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Rotational frequency shifts in partially coherent
optical fields
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We study the frequency shifts taking place when a random, stationary optical field rotates with respect to an
observer. The field is expanded in terms of fully coherent Laguerre–Gaussian basis modes, for which the ro-
tational frequency shifts have been studied previously. We demonstrate the formalism by considering the spec-
trum of a Gaussian Schell-model field, and show that for a spatially highly incoherent field, significant spectral
changes can be expected. © 2006 Optical Society of America

OCIS codes: 300.6170, 030.1640, 030.4070, 030.6600.
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. INTRODUCTION
circularly polarized light beam possessing a helical

hase front experiences a frequency shift when the beam
nd the observer are set in relative rotational motion.1–7

n this phenomenon, which is distinct from the transla-
ional Doppler effect, the angular frequency of light is
hifted by �l+���, where � is the angular frequency of ro-
ation, l is an integer determining the helicity of the
hase front, and �= ±1 corresponds to the two orthogonal
tates of circular polarization. The shifts have found prac-
ical use, for instance, in determining the relative weights
f the helicity components in a light beam,8 also at the
ingle-photon level,9 and in creating moving interference
atterns for optical micromanipulation.10

In this paper, we consider random optical fields and in-
estigate the effect of partial spatial coherence on the
pectral changes due to the rotational frequency shifts.
e begin in Section 2 by expressing the space–time real-

zations of an optical wave field in terms of Laguerre–
aussian basis modes that have helical phase fronts of

he form of exp�il��, with � denoting the azimuthal angle.
or treating the relative rotational motion of the field and
he observer, we adopt a straightforward coordinate
ransformation.11,12 We then derive an expression for the
pectral density of a stationary, uniformly circularly po-
arized optical field, which is stationary also in the rota-
ion. In Section 3, we exemplify the analysis by
nvestigating the rotational frequency shifts in a
wo-dimensional Gaussian Schell-model (GSM) field. Fi-
ally, the results of the work are briefly summarized in
ection 4.

. THEORY
e consider a stationary, uniformly circularly polarized

ptical beam propagating along the positive z direction. A
ealization of such a field can be expanded in terms of or-
honormal Laguerre–Gaussian modes, which form a com-
lete set of functions.13 In the space–time domain, the ex-
ansion at the plane of the waist z=0 reads as
1084-7529/06/051159-5/$15.00 © 2
���,t�uu,v
± = �

l=−�

�

�
p=0

�

al,p�t��l,p���exp�− i�0t�uu,v
± , �1�

here �= �� ,	� denotes the spatial variable written in po-
ar coordinates, al,p�t� is a time-dependent modal weight
ith zero mean, �0 is the mean angular frequency of

ight, and t denotes time. The left- or right-handed circu-
ar polarization states (upper and lower signs, respec-
ively) are described by the vectors uu,v

± = �uu± iuv� /�2, in
hich the unit vectors uu and uv point along the Carte-

ian coordinate axes. Furthermore, the spatial part of the
asis mode is written as

�l,p��� = fl,p���exp�il	�, �2�

ith the radial part given by1,13

fl,p��� = �− 1�p� 2


w0
2�1/2� p!

��l� + p�!	1/2��2�

w0
��l�

�exp�− �2/w0
2�Lp

�l��2�2

w0
2 � , �3�

here w0 is the beam-waist parameter, and Lp
�l� is the as-

ociated Laguerre polynomial. The basis modes satisfy
he orthonormality relation14



0

�

0

2


�l,p
* ����l�,p����d2� = �l,l��p,p�, �4�

here the asterisk denotes complex conjugation, and
m,m� �m= l ,p� is the Kronecker delta.

We then assume that the field and the observer rotate
ith respect to each other about the z axis with angular

requency �. In what follows, the coordinates �u ,v�, or
quivalently �� ,	�, refer to the frame of the field, whereas
x ,y�, or �r ,��, refer to the frame of the observer (see Fig.
). In the rotation, the Cartesian unit vectors transform
ccording to
006 Optical Society of America
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�uu�t�

uv�t�	 = � cos��t� sin��t�

− sin��t� cos��t�	�ux

uy
	 , �5�

nd the polar coordinates in the two frames are related by

��,	� = �r,� − �t�. �6�

he realization of the field given in Eq. (1) can now be
ritten in the frame of the observer as

��r,t;��ux,y
± = �

l=−�

�

�
p=0

�

al,p�t��l,p�r�

�exp�− i��0 + �l + ���
t�ux,y
± , �7�

here r= �r ,��; �= +1 and �=−1 for left- and right-
anded circular polarization, respectively; and the polar-

zation vectors are given by ux,y
± = �ux± iuy� /�2.

