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Abstract

We present here how to construct multiplicative update rules for non-negative projections based on Oja’s iterative learning rule. Our

method integrates the multiplicative normalization factor into the original additive update rule as an additional term which generally has

a roughly opposite direction. As a consequence, the modified additive learning rule can easily be converted to its multiplicative version,

which maintains the non-negativity after each iteration. The derivation of our approach provides a sound interpretation of learning non-

negative projection matrices based on iterative multiplicative updates—a kind of Hebbian learning with normalization. A convergence

analysis is scratched by interpretating the multiplicative updates as a special case of natural gradient learning. We also demonstrate two

application examples of the proposed technique, a non-negative variant of the linear Hebbian networks and a non-negative Fisher

discriminant analysis, including its kernel extension. The resulting example algorithms demonstrate interesting properties for data

analysis tasks in experiments performed on facial images.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Projecting high-dimensional input data into a lower-
dimensional subspace is a fundamental research topic in
signal processing and pattern recognition. Non-negative
projection is desired in many real-world applications, for
example, for images, spectra, etc., where the original data
are non-negative. However, most classical subspace ap-
proaches such as principal component analysis (PCA) and
Fisher discriminant analysis (FDA), which are solved by
singular value decomposition (SVD), fail to produce the
non-negativity property.

Recently, Lee and Seung [12,13] introduced iterative
multiplicative updates, which are based on the decomposi-
tion of the gradient of given objective function, for non-
negative optimizations. They applied the technique to the
non-negative matrix factorization (NMF) which seems to

yield sparse representations. Several variants of NMF such
as [5,22,24] have later been proposed, where the original
NMF objective function is combined with various regular-
ization terms. More recently, Yuan and Oja [23] presented
a method called projective non-negative matrix factorization

(P-NMF) without any additional terms, but directly
derived from the objective function of PCA networks
except that the projection was constrained to be non-
negative. The simulation results of P-NMF indicate that it
can learn highly localized and non-overlapped part-based
basis vectors. However, none of the above works provides
an explanation why the multiplicative updates can produce
sparser and more localized base components.
The multiplicative update rules of the above algorithms

are based on decomposition of the gradients of an objective
function into positive and negative parts, one as the
numerator and the other as the denominator. Nevertheless,
such method would fail when the gradient is not naturally
expressed in positive and negative parts. Sha et al. [21]
proposed an alternative decomposition of the gradient
and applied it to the minimization of a quadratic objective.
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This method albeit cannot handle the situation where the
gradient contains only one positive (negative) term.
Furthermore, how to combine orthogonality or quadratic
unit norm constraints with this method is still unknown.

In this paper we present a more general technique to
reformulate a variety of existing additive learning algo-
rithms to their multiplicative versions in order to produce
non-negative projections. The derivation is based on Oja’s
rule [17] which integrates the normalization factor into the
additive update rule. Therefore, our method provides a
natural way to form the numerator and denominator in the
multiplicative update rule even if external knowledge of
gradient decomposition is not available. Another major
contribution of our approach is that its derivation also
provides a sound interpretation of the non-negative
learning based on iterative multiplicative updates—a kind
of Hebbian learning with normalization.

We demonstrate applicability of the proposed method
for two classical learning algorithms, PCA and FDA, as
examples. In the unsupervised PCA learning, our multi-
plicative implementation of linear Hebbian networks
outperforms the NMF in localized feature extraction, and
its derivation provides an interpretation why P-NMF can
learn non-overlapped and localized basis vectors. In the
supervised FDA learning, our non-negative variant of the
linear discriminant analysis (LDA) can serve as a feature
selector and its kernel extension can reveal an underlying
factor in the data and be used as a sample selector. The
resulting algorithms of the above examples are verified by
experiments on facial image analysis with favorable results.

The remaining of the paper is organized as follows. First
we introduce the basic idea of multiplicative update rules in
Section 2. The non-negative projection problem is then
formulated in Section 3. In Section 4 we review Oja’s rule
and present the technique how to use it in forming the
multiplicative update rules. The proposed method is
applied in two examples in Section 5: one for unsupervised
learning and the other for supervised. The experimental
results of the resulting algorithms are presented in Section
6. Finally, conclusions are drawn in Section 7.

2. Multiplicative updates

Suppose there is an algorithm which seeks an m-
dimensional solution w that maximizes an objective
function JðwÞ. The conventional additive update rule for
such a problem is

~w ¼ wþ ggðwÞ, (1)

where ~w is the new value of w, g a positive learning rate and
the function gðwÞ outputs an m-dimensional vector which
represents the learning direction, obtained e.g. from the
gradient of the objective function. For notational brevity,
we only discuss the learning for vectors in this section, but
it is easy to generalize the results to the matrix case, where
we will use capital letters W and G.

