
Publication [P1]

L. Eriksson, “A PID Tuning Tool for Networked Control Systems”, WSEAS
Transactions on Systems, Vol. 4, Issue 1, January 2005, pp. 91-97.

© 2005 WSEAS. Reprinted, with permission.

A PID Tuning Tool for Networked Control Systems

LASSE ERIKSSON
Control Engineering Laboratory

Helsinki University of Technology
P.O.Box 5500, FI-02015 TKK

FINLAND
lasse.eriksson@hut.fi http://www.control.hut.fi

Abstract: - This paper presents a software tool that can be used for PID controller tuning in networked control
systems. The problem with networks, when control issues are considered, is that they cause varying delays in
the measurements. A delay in the feedback loop may cause instability and it thus complicates control design,
and a varying delay makes the design task even more difficult. The PID tuning procedure that is implemented
in the tool is based on simulation and constrained optimization techniques. First, the control system is modeled,
and then its performance is optimized with respect to a cost criterion. The networks are modeled with delay
distributions in the control system simulation model. The tool provides an easy-to-use graphical user interface
for tuning PID controllers manually or automatically.

Keywords: - PID controller, Optimization, Simulation, Networked systems, Varying delay, Tuning

1 Introduction
The problem of tuning the PID (Proportional – Inte-
gral – Derivative) controller has been discussed in
numerous books, papers and journal articles (see e.g.
[9], [12]). The most famous tuning methods are the
Ziegler-Nichols (ZN) open- and closed-loop methods
published already in 1942. The ZN methods give
good but not optimal tuning rules.

Many tuning methods have been implemented on
computers and different tuning tools are also com-
mercially available. Some industrial products with
automatic tuning capabilities are presented in detail
in [12], and a more up-to-date list is available in
[14]. One of the PID tuning tools is the MATLAB
based BESTune PID auto-tuning software [15]. It
enables automatic and optimized PID tuning on the
basis of process data. The BESTune software can be
implemented into several industrial controllers, but it
also provides a simple graphical user interface (GUI)
for the tuning. The advantages of GUIs in general are
obvious. The visualization and easy usability are im-
portant properties of programs that are based on
rather complex tuning methods and procedures.

Every now and then the tuning methods and tools
need to be revised since new technologies come into
use in industry. First, there were the analog control-
lers, and then became the digital controllers. Cur-
rently, distributed control systems with field buses
are popular. A new hot topic is wireless technology.
The use of wireless sensors and even actuators af-
fects the tuning of the controllers, because wireless
networks have problematic properties. These include

packet loss and varying delays in packet delivery.
These issues arise especially in sensor and actuator
networks, for which the controllers need to be tuned
using new tools that support appropriate methods.
There are not many methods for PID controller tun-
ing in varying delay systems, and there are even less
software tools for that task.

This paper presents a new tool for PID controller
tuning in networked control systems where time-
varying delays are present. The tool takes advantage
of the tuning concept that Koivo and Reijonen have
presented in [2]. Their concept uses the well-known
simulation and optimization based PID tuning
method, but they have formulated it for varying
time-delay systems. In this study, the tuning concept
is extended, first of all, to handle discrete-time PID
controllers that are the most common controllers in
industry. Secondly, a graphical user interface for the
tuning procedure is implemented. When comparing
with the other published PID tuning tools (such as
BESTune), the one presented here is designed espe-
cially for networked control systems. The network
characteristics are described with different delay dis-
tributions. Another new property in the tool is that it
allows introducing optimization constraints related to
the delay in order to improve the stability of the con-
trol system with respect to the variance of delay.

In the paper, the networked control system is dis-
cussed in section 2 and network delays in section 3.
The tuning method and the tuning tool are presented
in sections 4 and 5, respectively, and conclusions are
offered in section 6.

2 Networked control
Networked control has been studied in several papers
and articles (see e.g. [4], [6] and [10]). Long and
varying delays occur especially in the Internet, but
also in other networks. Consider a wireless sensor
network where the routing of packets is determined
online. The longer the route, the longer the time it
takes to deliver a packet to its destination. A wireless
sensor network could be used for measuring process
variables as in Fig.1, where the basic components of
a wireless networked control system are presented.
The measurements are processed in the sensor net-
work and fused in order to get reliable information of
the state of the controlled process. The fused state
estimate is sent to the controller which calculates the
new control signal for the actuator (Act. in Fig.1).