The coherence properties of the random, uniformly po-
arized optical field given in Eq. (7) can be described by
he (scalar) mutual coherence function characterizing the
eld correlations at two space–time points �r , t� and
r� , t��. The coherence function is explicitly written as


�r,r�,t,t�;�� = ��*�r,t;����r�,t�;���, �8�

here the angle brackets denote the ensemble average
aken over all possible field realizations. By use of Eq. (7)
n Eq. (8), we obtain the following formula for the mutual
oherence function:

�r,r�,t,t�;��

= �
l=−�

�

�
p=0

�

�
l�=−�

�

�
p�=0

�

�al,p
* �t�al�,p��t����l,p

* �r��l�,p��r��

�exp�− i�0�t� − t�
exp�− i��l�t� − lt�


�exp�− i���t� − t�
, �9�

ith the angle brackets having an effect only on the ex-
ansion coefficients al,p�t�. The above expression indicates
hat a field that is stationary for �=0 (i.e., a field for
hich the function 
 depends on time only through the
ifference t�− t��) can be nonstationary for ��0. This is
ue to the phase term exp�−i��l�t�− lt�
 in Eq. (9), which
xpresses the fact that for each mode the rotational
hanges in the mean oscillation frequency depend on the
ndex l [see Eq. (7)]. We note that the phase term is
resent when the term

ig. 1. Coordinate frame �u ,v� rotates with angular frequency
with respect to the frame �x ,y�. The cylindrical coordinates of

he frames are �� ,	� and �r ,��, respectively.
�al,p
* �t�al�,p��t��� � gl,l�,p,p��t,t�� �10�

oes not vanish for l� l�, i.e., when the modes with indi-
es l and l� are at least partially correlated. However, if
he modes are completely uncorrelated, the terms with l
l� are the only ones that contribute to the mutual coher-
nce function. In such a case the field is stationary also
or ��0 and one can write

gl,l�,p,p��t,t�� � gl,l,p,p�����l,l�, �11�

here the �-dependence results from the stationarity of
he field for �=0. In this work we consider fields of this
ype.

The spectral properties of a random field are described
y the cross-spectral density function, which for station-
ry fields is obtained by use of the (generalized) Wiener–
hintchine theorem15:

W�r,r�,�;�� =
1

2




−�

�


�r,r�,�;��exp�i�t�d�, �12�

here 
�r ,r� ,� ;�� denotes the mutual coherence function
f a stationary field. On substituting Eqs. (9)–(11) into Eq.
12), we find that

W�r,r�,�;�� = �
l=−�

�

�
p=0

�

�
p�=0

�

�l,p
* �r��l,p��r��

�g̃l,l,p,p��� − �0 − �l + ���
, �13�

here g̃l,l,p,p���� is the Fourier transform of the function
l,l,p,p����, i.e.,

g̃l,l,p,p���� =
1

2




−�

�

gl,l,p,p����exp�i���d�. �14�

urthermore, the spectral density of the field is readily
btained as

S�r,�;�� � W�r,r,�;�� = �
l=−�

�

�
p=0

�

�
p�=0

�

fl,p�r�fl,p��r�

�g̃l,l,p,p��� − �0 − �l + ���
, �15�

nd we see that any effect of rotation on the spectral den-
ity is manifested via a shift in the frequency argument of
he function g̃l,l,p,p����.

. FREQUENCY SHIFTS IN A GAUSSIAN
CHELL-MODEL FIELD

n this section, we give an example of the spectral
hanges due to rotation by considering a two-dimensional,
niformly circularly polarized GSM field. The cross-
pectral density function for a nonrotating ��=0� GSM
eld at the plane z=0 is of the form15,16

W�r,r�,�;0� = �S�r,�;0�S�r�,�;0�
1/2exp�− �r − r��2/Lc
2�,

�16�

here the spectral density is given by
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S�r,�;0� = � 2


wG
2 �exp�− 2r2/wG

2 �g̃�� − �0�. �17�

he parameters Lc and wG are, respectively, the coher-
nce length and the waist size, which are both assumed to
e independent of frequency. Furthermore, we choose the
pectrum to be Lorentzian in shape, i.e.,

g̃�� − �0� =
��/2


�� − �0�2 + ���/2�2 , �18�

here the parameter �� denotes the linewidth (full width
t half-maximum).
Next we express the cross-spectral density function of a

otating GSM field in the form of Eq. (13). However, to
implify the analysis we assume that the Laguerre–
aussian basis modes are mutually completely uncorre-

ated (also in indices p and p�), and that each mode has
he same spectrum for �=0. These two assumptions are
ccounted for by writing

g̃l,l,p,p��� − �0 − �l + ���
 = h�l,p��p,p�g̃�� − �0 − �l + ���
,

�19�

here the coefficient h�l ,p� describes the relative weight
f a basis mode. Inserting Eq. (19) into Eq. (13), setting
=0, and comparing the resulting expression with Eq.

