler update rules and lower compu-
tational convergence. The downside is that the convergence is not globally guaran-
teed. However, as already discussed above, there is usually no need for guaranteed
convergence in the worst conditions, since most likely they don’t occur.

The computational complexity of the DEM is still somewhat higher that the
corresponding EM algorithm. However, it is possible to make further approxima-
tions to make DEM faster. These are beyond the scope of this thesis and left for
further work. One simple way is to compute the upper bound of the curvature, Λ,
only once at the beginning of the optimization. Since the optimization proceeds
to a maximum, the overall curvature of the log-likelihood should be negative when
it is close to convergence, and therefore a more approximate upper bound suffices.

Recently Kim and Pavlovic (2007) provided a different approach; the problem is
approached from the viewpoint of boosting (Schapire, 1990; Friedman et al., 2000).
The algorithm finds a greedy solution by recursively adding mixture components
to the earlier solution such that the conditional likelihood is maximized.
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4.2.4 Example: DEM for Logistic Regression

The simplest example where discriminative EM algorithm can be applied is the
logistic regression.

As discussed in Section 2.5, the log-likelihood of a logistic regression model is

L =
N∑

i=1

C∑
j=1

δ(ci, j)βT
j xi − log

∑
j′

eβT
j′xi

 . (4.32)

Optimization with DEM

We next develop a discriminative EM-type algorithm for optimizing logistic re-
gression models. We first note that the logistic regression is an exponential family
model, that is,

p(C = ci|xi, β) = exp{
C∑

j=1

δ(ci, j)βT
j xi − log

∑
j′

eβT
j′xi} .

By comparing this to Equation (2.2.1), we note that T (x) = δ(ci, j), θj = βT
k xi,

and κ(θ) = log
∑

j′ e
βT

j′xi .

Now, by using Equation (4.29), an upper bound required for the DEM can be
constructed,

− log
∑
j′

eβT
j′xi ≤ − log

∑
j′

eβ̂T
j′xi

−

 ∂

∂βT xi
− log

∑
j′

eβT
j′xi

∣∣∣∣∣∣
β=β̂

T (
β − β̂

)T

xi.

This can be written in a more convenient form

− log
∑
j′

eβT
j′xi ≤ − log

∑
j′

eβ̂T
j′xi +

∑
k

γ(i, j)
(
βj − β̂j

)T

xi,

where γ(i, j) = e
βT

j xiP
j′ e

βT
j′

xi
. At this point we have a (log)linear upper bound for

logistic regression model.
In order to have an EM-type optimization algorithm, we need to make the

bound concave. This can be achieved by including a curvature term ΛD(β, β̂),
having the properties discussed in Section 4.2. The resulting upper bound is then
of the form

log

∑
j′

eβ̂T
j′xi

+
∑

j

γ(i, j)(βj − β̂j)xi + ΛD(β, β̂), (4.33)

where γ(i, j) is the “latent” variable.
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Choosing Λ

The curvature Λ can be computed from the trace of the Hessian. A local upper
bound is

Λ(j) =
∑
i,d

γ(j)(1− γ(j))x2
id , (4.34)

where index d runs over the dimensionality of x. In this case also a global upper
bound is easy to obtain,

ΛG =
∑
i,d

x2
id. (4.35)

Choosing D(β, β̂)

In the case of logistic regression we are free to choose either of the functional forms
presented earlier. By using a parabola, the Bregman divergence for the Gaussian,
as the functional form of the upper bound we get simple update formulas for β:

βj = β̂j +
1
Λ

∑
i

(δ(ci, j)− γ(i, j))xi . (4.36)

The similarity of the DEM to Newton methods is evident by comparing Equa-
tion (4.36) to Newton iteration formulas (see e.g. Bishop (1995)).

Experiment

An experiment was carried out with the data used in the logistic regression model of
Publication 8. The performance of the discriminative EM algorithm with a global
upper bound and local upper bound was compared to the performance of gradient
ascent with a golden section line search. The performance measure was perplexity,
measured against the required number of function value evaluations. As can be
seen form Figure 4.2, the EM algorithm converges faster than the gradient ascent
with line search. A conjugate gradient-based update scheme outperforms both.
However, a similar type of boosting method for EM algorithm based on natural
gradients is available (Honkela et al., 2007), which could improve the convergence
speed of DEM.

4.3 Sampling from Posterior Distribution

In case of finite data, the posterior of the model parameters forms a distribution.
Since this is the case in all real world applications, point estimates often result in
suboptimal predictions. The reason for this is overfitting; a too complex model
explains the learning data very well but does not generalize to new data as well as
a simpler one (Hastie et al., 2001). Therefore a full posterior distribution should
be used.

Solving the posterior distribution analytically is possible for a very small family
of models, and thus approximate methods are used in general. There are two main
approaches, either an approximation to a posterior (mode) is found by restricting
the approximation to a model family which is tractable (Beal, 2003; Minka, 2001;
Wainwright and Jordan, 2003), or a numerical approximation of the posterior is
obtained by drawing samples from the posterior (Gelman et al., 2003; Carlin and
Louis, 2000). In this thesis we concentrate on the latter.
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Figure 4.2: Alternative ways of choosing Λ result in different convergence. An example case
where logistic regression is applied to eye movement data, plot of convergence, measured by
perplexity, for the training data. Gray dashed line: The base line is formed by gradient ascent
with (golden section) line search. Black dashed line: Global upper bound Λ results in slow but
guaranteed convergence. Black solid line: A local approximation of λ can be computed by the
trace of the Hessian, individually for each βj . This results in faster, although not guaranteed
convergence. Gray solid line: Conjugate gradient method is the state of the art method.