2.1 PID controller
The PID controller is the most common controller in
control systems. For example, in the mid 1990’s the
PID controller was used in over 95 % of the control
loops in process control [12]. The good properties of
the controller can only be achieved if the controller
is well tuned. The tuning of PID controllers has been
considered in numerous papers and books, but nearly
always in systems with constant delays. Varying de-
lays have not been addressed very often.

Generally, the continuous-time PID controller al-
gorithm is given in time domain as

0

1 ()() () ()
t

d
i

de tu t K e t e d T
T dt

α α
⎛ ⎞

= + +⎜ ⎟
⎝ ⎠

∫ (1)

where u is the control signal and e is the error be-
tween reference yr and process output y. The control-
ler tuning parameters are K (gain), Ti (integration
time) and Td (derivative time). [13] The controller is
often presented in the equivalent form

0

()() () ()
t

p i d
de tu t K e t K e d K

dt
α α= + +∫ (2)

The tuning parameters are related to those in (1) by

, , p i d d
i

KK K K K KT
T

= = = (3)

The Laplace transform of the control signal is
given in equations (4) - (7). The gain of the deriva-
tive term at high frequencies is limited using a
proper approximation [13].

() () () ()u s P s I s D s= + + (4)

() () ()pP s Ke s K e s= = (5)

PID
Controller

+

_

yr(t)

τ(t)

()
()

() (), (),

() (), (),

x t f x t u t t

y t g x t u t t

=⎧⎪
⎨

=⎪⎩

Process Sensor
Data

Fusion

Wireless Network

e(t) u(kh)

ˆ()y t

y1(t)

yN(t)

A
c
t.

PID
Controller

+

_

yr(t)

τ(t)

()
()

() (), (),

() (), (),

x t f x t u t t

y t g x t u t t

=⎧⎪
⎨

=⎪⎩

Process Sensor
Data

Fusion

Wireless Network

e(t) u(kh)

ˆ()y t

y1(t)

yN(t)

A
c
t.

Fig.1. Wireless networked control system.

() () ()i

i

KKI s e s e s
T s s

= = (6)

()

() () ()
1 /

 ()
1 /

d
d

d

d

d p

T sD s KT se s K e s
T s N

K s e s
K s K N

= ≈ =
+

=
+

 (7)

Here N is a filtering time constant. At low frequen-
cies the approximation is quite accurate, but at
higher frequencies, where measurement noise oc-
curs, the gain is limited. N is typically chosen from
the range of 3 to 20. [13]

In practice, controllers are discrete-, not continu-
ous-time. The continuous-time controller can be ap-
proximated with a discrete-time controller (sampling
interval h). The proportional part of the controller is
static and requires no approximation, only sampling.
The backward differences method can be used in the
approximation of the integral and derivative parts.
The discrete-time PID controller algorithm is given
in (8) - (11).

() () () ()u kh P kh I kh D kh= + + (8)

() ()pP kh K e kh= (9)

() () ()iI kh I kh h K he kh= − + (10)

[]

() ()

 + () ()

d

d p

d p

d p

KD kh D kh h
K K Nh

K K N
e kh e kh h

K K Nh

= − +
+

− −
+

 (11)

2.2 Constraints in control systems
One way to improve the robustness of a controller is
to tune it such that the gain and phase margins of the
controlled system are sufficient. If either gain or
phase margin of a system becomes negative, the sta-
bility of the system is lost. The presented controller
tuning tool can take into account the desired gain and
phase margins by formulating them into optimization
constraints. The same principle can be used for other
control system properties such as overshoot and set-
tling time.

The gain margin is the number of decibels that
the open-loop gain can be increased before it reaches
0 dB at the frequency where the open-loop phase
shift is –180°. The phase margin is the additional
phase lag that is allowable before reaching -180° at
the frequency where the gain equals one (0 dB). [3]

3 Varying delays
The network delays depend e.g. on the system hard-
ware and communication protocols. The delay distri-
butions can be measured or modeled. Many delay
distributions are presented in the literature, and the
most relevant ones are briefly described here.

3.1 Gaussian distribution
The Gaussian distribution does not model any spe-
cific network, but it can be used as a generic delay
model describing some variance in the delay around
a mean value. It is possible to obtain negative delays
when using Gaussian distribution, because the distri-
bution is defined from minus to plus infinity. Since
negative delays are unrealistic, the distribution
should be cut at zero when modeling variable delays
with it.

