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Abstract: - This paper presents a software tool that can be used for PID controller tuning in networked control 
systems. The problem with networks, when control issues are considered, is that they cause varying delays in 
the measurements. A delay in the feedback loop may cause instability and it thus complicates control design, 
and a varying delay makes the design task even more difficult. The PID tuning procedure that is implemented 
in the tool is based on simulation and constrained optimization techniques. First, the control system is modeled, 
and then its performance is optimized with respect to a cost criterion. The networks are modeled with delay 
distributions in the control system simulation model. The tool provides an easy-to-use graphical user interface 
for tuning PID controllers manually or automatically. 
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1 Introduction 
The problem of tuning the PID (Proportional – Inte-
gral – Derivative) controller has been discussed in 
numerous books, papers and journal articles (see e.g. 
[9], [12]). The most famous tuning methods are the 
Ziegler-Nichols (ZN) open- and closed-loop methods 
published already in 1942. The ZN methods give 
good but not optimal tuning rules. 

Many tuning methods have been implemented on 
computers and different tuning tools are also com-
mercially available. Some industrial products with 
automatic tuning capabilities are presented in detail 
in [12], and a more up-to-date list is available in 
[14]. One of the PID tuning tools is the MATLAB 
based BESTune PID auto-tuning software [15]. It 
enables automatic and optimized PID tuning on the 
basis of process data. The BESTune software can be 
implemented into several industrial controllers, but it 
also provides a simple graphical user interface (GUI) 
for the tuning. The advantages of GUIs in general are 
obvious. The visualization and easy usability are im-
portant properties of programs that are based on 
rather complex tuning methods and procedures. 

Every now and then the tuning methods and tools 
need to be revised since new technologies come into 
use in industry. First, there were the analog control-
lers, and then became the digital controllers. Cur-
rently, distributed control systems with field buses 
are popular. A new hot topic is wireless technology. 
The use of wireless sensors and even actuators af-
fects the tuning of the controllers, because wireless 
networks have problematic properties. These include 

packet loss and varying delays in packet delivery. 
These issues arise especially in sensor and actuator 
networks, for which the controllers need to be tuned 
using new tools that support appropriate methods. 
There are not many methods for PID controller tun-
ing in varying delay systems, and there are even less 
software tools for that task. 

This paper presents a new tool for PID controller 
tuning in networked control systems where time-
varying delays are present. The tool takes advantage 
of the tuning concept that Koivo and Reijonen have 
presented in [2]. Their concept uses the well-known 
simulation and optimization based PID tuning 
method, but they have formulated it for varying 
time-delay systems. In this study, the tuning concept 
is extended, first of all, to handle discrete-time PID 
controllers that are the most common controllers in 
industry. Secondly, a graphical user interface for the 
tuning procedure is implemented. When comparing 
with the other published PID tuning tools (such as 
BESTune), the one presented here is designed espe-
cially for networked control systems. The network 
characteristics are described with different delay dis-
tributions. Another new property in the tool is that it 
allows introducing optimization constraints related to 
the delay in order to improve the stability of the con-
trol system with respect to the variance of delay. 

In the paper, the networked control system is dis-
cussed in section 2 and network delays in section 3. 
The tuning method and the tuning tool are presented 
in sections 4 and 5, respectively, and conclusions are 
offered in section 6. 



 

2 Networked control 
Networked control has been studied in several papers 
and articles (see e.g. [4], [6] and [10]). Long and 
varying delays occur especially in the Internet, but 
also in other networks. Consider a wireless sensor 
network where the routing of packets is determined 
online. The longer the route, the longer the time it 
takes to deliver a packet to its destination. A wireless 
sensor network could be used for measuring process 
variables as in Fig.1, where the basic components of 
a wireless networked control system are presented. 
The measurements are processed in the sensor net-
work and fused in order to get reliable information of 
the state of the controlled process. The fused state 
estimate is sent to the controller which calculates the 
new control signal for the actuator (Act. in Fig.1). 

2.1 PID controller 
The PID controller is the most common controller in 
control systems. For example, in the mid 1990’s the 
PID controller was used in over 95 % of the control 
loops in process control [12]. The good properties of 
the controller can only be achieved if the controller 
is well tuned. The tuning of PID controllers has been 
considered in numerous papers and books, but nearly 
always in systems with constant delays. Varying de-
lays have not been addressed very often.  