4.3.1 Markov Chain Monte Carlo

Many of the common approaches to obtain samples from the posterior fall under
the general category of Markov chain Monte Carlo (MCMC) methods. The basis
of the methods is the famous Metropolis-Hastings method (Metropolis and Ulam,
1949; Hastings, 1970). In the algorithm, samples are drawn from a jumping distri-
bution J at time t, Jt(θ∗ | θt−1). Samples from the distribution are accepted with
probability

Pacc = min
{

1,
p(θ∗ | D)Jt(θt−1 | θ∗)
p(θt−1 | D)Jt(θ∗ | θt−1)

}
. (4.37)

It is easy to prove that this type of sampling scheme converges to the target
distribution p(θ | D) (Gelman et al., 2003).

Another commonly used MCMC method is Gibbs sampling (Geman and Ge-
man, 1984; Gelfand and Smith, 1990). The method can be viewed as a special case
of Metropolis-Hastings, in which the proposal distributions are defined in terms of
conditional distributions solved analytically from the joint distribution.

4.3.2 Discriminative MCMC

Publication 7 presents also a method for MCMC sampling from the discriminative
posterior. Another computational evidence is by Cerquides and Mántaras (2005)
who show experimentally that maximum a posteriori point estimate is viable.

The discriminative posterior pd(θ | D) can be sampled with an ordinary
Metropolis-Hastings algorithm where the standard posterior p(θ | D) is simply
replaced by the discriminative version. The difference to joint density MCMC
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sampling is that the likelihood is replaced by conditional likelihood when comput-
ing acceptance probabilities, that is,

p(θ | D) ∝
N∏

i=1

p(ci,xi|θ)p(θ)

is replaced by

pd(θ | D) ∝
N∏

i=1

p(ci|xiθ)p(θ) .

The proof that the Markov chain converges to the target distribution is straight-
forward and proceeds similarly to the joint density case.

Sampling from the discriminative posterior is computationally more demanding
than joint density MCMC sampling, since each term in the conditional likelihood
function is formed via Bayes formula, that is,

p(ci|xiθ) =
p(ci,xi|θ)∑

c p(c,xiθ)
. (4.38)

Here the denominator term poses problems, since it involves a marginalization over
the class variable c and latent variables h, that is,

p(x | θ) =
∑

c

∫
supp(h)

p(x, h, c | θ)dh .

In case of discrete latent variables, such as mixture models, the marginalization
reduces to simple summations and can be computed exactly and efficiently. How-
ever, if the model contains continuous latent variables the integral needs to be
evaluated numerically.

Treatment of Continuous Latent Variables

The practice of discriminative MCMC sampling from a discrete-valued latent vari-
able model is covered in Publication 7. An item that still requires further research
is sampling from a model with continuous latent variables. The problems that are
encountered during sampling are illustrated next in case of a mixture of Latent
Dirichlet Allocation models (see Publication 7).

The current state-of-the art generative models for text document collections are
further developments of the Latent Dirichlet Allocation model (Blei et al., 2003).
The data generation in the original model goes as follows: For each document, a K
dimensional topic distribution π is first sampled from a Dirichlet with parameters
α. Then, for each word in a document, a topic z is picked from a multinomial
with the parameter values π. The word is then sampled from a topic-specific
multinomial βz, that is, the topic defines a row in a K ×W dimensional matrix
β consisting of multinomial parameter values, where W is the number of words in
the vocabulary. The posterior of the model is thus

p(θ | D) ∝
N∏

i=1

∫
p(π | α)

Ni
w∏

j=1

p(zij | π)p(wij | β, zij)dπ p(α, β) ,

=
N∏

i=1

∫
p(π | α)

Ni
w∏

j=1

K∑
k=1

π(k)β(k, j)dπ p(α, β) , (4.39)
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where N i
w is the number of words in document i.

In Publication 7, another layer on top of the Latent Dirichlet Allocation model
was added. A generating mixture component zc is first sampled from πc. For
simplicity, the zc is assumed to correspond directly the class of a document, ci.The
component indexes a row in the matrix α, and (for simplicity) contains a direct
mapping to c. Now, given α, the generative model for words is an ordinary Latent
Dirichlet Allocation model. For simplicity, four topic vectors were assumed. The
resulting model structure was then similar the one used by Fei-Fei and Perona
(2005). The posterior of the model is thus

p(θ | D) ∝
N∏

i=1

p(zi | πc)
∫
p(π | α, zi)

Ni
w∏

j=1

p(zij | π)p(wij | β, zij)dπ p(α, β, πc)

=
N∏

i=1

πc(ci)
∫
p(π | α, ci)

Ni
w∏

j=1

K∑
k=1

π(k)β(k, j)dπ p(α, β, πc) . (4.40)

In discriminative MCMC, the likelihood is replaced by conditional likelihood, that
is,

pd(θ | D)

∝
N∏

i=1

p(zi
c | πc)

∫
p(π | α, zi

c)
∏Ni

w
j=1 p(zij | π)p(wij | β, zij)dπ∑

l p(zi = l | πc)
∫
p(π | α, zi = l)

∏Ni
w

j=1 p(zij | π)p(wij | β, zij)dπ
p(α, β, πc)

=
N∏

i=1

πc(ci)
∫
p(π | α, ci)

∏Ni
w

j=1

∑K
k=1 π(k)β(k, j)dπ∑

l πc(l)
∫
p(π | α, l)

∏Ni
w

j=1

∑K
k=1 π(k)β(k, j)dπ

p(α, β, πc) . (4.41)

Estimation of the discriminative posterior is therefore computationally rather in-
tensive, since each term in the conditional likelihood requires an integration over
the parameter π.

