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ABSTRACT

The objective of this thesis work was to examine different approaches to tailor chemical fibres of different raw 
materials. The focus in searching for new approaches was on pressure screen fractionation, selective treatment of 
each fraction, mechanical pre-treatment before refining, refiner loadability and its link to fibre properties and filling 
design, and on-line quality control of fibre properties. The evaluation is based on the impacts on fibre properties, 
filtration, refining and the resulting paper properties. 

Tailoring of fibres using pressure screen fractionation was found to produce a long and coarse (reject) fraction 
offering high dewatering efficiency, homogeneous and energy-efficient refining, and better strength properties, such 
as tear index, bulk and fracture toughness, in pure and mixed sheets with other fibres. Although the accept fraction 
contains short and thin fibres and has a high fines content, it proved possible to use the accept fraction to increase 
the bonding and scattering of once dried softwood and to reduce the refining energy input needed to reach a certain 
tensile strength level. 

A new mechanical pre-treatment was examined and found to promote lumen collapse and de-swelling of fibres, 
and hence to improve the strength-dewatering combination of softwood kraft pulp. The treatment involved applica-
tion of linear loads, heat, and shear forces over multiple passes. In refining, the pre-treated fibres produced better 
dewatering and a consolidated structure with less cutting, fines creation and external fibrillation compared to never 
dried fibres. The pre-treated fibres offer better potential for developing a higher tensile index, stiffness and Scott 
bond than once dried fibres at a certain degree of refining. 

Refiner loadability and gap movement are strongly related to fibre properties and filling design. Fibre properties 
together with pulp consistency contribute to the size and strength of flocs building up inside the refiner, where big 
and strong flocs are loaded earlier and maintain a wide gap with less floc size changes. Here, pulp consistency was 
found to have a smaller effect than fibre properties. Filling design, reflected in the cutting edge speed, was found to 
contribute strongly to the gap movement and refiner loadability. An increase in edge cutting speed caused the 
refiner gap width to decrease linearly, thus enhancing different refining effects such as fibre cutting, fibrillation and 
fibre swelling. 

A factor network linking on-line measured fibre properties, calculated factors and predicted paper properties 
was found to be an effective tool for monitoring changes in pulp quality, such as different raw materials with 
different average fibre lengths. The model was built off-line and tested against on-line mill operation and found to 
be effective in predicting paper properties of both never and once dried pulp. The refining model was tested with a 
laboratory refiner and used to explain strength properties such as tensile index, to monitor changes in paper 
properties due to refining and to determine the optimum refining conditions and different refining effects such as 
bonding, straightening and fibre cutting.
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INTRODUCTION

There is an acute need for new methods in papermaking to ensure efficient 

use of available fibre raw materials. The focus has changed from making bulk 

products to enhancing product quality and raising prices or reducing production 

costs to improve the profitability of papermaking. Another trend in the market for 

chemical pulp fibres is towards tailoring and engineering of specific fibres for 

specific end products and end uses. These changes set strict quality requirements 

for fibres, from their origin until the final product, motivating researchers and 

papermakers to find new efficient approaches to tailoring fibres for different paper 

grades, cut energy and materials costs and enhancing strength properties. 

           This study was aimed to identify and test certain approaches to tailoring or 

modifying chemical pulp fibre properties for different products with different 

strength properties. The examination of these approaches was extended to cover 

fibres from different sources, including softwood, hardwood and selected non-wood

fibres. The tailoring tools tested in this study included process modifications such as 

fibre fractionation, separate refining and selective use of different fibre fractions. 

Another approach examined in this study was to use a new mechanical pre-

treatment of fibres before refining to optimize the combination of strength and 

dewatering of pulp fibres. A further step was to look at the link between fibre 

properties and equipment parameters, such as refiner filling design and how it is 

reflected in the quality of refined fibre properties. The possibilities to tailor fibres 

offered by the different approaches proposed in this study were complemented by 

applying advanced on-line measurement of fibre properties and pulp quality control. 

Quality control serves as a means to follow up and control the changes in pulp 

quality due to variability in raw materials (variations in fibre properties) and 

process impacts on fibres in processes such as pulp drying and refining. 

This thesis is structured into four parts examining each approach, as summa-

rized in the following. See also Table 1. 

o Part 1 examines the approach of using fractionation and selective treatment 

of pulp components, such as refining. This covers chemical fibres of different 

raw materials such as softwood, eucalyptus and non-wood bagasse pulp. This 

approach was designed to study the ultimate use of each fibre class as a 
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means to cut costs and to optimize the resulting pulp and paper quality. Par-

ticular attention was paid to the role of fibre fractionation in fibre network 

dewatering, to the impacts of refiner fillings and refining conditions, and to 

the use of different fibre fractions. The quality of fibres produced in frac-

tionation was also examined in relation to the operating conditions (reject 

rate), the size of pressure screen and the layout of the fractionation unit. 

o Part 2 examines the approach of using a new mechanical pre-treatment to 

modify the fibre structure before refining. The role of the treatment vari-

ables was examined together with their role in pulp refining, filtration and 

resulting paper properties. The treatment was tested with bleached chemical 

softwood kraft pulp fibres. 

o  Part 3 examines the approach of using the link between fibre properties and 

filling design as a means to control refiner loadability and the quality of re-

sulting refined fibres. The floc sizes of different fibres were measured under 

conditions similar to those in refining, and the relation between refiner load-

ability and gap movement, and fibre properties and filling design was 

determined. This approach was found to facilitate the selection of the right 

filling for specific fibres. 

o Part 4 examines the approach of using advanced on-line measurement of fi-

bre properties and factor analysis techniques to control pulp quality. A factor 

network model was built and tested off-line and on-line against laboratory 

measurements. The model was designed to follow up changes in pulp quality 

due to changes in raw materials, pulp production (pulp drying) and fibre 

preparation (refining), and supply pulp with relevant fibre and paper charac-

teristics.

Table 1.  Structure of the study. 

Publications 
I II III  IV  V  VI  VII

Part  1 X X X     

Part 2    X    

Part 3     X   

Part 4      X X 
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Part 1: Fractionation and selective processing of fibre fractions 

In pulp- and papermaking, fractionation refers to the separation of fibre suspen-

sions into different fractions according to fibre properties such as fibre length, cell 

wall thickness and surface area. Depending on the operating principle, the frac-

tionation equipment can be divided into mechanical barriers (e.g. pressure screens) 

and devices based on the hydrodynamics of the suspension (e.g. hydrocyclones). 

Pressure screens are the most common and efficient unit operation for screening 

and fractionation. Pressure screens are known to separate fibres mainly based on 

fibre length, whereas other factors such as fibre flexibility and thickness are secon-

dary effects (Karnis 1997, Julien Saint Amand et al. 2001, Vollmer et al. 2001). 

Although fractionation has been known for many years, its use has been limited 

to mechanical and recycled fibres (Knut and Wakelin 1999, Nazhad and Sodtivara-

kul 2004). Driven by the need for strength improvement, energy savings and the 

development of new pulp and paper grades, fractionation has become a flexible tool 

to optimize the properties of chemical pulp fibres (Bolton 1974, Paavilainen 1992, 

Häggblom-Ahnger 1998, Sloane 1999, Vomhoff 2003, Olson et al. 2001, Panula-

Ontto 2002, Koskenhely et al. 2005, Ortner et al. 2006).

Refining (beating) is one of the most important steps in developing the strength 

properties of papermaking fibres. Pulp refining involves drastic mechanical actions 

that produce a number of modifications in the fibre morphology, such as internal 

and external fibrillation, fines creation, fibre cutting, and fibre curling or straight-

ening (Ebeling 1980, Page 1989). However, beating also impairs some other paper 

properties like optical properties and dimensional stability. 

Materials

The experiments were aimed to cover fibres from different sources including 

softwood and hardwood and selected non-wood fibres. The wood pulps used in this 

work were industrial pulps obtained from different pulp mills in Finland and the 

non-wood bagasse pulp was obtained from India. The characteristics of the pulps 
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used in the trials are described in the following. More details are given in the 

articles in the appendix. 

o A once-dried (air-dried) bleached bagasse pulp was obtained from an Indian 

soda pulp mill. The bagasse pulp had a brightness of 82.1% ISO, a length-

weighted average fibre length of 0.73 mm and a freeness level of 290 mL. 

o A once-dried eucalyptus market pulp was obtained from a Finnish pulp mill. 