3.2 Gamma distribution
In a computer network such as the Internet, the delay
distribution has been shown to resemble a shifted
gamma distribution [8]. Even in the fastest network
there is a nonzero minimum delay (therefore the
shift), and the measured delay distributions have had
a peak and a long tail, similar to the gamma distribu-
tion. The gamma probability distribution is given by

1() ()
()

n xP x x e
n

αα α − −=
Γ

 (12)

1

0

() n tn t e dt
∞

− −Γ = ∫ (13)

Here n is a shape parameter (sometimes interpreted
as the number of hops between first and last network
nodes) and α = n / T, where T is the mean delay.

3.3 Wireless network delay distribution
The delay distribution of a wireless network resem-
bles two or more successive gamma distributions,
where the distributions are shifted unequal times cor-
responding to retransmissions [6]. The first gamma
distribution has a higher peak than the others, since
most of the packets do not need retransmissions.

4 Optimal controller tuning
The presented tuning tool uses simulation and opti-
mization techniques. The process for which the con-
troller is tuned has to be modeled. Also the network
or at least its delay characteristics need to be mod-
eled, because they affect the performance of the con-
trol system. Both models may be based on measure-
ments or they can be derived analytically. The per-
formance criterion, which is often process specific,
has to be given beforehand. There are several opti-
mization criteria that are frequently used and modi-
fied for different optimization tasks. This section
discusses the cost criteria and optimization methods
that are used in the tool.

4.1 Cost functions
The ITAE (Integral of Time-weighted Absolute Er-
ror) cost function depends on the absolute value of
the error between reference and process output sig-
nals. The error is weighted with the time of occur-
rence of the error. The absolute value ensures the
monotonous growth of the cost function.

0 0

() () ()ITAE rJ t e t dt t y t y t dt
∞ ∞

= = −∫ ∫ (14)

Other similar cost criteria can also be determined.
For example, IAE (Integral of Absolute Error), ISE
(Integral of Square Error) or ITSE (Integral of Time-
weighted Square Error) can be used. They are given,
respectively, in (15) - (17). [12]

0

()IAEJ e t dt
∞

= ∫ (15)

()2

0

()ISEJ e t dt
∞

= ∫ (16)

()2

0

()ITSEJ t e t dt
∞

= ∫ (17)

These cost criteria are well known, and they can
be used as a starting point. It is easy to modify them,
and to derive more suitable versions for the control
system in concern. It should be noted that the cost
criteria above do not depend on the controller output,
i.e. the control signal, at all. Optimization of these
criteria may thus result in very sensitive controllers
that are fast, but they come with the cost of high con-
trol signal usage. Often in practice, there are limita-
tions concerning the usage of control signal.

Another cost criterion is more suited for control-
ler tuning. Consider the optimal control law: the
square of process states and the square of control

signals are weighted, summed and integrated over
time. This applies if the reference signal is zero and
the aim is to control all the states to zero. But if the
reference is unequal to zero, the cost function needs
to be revised. This is done in (18), where “IERC”
(Integral of Weighted Sum of Square Error and Re-
quired Control Signal Error) criterion is presented.

() ()2 2
1 2

0

() () ()IERC rJ w e t w y t g u t dt
∞

⎡ ⎤= + − ⋅⎣ ⎦∫ (18)

The weights w1 and w2 define how much the error
and the control signal usage are considered in the
optimization. The bigger the w1, the less the control
signal is weighted and vice versa. The static gain g
of the process scales the control and the reference
signals to the same level. Thus the difference
yr(t) – g · u(t) equals zero, when the control signal is
on the level that is required to have the process out-
put on the reference signal level. [1]

4.2 Constrained optimization
There are many methods for unconstrained optimi-
zation (e.g. steepest descent or quasi-Newton’s meth-
ods) that can be used if the decision variables (con-
troller parameters) are not bounded and there are no
other constraints affecting the optimization. Often in
practice, there are limitations or requirements in the
control system, and these can be expressed as con-
straints. There are different methods for solving un-
constrained and constrained optimization problems.
A general constrained optimization problem can be
expressed as

 ()
s.t. () 0
 () 0
 n

Min f x
g x
h x
x

=
≤

∈

 (19)

where f is the objective function to be minimized. If
single-objective optimization is considered, f is a
scalar-valued function. In a multi-objective case f is
a vector. The feasible set for variables x is deter-
mined in (19) by equality and inequality constraints
or g(x) and h(x), respectively. [5]