The computational problem in Equation (4.41) can be reduced to solving ex-

pectations of type Ep(π|α,zc){
∏Ni

w
j=1 π

Tβ(., j)}. In Publication 7 the integrals were
solved with Monte Carlo integration (Carlin and Louis, 2000).
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Chapter 5

Probabilistic Modeling of
Eye Movements in
Information Retrieval Tasks

In addition to contributions to theory and algorithms, the third main contribution
of this thesis is to apply probabilistic modeling for predicting relevance from eye
movements in information retrieval tasks. Both research fields are well-established,
but their combination is new.

Main body of research on eye movements has been published in psychology,
where they have been studied as indicators of cognitive processes for more than a
century (Rayner, 1998). Information search as such has not been studied, but there
exists a considerable amount of research in visual search of images and reading.

Information retrieval (IR; Baeza-Yates and Ribeiro-Neto (1999); Singhal (2001))
is a research field that develops methods for finding relevant information from large
(text) collections. The experimental setup of IR considers situations where the user
types in an initial search, a query. The task of the search engine is then to re-
turn documents that best match the query. The field is a very fruitful area for
application development, since the performance can be explicitly measured with
well-established measures such as precision and recall. Precision is the proportion
of retrieved documents that are relevant, and recall is the proportion of relevant
documents retrieved by the system. Within information retrieval, the use of im-
plicit feedback information in boosting queries has been studied to some extent
(Kelly and Teevan, 2003), but the use of eye movements as the source of relevance
information is a new concept.

Publications 1, 2, and 3 carry out a feasibility study on whether eye movements
can be used as a source of implicit relevance feedback for predicting relevant items
during information retrieval. The conclusion of the study is that relevance can be
determined, to some extent. The data from the last stage of feasibility study in
Publication 3 was used in a Pascal EU Network of Excellence machine learning
challenge ”Inferring Relevance from Eye Movements” (Salojärvi et al., 2005).

After establishing that relevance can be determined from eye movements, the
information is exploited in a second study reported in Publication 4, which im-
plements an experiment where the relevance predictions from implicit feedback
are combined with another source of available feedback information, collaborative
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filtering. The combined relevance prediction is better than either of the sources
alone. The publication shows that a new type of proactive information retrieval
application is feasible, and suggests an architecture for deriving and combining
relevance predictions from several available background information sources.

Finally, in Publication 8, a discriminative hidden Markov model is applied in a
psychological study where cognitive states of a user are inferred from eye movement
data during different kinds of information search tasks.

Before discussing the contributions of the thesis from Section 5.3 onwards, the
use of implicit feedback information in information retrieval is motivated in Section
5.1. Then the fundamental reasons why eye movements could be a good source of
implicit feedback information are discussed in Section 5.2.

5.1 Explicit and Implicit Feedback in Information
Retrieval

It has long been known that the performance of an information retrieval system can
be boosted by adding a relevance feedback stage in the process (Rocchio, 1971).
This type of feedback is explicit: the user interface explicitly asks for feedback from
the user. A traditional method of using the feedback is query expansion, where the
initial query is complemented with words from relevant documents. The technique
has been shown to provide a remarkable improvement to search efficiency, which
is why it was recommended to be incorporated into search engines already 18
years ago (Salton and Buckley, 1990). However, the feature is still not available
in most of the current implementations. One of the main reasons for this is that
giving relevance feedback requires additional effort from the user. Additionally,
the simplest method of using explicit feedback is query-specific. Since there is no
learning from search history, the feedback loop is needed in every search.

A natural next step is to reduce the workload of the user by determining the
relevant documents automatically. There are several different solutions that can
be pursued. The first possibility is to assume that the top documents that best
match the initial query are automatically assumed to be relevant (Buckley et al.,
1995), which can lead to very good or disastrous results, depending on the initial
query.

The second option is to complement the query with implicit feedback infor-
mation. Implicit feedback consists of data measured from the user without inter-
rupting her natural work flow. Examples include measuring the reading time, or
monitoring the selection, printing, and saving of documents. The implicit feedback
is naturally less accurate than explicit feedback, but since the feedback stream is
always available at no extra cost to the user, it is an attractive candidate. However,
the improvement of implicit feedback on traditional searches has so far proved to
be only marginal (Kelly and Teevan, 2003). For example, in case of reading time,
the reason is that the measure is ambiguous; in addition to the possible effect
on relevancy, the reading time is reported to be affected by at least task, topic,
the expected duration of the task (endurance), the expected frequency of the task
(frequency), the estimated progress in completing the task (stage), the estimated
time the user is interested in the task (persistence) and knowledge about the
topic (familiarity) (Kelly, 2004). Additionally, there is large individual variation,
suggesting that an application using implicit feedback information should be user-
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specific. In summary, the implicit user information measured from traditional user
interface is not accurate enough, and should be complemented with other available
sources of information.