The pulp was produced by ECF bleaching without ozone and the pulp had a 

final kappa number of 18-19. The pulp had a length-weighted average fibre 

length of 0.735 mm, a freeness level of 540 mL and a brightness of 89% ISO. 

o A once-dried softwood kraft pulp was obtained from a Finnish pulp mill pro-

ducing ECF-bleached pulp. The pulp had a length-weighted average fibre 

length of 2.32 mm and a freeness level of 718 mL. The pulp contained 61% 

pine and 39% spruce. 

Fractionation 

All pressure screen fractionation test runs of softwood and hardwood eucalyptus 

pulps were performed with a pilot-scale screen at the Savonlinna FibreTech re-

search unit of the Lappeenranta University of Technology. The pressure screen was 

an Andritz ModuScreen F designed for high-consistency fine screening applications. 

In all trials, only the bump rotor design was used and the rotor speed was in the 

range of 20-30 m/s. The trials were conducted with different slot and hole screen 

sizes.

 Before fractionation, the once-dried pulp sheets were slushed in a hydrapulper 

(6 m3) at a consistency of 4% and a temperature of 40-50°C for 30 minutes. The 

rotor speed was 1000 rpm and the power input 27kW. After slushing, the pulp was 

diluted to the target consistency of 2.5±0.2% before fractionation.  

The bagasse pulp was fractionated using an axial-feed Valmet TAP03 laboratory 

pressure screen at the University of Oulu, in the Fibre and Particle Engineering 

Laboratory. Before fractionation, the dried bagasse pulp was slushed in a Grubbens 

pulper for 60 minutes. The motor power was 5.5 kW and rotor speed 1680 rpm. The 

fractionation was carried out as a single-stage fractionation using slot screen at 

around 1% pulp consistency and a temperature of 21°C. 
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Refining

All refining trials were conducted with a Voith LR 40 laboratory refiner at the 

Department of Forest Products Technology of the Helsinki University of Technol-

ogy. The specific edge load theory (Brecht and Siewert 1966) was applied to control 

the refining trials. Different refiner fillings were used in refining: the first and 

second were typical conical and wide-bar disc filling commonly used to refine 

softwood pulps.  The third filling was a narrow-bar disc filling commonly used to 

refine hardwood pulps. The specifications of fillings are shown in Table 2. 

Table 2 Fillings used in refining. 

Filling Ls 
(km/s) 

Bar width 
(mm) 

Groove width 
(mm) 

Bar angle 
(o)

Conical 0.67 3.6 8.0 - 12.0 30
Wide-bar disc 1.067 3.6 5 30 
Narrow-bar disc 2.840 2.0 3 30 

Measurements 

The procedures and the tests used for pulp and paper properties are as follows: 

o Measurements of fibre length and the percentage of external fibrillation using 

the Kajaani FibreLab® analyzer have been described in detail by Richardson et 

al. (2003) and Turunen et al. (2005). The measurement made done according to 

the Kajaani FibreLab operating manual and in agreement with TAPPI standard 

T271.

o Acetone extracts (SCAN-CM49) 

o Cell type content, KCL internal 2160 (SCAN G3, G4). 

o Pulp freeness, CSF  (SCAN C21) 

o Water retention value (WRV) in accordance with the proposed standard SCAN–

C 62:00. 

o Fibre saturation point (FSP) measured by the solute exclusion technique (Stone 

and Scallan 1968). 

o The pore size distribution was measured by the cyclohexane thermoporosimetry 

technique based on the melting temperature depression of an absorbate in the 
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capillaries of porous material caused by increased pressure. The cyclohexane 

was used as absorbate and the melting temperature depression was then linked 

to the pore size as described in detail by Maloney (2000) and Wang (2006). 

o  The consolidation of the fibre network during filtration was measured using a 

gravity-driven filtration device equipped with a pulsed ultrasound-Doppler ane-

mometer. This device provides detailed information on the dynamics of filtration 

and the material properties of the consolidating fibre layers. A detailed descrip-

tion of this device and measurement method is contained in a publication by 

Kataja and Hirsila (2001) and article [I]. 

o Handsheets of 60 g/m2 were prepared in compliance with SCAN-C 26:76 and 

conditioned before testing at 23°C and 50% RH. The tensile properties of the 

handsheets were measured according to SCAN-P 38:80, tearing resistance ac-

cording to SCAN-P 11:96, Scott internal bond strength according to TAPPI T833 

and fracture properties according to SCAN-P 77:95.

Nonwood bagasse pulp 

Nonwood fibres can be divided into four categories based on their position in the 

plant: grass fibres, bast fibres, leaf fibres and fruit fibres. Grass fibres, such as rice 

straw, wheat straw, bagasse and bamboo are usually used for the most common 

paper grades and sugar cane bagasse is ranked as the second biggest nonwood fibre 

resource (Atchison 1996, FAO 1999). Papermaking using nonwood fibres is ham-

pered by various difficulties, some of which are due to the chemical composition of 

the fibres, for instance their high silica content. Other difficulties are due to their 

morphological properties, for instance, nonwood fibres are slender and compara-

tively short and are accompanied by a high weight percentage of parenchyma cells 

and a dense epidermis and dirt (non-fibrous cells) (Swamy Veerabhadra 1986, Hua 

et al. 1988). Because of their high non-fibrous content, fines and hemicellulose 

contents, nonwood pulps have a high water retention value (WRV) and are difficult 

to dewater (Cheng et al. 1994, Subrahmanyam et al. 1999). Their short fibres 

impair their runnability in papermaking and make them less suitable for fast and 
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large paper machines. Despite these difficulties, nonwood fibre pulps are a good raw 

material for printing papers, improving their formation and smoothness. Conse-

quently, nonwood fibre pulps offer good papermaking potential compared to 

hardwood market pulps (Rousu 1997, Paavilainen 2001). 

Fractionation of bagasse pulp 

In bagasse pulp fractionation, fines and short fibres tend to accumulate and be 

easily directed to the accept fraction. At a high reject rate, the accept freeness and 

average fibre length are decreased dramatically, as shown in Table 3, whereas at a 

low reject rate, the accept fraction has almost the same quality as the feed pulp. At 

a low reject rate, part of the long fibres are forced to pass through the screen aper-

ture, thus raising the accept’s average fibre length and freeness. Adjusting the 

reject rate will alter the fibre quality (fines content, average fibre length and 

coarseness) of each fraction and therefore the potential offered by fractionation. 

Table 3  Bagasse fractionation data. 

Test run1, screen basket slot # 
0.06mm

Test run2, screen basket slot # 
0.09mm

Feed Accept Reject Feed Accept Reject 
Consistency, % 0.968 0.475 2.111 0.989 0.786 1.645 
Reject rate,% 65.9 20.4 
Freeness, ml 290 200 459 290 272 449 
L(l), mm 0.73 0.49 0.85 0.73 0.70 0.85 
Coarseness, mg/m 0.132 0.130 0.135 0.132 0.128 0.142 
Fines, % 12.37 20.08 8.68 12.37 12.55 9.93 
Width, m 21.9 21.1 22.4 21.9 22.0 21.6 
CWT, m 6.1 5.9 6.3 6.1 6.0 6.3 

Fractionation and filtration 

Figures 1.a and 1.b show the filtration data with the consistency of different fi-

bre layers plotted as a function of dewatering time for both the original bagasse 

pulp and the reject fraction. After a certain dewatering time, the reject fraction 

fibre layers are dewatered faster and reach a higher consistency than the original 

un-fractionated bagasse. The permeability (given by the Kozeny-Carman constant) 

of both the reject and original pulp is affected by several fibre properties such as 
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fibre length, coarseness and fines content, following the trend of pulp freeness. Not 

only does the reject fraction provide a more open network but also its fibre layers 

are able to carry more structural pressure at the same consistency than the original 

bagasse pulp.

Figure 1.a. Mass consistency of fibre layers as a 
function of time during filtration of reject fibre 
fraction. The curves are labelled according to the 
initial distance from the wire of the corresponding 
pathline (fibre layer).

Figure 1.b. Mass consistency of fibre layers as 
a function of time during filtration of original 
un-fractionated bagasse pulp. The curves are 
labelled according to the initial distance from 
the wire of the corresponding pathline (fibre 
layer).