4.3 Sequential quadratic programming – SQP
Sequential quadratic programming (SQP) is an ad-
vanced method for solving constrained nonlinear
optimization problems, and it is also used in the tool.
The SQP algorithm consists of three main phases. At
each iteration the Hessian matrix of the Lagrangian
function is first updated. The Lagrangian is given by

(,) () () ()i i j j
i j

L x f x g x h xλ λ λ= + +∑ ∑ (20)

where λi and λj are the Lagrange multipliers. Sec-
ondly, a quadratic programming subproblem is
solved and the solution is used to calculate a new
search direction. Finally, the step length and the next
iterate are calculated using a proper line search
method. [7]

4.4 Optimization procedure
The optimization problem can be given constraints
concerning e.g. the closed loop system performance,
values of the controller parameters and the worst
case delay of a network. These constraints need to be
satisfied in order to successfully terminate the opti-
mization. Constraints can be formulated such that the
robustness of the control system is considered. The
tuning tool uses a five-step simulation based optimi-
zation procedure shown in Fig.2 for solving the con-
troller tuning parameters.

First, the initial parameters of the controller are
chosen. Default or user given values may be used.
After the initialization step, the iterative part of pro-
cedure is initiated. At each iteration, the closed loop
system is simulated using the available controller
parameters and the cost function is evaluated. After
that a termination test is performed in order to see if
it is necessary to continue the iteration. If the test is
not passed, the SQP optimization algorithm updates
the controller parameters based on the cost function
value and optimization constraints. The iteration
continues by simulating the system with the new
controller parameters. If the test is passed, the itera-
tion stops and the optimal parameters are available.
The solution must satisfy all the constraints.

5 A tool for PID tuning
The described tuning procedure and the presented
tool are implemented with MATLAB software. To
enable an easy usage of the tuning program, a
graphical user interface was built with several inter-
active properties. These include the selection of
process, reference signal and controller parameters,
drawing options, optimization criteria, delay charac-
teristics and disturbance properties etc.

5.1 The graphical user interface – GUI
The graphical user interface of the tool is shown in
Fig.3. In the upper left corner of the tool it is possi-
ble to select a linear transfer function process model
for which the controller is tuned. Although only lin-
ear models are used here, the tuning method applies

Step 1: k = 0
Set the initial values for PID

controller parameters:
Kp(0), Ki(0) and Kd(0)

Step 2:
Simulate the closed loop system

with the current controller
parameters and evaluate the cost

function J(k)

Step 4: k = k + 1
Update the controller parameters

using the SQP optimization
Algorithm to get the new

Kp(k+1), Ki(k+1) and Kd(k+1)

Step 3:
Check if optimum is reached with

feasible parameters

Step 5:
Optimal parameters:
Kp*, Ki* and Kd*

TRUE

FALSE

Step 1: k = 0
Set the initial values for PID

controller parameters:
Kp(0), Ki(0) and Kd(0)

Step 2:
Simulate the closed loop system

with the current controller
parameters and evaluate the cost

function J(k)

Step 4: k = k + 1
Update the controller parameters

using the SQP optimization
Algorithm to get the new

Kp(k+1), Ki(k+1) and Kd(k+1)

Step 3:
Check if optimum is reached with

feasible parameters

Step 5:
Optimal parameters:
Kp*, Ki* and Kd*

TRUE

FALSE

Fig.2. Optimal PID tuning (modified from [11]).

for both linear and nonlinear processes. Linearity is
required in the tool for simplicity, but the tool could
be extended for nonlinear processes.

In the middle of the top part of the tool a refer-
ence signal can be selected for the simulations. There
are three possible reference signals implemented cur-
rently: a step, a sine wave and a series of steps. All

these signals have certain parameters that can be
chosen, e.g. the step time.

The tuning tool supports both continuous- and
discrete-time PID controllers. The controller type
can be selected in the upper right corner of the tool.
There are also three sliders that are used for manual
tuning of the controllers. Each slider represents a
certain parameter of the PID controller. Once a slider
is moved and released, the closed loop system is
automatically simulated. Thus it is possible to tune
the controller manually by moving the sliders back
and forth, and by comparing the results. This is an
important property, since often reasonable initial
conditions need to be found before the optimization
can be executed successfully. Using the sliders the
controller initial parameters are easily found. Some-
times it is useful to have a possibility to set controller
parameters very accurately without simulating the
system. If some parameter values are known, they
can be given into text boxes next to the sliders. The
sliders are then automatically moved to the corre-
sponding positions, but the system is not simulated.