The third option is to complement the query with explicit relevance information
which is already available by using earlier feedback from the user and other similar-
minded users. This is the task of collaborative filtering, which operates on explicit
ratings given by a large set of users. Traditional implementations of collaborative
filtering have been memory-based; the ratings of all the users, user profiles are
stored, and given a new set of ratings, the nearest neighboring user profiles are
sought, measured for example in terms of Pearson correlation (Resnick et al., 1994;
Shardanand and Maes, 1995).

However, the performance of memory-based collaborative filtering algorithms
does not scale well as the number of users and rated documents increases. There
are two main reasons: scalability – the computational complexity of nearest neigh-
bor -finding algorithms increases linearly with the amount of users and documents,
and (ii) sparsity – as the collection grows, even the most active users have ratings
for only a small proportion of the available documents (Sarwar et al., 2001). One
solution to the scalability problem is to restrict the set of candidates by construct-
ing summaries of several similar users by model-based collaborative filtering. The
summaries can be association rules (Sarwar et al., 2000), or they can be prob-
abilistic models (Breese et al., 1998); the User Rating Profile model applied in
Publication 4 belongs to this category.

Finally, better predictions can be achieved by combining the aforementioned
approaches. Collaborative filtering has been combined at least with document
contents (Melville et al., 2002), and with the traditional form of implicit feedback
(reading time and features from mouse and keyboard usage, Zigoris and Zhang
(2006)). At least according to Zigoris and Zhang (2006) the traditional form of
implicit feedback has very limited, unstable predictive value by itself and only
marginal value when combined with explicit feedback.

The conclusion is that new sources of implicit feedback information should be
explored. In this thesis the use of eye movements as a new source is suggested.
Before going into the experimental evaluation of whether this is feasible, the phys-
iological and psychological reasons why the eye movements could be a good source
of implicit feedback information are discussed.

5.2 Eye Movements as an Indicator of Interest

Most of the research on eye movements has been carried out in the field of psy-
chology. The central assumption in psychological studies is the eye-mind link as-
sumption (Just and Carpenter, 1976); in cognitively intensive tasks the attention
lies where the eyes are fixated.

The fundamental reason why the gaze direction contains information on the
focus of attention lies in the anatomy of the eye. Accurate viewing is possible
only in the central fovea area (only 1–2 degrees of visual angle) where the density
of photo-receptive cells is highly concentrated, see Figure 5.1. Functionally, this
means that with a single glimpse the human vision can obtain information with
high resolution only from a very small central area of the visual field. Therefore
detailed inspection of a scene is carried out in a sequence of saccades (rapid eye
movements) and fixations (the eye is fairly motionless). The trajectory is often
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referred to as a scanpath. Information on the environment is mostly gathered
during fixations, and the duration of a fixation is correlated with the complexity
of the object under inspection.

Figure 5.1: Anatomy of the eye. The amount of light entering the eye is controlled by opening or
closing of the iris. The light then falls on retina, consisting of photoreceptor cells; there are two
types of cells called rods and cones. Rods are sensitive to light in general, making up the vision
in dim light conditions. Cones can separate different wavelengths of light, making up the color
vision. However, they need more light which is why colors cannot be seen at night. The macula is
an oval yellow spot of diameter 1.5 mm near the center of the retina. Within the macula are the
fovea and foveola which contain a high density of cones. Near the center is the fovea, a small area
that contains the largest concentration of cone cells in the eye and is responsible for accurate
vision. The fovea area covers only 1–2 degrees of visual angle, and the cell density decreases
rapidly towards the periphery. Image courtesy of National Eye Institute, National Institutes of
Health.

Psychology

Inside the brain, the current hypothesis on the processes guiding eye movements is
that they are at least partly automatic and triggered by rather low-level processes.
Conscious control by top-down processes is possible, since fixations lasting sev-
eral seconds can be maintained in cognitively intensive tasks. However, conscious
control grows laborious over time, possibly because the top-down control requires
active suppression of the low-level processes that usually guide eye movements.
This characteristic must be taken into account for example in the design of com-
puter interfaces that are (at least partly) controlled by eye movements. The effect
is commonly known as the ”Midas touch” (Jacob, 1993).

Two large research fields within psychology are related to information retrieval
tasks, visual search and reading.
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Visual Search. In case of viewing images, the eye movement pattern can be
modeled computationally as a bottom-up process that uses a saliency map (Itti
and Koch, 2001): fixations fall on the parts of images that have a high degree of
saliency, that is, more detail. The basic eye movement pattern is then affected
by top-down cognitive processes, for example the task affects the scan path, as
reported already by Yarbus (1967). One well-defined cognitive task is visual search
where an image is scanned for a particular object or feature (the target) among
other objects or features (the distractors). There is some computational evidence
that the visual search could be a purely top-down process (Zelinsky et al., 2006),
suggesting that the visual system could possibly be primed in advance to find
certain desired features.

Models of Reading. Research on eye movements during reading is a well-
established field, see Rayner (1998) for an overview. Reading is highly controlled
by top-down processes. For example, the durations of fixations have been noticed
to depend on the frequency of occurrence of the words in general, and with how
predictable the word is based on its context (Rayner, 1998). The interpretation of
the result is that a lexical search from memory is performed – the more obscure
the word, the longer the search takes.