The multiplicative update technique first generalizes the
common learning rate to different ones for individual
dimensions:

~w ¼ wþ diagðgÞgðwÞ, (2)

where g is an m-dimensional positive vector. Choosing
different learning rates for individual dimensions changes
the update direction and hence this method differs from the
conventional steepest-gradient approaches in the full real-
valued domain.
It has been shown that the following choice of g has

particular interesting properties in the constraint of non-
negativity (see e.g. [12,21]). Suppose w is non-negatively
initialized. If there exists a separation of the learning
direction into two positive terms gðwÞ ¼ gþ � g� by some
external knowledge, then one can choose Zi ¼ wi=g�i ;
i ¼ 1; . . . ;m, such that the components of (2) become

~wi ¼ wi þ Zi½gðwÞ�i ¼ wi þ
wi

g�i
ðgþi � g�i Þ ¼ wi

gþi
g�i

. (3)

The above multiplicative update maintains the non-nega-
tivity of w. In addition, wi increases when gþi 4g�i , i.e.
½gðwÞ�i40, and decreases if ½gðwÞ�io0. Thus the multi-
plicative change of wi indicates how much the direction of
that axis conforms to the learning direction. There exists
two kinds of stationary points in the iterative use of the
multiplicative update rule (3): one satisfies gþi ¼ g�i , i.e.
gðwÞ ¼ 0, which is the same condition for local optima as in
the additive updates (1), and the other is wi ! 0. The latter
condition distinguishes the non-negative optimization from
conventional ones and yields sparsity in w, which is desired
in many applications. Furthermore, unlike steepest gradi-
ent or exponential gradient [10], the multiplicative update
rule (3) does not require any user-specified learning rates,
which facilitates its application.
In most non-negative algorithms that use multiplicative

updates (e.g. [13,21,24]), the convergence of the objective
has been proven via an auxiliary function. However, such a
function depends on particular update rules and sometimes
could be difficult to find. Here we present a novel
interpretation of multiplicative updates as an optimization
using natural gradient [1], which greatly simplifies the
convergence analysis of the objective. Define the matrix
GðwÞ as

½GðwÞ�ij ¼ dij
g�i
wi

, (4)

with dij the Kronecker delta. The tensor G defines a
Riemannian inner product

hdw; dwiw ¼
Xm

i¼1

Xm

j¼1

½GðwÞ�ij½dw�i½dw�j ¼
Xm

i¼1

g�i
wi

½dw�2i X0.

(5)

Since GðwÞ is diagonal, its inverse can be computed by

ðGðwÞÞ�1
� �

ij
¼ dij

wi

g�i
. (6)
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Henceforth we can obtain the natural gradient ascend
update [1] for w:

~wi ¼ wi þ z
Xm

j¼1

ðGðwÞÞ�1
� �

ij
gi ¼ wi þ z

wi

g�i
ðgþi � g�i Þ, (7)

where z is a positive scalar. Setting z ¼ 1, we obtain the
multiplicative update rule (3). Because the natural gradient
is known to be the steepest direction in a Riemannian
manifold [1], the multiplicative updates form a steepest
gradient ascend method in ð0;þ1Þm which is curved by the
tangent of the given objective function. Therefore, the
multiplicative update rule (3) guarantees monotonic
increase of the objective function if z ¼ 1 corresponds to
a sufficiently small learning step and thus (7) forms a good
approximation of the continuous flow in the Riemannian
space.

3. Non-negative projection

Subspace projection methods are widely used in signal
processing and pattern recognition. An r-dimensional
subspace out of Rm can be represented by an m� r

orthogonal matrix W. In many applications one can write
the objective function for selecting the projection matrix in
the form

maximize
W

JðWÞ ¼ 1
2
EfF ðkWTvk2Þg, (8)

where v is an input vector, F a function from R to R, and
Ef�g denotes the expectation. For problems where
F ðxÞ ¼ x, objective (8) can be simplified to

maximize
W

JðWÞ ¼ 1
2
TrðWTEfvvTgWÞ. (9)

Such form covers the objectives of many classical analysis
methods such as PCA and Fisher’s LDA. The motivation
and neural architecture of (9) is justified in [11]. By setting
A ¼ EfvvTg, we can write the gradient of (9) as

qJðWÞ
qW

¼ EfvvTgW ¼ AW. (10)

Obviously A is a positive semi-definite matrix.
The function F can be other than F ðxÞ ¼ x. For example,

in [8] the log likelihood function F ðxÞ ¼ log pðxÞ was used
and a variant of independent component analysis (ICA) was
derived. In that case, A ¼ EfF 0ðkWTvk2ÞvvTg is a negative
semi-definite matrix.

In summary, we consider a particular set of additive
update rules with the learning direction GðWÞ ¼ AW,
where A is an m�m symmetric matrix. Non-negative

projection requires that all elements of W are non-negative.
For brevity, we only discuss the case where A is positive
semi-definite. The derivation can easily be modified for the
opposite case where A is negative semi-definite.

4. Oja’s rule in learning non-negative projections

The multiplicative update rule described in Section 2
maintains the non-negativity. However, the gradient of
projection objective yields a single term and does not
provide any natural way to obtain gþ and g� (or Gþ and
G�). In this section we present a very simple approach to
include an additional term for constructing the multi-
plicative update rules if the solution is constrained to be of
unit L2-norm or orthogonal.
First let us look at the projection on a one-dimensional

subspace. In many optimization problems the objective
function JðwÞ is accompanied with the constraint

oðwÞ ¼ ðwTBwÞ1=2 ¼ 1, (11)

with B an m�m symmetric matrix. In particular, oðwÞ ¼
kwk if B ¼ I. If w is initialized to fulfill (11), the
normalization step

wnew ¼ ~wðoð ~wÞÞ�1 (12)

maintains that the new w still satisfies (11) since oðbwÞ ¼
boðwÞ for a scalar b.
One may try to combine the two update steps (1) and

(12) into a single step version. The normalization factor
ðoðwÞÞ�1 can be expressed using Taylor expansion as