In the middle part of the tool, the user can select
the signals which are shown in the result figures. The
recorded signals are reference, response (output),
input (control), delay and disturbances. The results
can be drawn in separate figures or in the scope on
the tool. The former property is useful when compar-
ing certain sets of parameters, and the latter when the
controller is tuned. There are two scopes on the tool.
The upper one represents the delay used in the simu-
lations and the lower one can be used for displaying
the signals.

Fig.3. The PID controller tuning tool – GUI.

In the middle of the tool, there is a set of buttons
and text boxes with which the optimization options
are set. The five cost functions given in (14) - (18)
can be used in the optimization. With the text boxes
the user can set the required gain and phase margins
for the system, and these are formulated into optimi-
zation constraints in the program. It is possible to
optimize a controller for a certain process, but it is
also possible to give several controller sampling in-
tervals or even a set of process time constants for
which controllers are optimized.

There are six delay types that can be used for de-
scribing the delay characteristics of a networked con-
trol system. All the delays are process output delays
(see τ(t) in Fig.1) and the delay types are: constant,
sinusoidal, state-dependent, random Gaussian dis-
tributed, random uniformly distributed and Gamma
distributed. The parameters of the delays, such as
mean value and variance of distributions, can be ad-
justed.

The effect of load disturbances and measurement
noise can be examined with the buttons in the lower
left corner of the tool. Noise brings realism into the
simulations, since noise is always present in real sys-
tems. Load disturbances are also common, and the
controller must be able to compensate these distur-
bances as well. If the disturbances are present in the
simulations and during the optimization, more suit-
able controller parameters are obtained.

The simulation parameters such as simulation
time and controller sampling time can be adjusted in
the lower right corner of the tool. There is also a but-
ton that runs a single simulation after which the re-
sults are presented in the scope.

In the background, there is a rather complicated
program that sets up the simulation model based on
the user’s selections. The model is then simulated
and results are sent back to the main program that
presents the results to user via the GUI.

5.2 Data structures and program blocks
The basic data type used in the tuning program is a
structure that contains all the information about proc-
ess, controller, delay, disturbances etc. The data
structure is built when either simulation or optimiza-
tion buttons are clicked on the GUI. All users’ selec-
tions and simulation information are gathered from
the GUI and recorded into the structure. Once the
structure is built, the program inserts the simulation
information from the structure into the simulation
model. There are special functions in the program
that are made for transferring the information easily
from the GUI into the structure and onwards into the
simulation model.

After the optimization procedure, the controller
parameters and cost function values are added into
the structure. If the sampling interval or process time
constants are varied during the optimization and thus
several controllers are obtained, the results are re-
corded into a structure array. In this way, the results
are saved in one variable (the array) that is easy to
handle and e.g. to save on a disk.

The execution phases of the tuning program are
presented in Fig.4. It can be seen in the flow chart
that there are three basic actions that the user can
choose: simulation, optimization of a single process
and optimization of several controllers or processes.
The optimization actions execute the constrained
optimization algorithm (SQP) which results in
optimal controller parameters. If several processes or
controllers are to be optimized at once, the program
saves the latest results in the structure array and
updates the controller or process information. Then
the optimization is rerun with updated parameters.
The results are shown to the user after the simulation
or the optimization is successfully terminated.

Initialization:
Initial parameters, GUI and

simulation model
initialization

Setup:
Selection of process,

controller, delay properties,
disturbances, etc…

Actions
SIMULATE

OPTIMIZE

Display results:
Draw controller parameter
surfaces, present simulated

signals etc…

Optimization:
SQP algorithm, display the
evolution of optimization,

feasible solution

Save results:
Update the model structure,

save to disk

Optimize
another?

Update:
Update process or

controller parameters

YES

NO

Close
application

END

Start
application

Initialization:
Initial parameters, GUI and

simulation model
initialization

Setup:
Selection of process,

controller, delay properties,
disturbances, etc…

ActionsActions
SIMULATE

OPTIMIZE

Display results:
Draw controller parameter
surfaces, present simulated

signals etc…

Optimization:
SQP algorithm, display the
evolution of optimization,

feasible solution

Save results:
Update the model structure,

save to disk

Optimize
another?
Optimize
another?

Update:
Update process or

controller parameters

YES

NO

Close
application

Close
application

END

Start
application

Start
application

Fig.4. Program execution phases of the tuning tool.

