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We study the frequency shifts taking place when a random, stationary optical field rotates with respect to an
observer. The field is expanded in terms of fully coherent Laguerre—Gaussian basis modes, for which the ro-
tational frequency shifts have been studied previously. We demonstrate the formalism by considering the spec-
trum of a Gaussian Schell-model field, and show that for a spatially highly incoherent field, significant spectral
changes can be expected. © 2006 Optical Society of America
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1. INTRODUCTION

A circularly polarized light beam possessing a helical
phase front experiences a frequency shift when the beam
and the observer are set in relative rotational motion.’™
In this phenomenon, which is distinct from the transla-
tional Doppler effect, the angular frequency of light is
shifted by (I +0)Q), where ) is the angular frequency of ro-
tation, / is an integer determining the helicity of the
phase front, and o= +1 corresponds to the two orthogonal
states of circular polarization. The shifts have found prac-
tical use, for instance, in determining the relative weights
of the helicity components in a light beam,® also at the
single-photon level,” and in creating moving interference
patterns for optical micromanipulation.10

In this paper, we consider random optical fields and in-
vestigate the effect of partial spatial coherence on the
spectral changes due to the rotational frequency shifts.
We begin in Section 2 by expressing the space-time real-
izations of an optical wave field in terms of Laguerre—
Gaussian basis modes that have helical phase fronts of
the form of exp(il6), with 6 denoting the azimuthal angle.
For treating the relative rotational motion of the field and
the observer, we adopt a straightforward coordinate
transformation.'"'2 We then derive an expression for the
spectral density of a stationary, uniformly circularly po-
larized optical field, which is stationary also in the rota-
tion. In Section 3, we exemplify the analysis by
investigating the rotational frequency shifts in a
two-dimensional Gaussian Schell-model (GSM) field. Fi-
nally, the results of the work are briefly summarized in
Section 4.

2. THEORY

We consider a stationary, uniformly circularly polarized
optical beam propagating along the positive z direction. A
realization of such a field can be expanded in terms of or-
thonormal Laguerre-Gaussian modes, which form a com-
plete set of functions.'® In the space~time domain, the ex-
pansion at the plane of the waist z=0 reads as
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where p=(p, ) denotes the spatial variable written in po-
lar coordinates, a;,(¢) is a time-dependent modal weight
with zero mean, wg is the mean angular frequency of
light, and ¢ denotes time. The left- or right-handed circu-
lar polarization states (upper and lower signs, respec-
tively) are described by the vectors ujw:(uuiiuv)/ \E, in
which the unit vectors u, and u, point along the Carte-
sian coordinate axes. Furthermore, the spatial part of the
basis mode is written as

¢1,5(P) =11,5(p)exp(il V), 2)

with the radial part given byl’13
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where w is the beam-waist parameter, and Lﬁ‘ is the as-
sociated Laguerre polynomial. The basis modes satisfy
the orthonormality relation*
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where the asterisk denotes complex conjugation, and
Onm' (m=1,p) is the Kronecker delta.

We then assume that the field and the observer rotate
with respect to each other about the z axis with angular
frequency (). In what follows, the coordinates (u,v), or
equivalently (p,¥), refer to the frame of the field, whereas
(x,y), or (r, 0), refer to the frame of the observer (see Fig.
1). In the rotation, the Cartesian unit vectors transform
according to

© 2006 Optical Society of America
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Fig. 1. Coordinate frame (z,v) rotates with angular frequency
) with respect to the frame (x,y). The cylindrical coordinates of
the frames are (p,¥) and (r, 6), respectively.

u,(t) cos(Qt) sin(Q¢) || w,
u,(t) - -sin(Q¢) cos(Q) || w, |’ )

and the polar coordinates in the two frames are related by

(p,®) =(r,0- Q). (6)

The realization of the field given in Eq. (1) can now be
written in the frame of the observer as

Y t;Q)uk, = D D a;, ()¢, (r)

l=— p=0

xXexp{-ilwy + (I + 0)QJthu; (7

where r=(r,0); o=+1 and o=-1 for left- and right-
handed circular polarization, respectively; and the polar-
ization vectors are given by u} J=(uxtiuy)/ V2.