ðoð ~wÞÞ�1 ¼ ðwþ ggÞTBðwþ ggÞ
� ��1=2
¼ 1þ gðwTBgþ gTBwÞ þOðg2Þ
� ��1=2
� 1� 1

2
gðwTBgþ gTBwÞ. ð13Þ

Here g ¼ gðwÞ for brevity and the final step is obtained by
dropping all terms of Oðg2Þ or higher orders. Inserting this
result and (1) into (12), we obtain the following Oja’s
single-step update rule [17]:

wnew � wþ 1
2
gð2g� wwTBg� wgTBwÞ, (14)

where again the terms of Oðg2Þ have been dropped.
Now setting gðwÞ ¼ Aw, we obtain a possible decom-

position of gðwÞ into two non-negative parts as

gðwÞ ¼ Aw ¼ Aþw� A�w, (15)

where

Aþij ¼
Aij if Aij40

0 otherwise

�
and A�ij ¼

�Aij if Aijo0;

0 otherwise:

�
(16)

The simple update rule

wnew
i ¼ wi

½Aþw�i

½A�w�i
(17)

or [21]

wnew
i ¼ wi

½Aþw�iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Aþw�i½A

�w�i

p (18)

usually yields poor results for non-negative projection
problems. The situation is even more problematic when A
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is non-negative, i.e. A� ¼ 0. As an alternative, we here
propose to substitute g from (15) into (14) and then obtain

wnew � wþ 1
2
gð2Aþw� 2A�w� wwTBAw� wwTABwÞ.

(19)

Suppose w is initialized with values in ð0; 1Þ and fulfills (11).
All terms without their leading sign in the right side of (19)
are then positive if wTðBAþ ABÞw40 for all positive w.
This condition defines the convexity of the solution
subspace and is satisfied when BAþ AB is positive definite.
Verifying such positive definity can easily be done before
the iterative learning.

We can then apply the generalization technique de-
scribed in Section 2 and obtain the following multiplicative
update rule:

wnew
i ¼ wi

2½Aþw�i
2½A�w�i þ ½ww

TðBAþ ABÞw�i
. (20)

Since B is symmetric, (20) can be further simplified to

wnew
i ¼ wi

½Aþw�i

½A�w�i þ ½ww
TBAw�i

(21)

because in that case

wTBAw ¼ ðwTBAwÞT ¼ wTATBTw ¼ wTABw. (22)

The original Oja’s rule for a single vector has been
generalized to the matrix case [18]. It combines the
following additive learning rule and normalization steps:

~W ¼Wþ gGðWÞ, (23)

Wnew ¼ ~WðXð ~WÞÞ�1, (24)

where W and G are m� r matrices and

XðWÞ ¼ I (25)

is the optimization constraint in the matrix case. If
XðWÞ ¼ ðWTWÞ1=2, the normalization factor can be
approximated by

ðXð ~WÞÞ�1 � I� 1
2gðW

TGþGTWÞ, (26)

with similar derivation as in (13). Inserting (26) and (23)
into (24), we obtain

Wnew �Wþ 1
2
gð2G�WWTG�WGTWÞ. (27)

By again applying the generalization on g and inserting
G ¼ AW, we can get the following multiplicative update
rule:

Wnew
ij ¼W ij

½AþW�ij þ ½WWTA�W�ij

½A�W�ij þ ½WWTAþW�ij
. (28)

Our method is suitable for problems with the constraint
of the form WTW ¼ I or wTBw ¼ 1, but generally it does
not work for WTBW ¼ I if BaI. This is because such
constraint of B-uncorrelatedness is probably overwhelmed
by the non-negative learning which tends to yield high
orthogonality.

If one only considers the projection on the Stiefel
manifold (i.e. WTW ¼ I), a more straightforward deriva-
tion can be obtained by using the natural gradient. Given a
learning direction G ¼ AW, the natural gradient ascend
update is [16]

Wnew
nat ¼Wþ gðG�WGTWÞ. (29)

Substituting A ¼ Aþ � A� and applying the reforming
technique on g, we obtain the same multiplicative update
rule (28). This is not surprising because Oja’s rule and
natural gradient are two essentially equivalent optimization
methods on the Stiefel manifold except that the former is
based on the ordinary Euclidean metric while the latter on
a canonical Riemannian metric [4].

5. Examples

In this section, we apply the above reforming technique
to two known projection methods, PCA and LDA. Before
presenting the details, it should be emphasized that we are
not aiming at producing new algorithms to replace the
existing ones for reconstruction or classification. Instead,
the main purpose of these examples is to demonstrate the
applicability of the technique described in the previous
section and to help readers get more insight in the
reforming procedure.

5.1. Non-negative linear Hebbian networks

Using multiplicative updates for non-negative optimiza-
tion stems from the NMF proposed by Lee and Seung [12].
Given an m� n non-negative input matrix V where
columns are the input samples, NMF seeks two non-
negative matrices W and H which maximizes the following
objective:

JNMFðW;HÞ ¼ kV�WHkF. (30)

Here k � kF is the Frobenius matrix norm, defined as

kQkF ¼
X

ij

Q2
ij (31)

for a matrix Q. The authors of [12] derived the following
multiplicative update rules of NMF:

Wnew
ij ¼W ij

½VHT�ij

½WHHT�ij
, (32)

Hnew
ij ¼ Hij

½WTV�ij

½WTWH�ij
. (33)

NMF is not as good as PCA in minimizing the
reconstruction error, but it was reported that NMF is able
to extract some localized and part-based representations of
the input samples [12]. To improve such localization effect,
Yuan and Oja have recently developed a variant of NMF
called P-NMF [23], which is derived from the following
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optimization problem:

minimize
WX0

JP-NMFðWÞ ¼ kV�WWTVkF. (34)

That is, P-NMF replaces the matrix H with WTV in the
objective function. This change makes P-NMF also a
variant of PCA whose objective is same as that of P-NMF
except the non-negative constraint. The unconstrained
gradient of JP-NMFðWÞ is given by

qJP-NMFðWÞ

qW ij

¼ � 2½VVTW�ij þ ½WWTVVTW�ij

þ ½VVTWWTW�ij, ð35Þ

upon which the authors of [23] obtained the following
multiplicative update rule using the technique in Section 2:

Wnew
ij ¼W ij

2½VVTW�ij

½WWTVVTW�ij þ ½VV
TWWTW�ij

. (36)

Similar to NMF, P-NMF is not the best method to
minimize the reconstruction error. Instead, it focuses in
training orthogonal basis vectors. The simulation results in
[23] showed that P-NMF is capable of extracting highly
localized, sparse, and non-overlapped part-based features.
However, there is little explanation about this phenomenon
in [23].