Computational models on eye movement control during reading are aimed at
explaining how different perceptual, cognitive or motor processes determine sac-
cade initiation during reading. Current controversy is whether attention in read-
ing is allocated serially to one word at a time, as assumed by the E-Z Reader
model (Reichle et al., 2006; Pollatsek et al., 2006), or whether attention is spa-
tially distributed so that several words are processed at the same time. This par-
allel hypothesis is implemented for example in the SWIFT (Richter et al., 2006),
the Glenmore (Reilly and Radach, 2006) and the Competition/Interaction (Yang,
2006) models.

Usability Research

Outside of psychological research, eye movement studies have been widely used
in usability studies (Jacob and Karn, 2003; Goldberg et al., 2002), where it is
common to compute summary measures of eye movements on areas of interest,
such as images or captions of text (see also poynter). The eye movements have
also been used to give feedback on the subjective image quality (Vuori et al., 2004).

5.2.1 Applications Using Eye Movements

In addition to research, eye movements have been studied more recently in various
engineering applications. During the last twenty years, eye movement measuring
devices have become relatively accurate and progressively cheaper, allowing also
free head movement of the user (see Morimoto and Mimica (2005) for an overview
on eye tracking techniques). One of the most prominent application areas has been
eye-typing (Majaranta and Räihä, 2002, 2007).

As discussed above in the introduction, user interfaces which are controlled with
eye movements alone are laborious to use. The current research on the field has
therefore concentrated more on using a combination of traditional input methods,
complemented with information extracted from eye movements (Vertegaal, 2002;
Hyrskykari et al., 2005).
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Another line of application develoment is to enhance the traditional user in-
terface by extracting implicit feedback information from eye movements. This
information can be used proactively in the background in order to improve the
performance of the interface, for example by trying to infer what the user would
like to do next. The idea of using implicit feedback for enhancing traditional user
interfaces, a proactive user interface, was originally suggested by Tennenhouse
(2000). Historically, the first application where crude level user interest was in-
ferred from eye movements was by Starker and Bolt (1990), who developed an
interactive story teller, where the story told by the application concentrated more
on items that the user was gazing at on a display. Rudimentary relevance deter-
mination is needed also in Hyrskykari et al. (2003), where a proactive translator
is activated if the reader encounters a word which she has difficulties (these are
inferred from eye movements) in understanding. The behavior of both of these
applications is adjusted simply by measuring fixation durations which are longer
than a predefined threshold. Another interesting proactive application is to exploit
eye movements as one feedback channel in order to identify critical driving events
in intelligent driver assistance systems (Miller et al., 2003; Torkkola et al., 2003).

Suitor (Simple User Interest Tracker) is a prototype attentive agent application
by Maglio et al. (2000); Maglio and Campbell (2003). The application monitors
eye movements during browsing of web pages in order to determine whether the
user is reading or just browsing. If reading is detected, the document is defined
relevant, and more information on the topic is sought and displayed. From a sci-
entific perspective, the developed methods rely on heuristics, and no evaluation
of the performance of the system is available. Publication 4 presents a controlled
experimental setup to test the feasibility of a proactive information retrieval ap-
plication.

5.3 Implicit Relevance Feedback from Eye Move-
ments

Publications 1, 2, and 3 carry out the first study of eye movements in an infor-
mation retrieval setup. The study follows the general procedures of data analysis,
discussed in Sections 2.1 and 4.1.1. The initial step of data exploration is carried
out in Publication 1, the next step, model construction, is then carried out in Pub-
lication 2. After verifying the experimental setup and choosing the appropriate
models in initial experiments, a larger data set is gathered and the constructed
models are applied to test whether the eye movements contain relevance informa-
tion in Publication 3.

5.3.1 A Pilot Study

A pilot study is carried out in Publication 1. The publication presents the first
controlled experimental setup for measuring eye movements in an information re-
trieval situation. In the experiment, the subject was shown a question and a list
of twelve sentences, one of which contained the correct answer (C). Eight of the
sentences were known to be irrelevant (I), and three relevant to the question (R).
The experiment was carried out with three subjects, each completing a set of 20
question-answer tasks. The eye movements were measured with an iView-system
manufactured by SensoMotoric Instruments GmbH, installed on a bicycle helmet.
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The subject’s head was stabilized with a chin rest to improve the accuracy of cali-
bration. Even with the head rest, maintaining an accurate calibration throughout
the experiment proved to be difficult, and it needed to be manually corrected be-
fore data analysis. Several eye movement features found in psychological literature
were then computed from the raw fixation-saccade sequences. See Publication 1
for a full description of the preprocessing steps. The full description of computed
features is available in Salojärvi et al. (2005).

The aim of the initial study was data exploration, discussed in Section 4.1.1.
For this means, the data was visualized with principal component analysis, self-
organizing maps, linear discriminant analysis, and self-organizing maps in learning
metrics (Kaski et al., 2001). In summary, some of the features turn out to be re-
dundant, showing strong correlations. Only a few of the measures were useful in
predicting relevance, as can be seen from the eigenvectors of linear discriminant
analysis presented in Figure 3 of Publication 1. The same set of features were ob-
tained in a later analysis using a Bayesian multilayer perceptron with an automatic
relevance determination prior (Kudjoi, 2004).

In addition to data exploration, relevance prediction from eye movement data
was tested with linear discriminant analysis. Even with difficulties in calibration,
a simple LDA was able to predict the class of the sentences at a level which
was statistically significantly better than random guessing. This verifies that eye
movements contain relevance information, and that the devised experimental setup
is appropriate.