Generally, the continuous-time PID controller al-
gorithm is given in time domain as 
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where u is the control signal and e is the error be-
tween reference yr and process output y. The control-
ler tuning parameters are K (gain), Ti (integration 
time) and Td (derivative time). [13] The controller is 
often presented in the equivalent form 
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The tuning parameters are related to those in (1) by 
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The Laplace transform of the control signal is 
given in equations (4) - (7). The gain of the deriva-
tive term at high frequencies is limited using a 
proper approximation [13].  
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Fig.1. Wireless networked control system. 
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Here N is a filtering time constant. At low frequen-
cies the approximation is quite accurate, but at 
higher frequencies, where measurement noise oc-
curs, the gain is limited. N is typically chosen from 
the range of 3 to 20. [13] 

In practice, controllers are discrete-, not continu-
ous-time. The continuous-time controller can be ap-
proximated with a discrete-time controller (sampling 
interval h). The proportional part of the controller is 
static and requires no approximation, only sampling. 
The backward differences method can be used in the 
approximation of the integral and derivative parts. 
The discrete-time PID controller algorithm is given 
in (8) - (11). 
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2.2 Constraints in control systems 
One way to improve the robustness of a controller is 
to tune it such that the gain and phase margins of the 
controlled system are sufficient. If either gain or 
phase margin of a system becomes negative, the sta-
bility of the system is lost. The presented controller 
tuning tool can take into account the desired gain and 
phase margins by formulating them into optimization 
constraints. The same principle can be used for other 
control system properties such as overshoot and set-
tling time. 



 

The gain margin is the number of decibels that 
the open-loop gain can be increased before it reaches 
0 dB at the frequency where the open-loop phase 
shift is –180°. The phase margin is the additional 
phase lag that is allowable before reaching -180° at 
the frequency where the gain equals one (0 dB). [3] 

3 Varying delays 
The network delays depend e.g. on the system hard-
ware and communication protocols. The delay distri-
butions can be measured or modeled. Many delay 
distributions are presented in the literature, and the 
most relevant ones are briefly described here. 

3.1 Gaussian distribution 
The Gaussian distribution does not model any spe-
cific network, but it can be used as a generic delay 
model describing some variance in the delay around 
a mean value. It is possible to obtain negative delays 
when using Gaussian distribution, because the distri-
bution is defined from minus to plus infinity. Since 
negative delays are unrealistic, the distribution 
should be cut at zero when modeling variable delays 
with it. 

3.2 Gamma distribution 
In a computer network such as the Internet, the delay 
distribution has been shown to resemble a shifted 
gamma distribution [8]. Even in the fastest network 
there is a nonzero minimum delay (therefore the 
shift), and the measured delay distributions have had 
a peak and a long tail, similar to the gamma distribu-
tion. The gamma probability distribution is given by 
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Here n is a shape parameter (sometimes interpreted 
as the number of hops between first and last network 
nodes) and α = n / T, where T is the mean delay. 

3.3 Wireless network delay distribution 
The delay distribution of a wireless network resem-
bles two or more successive gamma distributions, 
where the distributions are shifted unequal times cor-
responding to retransmissions [6]. The first gamma 
distribution has a higher peak than the others, since 
most of the packets do not need retransmissions. 

4 Optimal controller tuning 
The presented tuning tool uses simulation and opti-
mization techniques. The process for which the con-
troller is tuned has to be modeled. Also the network 
or at least its delay characteristics need to be mod-
eled, because they affect the performance of the con-
trol system. Both models may be based on measure-
ments or they can be derived analytically. The per-
formance criterion, which is often process specific, 
has to be given beforehand. There are several opti-
mization criteria that are frequently used and modi-
fied for different optimization tasks. This section 
discusses the cost criteria and optimization methods 
that are used in the tool. 