Fractionation and refining 

A big proportion of the swelling (FSP value) of bagasse pulp is due to its original 

high fines content, which is also increased with refining. Htun et al. (1981) and 

Maloney et al. (1999) explained the high swelling of fines by their higher content of 

micropores water and their higher proportion of amorphous cellulose compared to 

fibres. Figure 2 shows the increase in swelling (FSP) of fibres retained on a 100-

mesh wire, separated from refined reject and unfractionated bagasse pulp, as a 

function of refining energy. At the same refining energy input, fibres separated 

from the reject fraction display greater swelling than fibres separated from unfrac-

tionated refined bagasse pulp. Accordingly, the refining of the reject fraction was 

apparently homogeneous and energy-efficient. Refining causes an increase in fibre 

swelling and the fines content, which greatly increases fibre bonding and is re-
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flected as higher sheet density, as shown in Figure 3. At a certain sheet density, the 

reject fraction retained a higher tear index than the original pulp and the tear index 

was decreased with the increase in refining energy due to the fast breakage of cell 

wall bundles of bagasse fibres. Against this background, light beating can be rec-

ommended for the reject fraction and the original un-fractionated pulp. 
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Figure 3. Tear resistance vs. apparent sheet 
density for bagasse pulp and reject fraction. 
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Rousu and Niinimäki (2005) in their study on non-wood pulp constituents con-

cluded that even though nonwood fines impair dewatering and tear index, a partial 

presence of these fines is beneficial for optical and tensile properties. Retulainen 

(1997) explained the role of both TMP and kraft fines to the fibre network, and 

optical and strength properties. The bagasse accept was added to once dried soft-

wood pulp before refining in percentages of 10 to 30%. The addition of short, thin 

fibres and the high fines content of the bagasse accept improved the strength 

properties of softwood pulp, making it possible to reach the same tensile index with 

less refining energy as shown in Figure 4. The additions also introduce more surface 

areas that scatter more light and thus improve the light scattering coefficient of 

softwood pulp at a certain density as shown in Figure 5. At certain tensile index 

and up to 20% addition of bagasse accept, there was no clear decrease in the tear 

index of softwood pulp, whereas further addition decreased the tear index notably. 

Eucalyptus pulp 

Since the mid-1960s, when eucalyptus kraft pulp was first introduced, eucalyp-

tus pulps have gradually evolved to dominate the world hardwood pulp market, 

driven by technical and economic reasons. Eucalyptus wood grows fast and pro-

duces a high pulp yield with excellent technical properties which make it suitable 

for a wide range of paper grades, such as writing and printing paper, specialty 

papers and tissue (Cotterill et al. 1997, Santos et al. 2005, Celso Foelkel 2007). 

Though bleached eucalyptus kraft pulp produces excellent paper properties such as 

good bulk, strength, formation, uniformity, and optical properties, eucalyptus pulps 

are still blended with up to 50% long-fibre softwood pulp to meet the overall end-use

requirements of paper (Demuner et al. 1991, Brindley and Kibblewhite 1996, 

Mansfield et al. 2004).

Hardwoods contain a variety of different cells in the form of fibres, vessel ele-

ments, tracheids and parenchyma cells. The chemical composition of each type of 

cell and their percentage in the wood vary widely with different species. Only a few 

studies (Demuner 1999, Li et al. 1999) have been conducted on eucalyptus frac-
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tionation using a hydrocyclone, showing that different fractions have different 

chemical and morphological compositions and therefore different papermaking 

properties

Compared to softwood, hardwood fibres are shorter, thinner and unable to resist 

high refining loads, so they require gentle treatment with low refining intensity 

(Sigl 2001). Baker (2001) and Manfredi (2004) have concluded that the optimum 

refining conditions for eucalyptus pulp are 3.0-6.0% consistency, 0.3-1.0 specific 

edge load (J/m) and up to 160 kWh/t refining energy. Demuner et al. (2005) pro-

posed the use of ultra-low intensity (0.05 J/m) with a special filling design that 

promotes fibre straightening and fibre cell wall hydration during refining. 

Fractionation of eucalyptus pulp 

Figure 6.a shows the changes in average fibre length of accept and reject aver-

age fibre length compared to feed pulp with different screen sizes. A hole screen 

with a hole of size 0.6 mm seemed to produce the greatest difference in average 

fibre length between accept and reject. At a low reject rate, both the reject and 

accept had a high average fibre length, and an increase the reject rate tended to 

reduce the average fibre length of both the reject fraction. Both consistency and 

pulp freeness show the same trend as average fibre length. In two-stage fractiona-

tion, only a hole screen with a hole size of 0.6mm was used and the trials were 

arranged so that the reject from the first screen was used to feed the second-stage 

screen after dilution. In Figure 6.b, the average fibre length of the final reject and 

combined accept are compared to those obtained from single-stage fractionation. 

Two-stage fractionation strongly increased the reject’s average fibre length and pulp 

freeness.

The fibre content was higher in the reject fraction than in the accept, whereas 

the accept fraction contained more vessel and ray cells. Although the percentage of 

vessels was higher in the accept than in the reject fraction, the distribution of 

vessels based on their length and width was different in the accept and reject. The 

coarser (high width) and longer vessels (0.2-1.0 mm) were mainly accumulated in 

the reject fraction, while thinner (low width) and shorter vessels were mostly 

accumulated in the accept fraction. There were also differences in the chemical 
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composition of accept and reject compared to the feed pulp, for instance the extrac-

tives content, with the reject showing less acetone extract compared to the feed and 

accept pulps
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Figure 6.a Length weighted average fibre 
length as a function of mass reject rate: trian-
gles refer to a hole screen of 0.6mm, circles to a 
hole screen of 1.0 mm, diamonds to a slot screen 
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Figure 6.b. Average fibre length vs. mass re-
ject rate with a 0.6mm hole pressure screen. 
Triangle symbols refer to single-stage frac-
tionation, and square symbols to two-stage
fractionation. 

Fractionation and refining  

In two-stage fractionation trials, which were proceeded by refining, a hole screen 

with a hole size of 0.6mm was used. The two-stage trials were arranged so that the 

reject from first screen was used to feed the second-stage screen after dilution. A 

layout of the fractionation and quality of pulp in each fraction is shown in Figure 7. 

Figure 7.  Layout of two-stage fractionation trials. 
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Figure 8 shows the pore volume as a function of pore size, measured using the 

cyclohexane-based thermoporosimetry of the unrefined original eucalyptus and the 

reject fraction. The original eucalyptus pulp had a bigger pore size than the reject 

fraction, which contributed to the high swelling measured as the fibre saturation 

point (FSP) of the original eucalyptus compared to the reject fraction.  At the same 

refining energy, the increase in pore volume due to refining was greater in the 

reject fraction than the original pulp, as shown in Figure 9.  Due to refining, the 

small pores (<20nm) of the reject fraction increased in size to the same level as that 

of the refined eucalyptus pulp, whereas the big pores (>20nm) expanded more in the 

reject fraction than in the eucalyptus pulp, which explains why the FSP of the reject 

fraction was higher than that of the original pulp after refining. Accordingly, the 

refining of the reject fraction was apparently homogeneous and efficient in opening 

pores and the increase in swelling compared to the original eucalyptus pulp. 
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Figure 8. Pore size distribution and fibre saturation 
point of original eucalyptus pulp and reject fraction 
before refining. 

Figure 9. Pore size distribution and fibre 
saturation point of original eucalyptus pulp 
and reject fraction after refining (SEL 0.3 
J/m, SRE 160 kWh/t). 

The total reject rate of the fractionation unit plays the main role in determining 

the quality of the reject pulp produced. Figure 10 shows two pulps produced at a 

reject rate of 21% and 69 % and refined under the same conditions compared to the 

original pulp. At a tensile index of 70 Nm/g, the reject pulp produced with a low 

reject rate (21%) reached the same tensile index, while maintaining the highest 

pulp freeness (434 mL) and consuming the lowest amount of refining energy (62 
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Kwh/t), whereas the reject pulp produced with a high reject rate (69%) reached the 

same tensile index but at a lower freeness (300 mL), while consuming more refining 

energy (122 kWh/t). 