16), one finds, with the help of the orthogonality relation
f Eq. (4) and Eq. 7.421(4) of Ref. 17, that16

h�l,p� = � 2


wG
2 �� 


1/wG
2 + 1/Lc

2 + 1/w0
2�

�� 1/Lc
2

1/wG
2 + 1/Lc

2 + 1/w0
2�2p+�l�

, �20�

here

w0 = � wG
2

1/wG
2 + 2/Lc

2�1/4

. �21�

ence, the cross-spectral density function of the rotating
SM field can be written as

W�r,r�,�;�� = �
l=−�

�

�
p=0

�

�l,p��,���l,p
* �r��l,p�r��, �22�

here

�l,p��,�� = h�l,p�g̃�� − �0 − �l + ���
 �23�

escribes the energy in a mode at frequency � for a cer-
ain value of �. Equation (22) is written in the form of a
oherent-mode representation with �l,p�� ,�� and �l,p�r�
enoting the eigenvalues and eigenfunctions of the re-
ated Fredholm integral equation.15 We note here that
ue to the rotation, the eigenvalues �l,p�� ,�� will be spec-
rally redistributed from their values for �=0.

By making use of Eqs. (2), (3), (20), (21), and (23), one
an perform the summation over the index p in Eq. (22) in
n analytic form.17 This calculation yields for the cross-
pectral density
W�r,r�,�;�� = � 2


wG
2 �exp�− ��2 + ��2��1 + �2�


� �
l=−�

�

exp�il��� − ��
I�l��2�2����

�g̃�� − �0 − �l + ���
, �24�

here a normalized radial coordinate �=r /wG is intro-
uced, and I�l� denotes the modified Bessel function of the
rst kind of order �l�. The parameter �=wG /Lc can be con-
idered as a measure for the degree of global spatial co-
erence of the field.15 Accordingly, the field is completely
oherent for �=0 and completely incoherent for �→�.

The spectral density is obtained from Eq. (24) as

S�r,�;�� = � 2


wG
2 �exp�− 2�2�1 + �2�
 �

l=−�

�

I�l��2�2�2�

�g̃�� − �0 − �l + ���
. �25�

n this expression, the factor in front of the sum term
omprises a spatially Gaussian envelope function that de-
ends on the coherence parameter �, but not on the fre-
uency �. The sum term itself depends on both of the pa-
ameters � and � and it consists of Lorentzian lines whose
enter frequencies �0+ �l+��� vary with the summation
ndex l. The behavior of the weights I�l���� of these lines is
llustrated in Fig. 2 with a few different values of the ar-
ument �=2�2�2. For the value �=0, only the Lorentzian
ine with l=0 contributes to the spectral density, the line
eing centered at the frequency �0+��. This case corre-
ponds either to a fully coherent field ��=0� for which the
pectrum is the same at any distance from the optical
xis, or to a field with any state of spatial coherence ob-
erved at the optical axis ��=0�. For the values ��1 on
he other hand, Fig. 2 indicates that several Lorentzian
ines with a large value of �l� can significantly contribute
o the spectral density. This is the case when the field is
ery incoherent (� is large), or when the field is observed
ar from the optical axis (� is large).

Figure 3 illustrates the effect of the angular frequency
f rotation � on the spectral density with two weight
unctions I�l��10� and I�l��200�. The spectrum of a nonrotat-
ng beam ��=0�, i.e. the Lorentzian line, is shown as a

ig. 2. Behavior of the modified Bessel function of the first kind
�l���� as a function of the index �l�. The solid curves are plotted to
uide the eye.
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ashed curve. For ��0, the center frequency �0 of the
pectrum is shifted to the frequency �0+��, and the over-
ll spectral width is seen to increase as the value of � is
ncreased. For example, near the optical axis with the pa-
ameter � fixed to a value of ��1, one can consider the
ifferences between Figs. 3(a) and 3(b) to occur due to
hanges in spatial coherence through the parameter �.
he spectral changes are hence seen to be more signifi-
ant in the more incoherent field of Fig. 3(b) for a fixed
alue of �. On the other hand, for a certain state of coher-
nce with the parameter � fixed, the spectral changes are
ore significant farther from the optical axis, i.e., with a

arge value of the parameter �. The shape of the spectrum
an be characterized as a broadened spectral line when
he inequality ���� is satisfied. However, the peaks of
he constituent Lorentzian lines become visible for the
alues of ����; and for still higher values of �, the
orentzians would be distinguished separately. In such
ases, the center frequency is also at �0+�� and the
idth of the envelope of the spectrum increases with �.

. SUMMARY
e have studied the effect of partial spatial coherence on

he spectral changes occurring when a random, uniformly
ircularly polarized field and the observer rotate with re-
pect to each other. In our analysis, we expanded the field
n terms of Laguerre–Gaussian basis modes and derived
n expression for the cross-spectral density for a certain

ig. 3. Spectral density S�r ,� ;�� in the plane of the waist �z
0� of the GSM field for different rotational frequencies � with
eight functions (a) I�l��10� and (b) I�l��200�. The Lorentzian line-

hape function of width �� is shown by the dashed curves. All
he curves are normalized to have the same maximum value.
ype of fields, which are stationary in the rotation. The
ormalism was exemplified by considering a two-
imensional Gaussian Schell-model field. We conclude
hat, the more (spatially) incoherent the field, the more
ignificant the spectral changes. In particular, observable
hanges in the spectral line shape can occur with rotation
ates smaller than the linewidth facilitating an experi-
ental detection of the spectral changes.
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