The coherence properties of the random, uniformly po-
larized optical field given in Eq. (7) can be described by
the (scalar) mutual coherence function characterizing the
field correlations at two space-time points (r,t) and
(r’,t"). The coherence function is explicitly written as

INCR ORI A RH OIS (8

where the angle brackets denote the ensemble average
taken over all possible field realizations. By use of Eq. (7)
in Eq. (8), we obtain the following formula for the mutual
coherence function:

I'(r,x',t,t";Q)
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l=—0 p=0 l'=— p'=0
Xexp[-iwy(t' —t)]exp[-1Q('t" - It)]
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with the angle brackets having an effect only on the ex-
pansion coefficients a; ,(¢). The above expression indicates
that a field that is stationary for (0=0 (i.e., a field for
which the function I' depends on time only through the
difference t' —t=7) can be nonstationary for () # 0. This is
due to the phase term exp[-iQ(l’t'-It)] in Eq. (9), which
expresses the fact that for each mode the rotational
changes in the mean oscillation frequency depend on the
index [ [see Eq. (7)]. We note that the phase term is
present when the term
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(@), Oay ) =g ppr(t,t) (10)

does not vanish for /[ #1’, i.e., when the modes with indi-
ces [ and I’ are at least partially correlated. However, if
the modes are completely uncorrelated, the terms with /
=/" are the only ones that contribute to the mutual coher-
ence function. In such a case the field is stationary also
for ) #0 and one can write

811 pp &) =811 (DO, (11)

where the 7dependence results from the stationarity of
the field for Q=0. In this work we consider fields of this

type.

The spectral properties of a random field are described
by the cross-spectral density function, which for station-
ary fields is obtained by use of the (generalized) Wiener—
Khintchine theorem':

1 (o]
W(r,r',w;Q) = 2—f I'(e,r',7;Q)expiwt)dr, (12)
o

where I'(r,xr’, 7;()) denotes the mutual coherence function
of a stationary field. On substituting Eqgs. (9)—(11) into Eq.
(12), we find that
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where g, ,/(w) is the Fourier transform of the function
gl,l,p,p’(T)’ i~e-,

1
8lipp (@)= ;Tj &11pp(Nexplion)dr. (14)

Furthermore, the spectral density of the field is readily
obtained as

S(r,w;Q) = Wr,r,0;0) = >, > > fi,(0)fip (1)

I== p=0 ;'
Xgu,p’pr[w — Wg — (l + O')Q], (15)
and we see that any effect of rotation on the spectral den-

sity is manifested via a shift in the frequency argument of
the function g, ,, , ().

3. FREQUENCY SHIFTS IN A GAUSSIAN
SCHELL-MODEL FIELD

In this section, we give an example of the spectral
changes due to rotation by considering a two-dimensional,
uniformly circularly polarized GSM field. The cross-
spectral density function for a nonrotating (Q=0) GSM
field at the plane z=0 is of the form'®'®

Wir,r',0;0) = [S(r,0;0)S(r',0;0)]"2exp(- r - r'[YL?),
(16)

where the spectral density is given by
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S(r,w;0) = <m>exp(— 2r?w)g(w - w).  (17)
G

The parameters L. and wg are, respectively, the coher-
ence length and the waist size, which are both assumed to
be independent of frequency. Furthermore, we choose the
spectrum to be Lorentzian in shape, i.e.,

Aw/2
(0 — wp)? + (Aw/2)?’

8w - wg) = (18)

where the parameter Aw denotes the linewidth (full width
at half-maximum).

Next we express the cross-spectral density function of a
rotating GSM field in the form of Eq. (13). However, to
simplify the analysis we assume that the Laguerre—
Gaussian basis modes are mutually completely uncorre-
lated (also in indices p and p’), and that each mode has
the same spectrum for 1=0. These two assumptions are
accounted for by writing

8lipplo—wy—({I+0)Q]=h,p)d,,&lw-wy- ([ +0)Q],
(19)
where the coefficient A(l,p) describes the relative weight
of a basis mode. Inserting Eq. (19) into Eq. (13), setting
0=0, and comparing the resulting expression with Eq.

(16), one finds, with the help of the orthogonality relation
of Eq. (4) and Eq. 7.421(4) of Ref. 17, that'®

2 T
h(l,p) =
(.p) mw? )\ 1Vw? + 1/L? + 1/w?

1/L2 2+l
X( 1/w? + 1/L% + 1/w§) ’ (20)
where
w% 1/4

Hence, the cross-spectral density function of the rotating
GSM field can be written as

W(r,r’,w;Q) = E E )\l,p(w;Q)d)Zp(r)qsl,p(r,)’ (22)
[=—% p=0
where
N p(@,9) =h(l,p)glw - wy - (I + 0)Q] (23)

describes the energy in a mode at frequency o for a cer-
tain value of (). Equation (22) is written in the form of a
coherent-mode representation with \;,(w,) and ¢, ,(r)
denoting the eigenvalues and eigenfunctions of the re-
lated Fredholm integral equation.15 We note here that
due to the rotation, the eigenvalues \; ,(w,{2) will be spec-
trally redistributed from their values for 2 =0.