The original eucalyptus pulp and different pulp fractions were blended with re-

fined softwood pulp, using 50 and 75% eucalyptus pulp in the mixture sheets. Both 

the reject and original eucalyptus were refined with a specific edge load (SEL) of 0.3 

J/m and refining energy inputs of 110 and 160 kWh/t. Using the reject fraction as a 

furnish component was found to be beneficial in developing a higher tensile index, 

fracture toughness and bulk compared to the original unfractionated eucalyptus 

pulp. A higher refining energy input of 160 kWh/t was beneficial in promoting the 

tensile index and fracture toughness, as shown in Figure 11, whereas a lower 

refining energy input of 110kWh/t was beneficial in preserving the bulk of the 

mixture sheets. Properties such as the mixture average fibre width and average 

fibre length were found to be the most important variables in controlling the result-

ing paper properties, with the percentage of hardwood pulp and the degree of 

hardwood refining being the next most important. Therefore, replacing the original 

eucalyptus pulp by the reject fraction in mixture sheets would allow reducing the 

addition of softwood pulp while maintaining a certain paper quality. Consequently, 

the possibility to minimize the expensive part of the furnish shows the economic 

potential of using fractionated eucalyptus pulp. 
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Softwood pulp 

Softwood is often used as reinforcement pulp to improve runnability in paper-

making and to improve the strength properties of paper. Refining (beating) has 

been the traditional way to enhance the quality of reinforcement pulp for optimal 

strength properties. Recently, fracture toughness has been proposed to be related to 

breaks and the sheet resistance to break propagation (Page and Seth 1982, Ket-

tunen 2000, Yu 2001), where fibre strength, bonding and fibre length are important 

in enhancing fracture energy. Uesaka et al. (2001) concluded that the press room 

runnability of paper is strongly influenced by the uniformity of strength, elastic 

stretch and tensile strength, whereas tear index is not a good runnability indicator. 

The good strength properties of softwood originate from the fact that the fibres 

are long, strong and flexible. Although fibre length and strength are important in 

controlling the paper properties, cell wall thickness is also another important for 

the papermaking potential of specific fibres (Paavilainen 1993). Fibre deformations 

and other defects which originate during the course of the pulping process (McLeod 

et al. 1995, Clark et al. 1997, Tikka et al. 2001) have been found to influence the 

fibre network properties (Page et al. 1985) and the resulting paper strength proper-

ties (Mohlin et al. 1996, Mohlin et al. 2003, Joutsimo et al. 2005, Seth 2006). 

Fractionation of softwood pulp 

 The first stage of the fractionation trials in the present study consisted of a 

coarse screening using a hole screen with a hole size of 1.6 mm diameter operated 

at reject rate of 45% by mass. From the reject stream a coarse fraction with 2.41 

mm average fibre length and a coarseness of 232 mg/m was separated at a consis-

tency around 5.3%. The corresponding accept fraction had a shorter average fibre 

length of 1.95 mm and a coarseness of 191mg/m. The accept fraction from coarse 

screening was directed to a slot screen with 0.15 mm slots operated at around 50% 

reject rate by mass. A layout of the fractionation and quality of pulp in each fraction 

is shown in Figure 12.
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Coarse screen (Ø1.6mm) Slot screen (# 0.15mm)

Feed Pulp A 1 A2
CSF=718mL 55 % 27 % 0.64 % consistency
Lav=2.32mm CSF=590mL
223.3 g/m 45 % Lav=1.85 mm

28 % 155 g/m
R1 R2

5.33% consistency 2.7% consistency
CSF=753 mL CSF=730 mL
Lav=2.41mm Lav=2.19mm
232 g/m 207 g/m

Figure 12.  Layout of fractionation trials and fibre quality of each fraction. 

Fractionation and refining 

The reject pulp from coarse screening (R1) was refined with conical fillings with 

a SEL of 1.0 J/m and 4.2 J/m and compared to the unfractionated pulp refined with 

a SEL 2.5 J/m. In the laboratory refiner it was possible to measure the movement of 

the stator and refiner gap during refining of each pulp. Figure 13 shows the stator 

movement (indication of gap closure) plotted against different levels of refining 

energy. The reject fraction R1 contained pulp of high coarseness and average fibre 

length, therefore result in a wider and more open gap. At a low SEL intensity, the 

fibres maintained a wide gap, whereas an increase in refining intensity reduced the 

refiner gap. 

Figure 14 shows the pulp freeness against the percentage of external fibrilla-

tion calculated as the area of fibrils divided by the area of fibres from images taken 

by the fibre length analyzer (FibreLab 3.0). At a certain refining energy, the reject 

pulp treated with high SEL showed a higher degree of external fibrillation com-

pared to refining with low SEL, with a strong correlation between freeness and 

degree of fibrillation. 

To reach a tensile index of 70 Nm/g, the coarse reject fraction (R1) needs a 

higher energy input compared to unfractionated pulp, and the lower the intensity 

(SEL), the more refining energy is needed, as shown in Figure 15. On the other 

hand at the same tensile index, the reject fraction treated with a low SEL of 1 J/m 

had a higher tear index (+25%) than the original pulp, as shown in Figure 16. 
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Figure 14. Fibrillation vs. pulp freeness. 
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Figure 16. Tear index vs. pulp freeness at a 
tensile index of 70 Nm/g 

The mixed reject of R1 and R2 was treated with two different fillings and com-

pared to the unfractionated pulp treated under the same refining conditions. The 

two fillings used were conical filling (Ls=0.67 km/s) and narrow-bar disc fillings 

(Ls=2.84 km/s). The characteristics of the filling are listed in Table 2. Figure 17 

shows the changes in average fibre length against the refining energy input. In 

refining with conical fillings, the average fibre length of the mixed reject and 

original pulp are hardly changed, not even at a high energy input of 240kWh/t. In 

refining with narrow-bar bar disc refining, the changes in average fibre length were 
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more noticeable, and as the energy input increases, the decrease in average fibre 

length becomes more prominent and low specific edge load of 0.5 J/m is beneficial in 

preserving the fibre length. In Figure 18, pulp freeness is plotted against the 

refining energy at a tensile index of 70 and 90 Nm/g. At the same tensile index, 

pulps refined with conical fillings maintain a slightly higher freeness compared to 

pulps refined with narrow-bar disc fillings but with a higher energy input. The 

difference in refining energy between the two fillings is in the range 70-100 kWh/t 

when the target is a certain tensile index of 70 or 90 Nm/g.
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Figure 18. Pulp freeness vs. refining energy at 
a tensile index of 70 and 90 Nm/g; empty 
symbols refer to the conical fillings and filled 
ones to  narrow-bar disc fillings. 

The final accept fraction (A2) has an average fibre length of 1.85 mm, which 

make it less competitive as a common softwood pulp. On the other hand, the accept 

fraction mostly consists of short, thin fibres and fines, which make it very beneficial 

when high strength properties are needed. One possibility pursued in the present 

study was using the accept fraction to replace a certain proportion of the once dried 

softwood pulp as a means to improve the strength properties, similar to the addition 

of hardwood pulp to a softwood furnish. To reach a certain tensile index, at 26% 

accept addition, the refining energy of once-dried softwood pulp was reduced by 60 

kWh/t (-35%) while maintaining the same freeness level, as shown in Figure 19. 

Figure 20 shows the development of internal bond strength due to refining and 
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addition of accept fraction. Replacing part of the original pulp with the accept 

fraction strongly increased the Scott bond value and at the same refining energy 

level of 240 kWh/t, the Scott bond was doubled by the addition of 26% accept frac-

tion.
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Figure 20.  Scott bond vs. refining energy. 

Summary of part 1 

Pressure screen fractionation was used as a tool to fractionate the original ba-

gasse, eucalyptus and softwood pulps into a reject fraction with longer and coarser 

fibres compared to those accumulated in the accept fraction. The operating reject 

rate, screen dimensions and the fractionation layout (single or two stages) deter-

mined the quality of each fraction produced. The reject fraction showed better 

dewatering efficiency than the original pulp. This was reflected as increased consis-

tency in fibre layers and higher solid structure pressure, resulting in good wet 

runnability and improved drainability (bagasse pulp trials). The refining of the 

reject fraction was apparently more homogeneous and energy-efficient in increasing 

fibre swelling compared to the refining of the original unfractionated pulp, when 

compared at certain refining energy input (kWh/t). Low-intensity refining of the 

reject fraction was beneficial in preserving the average fibre length and in main-

taining a higher tear index, but at the expense of a higher refining energy input to 
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reach a certain tensile index. In mixture sheets of eucalyptus and softwood pulp, 

the use of fractionated eucalyptus pulp showed potential to reduce the amount of 

expensive softwood pulp by optimizing the mixture fibre properties. The accept 

fraction from bagasse and softwood pulp was used to enhance the strength proper-

ties of once dried softwood pulp, reducing the refining energy input needed to reach 

a certain tensile index. Therefore, fractionation and selective treatment and use of 

fibre fractions serve as a useful tool to produce fibres of different strength proper-

ties for different paper grades, while reducing operating costs through a lower 

refining energy input.   