5.3.2 Model Building

The second stage after data exploration is model building, considered in Publica-
tion 2. The primary aim of modeling was to take the time series nature of the data
into account. For this means, a time series representation of the data was con-
structed. In order to restrict the possible number of parameters in the model, the
set of features was restricted to those that best predicted relevance in Publication
1. A time series representation of the features was then constructed.

Since it is a model for sequential data, the hidden Markov model (see Section
2.4) is a natural candidate for modeling the time series. Historically, perhaps the
first publication to consider eye movements and HMMs is by Rimey and Brown
(1991), who apply HMMs to generate fixation-saccade -type scanpaths with a
camera. The first application of HMMs to real eye movements was by Salvucci
and Anderson (2001), who modeled cognitive processes using eye movement data.
The models however were not learned from data - manual tuning of the parameters
was applied.

Publication 2 considers three alternative HMM types: (i) a separate two-state
HMM for each of the three sentence types, (ii) a six-state discriminative HMM
learned with a Viterbi algorithm, and (iii) a heuristically trained ”global” HMM.
All of the models performed significantly better than random classification. The
separate HMMs (i) and discriminative HMM (ii) were chosen to be used for further
analysis with a larger data set. The ”global” HMM was left out mainly because
of the heuristic training method.
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5.3.3 Large-Scale Experiment

After initial confirmation that relevance can be predicted, and developing proper
models for the task, a larger-scale experiment to validate the result was designed.
The experimental setup was slightly revised and better measuring equipment was
used for gathering the data.

Experimental Setup. The experimental setup used in Publication 3, and the
Pascal challenge (Salojärvi et al., 2005) was a slight revision from the one used
in the pilot study. The subject was first shown a question and then a list of ten
sentences. One of them is the correct answer. Five of the sentences are known to
be irrelevant, and four relevant to the question. The task of the subject was to
identify the correct answer (while eye movements were measured), press ‘enter’,
thus ending the measurement. Afterwards the associated number was typed in the
following display. Each of the eleven test subjects carried out 50 assignments.

Equipment. The eye movements were measured with a Tobii 1750 eye tracker
with a screen resolution of 1280x1024 pixels and a sampling rate of 50 Hz. The
equipment allowed free head movement of the subjects within a 20x20x20cm area.
The accuracy of the measurements was sufficient (0.5◦) for mapping fixations to
individual words. The calibration was accurate throughout the experiments.

Feature Extraction. The raw eye movement data, sequence of fixations (and
saccades), was first mapped to the word which was closest to the fixation. Several
features (21 in total) described in psychological research on reading were computed
(Rayner, 1998; Calvo and Meseguer, 2002). Full description of the features is
included in Salojärvi et al. (2005).

A time series representation of the set of features resulting in best classifica-
tion accuracy was then constructed, see Publications 2 and 3. The features were
computed for each word along the eye movement trajectory. The whole trajectory
was segmented to sequences occurring on the same title, and a label was assigned
to each sequence according to the class of the title.

Results. The hidden Markov model applied in Publication 3 consisted of two
hidden states per class c ∈ {C, I,R}, thus having six hidden states in total. Both
joint density and a discriminative HMMs were trained. As a result, the HMM
shows significantly better performance than a simple linear discriminant analysis
using averaged features and, furthermore, a discriminative HMM is significantly
better than joint density HMM. The conclusions are that

1. Relevance can be predicted from eye movements

2. The time series contains information on relevance

3. Discriminative training helps.

5.3.4 Related Research

Since the initial data analysis presented in Publication 1, research on applying eye
movements as a source of implicit feedback in information retrieval has attracted
more attention. For example, Granka et al. (2004); Joachims et al. (2005, 2007)
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approach the same problem from a different direction by investigating with quan-
titative measures how users behave in a real, less-controlled information retrieval
task.

In a similar vein, Moe et al. (2007) carries out a visual qualitative analysis
of eye movement trajectories in information retrieval tasks to test three possible
measures that could indicate relevance: thorough reading, total viewing time,
and number of regressions. The measure best corresponding with relevance was
thorough reading, defined as consisting of mainly horizontal eye movements with
many fixations per line and at least half a line read.

A similar result has been reported in an on-going work by Buscher et al. (2008),
who develop a new measure of relevancy of a document, computed as the ratio
of read text to the text that was either read or skimmed. According to Buscher
et al. (2008), there seems to be a fair dependency between the developed measure
and the (subjective) relevancy evaluations of the subjects. The applied reading
detection algorithm is further development of the heuristic method by Campbell
and Maglio (2001). The measure agrees nicely with earlier results and intuition –
relevant documents attract more attention.

5.4 Proactive Information Retrieval

Publication 4 presents a new task, proactive information retrieval. In the task
the user interest is inferred by observing user behavior and merged with other
information available on the topic. The closest earlier work is by (Melville et al.,
2002), discussed in Section 5.1, who combine collaborative filtering with document
contents in order to boost the performance of a search engine. The work is similar
in the sense that collaborative filtering is combined with other relevant information,
the document contents. However, user behavior was not modelled.

Prototype Application. In a prototype application presented in Publication
4, implicit relevance feedback from eye movements is complemented by bringing
in information from a collaborative filtering model. Relevance is predicted from
the two different sources using probabilistic modeling. Implicit feedback is inferred
from eye movements with discriminative hidden Markov models as described above
in Section 5.3 and Publications 2 and 3. Relevance from collaborative filtering is
modelled with the User Rating Profile model (Marlin, 2004), a probabilistic model
which is a variant of latent Dirichlet allocation model discussed in Section 4.3,
computed using Markov Chain Monte Carlo techniques.