In this example we employ the reforming technique of
the previous section to derive a new multiplicative
update rule, named Non-negative linear Hebbian network

(NLHN), for finding the non-negative projection. Given an
m-dimensional non-negative input vector v, we define the
learning direction by the simplest linear Hebbian learning
rule, i.e. the product of the input and the output of a linear
network:

G ¼ vðWTvÞT ¼ vvTW. (37)

Inserting this to (28) with vvT ¼ A ¼ Aþ, we obtain the
following update rule:

Wnew
ij ¼W ij

½vvTW�ij

½WWTvvTW�ij
. (38)

This result is tightly connected to the PCA approach
because the corresponding additive update rule

Wnew ¼Wþ gðvvTW�WWTvvTWÞ (39)

is a neural network implementation of PCA [18], which
results in a set of eigenvectors for the largest eigenvalues of
Efðv� EfvgÞðv� EfvgÞTg. However, these eigenvectors and
the principal components of data found by PCA are not
necessarily non-negative.

In addition to the on-line learning rule (38), we can also
use its batch version

Wnew
ij ¼W ij

½VVTW�ij

½WWTVVTW�ij
, (40)

where V is an m� n matrix, each column for one non-
negative input sample.

We can see that NLHN bridges NMF and P-NMF.
While the latter replaces H with WTV in the NMF
objective function (30), NLHN applies similar replacement
in the update rule (32) of NMF. In addition, NLHN can be
considered as a slight variant of P-NMF. To see this, let us
decompose (35) into two parts

qJP-NMFðWÞ

qW ij

¼ ½Gð1Þ�ij þ ½G
ð2Þ
�ij , (41)

where Gð1Þ ¼ �VVTWþWWTVVTW and Gð2Þ ¼

�VVTWþ VVTWWTW. It has been shown that Gð2Þ has
little effect in learning the principal directions [9]. Thus, by
dropping Gð2Þ, we obtain the same multipli-
cative update rule as (40) based on Gð1Þ. Unlike other
variants of NMF such as [5,14,22], NLHN does not require
any additional regularization terms. This holds also for
P-NMF.
The major novelty of NLHN does not lie in its

performance as we have shown that it is essentially the
same as P-NMF. We will also show by experiments in
Section 6.2 that NLHN behaves very similarly to P-NMF.
However, the interpretation of P-NMF as a variant of
simple Hebbian learning with normalization helps us
understand the underlying reason that P-NMF and NLHN
are able to learn more localized and non-overlapped parts
of the input samples.
As we know, iteratively applying the same Hebbian

learning rule will result in that the winning neuron is
repeatedly enhanced, and the normalization forces only
one neuron to win all energy from the objective function
[7]. In our case, this means that only one entry of each row
of W will finally remain non-zero and the others will be
squeezed to zero. That is, the normalized Hebbian learning
is the underlying cause of the implicit orthogonalization.
Furthermore, notice that two non-negative vectors are
orthogonal if and only if their non-zero parts are not
overlapped.
Then why can P-NMF or NLHN produce localized

representations? To see this, one should first notice that the
objectives of P-NMF and NLHN are essentially the same if
W is orthonormal. Therefore, let us only consider here the
objective of NLHN, JNLHNðWÞ ¼ EfkWTvk2g, which can
be interpreted as the mean correlation between projected
vectors. In many applications, e.g. facial images, the
correlation often takes place in neighboring pixels or
symmetric parts. That is why P-NMF or NLHN can
extract the correlated facial parts such as lips and eye
brows, etc.
We can further deduce the generative model of P-NMF

or NLHN. Assume each observation v is composed of r

non-overlapped parts, i.e. v ¼
Pr

p¼1 vp. In the context of
orthogonality, P-NMF models each part vp by the scaling
of a basis vector wp plus a noise vector ep:

vp ¼ apwp þ ep. (42)

If the basis vectors are normalized so that wT
pwq ¼ 1

for q ¼ p and 0 otherwise, then the reconstructed vector
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of this part is

Xr

q¼1

wqw
T
q vp ¼

Xr

q¼1

wqw
T
q ðapwp þ epÞ

¼
Xr

q¼1

apwqw
T
qwp þ

Xr

q¼1

wqw
T
q ep

¼ apwp þ
Xr

q¼1

wqw
T
q ep. ð43Þ

The norm of the reconstruction error is therefore bounded by

vp �
Xr

q¼1

wqw
T
q vp

�����
����� ¼ I�

Xr

q¼1

wqw
T
q

 !
ep

�����
�����

p I�
Xr

q¼1

wqw
T
q

 !�����
����� � ep

�� ��

¼ Tr I�
Xr

q¼1

wqw
T
q

 !T

I�
Xr

q¼1

wqw
T
q

 !0
@

1
A � ep

�� ��

¼ Tr I�
Xr

q¼1

wqw
T
q

 !
� ep

�� ��
¼ TrðIÞ �

Xr

q¼1

TrðwT
q wqÞ

 !
� kepk

¼ ðm� rÞ � kepk ð44Þ

if 2-norm is used. Similar bounds can be derived for other
types of norms. In words, wpw

T
p vp reconstructs vp well if the

noise level ep is small enough. According to this model,
P-NMF or NLHN can potentially be applied to signal
processing problems where the global signals can be divided
into several parts and for each part the observations mainly
distribute along a straight line modeled by apwp. This is closely
related to Oja’s PCA subspace rule [18], which finds the
direction of the largest variation, except that the straight line
found by P-NMF or NLHN has to pass through the origin.