Part 2: Mechanical pre-treatment before refining 

The strength of softwood pulps deteriorates in the fibre line, in bleaching and in 

pulp drying (Howard and Bichard 1992, Clark 1997, Tikka and Sundquist 2001, 

Seth 2001, Gurnagual and Page 2001). The strength loss throughout the fibre line is 

due to increased fibre deformation, and in pulp drying to the reduction in the 

swellability of fibres. Another effect of drying is the closing of pores, which are not 

fully re-opened under normal refining conditions (Stone et al. 1968, Maloney and 

Paulapuro 1999). Normally, fibres collapse under deformation and bending from 

external pressures. In the absence of external pressures, fibres collapse under 

surface tension as water evaporates, as it does in pulp drying.

In mechanical pulping, mechanical pre-treatment before refining has been found 

to be highly justified in improving the efficiency of refining, resulting in improved 

fibre quality, and reduced refining energy consumption (Sabourin 2000, Kure et al. 

1999, Law et al. 2000, Viffor and Salmén 2008). Yung et al. (2002) conducted 

experiments by using a mixer with compressive and shear action on chemical pulps 

fibres and old corrugated containers (OCC). They concluded that the WRV and 

strength properties of a pre-treated fibre furnish were higher than those of an 

untreated furnish. Wang et al. (2006) used a Material Test Simulator (MTS) to 

subject a thick pulp pad to compression action, finding a similar improvement in 

strength properties for the treated pulp.
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Mechanical pre-treatment

To generate a treatment that involves a combination of compression, shear 

forces and heat, an EP-210 laboratory calender was used. The design of the calender 

is shown in Figure 21. The EP-210 calender consists of two rolls with two independ-

ent motors, a hydraulic unit to generate hydraulic pressure in the calender nip, a 

load cell, an IR heater to adjust the temperature of the rolls, and a speed control 

unit to adjust the calender speed.  The nip load of the two rolls can be varied in the 

range 0-300 kN/m, the calender operated in speed range 0-40 m/min, and the speed 

difference between the two rolls changed (from+1 m/min to –1 m/min) to create 

shear forces.

The pulps used in the trials were a never-dried softwood kraft pulps; for details, 

see article [IV]. Pulp sheets of 500 g/m2 were prepared for mechanical treatment 

using a traditional laboratory sheet mould measuring 16 x16 cm. The pulp sheets 

were couched with two dry blotters without any pressing and the final solids con-

tent of the pulp sheets was in the range of 20±3%. 

                                   
Figure 21. Design of EP-210 calender. 

The compression forces applied as linear loads in the pre-treatment caused dif-

ferent types of deformation in the direction of fibre axis and transverse dimensions. 

The decrease in fibre cross section area was assessed by Confocal Laser Microscopy 

(CLSM) and represented as the collapse index of the lumen area and calculated 

according to equation number 1, based on Jang et al. (1998).  Acollapsed is the lumen 

area obtained from cross sectional images of treated fibres, and Auncllapsed is the 

lumen area before the treatment. Increased linear load caused a higher degree of 



29

lumen collapse, and an increased number of passes promoted the collapse of fibres, 

as shown in Figure 22. 

              Collapse Index (CI) =  
duncollapse

collapsed

A
A

1                                                                   [1] 

The application of linear loads on wet pulp tends to close a proportion of pores in 

the fibre wall structure, and therefore the pore water and fibre saturation point 

(FSP) decrease, as shown in Figure 23. Consequently, linear loads cause increased 

fibre collapse and flattening of fibres, and thereby an increased fibre area for 

bonding and densification of the fibre network which is reflected as an increased 

tensile index. An increased number of passes through the calender nip enhances the 

development of the tensile index, with the increasing trend levelling out after four 

passes, as shown in Figure 24.  
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The running speed or the nip residence time, together with the linear load, de-

termines the load impulse. An increase in running speed decreased the fibre 

residence time under load, thus reducing fibre deformation, and consequently the 

collapse and deswelling of fibres. The effect of shear forces on the tensile index was 

rather low compared to the changes in tensile index caused by increasing linear 

loads. An increase in the roll temperature was found to have a positive effect on the 

tear index as the roll temperature increased from 30°C to 150°C. The presence of 
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heat tends to increase the plastic deformation and relative compressibility of fibres, 

which results in increased fibre deformation under load. 

To determine the importance of each calender variable studied, a Partial Least 

Squares Projection to Latent Structure (PLS) statistical model was built. The model 

was designed to clarify the importance of each calender variable (inputs) for the 

measured fibre and paper properties (Ericksson 1999), as shown in Figure 25. The 

number of passes and load applied in each pass are the most relevant in explaining 

the changes in fibre and paper properties, followed by heat, running speed and 

speed differences (shear forces) 
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Mechanical pre-treatment and refining 

Three types of pulps were compared under the same refining conditions: never 

dried, once dried and mechanically pre-treated pulp. The details of the pulps and 

their treatment are given in article [IV, Table1]. Pulp freeness is closely related to 

several phenomena in refining, such as external fibrillation, fibre shortening and 

fines creation. Never dried pulp lost its freeness faster during refining than dried 

pulp and mechanically pre-treated pulps, and the pre-treated pulp retained a higher 

freeness than once dried pulp, as shown in Figure 26.  External fibrillation is 

calculated as the proportion of the fibril area of the total fibre area in microscopy 

images. Never dried pulp showed the highest amount of fibrillation and mechani-

cally treated pulp the lowest, when compared at the same refining energy input, as 
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shown in Figure 27. Mechanically treated fibres showed a lower tendency to fibril-

late, to shorten and to produce fines in refining, compared to other pulps, which 

contributed to its higher freeness. 
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The filtration properties of fibres were examined in terms of the flow resistance 

of fibres (R200) collected from refined pulps at a refining energy level of 200kWh/t. 

Figure 28 shows the flow resistance during dewatering as a function of dewatering 

time. The refined never dried fibres showed the highest dewatering resistance, 

whereas mechanically pre-treated fibres and dried fibres showed lower dewatering 

resistance, which means better drainability. The flow resistance showed a strong 

correlation (R2=0.8) with the fibre swelling FSP value; hence, the greater the 

swelling, the higher the dewatering resistance. 

At a given refining energy level and pulp freeness, both never dried and me-

chanically pre-treated pulps developed a higher tensile index than once dried pulps, 

as shown in Figure 29. In Figure 30, the tear index is plotted against refining 

energy. At a given level of refining energy, the mechanically pre-treated pulp 

showed an average value between the high tear index of once dried and the low tear 

index of never dried pulp. In both mechanical pre-treatment and drying, water is 

pressed out from the fibres, causing the fibres to de-swell, pores to be closed and 

bonding to develop between microfibrils. This makes the fibre wall stiff and rigid, so 

the resistance to tear increases. However, the effect is stronger in drying than in 

mechanical treatment. Fibres are also curled, kinked and micro-compressed during 
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water removal, so a paper sheet made of such fibres has a poor tensile index, but 

improved tear strength (Page 1985, Fellers et al. 2001). 

The tensile stiffness and probably also the dynamic visco-elastic behaviour of 

the paper web are a good measures of the paper machine’s output rate (Uesaka 

2001). Wathén (2006) commented on the importance of tensile stiffness and web 

uniformity for problem free runnability. Figure 31 shows the development of tensile 

stiffness with refining. When all pulps are compared at a given freeness, the pre-

treated fibres show a greater tensile stiffness than never dried and once dried 

pulps.
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Figure 29. Tensile index vs. pulp free-
ness.
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Summary of part 2 

The new mechanical pre-treatment examined was found to significantly influence 

the strength-dewatering properties by promoting lumen collapse and the de-

swelling of fibres. Optimum conditions for the treatment were a high linear load 

and temperature, low speed, high shear forces and multiple-pass treatment. In 

refining, mechanically pre-treated fibres showed a consolidated structure that 

resulted in less external fibrillation, and less fibre cutting and fines creation and 

they therefore retained a higher freeness after refining. Mechanically pre-treated 

fibres showed good dewatering comparable to that of once dried pulp and better 

than that of never dried pulps. At a given level of refining energy, mechanically pre-

treated fibres develop higher tensile strength, tensile stiffness and Scott bond than 

once dried pulp. Compared with never dried pulps, the mechanically pre-treated 

fibres develop a better tear index. The treatment offers a flexible industrial tool to 

modify pulp before refining and the possibility to optimize the combination of 

strength and dewatering of refined fibres. 