5.3 Displaying the results
After tuning the controller, the program automati-
cally displays the optimal tuning parameters and cost
function values. If only one controller is tuned for a
certain process, the results are shown in 2D-figures,
where the horizontal axis represents the controller
sampling time (in discrete-time PID case) and the
vertical axis represents the value of the parameter. If
several processes or sampling intervals are examined
at once, the results may be shown as in Fig.5 in 3D-
plots. There the controller parameters form surfaces
as functions of sampling interval and time constant
of a first order process. From this kind of figures it is
easy to see how the parameters are affected by the
sampling interval or process time constant.

6 Conclusions
This paper presented a PID controller tuning tool
which is designed especially for networked control
systems. There are not many methods for designing
controllers for networked systems, since the varying
delays make the tuning and the control design prob-
lematic. The presented tuning procedure is based on
modeling of processes and network delays. Simula-
tion and optimization techniques are used for finding
the optimal controller parameters. In the tool, there
are six different delay types that can be used for
characterizing the network delays. The parameters of
the delays, processes and disturbances can be ad-
justed. The tool can utilize constrained optimization
in order to improve e.g. the robustness of the control
system. Particularly, in networked control systems
certain constraints related to the variance of delay
improve robustness. The optimization can be per-
formed e.g. such that not even some maximum delay
will endanger the stability. A graphical user interface
is implemented to make the use of the tuning proce-
dure as easy as possible.

0
0.5

1

0
5

10
0

5

Sampling timeTime constant

K
p

0
0.5

1

0
5

10
0

0.5

1

Sampling timeTime constant

K
i

0
0.5

1

0
5

10
0

5

Sampling timeTime constant

K
d

0
0.5

1

0
5

10
0

10

20

Sampling timeTime constant

C
os

t

Fig.5. An example of the tuning results.

The tool is implemented with MATLAB soft-
ware. Using the tools included in MATLAB, it is
possible to compile the tuning tool into a stand-alone
program. The compilation would enable easy distri-
bution of the tool. The interactivity and an easy user
interface enable using the tool in education, training
and control design. The well-designed implementa-
tion of the tuning program facilitates the mainte-
nance and the future development of the tool.

References:
[1] V. Hölttä, L. Palmroth, L. Eriksson, Rapid con-

trol prototyping tutorial with application exam-
ples, Sim-Serv, www.sim-serv.com, 2004.

[2] H. N. Koivo, A. Reijonen, Tuning of PID Con-
trollers for Varying Time-Delay Systems, IEEE
Int. Conf. on Mechatronics (ICM’04), 2004.

[3] P. H. Lewis, C. Yang, Basic Control Systems
Engineering, Prentice Hall, 1997.

[4] B. Lincoln, Dynamic Programming and Time-
Varying Delay Systems, Ph.D. thesis, Dep. of
Automatic Control, Lund Inst. of Tech., 2003.

[5] G. P. Liu, J. B. Yang, J. F. Whidborne, Multiob-
jective Optimisation and Control, Research
Studies Press Ltd., 2003.

[6] V. Lucan, P. Simacek, J. Seppälä and H.
Koivisto, Bluetooth and Wireless LAN Applica-
bility for Real-Time Control, Automaatio2003,
Helsinki, Finland, 2003.

[7] J. M. Maciejowski, Predictive Control with
Constraints, Pearson Education Ltd., 2002.

[8] A. Mukherjee, On the Dynamics and Signifi-
cance of Low Frequency Components of the
Internet Load, In Proc. of the First ACM SIG-
COMM Workshop on Internet Measurement, pp.
281 – 293, San Francisco, USA, 2001.

[9] A. O’Dwyer, Handbook of PI and PID Control-
ler Tuning Rules, Imperial College Press, 2003.

[10] N. J. Ploplys, P. A. Kawka and A. G. Alleyne,
Closed-Loop Control over Wireless Networks,
IEEE Control Systems Magazine, Vol. 24, pp.
58 – 71, 2004.

[11] A. Reijonen, Tuning of PID Controller for Vary-
ing Time-Delay Systems, Master’s thesis, Hel-
sinki University of Technology, 2003.

[12] K.J. Åström, T. Hägglund, PID Controllers:
Theory, Design, and Tuning, 2nd ed., Instrument
Society of America, 1995.

[13] K. J. Åström, B. Wittenmark, Computer-
controlled Systems – Theory and Design, 3rd
ed., Prentice Hall, 1997.

[14] http://www.isc-ltd.com/resource_centre/
tech_pid.html, Jan, 18th 2005.

[15] http://bestune.isclever.com/, Jan, 18th 2005