It is important to notice that we analyze the forces of
orthogonality and locality separately only for simplicity.
Actually either P-NMF or NLHN implements them in the
same multiplicative updates and these forces work con-
currently to attain both goals during the learning.

5.2. Non-negative FDA

Given a set of non-negative multivariate samples xðiÞ,
i ¼ 1; . . . ; n, from the vector space Rm, where the index of
each sample is assigned to one of Q classes, Fisher LDA finds
the direction w for the following optimization problem:

maximize
w2Rm

1
2w

TSBw (45)

subject to wTSWw ¼ 1. (46)

Here SB is the between classes scatter matrix and SW is the
within classes scatter matrix, defined as

SB ¼
1

n

XQ

c¼1

ncðl
ðcÞ � lÞðlðcÞ � lÞT, (47)

SW ¼
1

n

XQ

c¼1

X
i2Ic

ðxðiÞ � lðcÞÞðxðiÞ � lðcÞÞT, (48)

where nc and Ic are the number and indices of the samples
in class c, and

lðcÞ ¼
1

nc

X
i2Ic

xðiÞ, (49)

l ¼
1

n

Xn

i¼1

xðiÞ ¼
1

n

XQ

c¼1

ncl
ðcÞ. (50)

If we set v ¼ x� l and

EfvvTg � ST ¼
1

n

Xn

i¼1

ðxðiÞ � lÞðxðiÞ � lÞT, (51)

and notice that the total scatter matrix ST ¼ SB þ SW, the
LDA problem can be reformulated as

maximize
w2Rm

1
2
wTSTw (52)

subject to wTSWw ¼ 1, (53)

and hence becomes a particular case of (9).
The common solution of LDA is to attach the con-

straint (46) to the objective function with a Lagrange
multiplier, and then solve the Karush–Kuhn–Tucker (KKT)
equation by SVD. This approach, however, fails to
produce the non-negativity of w. To overcome this, we
apply the multiplicative update technique described in
Section 4 and obtain the following novel alternative
method here named non-negative linear discriminant

analysis (NLDA).
We start from the steepest-gradient learning:

gðwÞ ¼
qð1

2
wTSBwÞ

qw
¼ SBw. (54)

Because both SB and SW are symmetric, we have A ¼ SB

and B ¼ SW and (21) becomes

wnew
i ¼ wi

½SþBw�i

½S�Bw�i þ ½ww
TSWSBw�i

, (55)

with the elements of w initialized with random values from
ð0; 1Þ and wTSWw ¼ 1 fulfilled. Here SþB and S�B are
determined by (16). If the symmetric matrix SWSB þ

ðSWSBÞ
T
¼ SWSB þ SBSW is positive definite, then

wTSWSBw ¼
1
2
ðwTSWSBwþ ðw

TSWSBwÞ
T
Þ

¼ 1
2
wTðSWSB þ SBSWÞw40. ð56Þ

That is, all terms on the right side of (55) are positive and
so is the new w after each iteration. Moreover, notice that
NLDA does not require matrix inversion of SW, an
operation which is computationally expensive and possibly
leads to singular problems.
For a discriminant analysis of two classes C and C̄,

it is possible to improve the non-negative learning by
preprocessing the data. For a dimension j, if medianfxjjxj
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2 Cg4medianfxjjxj 2 C̄g, we transform the original data
by

xj  Yj � xj, (57)

where Yj is the known upper bound of the jth dimension.
After such flipping, for each dimension j there exists a
threshold yj which is larger than more than half of
the samples of C and smaller than more than half of the
samples of C̄. That is, the class C mainly distributes the
inner part closer to the origin while C̄ distributes the
outer part farther from the origin. Projecting the samples
to the direction obtained by (55) will thus yield better
discrimination.

The above non-negative discriminant analysis can be
extended to non-linear case by using the kernel technique.
Let U be a mapping from Rm to F, which is implicitly
defined by a kernel function kðx; yÞ ¼ kðy;xÞ ¼ UðxÞTUðyÞ.
kernel Fisher discriminant analysis (KFDA) [2,15] finds a
direction w in the mapped spaceF, which is the solution of
the optimization problem

maximize
w2Rm

1
2
wTSU

Bw (58)

subject to wTSU
Tw ¼ 1, (59)

where SU
B and SU

W are the corresponding between-class and
within-class scatter matrices. We use here SU

T ¼ SU
B þ SU

W

instead of SU
W for simplification, but it is easy to see that the

problems are equivalent. From the theory of reproducing
kernels [20] we know that any solution w 2F must lie in
the span of all training samples in F. That is, there exists
an expansion for w of the form

w ¼
Xn

i¼1

aiUðx
ðiÞÞ. (60)

It has been shown [2] that by substituting (60) into (58) and
(59), the unconstrained KFDA can be expressed as

maximize
a2Rn

1
2
aTKUKa (61)

subject to aTKKa ¼ 1, (62)

where Kij ¼ kðxðiÞ;xðjÞÞ, U ¼ diagðUð1Þ;Uð2Þ; . . . ;UðQÞÞ, and
UðjÞ is an nj � nj matrix whose elements are 1=nj.