Part 3: Impact of fibre properties and filling design on refiner 
loadability and refining characteristics 

Papermaking fibres tend to agglomerate and form flocs by mechanical or 

chemical mechanisms. Kerekes et al. (1985) generalized the idea of Mason (1950), 

and Meyer and Wahren (1964) and proposed the crowding number “N” to define the 

numbers of fibres in a volume swept out by the length of a fibre. At low shear or 

decaying turbulence the fibres tend to build up and form flocs, and at high turbu-

lence and high shear, the fibre flocs are dispersed and broken up. Floc formation, 

floc dispersion and floc size measurements have been studied by several researchers 

(Steen 1989, Stoere et al. 2001, Switzer et al. 2003, Salmela et al. 2005). 

A number of refining effects have been identified and characterized by many 

authors, including Higgins and de Yong (1961), Giertz (1980), Ebeling (1980), and 

Page (1989). Primary refining effects consist of the structural changes associated 
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with refining, distinguishing beaten fibres from unbeaten fibres, i.e., internal 

fibrillation (swelling), external fibrillation, fines formation, fibre cutting or shorten-

ing, and fibre curling or straightening. Internal fibrillation is related to the 

breakage of internal bonds between microfibrils under the strains imposed by 

normal forces inside the refiner (Stone et al. 1968, Kerekes and Senger 2006). 

External fibrillation is the peeling off of fibrils from the fibre surface while fibrils 

are still attached to the fibre body (Page 1989). Formation of fines is similar to 

external fibrillation but the fibrils are completely detached from fibres. Both fines 

and external fibrillation are created by the shear strains inside the refiner. Fibre 

straightening/curling originates from the tension strain inside refiner. 

The behaviour of the refiner gap during refining has attracted the interest of 

many researchers (Range 1951, Steenberg 1951, Page et al. 1962, Fox et al. 1979), 

concluding that the refiner gap is related to fibre characteristics and that the pulp 

flows as flocs inside the refiner grooves. In 1990, Hietanen and Ebeling proposed a 

floc refining hypothesis which entails an increase in the refiner gap with an in-

crease in pulp flocculation. In experiments with a single-bar refiner, the forces and 

force distribution among fibres have been used to characterize the refining action 

(Martinez and Kerekes 1994, Martinez et al. 1997, Batchelor et al. 1997). 

Floc size measurement 

In the present study, the flocculation of pulps was studied in a flow loop system 

simulating refiner grooves and the flow velocities in refining, see Figure 31. The 

loop consisted of a 0.2 m3 tank, a centrifugal pump, and a plastic flow loop with an 

inner diameter of 40mm and slit height of 5 mm (refiner groove width). The average 

size of flocs was evaluated downstream after the abrupt contraction from 40 mm 

through the slit of 5 mm using a fast CCD camera mounted above the slit. A com-

puter program was used to adjust the flow speed, light source, and position of the 

camera. A total of 200 images per position along the slit were taken. After correct-

ing the images for uneven illumination, the floc size was determined in the flow 

direction (FD) and the transverse flow direction (TD) as a run-length average of the 

median thresholded image, described in detail by Kellomäki et al. (1999), Karema 

et al. (2001), and Salmela et al. (2005).  
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As the pulp flows through the slit (5 mm) and after the contraction from the 40 

mm size tube, the flocs are subjected to both deformation and stretching.  The 

deformation seen as the floc size has decreased at the end of the slit by 30% from its 

original size at the slit inlet. The floc deformation is due to turbulence and wall 

shear forces, which deform the flocs and reduce floc size along the slit, as shown in 

Figure 32.  The stretching seen as the flocs aspect ratio (FD/TD) was 1.5-1.9 times 

larger in the FD than in the TD at the slit inlet. By the end of the slit the flocs 

retain their spherical shape and the floc aspect ratio reaches the level of 1.0, as 

shown in Figure 33. The stretching strain is due to the abrupt contraction at the slit 

inlet. Pulp with long and coarse fibres forms large and strong flocs that are able to 

resist floc size reduction better along the slit compared to pulp of shorter and 

thinner fibres. The change in floc size is also related to floc residence time inside the 

slit; the longer the residence time the greater the deformation and the more floc size 

changes due to floc deformation. 

Figure 31. Flow geometry used in measurements. The tube and slit dimensions (height and 
length) were used to simulate refiner grooves. 
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Fibre properties and refiner loadability 

 The refining trials were conducted with a Voith LR 40 Laboratory refiner. The 

refining was carried out at the same conditions of 2000 rpm, a refining energy input 

of 50 kWh/t and a specific edge load of 2.0 J/m. The data collected from the refiner 

includes the no-load power, total power and the stator movement indicating the 

refiner gap between the rotor and stator during refining. The refiner loadability and 

the trapping point at which the fibres start being picked up by the rotor and stator 

bars, and, accordingly, the power consumed in actual refining, were calculated 

using a technique similar to the one proposed by Batchelor et al. (2006). Figure 34 

shows the net power in refining against the gap movement. The pulp with long and 

coarse fibres was trapped early in gap closure, maintaining a wider gap than the 

pulp with shorter and thinner fibres. 

Figure 35 shows the net power and gap movement for pulp with short and thin 

fibres at a constant consistency of 4% when the fibre characteristics were changed 

by adding 30% and 60% by weight of pulp with long and coarse fibres. Increased 

addition is reflected as an earlier trapping point and an increase in gap width due 

to the increase in floc size caused by long fibres. An increase in pulp consistency 

(from 2.0% to 5.5%) hardly changed the trapping point, causing only a minimal 

change in gap width. The effect of increased pulp consistency was small compared 

to the change in fibre characteristics caused by addition of long and coarse fibres. 
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Filling design and refiner loadability 

For a certain pulp, both wide-bar and narrow-bar fillings have the same trapping 

point, where the wide-bar disc fillings maintaining a wider gap than the narrow-bar

disc fillings and the net power for narrow-bar disc fillings being almost three times 

the net power for wide-bar disc fillings, as shown in Figure 36. This is explained by 
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the high edge cutting speed of the narrow-bar disc fillings; the gap width was found 

to decrease linearly with the increase in net power and bar edge cutting speed. 

 When refining different pulps with the narrow-bar disc fillings (high cutting 

edge speed), both pulps tended to behave similarly with the same trapping point 

and gap width. The narrow-bar disc fillings with narrow grooves and high cutting 

edge speed create a high shear field inside the refiner which disperses and breaks 

fibre flocs in the refining zone and differences in floc sizes do not cause big differ-

ences in the gap width, trapping point or loadability of the refiner. 

Impact on refined fibres 

The fibre straightening or fibre curl occurring in pulp refining has recently at-

tracted a lot of attention, as uncurled fibres have been found to improve tensile 

strength and load-transferring efficiency (Page 1985, Mohlin 1996, Seth 2006).  

Both conical and wide-bar disc fillings showed a straightening effect as the meas-

ured average fibre length tended to increase due to refining (SRE=50 kWh/t). Both 

fillings had low cutting speed and wide grooves, which are assumed to be beneficial 

in reforming and relaxing the fibres after impacts between the rotor and stator 

bars. The effect of narrow-bar disc fillings was fibre cutting, with the cutting effect 

being greater in pulp with long and coarse fibres, as shown in Figure 37. The big 

flocs are easily trapped between bars and are therefore subject to more intensive 

cutting action compared to small and weak flocs which tend to break easily and 

pass through the refining zone. 