By making use of Egs. (2), (3), (20), (21), and (23), one
can perform the summation over the index p in Eq. (22) in
an analytic form.!” This calculation yields for the cross-
spectral density

Vol. 23, No. 5/May 2006/dJ. Opt. Soc. Am. A 1161

2
W', w;Q)= (m)exp[— (7 + 7)1+ )]
G

%

x 2, explil(0' - )1 (2877

J=—

Xglw—-wy— 1+ 0)Q], (24)

where a normalized radial coordinate n=r/wg is intro-

duced, and I|; denotes the modified Bessel function of the

first kind of order |/|. The parameter é=wq/L, can be con-

sidered as a measure for the degree of global spatial co-

herence of the field.® Accordingly, the field is completely

coherent for £=0 and completely incoherent for £— .
The spectral density is obtained from Eq. (24) as

)exp[— 2771+ )12, Iy (287

l|=—c0

2
S(r,w;Q) = 3
7TwG

Xglw— wy— (I + 0)]. (25)

In this expression, the factor in front of the sum term
comprises a spatially Gaussian envelope function that de-
pends on the coherence parameter £ but not on the fre-
quency w. The sum term itself depends on both of the pa-
rameters £ and o and it consists of Lorentzian lines whose
center frequencies wy+([+0)Q) vary with the summation
index /. The behavior of the weights I};({) of these lines is
illustrated in Fig. 2 with a few different values of the ar-
gument (=222, For the value /=0, only the Lorentzian
line with /=0 contributes to the spectral density, the line
being centered at the frequency wy+o€). This case corre-
sponds either to a fully coherent field (£=0) for which the
spectrum is the same at any distance from the optical
axis, or to a field with any state of spatial coherence ob-
served at the optical axis (7=0). For the values {>1 on
the other hand, Fig. 2 indicates that several Lorentzian
lines with a large value of |I| can significantly contribute
to the spectral density. This is the case when the field is
very incoherent (¢ is large), or when the field is observed
far from the optical axis (7 is large).

Figure 3 illustrates the effect of the angular frequency
of rotation ) on the spectral density with two weight
functions I;(10) and 1;(200). The spectrum of a nonrotat-
ing beam (Q2=0), i.e. the Lorentzian line, is shown as a

1 (E)1,(8)

o 4 8 12 16 20
I
Fig. 2. Behavior of the modified Bessel function of the first kind
I (9 as a function of the index |I|. The solid curves are plotted to
guide the eye.



1162 J. Opt. Soc. Am. A/Vol. 23, No. 5/May 2006

S(r,m;Q) [arb. un.]

0
(0-0,-0Q)/ A

(@)

o o o
P

S(r,w;Q) [arb. un.]

o
o

(=]

0
(0-w,-0Q)/Aw

(b)
Fig. 3. Spectral density S(r,;(}) in the plane of the waist (z
=0) of the GSM field for different rotational frequencies ) with
weight functions (a) I(10) and (b) I;(200). The Lorentzian line-
shape function of width Aw is shown by the dashed curves. All
the curves are normalized to have the same maximum value.

dashed curve. For ) #0, the center frequency wq of the
spectrum is shifted to the frequency wg+ (), and the over-
all spectral width is seen to increase as the value of () is
increased. For example, near the optical axis with the pa-
rameter 7 fixed to a value of =<1, one can consider the
differences between Figs. 3(a) and 3(b) to occur due to
changes in spatial coherence through the parameter &.
The spectral changes are hence seen to be more signifi-
cant in the more incoherent field of Fig. 3(b) for a fixed
value of ). On the other hand, for a certain state of coher-
ence with the parameter ¢ fixed, the spectral changes are
more significant farther from the optical axis, i.e., with a
large value of the parameter 7. The shape of the spectrum
can be characterized as a broadened spectral line when
the inequality ) =<Aw is satisfied. However, the peaks of
the constituent Lorentzian lines become visible for the
values of Q=Aw; and for still higher values of (), the
Lorentzians would be distinguished separately. In such
cases, the center frequency is also at wy+o() and the
width of the envelope of the spectrum increases with (.

4. SUMMARY

We have studied the effect of partial spatial coherence on
the spectral changes occurring when a random, uniformly
circularly polarized field and the observer rotate with re-
spect to each other. In our analysis, we expanded the field
in terms of Laguerre—Gaussian basis modes and derived
an expression for the cross-spectral density for a certain
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type of fields, which are stationary in the rotation. The
formalism was exemplified by considering a two-
dimensional Gaussian Schell-model field. We conclude
that, the more (spatially) incoherent the field, the more
significant the spectral changes. In particular, observable
changes in the spectral line shape can occur with rotation
rates smaller than the linewidth facilitating an experi-
mental detection of the spectral changes.
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