The matrices K and U are symmetric and all their
elements are non-negative. We can obtain the following
multiplicative update rule for novel non-negative kernel

Fisher discriminant analysis (NKFDA) by setting A ¼

Aþ ¼ KUK and B ¼ KK in (21):

anewi ¼ ai
½KUKa�i

½aaTKKKUKa�i
. (63)

This formulation has the extra advantage that the
resulting elements of a indicate the contribution of their
respective samples in forming the discriminative projection.
This is conducive to selecting among the samples and
revealing the underlying factor in the data even if we only
use the simple linear kernel, i.e. UðxÞ ¼ x.

6. Experiments

We demonstrate here the empirical results of the non-
negative algorithms presented in Sections 5.1 and 5.2
when applied for processing of facial images. Before
proceeding to details, it should be emphasized that the
goal of the non-negative version of a given algorithm
usually differs from the original one. The resulting
objective value of a non-negative algorithm generally is
not as good as that of its unconstrained counterpart.
However, readers should be aware of that data analysis is
not restricted to reconstruction or classification and that
non-negative learning can bring us novel insights in the
data.

6.1. Data

We have used the FERET database of facial images [19].
After face segmentation, 2409 frontal images (poses
‘‘fa’’ and ‘‘fb’’) of 867 subjects were stored in the data-
base for the experiments. We obtained the coordinates
of the eyes from the ground truth data of FERET
collection, with which we calibrated the head rotation so
that all faces are upright. Afterwards, all face boxes were
normalized to the size of 32� 32, with fixed locations for
the left eye (26,9) and the right eye (7,9). Each image was
reshaped to a 1024-dimensional vector by column-wise
concatenation.
Another database we used is the UND database

(collection B) [6], which contains 33,247 frontal facial
images. We applied the same preprocessing procedure to
the UND images as to the FERET database.

6.2. Non-negative linear Hebbian networks

First we compared four unsupervised methods:
PCA, NMF [12], P-NMF [23] and NLHN (40) for
encoding the faces. The resulting basis images are
shown in Fig. 1. It can be seen that the PCA bases
are holistic and it is hard to identify the parts that
compose a face. NMF yields partially localized features
of a face, but some of them are still heavily over-
lapped. P-NMF and NLHN are able to extract the highly
sparse, local and non-overlapped parts of the face, for
example the nose and the eyebrows. The major difference
between P-NMF and NLHN is only the order of the basis
vectors.
Orthogonality is of main interests for part-based

learning methods because that property leads to non-
overlapped parts and localized representations as discussed
in Section 5.1. Suppose the normalized inner product
between two basis vectors wi and wj is

Rij ¼
wT

i wj

kwikkwjk
. (64)
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Then the orthogonality of an m� r basis W ¼ ½w1; . . . ;wr�

can be quantified by the following r-measurement:

r ¼ 1�

P
iaj Rij

rðr� 1Þ
(65)

so that r 2 ½0; 1�. Larger r’s indicate higher orthogonality and
r reaches 1 when the columns ofW are completely orthogonal.

Fig. 2 shows the evolution of r’s by using NMF, NLHN
and P-NMF with dimensions m ¼ 1024 and r ¼ 25. NMF
converges to a local minimum with r ¼ 0:63, while NLHN

and P-NMF learn W with r ¼ 0:97 and 0.98, respectively,
after 5000 iterations. We also trained NLHN and P-NMF
with different random seeds for the initial values of W and
the results are shown in Fig. 3. It can be seen that both
methods converge with very similar curves. That is, NLHN
behaves very similarly to P-NMF in attaining high
orthogonality, and being not sensitive to the initial values.

6.3. Non-negative linear discriminant analysis

Next, we demonstrate the application of the linear
supervised non-negative learning in discriminating whether
the person in a given image has mustache and whether he
or she is wearing glasses. The data were preprocessed by
(57) before applying the NLDA algorithm (55). The
positive definity requirement (56) was checked to be
fulfilled for these two supervised learning problems. In
addition to LDA, we chose the linear support vector

machine (L-SVM) [3] for comparison. Suppose n samples
xðiÞ labeled by yðiÞ 2 f1;�1g, i ¼ 1; 2; . . . ; n. L-SVM seeks
the solution of the optimization problem

maximize
w2Rm

1

2
kwk2 þ C

Xn

i¼1

xðiÞ (66)

subject to yðiÞðwTxðiÞ þ bÞX1� xðiÞ (67)

and

xðiÞX0; i ¼ 1; 2; . . . ; n, (68)

where C is a user-provided tradeoff parameter. By solving
its dual problem

maximize
a

Xn

i¼1

ai �
1

2

Xn

i¼1

Xn

j¼1

aiajy
ðiÞyðjÞxðiÞxðjÞ (69)

subject to
Xn

i¼1

aiy
ðiÞ ¼ 0 and 0paipC; i ¼ 1; 2; . . . ; n,

(70)
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Fig. 2. r values of NLHN, P-NMF and NMF with 25 basis vectors and 1024-dimensional data.