External fibrillation is another refining effect whose importance for strength 

properties has been examined in only a few studies (Casey 1960, Nanko 2003, Kang 

2007). Figure 38 shows the changes in external fibrillation as a function of the type 

of pulp and filling design.  The big flocs formed by long and coarse fibres are able to 

resist high shear forces between fibres and friction, which leads to higher external 

fibrillation. In contrast, small flocs are not so easily trapped between bars, espe-

cially in the wide grooves of conical fillings, which showed the smallest increase in 

external fibrillation. Narrow-bar disc fillings produced the greatest external fibrilla-

tion due to the high shear forces of the filling. 
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 Big flocs maintained a wide gap between rotor and stator, and the bigger the 

flocs, the less the fibres were subjected to forces, and the less they swelled. The 

increase in the cutting speed of fillings tends to increase the intensity of forces 

acting on fibres, causing more fibre strain and more cell wall breaking, and, accord-

ingly, greater fibre swelling (increase in FSP). Therefore, conical fillings with the 

lowest cutting speed showed the smallest increase in fibre swelling, whereas the 

narrow-bar fillings with the highest cutting speed showed the greatest increase in 

fibre swelling.
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Summary of part 3 

Fibres characteristics such as fibre length and coarseness together with pulp 

consistency, contribute to the type of flocs formed during refining. Long and coarse 

fibres form big and strong flocs that are stable with less reduction in size under 

deformation. This was also reflected in the trapping of fibres and gap width during 

refining. Big flocs were trapped early in refining and maintained a wider gap 

compared to fibres that form smaller flocs. The effect of pulp consistency on fibre 

trapping (loadability) and gap width was smaller than that of fibre properties 

(length, coarseness) 

The trapping point and gap width are also linked to details of the filling design, 

such as groove width and bar edge cutting speed (km/s). Fillings with wide grooves 

and low edge cutting speed impart a mild effect on fibres flocs and maintain a wide 

gap, whereas in refining with high edge cutting speed fillings, the differences in floc 

size originating from differences in fibre properties did not produce clear differences 

in gap width or the trapping of fibres. The refining results such as swelling, exter-

nal fibrillation and fibre cutting are dependent on the filling design, the type of 

fibres and fibre properties, so selecting the right type of fillings for a specific fibres 

is the most effective way to optimize the obtained refined pulp properties.  

Part 4:  On-line measurements of fibre properties and control of 
pulp quality in drying and refining 

Wood fibre properties differ within a species, between trees of the same species, 

inside the tree stem (juvenile wood, mature wood) and even within one growth ring 

(earlywood, latewood). One step further towards tailoring pulp quality for specific 

paper products is to apply advanced on-line fibre property measurements. The fibre 

length, perimeter, wall thickness and wall area, as well as the number of fibres per 

unit weight, have been found to be critical in designing or selecting fibres for 

different paper grades (Lee et al. 1993, Kibblewhite 1999).  

Since the early 1970s, optical fibre quality analyzers have been available in the 

market, making it possible to measure fibre length, width, deformation, fines and 
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bendability. These analyzers use polarized light to project images of the fibres in 

the measured sample (Robertson et al. 1999, Guay et al. 2005, Turunen et al. 2005), 

one of such analyzers is the L&W Fibremaster which can be used to measure fibre 

length, width, shape, kink, fines, coarseness, bendability, vessels, and shives 

(Karlsson et al. 1999, Karlsson 2004). 

 For mechanical pulp characterization, Forgacs (1963) used two quality parame-

ters, the shape and length factors. Mannström (1967) divided the length factor used 

by Forgacs into mean fibre length (d) and fibre length distribution (n). Later on 

Strand (1987, 1989) introduced the factor analysis technique to explain variations 

in the measured pulp and paper properties of mechanical pulps based on independ-

ent factors. This technique was also found to allow good control of the grinding 

process (Paulapuro and Ryti 1976). For chemical pulp, Howard et al. (1994) and 

Page (1989) concluded that beating of chemical pulps is a process that should be 

examined by factor analysis and laboratory beating was explained by three factors: 

bonding, fibre length and fines, and micro-compressions.

Factor analysis is a data reduction technique used to reduce a large set of inter-

related variables into a few common factors. Therefore, factor analysis is well suited 

for processing fibre and paper property data sets, as they involve strong interrela-

tions. The data reduction is carried out by examining the degree of correlation 

among the data sets and expressing each variable in terms of common factors. The 

basic sets of equations which relate variables to the common factors are explained 

with details at Strand (1987), Strand et al. (1989), and Sharma (1996). 

Factor network and control model 

A factor network was developed and used to link the measured fibre properties 

and paper characteristics. In the first phase of the work, an off-line quality control 

model was constructed. In the second phase, the quality model was tested on-line 

with real pulp mill trials, as shown in Figure 40. The factor network was built to 

comprise input variables, common factors and output variables and was used to 

evaluate the relationship between all variables for never-dried and machine-dried 

pulps. On one side of the network are input variables which cover the measured 

pulp properties (freeness, fines content, average fibre length, fibre width, shape 

factor and dry solids content). On the other side of the network are the output 
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variables, which cover all measured paper properties. The fibre properties were 

collected from the FibreMaster measurements and all statistical factor analyses 

were carried out using the Pacific simulation software package FactNet® (Pacific 

simulation 2002). 

Figure 40. Off-line and on-line model combination layout. 

Quality control of never and machine-dried pulp 

From the off-line model, it was found that only three factors were enough to ex-

plain around 84.6% of the total variability in the pulp and paper data set. Factor 1 

was found to represent the bonding factor correlating positively with strength 

properties, negatively with light scattering and increasing with an increase in fines 

content. Factor 2 was found to depend on fibre dimensions, basically fibre length 

and width, correlating positively with tear and fracture toughness index. Factor 3 

was found to be related to the fibre shape (curl index), increasing with an increase 

in elongation and zero span strength. 

The on-line data collected from the FibreMaster with the factor model estab-

lished in the off-line phase were used to calculate a factor network. A quality map of 

Factors 1 and 2 was set up and used to control the quality of the pulp before and 

after pulp drying, as shown in Figure 41. This map was updated every 15 minutes 

using the on-line FibreMaster measurements and the quality of pulp was then 

described as a point of (X, Y) coordinates in a (F1-F2) map of never and machine-

dried pulps.
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Figure 42. Different pulp qualities vs. factor 1. 

The quality criterion using calculated factors (F1, F2) and the predicted paper 

properties were helpful in monitoring the changes in pulp quality and how they are 

reflected in targeted paper properties. For instance, when the pulp mill switched to 

a pulp with lower average fibre length (from 2.30 mm to 1.95 mm), the quality 

window reflects a strong decrease in Factor 2 and tear index. This change was also 

seen as an increase in Factor 1, as shown in Figure 42. Consequently, the quality 

window offers a good tool for on-line monitoring of the variations in pulp quality due 

to variations in raw materials or pulping conditions.

The paper properties predicted with the on-line model were tested and compared 

against laboratory-measured values for handsheets made from pulp samples of 

never-dried and machine-dried pulp. Using the measured fibre properties of never 

dried pulp, the on-line model is able to predict the papermaking properties of both 

never dried and machine-dried pulps. The on-line model produces a good prediction 

of the tensile index, Scott bond, light scattering coefficient and sheet density with 

R2 values of 0.85, 0.88, 0.76, and 0.73, respectively, see Figure 43. For never dried 

pulp samples, the laboratory measured tear index values were slightly lower than 

the values predicted by the model, while for machine-dried samples there was a 

better fit to line y=x. Therefore, the R2 value for the tear index was only 0.55, as 

shown in Figure 44. These results show the suitability of the model for fast and 

reliable follow-up of quality changes due to effects of pulp process (pulp drying) and 

variations in raw materials (different average fibre length). 
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Figure 43. On-line predicted tensile index 
versus laboratory-measured value. 

Figure 44. On-line predicted tear index 
versus laboratory-measured value. 

Quality control in pulp refining 

In the present study, the factor network was used to link input variables, which 

cover pulp properties and refining conditions (SEL, SRE), and handsheets paper 

properties as output variables. From this network, three factors were derived 

statically and found to account for about 90% of the data set’s total variability. The 

network was used to describe changes in pulp quality due to refining and to predict 

the paper properties based on measured fibre characteristics and refining condi-

tions (SEL, SRE), as shown in Figure 45. The refiner simulator used measured fibre 

properties (length distribution and pulp freeness) and refining conditions to calcu-

late the three common factors needed to calculate the output paper properties.  To 

examine the mechanism of strength properties and to find out how common factors 

could be used, tensile strength mechanism was explained by three factors and being 

dependent on fibre curl, FSP, fibre strength and fibre length. 