Experiment. In the experimental setup the subjects are seeking interesting sci-
entific articles by browsing their titles. The subjects were shown a set of six titles
of scientific articles at a time, and they were instructed to choose two of the most
interesting ones. Each subject performed 80 evaluation tasks. The background
data for collaborative filtering was gathered from 22 subjects who performed the
experiment via a web form. Three subjects performed the same task while their
eye movements were measured, see Publication 4 for full details. The experimen-
tal setup differs from the earlier ones presented in Section 5.3 in two respects;
the task language was English, whereas the subjects’ native language was Finnish.
The second difference was that instead of defining the correct answer by task in-
struction, the experiment required subjective evaluation of interest. Both of these
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could possibly have effects that affect the accuracy of relevance prediction from eye
movements. However, a discriminative HMM was still able to predict relevance
significantly better than chance.

Combining Relevance Predictions. A modular approach for combining the
relevance predictions was assumed, because the architecture can thus be easily ex-
tended to several sources of information. A Dirichlet mixture model was designed
for combining the predictions. The model was optimized in a discriminative man-
ner with the conditional maximum likelihood criterion. For new document titles
the prediction accuracy with the combined relevance predictions from eye move-
ments and collaborative filtering was significantly better than by chance. The best
prediction accuracy still leaves room for improvement but shows that proactive
information retrieval and combination of many sources of relevance feedback is
feasible.

Further Related Work. In a further work on the subject, Hardoon et al. (2007)
study a case where the query given to the search engine is constructed from eye
movements alone. The result is that the query can be learned from a small set of
read documents, such that relevance predictions for a large set of unseen documents
are ranked significantly better than by random guessing.

Additionally it is also studied whether the query can be further improved by
including also explicit feedback information. The result depends on the topic, but
the overall precision is improved.

5.5 Inferring Cognitive States

Traditional psychological research on eye movements concentrates on observing
how the eyes behave when the subject is in a certain cognitive state. The state
is induced on the subject by task instruction or experiment design. As a result,
there exists a considerable amount of eye movement features that are observed
given a certain cognitive state. For example, the fixation duration is longer when
a subject is reading words that she has problems in understanding (Rayner, 1998)
(compared to normal reading).

The problem can be approached also in a reverse manner – to infer from eye
movements what cognitive processes are possibly active in the mind. In Publication
8, a reverse inference approach was assumed, with the aim of making hypotheses
on hidden cognitive states in an experiment where the tasks resemble everyday
information search tasks.

Experiment. The experimental setup was an extension of the one in Section 5.3;
the presentation of the tasks was similar, but in addition to finding the correct
answer, the experiment included two more conditions, a key word search and true
interest. The idea was that if the eye movements contain information of different
cognitive states, the tree different conditions can be predicted from eye movements.

Modeling. Discriminative hidden Markov models were applied in modeling. In-
stead of word-level features used earlier, the HMM was estimated from low-level
eye movement features, the fixation durations, saccade lengths and directions (see
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Publication 8 for a detailed description). The reason is that the aim of the study
was to associate the distributions of these low-level features to what is known from
earlier research where the cognitive state is known.

Results. The data analysis carried out with the model shows evidence that the
subjects shift their eye movement behavior while they proceeded in tasks. The
assignment is typically began from a set of HMM states reflecting a scanning
type of behavior; long saccades with no preference on direction, accompanied with
rather short fixations. The task completion then moves to a second state, reading,
characterized by frequent forward saccades of the length of an average word. Also
the mean fixation durations and the amount of regressions agree with previous
research results on reading (Rayner, 1998). The third state suggests a more careful
analysis of sentences, possibly of deciding whether the sentence is the correct
answer to a given task. The saccades landed almost always on the previously
seen lines and were directed either forward or backward. The distance covered by
saccades was about the length of an average word. The participants ended the
assignments while they were in this state.

Discussion. The general setup of the work in Publication 8 bears resemblance
to Liechty et al. (2003), who inferred cognitive states of visual attention in an
advertisement viewing task with a Bayesian HMM using Markov chain Monte Carlo
sampling. Also Liechty et al. (2003) interpreted the hidden states to correspond
to a cognitive process, termed local and global attention. However, there are two
important differences: first of all, the experimental setup is different, and second,
the work of Liechty et al. (2003) considers only HMMs with two hidden states. The
main difference between the two experiments is that in Liechty et al. (2003) the
subjects carry out browsing of advertisements at their own pace without any task
instruction, whereas in the experimental setup of Publication 8 a task instruction
is given.

The additional decision of relevance in the experimental setup of Publication
8 could possibly cause additional cognitive top-down processes which are visible
from the eye movement patterns. The situation could be seen as analogous to
visual search, discussed in Section 5.2. Initially, when there is no information on
the location of the correct answer, the subject engages in browsing, corresponding
to altering between the states of global (scanning) and local (reading) attention
as in Liechty et al. (2003). At some point, when the correct answer is thought
to be found, a top-down process similar to visual search is triggered, and the
eyes key in on the relevant information to check the correctness. In order to
prove that the brain could operate in this manner, it is important to infer the
proper amount of hidden states as objectively as possible. Publication 8 used
the criteria of Robertson et al. (2004); Miloslavsky and van der Laan (2002) to
decide the number of hidden states from data. The fact that three hidden states
for each task type is the proper amount suggested by the data does support this
hypothesis. However, the data cannot give any evidence of the actual origins of
the third hidden state.
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Chapter 6

Conclusions

When solving a given problem one should avoid solving a more general
problem as an intermediate step.