Fig. 1. The top 25 learned bases of (a) PCA, (b) NMF, (c)P-NMF and (d)

NLHN. All base images have been plotted without any extra scaling.
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one obtains the optimal w ¼
Pn

i¼1 aiy
ðiÞxðiÞ with respect to

the given C.
Fig. 4 displays the respective resulting LDA, L-SVM and

NLDA projection vectors as images. It is hard to tell from
the LDA projection vector in which dimensions of the
input samples are most relevant for discriminating mus-
tache or glasses. Such poor filters are probably caused by
overfitting because LDA may require large amount of data
to approximate the within-class covariance by SW but this
becomes especially difficult for high-dimensional problems.
The filter images of L-SVM are slightly better than those of
LDA. A distinguishing part can roughly be perceived
between the eyes. Nevertheless there are still many
irrelevant points found by L-SVM. In contrast, the NLDA
training clearly extract the relevant parts, as shown by the
brightest pixels in the rightmost images in Fig. 4. Such
results conform well to the human intuition in this task.

Next we compared the above methods in classification
where the training data were the FERET database and test
data were the UND database. The compared methods try

to classify whether the person in the image wears glasses or
not because both data sets contain this kind of ground
truth data. (Unfortunately the UND database does not
include such data on mustache.) The results are shown in
Table 1, from which we can see that LDA performs best in
classifying the training samples, but very poorly for the
new data outside of the training set.
L-SVM requires choice of the tradeoff parameter C. To

our knowledge, there are no efficient and automatic
methods for obtaining its optimal value. In this experiment
we trained different L-SVMs with the tradeoff parameter in
f0:01; 0:03; 0:1; 0:3; 1; 3; 10; 30; 100g and it turned out that
the one with 0:03 performed best in fivefold cross-
validations. Using this value, we trained an L-SVM with
all training data and ran the classification on the test data.
The result shows that L-SVM generalizes better than LDA,
but the test error rate is still much higher than the training
one, which is possibly because of some overfitting
dimensions in the L-SVM filter. Higher classification
accuracy could be obtained by applying non-linear kernels.
This, however, requires more effort to choose among
kernels and associated kernel parameters, which is beyond
the scope of this paper.
The last column of Table 1 shows that NLDA performed

even better than L-SVM in classifying the test samples.
This is possibly because of the variation between the two
databases. In such a case, the NLDA filter, which
resembles more our prior knowledge, tends to be more
reliable.
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Fig. 3. r values of NLHN and P-NMF with different random seeds.

Fig. 4. Images of the projection vector for discriminating glasses (the first

row) and mustache (the second row). The methods used from left to right

are LDA, L-SVM, NLDA.

Table 1

Equal error rates (EERs) of training data (FERET) and test data (UND)

in classification of glasses versus no glasses

LDA L-SVM NLDA

FERET (%) 0.98 11.69 17.54

UND (%) 32.35 25.23 23.88
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6.4. Non-negative kernel Fisher discriminant analysis

Furthermore, we tested the function of NKFDA (63)
that ranks the training samples by their contribution to
the projection. We used only the linear kernel here because
of its simplicity. After training of NKFDA on the FERET
data labeled whether the subject has mustache, we sorted
the training samples in the order of their respective values
of ai.

The top 25 faces and the bottom 25 faces are shown in
Figs. 5(a) and (b), respectively. It can be clearly seen that
the most important factor is the lighting condition. This
could be expected because we are using well-aligned facial
images of front-pose and neutral expression. Therefore the
most significant noise here can be assumed to be variation
in lighting. In addition, this order agrees with the common
perception of humans, where the lighting that provides
enough contrast helps in discriminating semantic classes.

For comparison, we display the ordered results of two
compared methods. Figs. 5(c) and (d) show the top 25 and

bottom 25 faces of KFDA, respectively. Because the
coefficients produced by KFDA are not necessarily non-
negative, we sorted the faces by their absolute values. The
bottom images look similar to those obtained by NKFDA.
That is, darker images that provide poor contrast
contribute least to the discrimination. However, it is hard
to find a common condition or easy interpretation for the
KFDA ranking of the top faces.
The resulting top and bottom facial images of L-SVM

are shown in Figs. 5(e) and (f). As we know, the samples
with non-zero coefficients are support vectors, i.e. those
around the classification boundary, which explains the top
images ranked by L-SVM. On the other hand, the samples
far away from the boundary will be associated with zero
coefficients. In this case, they are mostly typical non-
mustache faces shown in Fig. 5(f).

7. Conclusions

We presented a technique how to construct multi-
plicative updates for learning non-negative projections
based on Oja’s rule, including two examples of its
application to reforming the conventional PCA and FDA
to their non-negative variants. In the experiments on facial
images, the non-negative projections learned by using the
novel iterative update rules have demonstrated interesting
properties for data analysis tasks in and beyond recon-
struction and classification.
It is still a challenging and open problem to mathema-

tically prove the convergence of orthogonality. The deri-
vation of our method provides a possible interpretation of
the multiplicative updates. The numerator part favors the
learning in the original direction while the denominator
part is mainly responsible for the normalization constraint.
These two forces work together to steer the learning
towards a local optimum. Iteratively applying such a
multiplicative update rule yields one of the two sorts of
stationarity in each dimension, one approaching zero and
the other reaching the natural upper bound. Note that
none of the elements can approach infinity because of the
normalization. In the terms of neural networks, this can be
interpreted as a competition between the elements, both
within a neuron and across the neurons. In the matrix
case, more than one neuron compete for the energy from
the objective function and only one of them wins all over
the others, which leads to high orthogonality between the
learned basis vectors.

References

[1] S. Amari, Natural gradient works efficiently in learning, Neural

Comput. 10 (2) (1998) 251–276.