Figure 45. Factor network used in refining analysis. 

0,0

10,0

20,0

30,0

40,0

50,0

0 10 20 30 40 50
Model Predicted Value 

La
b 

M
ea

su
re

d 
Va

lu
e

Tensile index

Line Y =X

Never dried samples

Machine dried samples

R2 = 0,8585

10,0

14,0

18,0

22,0

26,0

30,0

10,00 14,00 18,00 22,00 26,00 30,00
Model Predicted Value 

La
b 

M
ea

su
re

d 
Va

lu
e

Tear index

Line Y =X

Never dried samples

Machine dried samples

R2 = 0,5528

CSF Tear Index, mNm 2/g

FACTO R 1 Air Resistance, Gurly,S

L av Scott bond, J/m2

Density, kg/m3

Fines % FACTO R 2 E,  N/mm 2

Tensile Stiffness, kNm/g

SRE TEA index, J/g

FACTO R 3 Tensile Index, Nm/g

SEL Fracture Toughness Index, Jm/kg 



46

The calculated factors could also be used also as a basis to define optimum refin-

ing conditions and major changes in fibre characteristics due to refining, such as 

bonding development, fibre straightening/curling and fibre cutting. Figure 46 shows 

the development of the bonding factor (F1) against refining energy during refining 

of never dried softwood pulps. An increase in refining energy tends to promote the 

bonding potential of fibres through increased fibre swelling, conformability, and, 

accordingly, inter-fibre bonding. The bonding potential (F1) reached a maximum at 

around 170kWh/t and after that the bonding potential is started to decline.  Factor 

2, which represent the fibre length reached a maximum at an energy level of 

80kWh/t at which the fibre straightening reached a maximum, as shown in Figure 

47. After this maximum point, fibres started again to move towards increased 

curling and when the energy level reached the level of about 170kWh/t  fibre cutting 

began: the higher the energy level, the greater the fibre cutting. The point (SRE 

170kWh/t) after which the Factor 2 becomes negative, which indicates vigorous 

fibre cutting is the same point at which the bonding factor (F1) reaches the maxi-

mum. The severe fibre cutting after a SRE of 170kWh/t contributes to the decreases 

in fibre strength and therefore to a decrease in the bonding factor (F1). 

R2 = 0.9644
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Figure 47. Factor 2 vs. refining energy, SEL=2.0 
J/m.
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Summary of part 4 

Factor analysis and on-line fibre properties measurements could be used as an 

effective tool to monitor changes in pulp quality such as variations in wood raw 

materials (changes in average fibre length) and due to pulp processes (drying, 

refining). It was possible to develop an off-line model that was used later together 

with on-line fibre properties measurements to control pulp quality before and after 

drying and to predict paper properties of unrefined never dried and once dried 

pulps. A similar model of pulp refining, including refining conditions, was used 

together with fibre properties to predict paper properties of refined pulp and to 

determine optimum refining conditions and changes in fibre characteristics due to 

refining. In addition, other variables describing refiner filling dimensions, sharp-

ness and filling material can be added to the factor network for further studies.  

Accordingly, a combination of on-line fibre property measurements and factor 

analysis techniques will offer a new approach to control pulp quality, pulp beatabil-

ity and resulting paper properties. 
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CONCLUSIONS

The objective of this study was to find and test certain approaches to tailoring 

and modifying chemical pulp fibre properties. The focus was on the following: fibre 

classification using pressure screen fractionation, mechanical pre-treatment before 

refining, the role of fibre properties and filling design for refiner loadability, and on-

line measurement and control of pulp quality. The focus was on the impacts of these 

approaches on fibre properties, energy saving and the improvements of the result-

ing paper properties as well as the strength-dewatering combination.   

Pressure screen fractionation was found to be a useful approach to tailor a wide 

range of fibres such as bagasse, eucalyptus and softwood. The screen size, fractiona-

tion layout (single or two-stage) and the operating reject rate determine the quality 

of each fraction produced. In bagasse pulp, the reject fraction was found to compen-

sate for the slow drainability of unfractionated fibres maintaining higher 

consistency with the same dewatering time and carrying higher structure pressure 

at the same consistency, ultimately resulting in better wet web runnability.

In refining trials, bagasse and eucalyptus pulps reject fibres showed higher 

swelling than the unfractionated refined fibres at the input of same refining energy. 

The refining of the reject fraction was found to be more homogeneous and energy-

efficient in opening the cell wall pore structure, accordingly producing greater fibre 

swelling. In mixture sheets of eucalyptus and softwood, the reject fraction was 

found to be beneficial in developing a higher tensile index, fracture toughness and 

bulk of mixture sheets. Consequently, when using the reject fraction in this way, 

the addition of expensive softwood pulp can be reduced by optimizing the average 

fibre length and width of the mixture. The reject fraction from softwood fractiona-

tion resulted in a higher tear index, though more refining energy was needed to 

reach a certain tensile index. Narrow-bar disc fillings are more energy-efficient than 

conical fillings, but low refining intensity (specific edge load) is recommended to 

preserve average fibre length and reduce fibre cutting.
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Accept fractions from bagasse and softwood fractionation were used to replace 

part of the once dried softwood pulp before refining. Up to 20% replacement reduced 

the refining energy input needed to reach a certain tensile index without causing a 

major decrease in the tear index. The replacement also improved light scattering 

and internal bond strength.

A new mechanical treatment that involves the application of linear loads, heat 

and shear forces over multiple passes was found to be beneficial in altering the fibre 

structure before refining. The treatment promotes the lumen collapse and des-

welling of fibres, and hence the combination of strength and dewatering properties 

of the softwood fibres. In refining, mechanically pre-treated fibres showed a consoli-

dated structure with less fines creation, less fibre cutting and less external 

fibrillation, accordingly maintaining high freeness after refining. Compared with 

once dried fibres, mechanically pre-treated fibres offered the advantage of higher 

tensile strength, stiffness and Scott bond at a certain freeness level. Compared with 

never-dried fibres, mechanically pre-treated fibres offered the advantage of higher 

tear and tensile stiffness. The treatment was carried out with industrial equipment, 

which makes it a flexible tool for modifying fibres before refining as a means to 

optimize the combination of strength and dewatering properties. 

The trapping of fibres between the rotor and stator bars of the refiner and 

therefore the consumption of energy and the movement of the refiner gap, are 

strongly linked to the type of fibres and filling design. Fibres properties and pulp 

consistency in refining contribute to the size of flocs and the ability of flocs to resist 

deformation during refining. Fibres that build big and strong flocs are trapped early 

in the gap closure and maintaining a wide gap. Here, the effect of pulp consistency 

was found to be smaller than the effect of fibres properties such as fibre length and 

coarseness. Filling design influences the gap movement and trapping of fibres, and 

the gap width decreases linearly with an increase of filling edge cutting speed 

(km/s) or the applied net power. Selecting the right filling design for specific fibres 

is the most effective way to optimize resulting refining characteristics such as 

external fibrillation, fibre cutting and fibre swelling. 
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On-line fibre property measurements combined with factor analysis techniques 

offer a new method for controlling pulp quality, pulp beatability and for predicting 

paper properties. The factor network was used to link the measured fibre proper-

ties, calculated factors and the resulting paper properties. Thus, it was used to 

monitor and follow up changes in raw materials such as varying fibre length and 

changes due to pulp drying and refining. For a pulp mill, the model was built off-

line, extended with on-line measurements and verified against laboratory meas-

urements showing high accuracy in predicting paper properties. The factor network 

was tested with laboratory refining trials, showing good ability to monitor changes 

in fibre properties during refining such as the developing of bonding, fibre cutting, 

fibre straightening and curling. The refiner off-line model can also be used to 

determine optimal refining conditions based on calculated factors and refining 

energy inputs. 

 The possibility to incorporate fractionation and pre-treatment before refining 

into the stock preparation processes are an ideal means to tailor certain fibres for 

different paper grades, cut energy and raw materials costs and provide a high 

flexibility with certain raw material on different production lines. The combination 

of the fibre quality control models with the process modification approaches pro-

posed in this study enable both pulp and papermakers alike to engineer the 

available raw materials and get the most out of it with a designed fibres for a 

designed paper product.
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