(Vapnik, 1995)

This thesis presents a framework for making conditional statistical inference
with models that are known to be wrong. An intuitive way of acting in this case is
that if our model is known to be wrong, its performance must be optimized such
that the prediction error in the variable of interest is minimized, with the possible
cost of modeling the distributions of other variables. The intuition leads to the key
result of the thesis; in case of an incorrect model, there are different “posteriors”
– distributions in the parameter space of the model – that best agree with each
inference problem, that is, utility function. Publication 7 studies the special case
of classification and shows that discriminative posterior is the optimal posterior
distribution for this case. In this thesis we show that the same distribution can
be derived from decision theory as in Bernardo and Smith (2000); Publication 7
derives the distribution from axioms that bear resemblance to the famous Cox
axioms (Cox, 1946). The work gives a justification to Bayesian regression and
discriminative modeling in general. The applicability of the result is wide-ranging,
since our setup considers decision-making in real life; we do not have a true/full
model of the world but we nevertheless desire to be rational. It can be seen as
another application of the no-free-lunch theorem (Wolpert and Macready, 1997);
the sampling of conventional posterior cannot give a solution which is optimal
for all inference. That is, problem-specific information must be brought in for
obtaining best inference. From another point of view, the result that the utility of
the decision maker must be taken into account when optimizing the models – also
when sampling from the posterior – is supported also by Kleinberg et al. (1998) in
a data mining setup.

Our result goes against a view to conventional Bayesian inference where the
posterior from a joint density model is computed, and then all inference is carried
out with it. The reason why this approach has been adopted is that the theory of
Bayesian inference has earlier been derived under the assumption that the “true”
model is in the model family, which is the only case where the standard posterior is
optimal for all inference. The results of this thesis do not make standard Bayesian
modeling invalid; it can still be applied in cases where the model family is general
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enough. For example, in Gaussian process modeling the model family is infinite,
and can thus be thought of as containing also the “true” model.

In addition to the theoretical contribution, we also present methods for com-
puting the discriminative posterior. We show that standard Markov chain Monte
Carlo sampling is applicable – the only thing that needs to be done is to replace
the likelihood function by conditional likelihood. The MCMC methods presented
in this thesis are first implementations of the sampling; a lot of further work is
required in order to find the most efficient way of sampling. In practical applica-
tions, point estimates are often computed for computational reasons in case where
the model is so complex that sampling from the posterior would be inefficient.
For this means, we present an EM algorithm for computing conditional maximum
likelihood estimates for discriminative joint density models. The computational
complexity of the algorithm presented in Publication 5 drops considerably from
the earlier proposed algorithm (Jebara, 2001), thus making the algorithm feasible,
but is still higher than comparable methods for maximum likelihood estimation.
However, it is possible to make further approximations. This is left for further
work, since a good trade-off is required; if the approximations are too loose, they
result in EM steps where the value of likelihood can drop. On the other hand,
if more strict approximations based on global upper bounds are made, they will
result in EM steps which are shorter, and thus increase the amount of iterations
required for convergence.

The methods developed in this thesis are applied to modeling of eye movements
in information retrieval tasks. The application area is novel; Publication 1 was
the first publication to consider this topic. Modeling of eye movements requires
probabilistic modeling, since they contain a considerable amount of noise. As
discussed in Section 5.2, the current hypothesis is that eye movements are partially
guided by low-level processes which can be regarded as automatic. An example
of this is that when viewing images, gaze concentrates more on areas with high
degree of saliency. This kind of behavior thus does not tell us anything of the
ongoing high-level cognitive process, for example the task given to the subject.
Probabilistic modeling allows us to develop and test hypotheses in spite of these
noise processes, by either taking the processes into account in modeling, or by
averaging the noise out by handling several repeats of an experiment. In the
former case, enough of the process must be known in order to be able to construct
a model for the noise process (such as a saliency map in the example of viewing
images). In the latter case the experimental setup must be designed such that
systematic effects are canceled out by randomized experimental design.

Since the application area is new, the models applied to analyzing eye move-
ments cannot be assumed to be close to “truth” – the case where discriminative
posterior will perform better than joint density modeling. In this thesis, most
of the modeling was carried out with conditional maximum likelihood estimates,
since the development of the discriminative posterior was the final result of the
thesis. One line of further research could thus be to continue the work by applying
the sampling-based approach to eye movement data. Nevertheless, also the point
estimates show the main result; relevance can be inferred from eye movements,
as shown in Publication 3. Improving the models will only make the predictions
better, but also with our initial methods this makes it possible to design new en-
gineering applications, such as a proactive information retrieval system studied in
Publication 4.
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Besides engineering applications, the applied models can be also used for mak-
ing hypotheses for psychological research. For example, the evidence presented in
Publication 8 suggests that a new cognitive state, coined decision making, could
be predicted from eye movements in information retrieval tasks. One interesting
line of research would be to combine the eye movement experiment with brain
imaging to determine the areas of the brain that are active during the new state.
The predicted duration of the decision making state is one second, which should be
long enough for measuring the brain activity with functional magnetic resonance
imaging (fMRI).
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