[2] G. Baudat, F. Anouar, Generalized discriminant analysis using a

kernel approach, Neural Comput. 12 (10) (2000) 2385–2404.

[3] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector

Machines, Cambridge University Press, Cambridge, 2000.

[4] A. Edelman, The geometry of algorithms with orthogonality

constraints, SIAM J. Matrix Anal. Appl. 20 (2) (1998) 303–353.

ARTICLE IN PRESS

Fig. 5. The images with: (a) largest and (b) smallest values in a trained by

NKFDA; (c) largest and (d) largest absolute values in a trained by KFDA;

(e) largest and (f) smallest values in a trained by L-SVM.

Z. Yang, J. Laaksonen / Neurocomputing 71 (2007) 363–373372



[5] T. Feng, S.Z. Li, H.Y. Shum, H.J. Zhang, Local non-negative

matrix factorization as a visual representation, in: Proceedings, The

Second International Conference on Development and Learning,

2002, pp. 178–183.

[6] P.J. Flynn, K.W. Bowyer, P.J. Phillips, Assessment of time

dependency in face recognition: an initial study, Audio- and Video-

Based Biometric Person Authentication, 2003, pp. 44–51.

[7] S. Haykin, Neural Networks—A Comprehensive Foundation, second

ed., Prentice-Hall, Englewood Cliffs, NJ, 1998.

[8] A. Hyvärinen, P. Hoyer, Emergence of phase- and shift-invariant

features by decomposition of natural images into independent feature

subspaces, Neural Comput. 12 (7) (2000) 1705–1720.

[9] J. Karhunen, J. Joutsensalo, Generalizations of principal component

analysis, optimization problems, and neural networks, Neural Net-

works 8 (4) (1995) 549–562.

[10] J. Kivinen, M. Warmuth, Exponentiated gradient versus gradient

descent for linear predictors, Inf. Comput. 132 (1) (1997) 1–63.

[11] T. Kohonen, Emergence of invariant-feature detectors in the adaptive-

subspace self-organizing map, Biol. Cybern. 75 (1996) 281–291.

[12] D.D. Lee, H.S. Seung, Learning the parts of objects by non-negative

matrix factorization, Nature 401 (1999) 788–791.

[13] D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factoriza-

tion, in: NIPS, 2000, pp. 556–562.

[14] W. Liu, N. Zheng, X. Lu, Non-negative matrix factorization for

visual coding, in: Proceedings of IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP 2003), vol. 3,

2003, pp. 293–296.

[15] S. Mika, G. Rtsch, J. Weston, B. Schölkopf, K.-R. Mller, Fisher

discriminant analysis with kernels, Neural Networks Signal Process.

IX (1999) 41–48.

[16] Y. Nishimori, S. Akaho, Learning algorithms utilizing quasi-geodesic

flows on the Stiefel manifold, Neurocomputing 67 (2005) 106–135.

[17] E. Oja, A simplified neuron model as a principal component analyzer,

J. Math. Biol. 15 (1982) 267–273.

[18] E. Oja, Principal components, minor components, and linear neural

networks, Neural Networks 5 (1992) 927–935.

[19] P.J. Phillips, H. Moon, S.A. Rizvi, P.J. Rauss, The FERET

evaluation methodology for face recognition algorithms, IEEE Trans.

Pattern Anal. Mach. Intell. 22 (2000) 1090–1104.

[20] B. Schölkopf, A. Smola, Learning with Kernels, MIT Press,

Cambridge, MA, 2002.

[21] F. Sha, L.K. Saul, D.D. Lee, Multiplicative updates for large margin

classifiers, in: COLT, 2003, pp. 188–202.

[22] B.W. Xu, J.J. Lu, G.S. Huang, A constrained non-negative matrix

factorization in information retrieval, in: Proceedings of the 2003

IEEE International Conference on Information Reuse and Integra-

tion (IRI2003), 2003, pp. 273–277.

[23] Z. Yuan, E. Oja, Projective nonnegative matrix factorization for

image compression and feature extraction, in: Proceedings of 14th

Scandinavian Conference on Image Analysis (SCIA 2005), Joensuu,

Finland, June 2005, pp. 333–342.

[24] S. Zafeiriou, A. Tefas, I. Buciu, I. Pitas, Class-specific discriminant

non-negative matrix factorization for frontal face verification, in:

Proceedings of Third International Conference on Advances in

Pattern Recognition (ICAPR 2005), vol. 2, 2005, pp. 206–215.

Zhirong Yang received his Bachelor and Master

degrees in Computer Science from Sun Yat-Sen

University, Guangzhou, China, in 1999 and 2002,

respectively. Presently he is a doctoral candidate

at the Computer and Information Science La-

boratory in Helsinki University of Technology.

His research interests include machine learning,

pattern recognition, computer vision, and multi-

media retrieval.

Jorma Laaksonen received his Dr. of Science in

Technology degree in 1997 from Helsinki Uni-

versity of Technology, Finland, where he is

presently Academy Research Fellow of Academy

of Finland at the Laboratory of Computer and

Information Science. He is an author of several

journal and conference papers on pattern recog-

nition, statistical classification, and neural net-

works. His research interests are in content-based

information retrieval and recognition of hand-

writing. Dr. Laaksonen is an IEEE senior

member, a founding member of the SOM and LVQ Programming Teams

and the PicSOM Development Group, and a member of the International

Association of Pattern Recognition (IAPR) Technical Committee 3:

Neural Networks and Machine Learning.

ARTICLE IN PRESS
Z. Yang, J. Laaksonen / Neurocomputing 71 (2007) 363–373 373