4.1 Cost functions 
The ITAE (Integral of Time-weighted Absolute Er-
ror) cost function depends on the absolute value of 
the error between reference and process output sig-
nals. The error is weighted with the time of occur-
rence of the error. The absolute value ensures the 
monotonous growth of the cost function. 
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Other similar cost criteria can also be determined. 
For example, IAE (Integral of Absolute Error), ISE 
(Integral of Square Error) or ITSE (Integral of Time-
weighted Square Error) can be used. They are given, 
respectively, in (15) - (17). [12] 
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These cost criteria are well known, and they can 
be used as a starting point. It is easy to modify them, 
and to derive more suitable versions for the control 
system in concern. It should be noted that the cost 
criteria above do not depend on the controller output, 
i.e. the control signal, at all. Optimization of these 
criteria may thus result in very sensitive controllers 
that are fast, but they come with the cost of high con-
trol signal usage. Often in practice, there are limita-
tions concerning the usage of control signal. 

Another cost criterion is more suited for control-
ler tuning. Consider the optimal control law: the 
square of process states and the square of control 



 

signals are weighted, summed and integrated over 
time. This applies if the reference signal is zero and 
the aim is to control all the states to zero. But if the 
reference is unequal to zero, the cost function needs 
to be revised. This is done in (18), where “IERC” 
(Integral of Weighted Sum of Square Error and Re-
quired Control Signal Error) criterion is presented. 
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The weights w1 and w2 define how much the error 
and the control signal usage are considered in the 
optimization. The bigger the w1, the less the control 
signal is weighted and vice versa. The static gain g 
of the process scales the control and the reference 
signals to the same level. Thus the difference  
yr(t) – g · u(t) equals zero, when the control signal is 
on the level that is required to have the process out-
put on the reference signal level. [1] 

4.2 Constrained optimization 
There are many methods for unconstrained optimi-
zation (e.g. steepest descent or quasi-Newton’s meth-
ods) that can be used if the decision variables (con-
troller parameters) are not bounded and there are no 
other constraints affecting the optimization. Often in 
practice, there are limitations or requirements in the 
control system, and these can be expressed as con-
straints. There are different methods for solving un-
constrained and constrained optimization problems. 
A general constrained optimization problem can be 
expressed as 
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where f is the objective function to be minimized. If 
single-objective optimization is considered, f is a 
scalar-valued function. In a multi-objective case f is 
a vector. The feasible set for variables x is deter-
mined in (19) by equality and inequality constraints 
or g(x) and h(x), respectively. [5] 

4.3 Sequential quadratic programming – SQP 
Sequential quadratic programming (SQP) is an ad-
vanced method for solving constrained nonlinear 
optimization problems, and it is also used in the tool. 
The SQP algorithm consists of three main phases. At 
each iteration the Hessian matrix of the Lagrangian 
function is first updated. The Lagrangian is given by 
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where λi and λj are the Lagrange multipliers. Sec-
ondly, a quadratic programming subproblem is 
solved and the solution is used to calculate a new 
search direction. Finally, the step length and the next 
iterate are calculated using a proper line search 
method. [7] 

4.4 Optimization procedure 
The optimization problem can be given constraints 
concerning e.g. the closed loop system performance, 
values of the controller parameters and the worst 
case delay of a network. These constraints need to be 
satisfied in order to successfully terminate the opti-
mization. Constraints can be formulated such that the 
robustness of the control system is considered. The 
tuning tool uses a five-step simulation based optimi-
zation procedure shown in Fig.2 for solving the con-
troller tuning parameters. 

First, the initial parameters of the controller are 
chosen. Default or user given values may be used. 
After the initialization step, the iterative part of pro-
cedure is initiated. At each iteration, the closed loop 
system is simulated using the available controller 
parameters and the cost function is evaluated. After 
that a termination test is performed in order to see if 
it is necessary to continue the iteration. If the test is 
not passed, the SQP optimization algorithm updates 
the controller parameters based on the cost function 
value and optimization constraints. The iteration 
continues by simulating the system with the new 
controller parameters. If the test is passed, the itera-
tion stops and the optimal parameters are available. 
The solution must satisfy all the constraints. 

5 A tool for PID tuning 
The described tuning procedure and the presented 
tool are implemented with MATLAB software. To 
enable an easy usage of the tuning program, a 
graphical user interface was built with several inter-
active properties. These include the selection of 
process, reference signal and controller parameters, 
drawing options, optimization criteria, delay charac-
teristics and disturbance properties etc. 

5.1 The graphical user interface – GUI 
The graphical user interface of the tool is shown in 
Fig.3. In the upper left corner of the tool it is possi-
ble to select a linear transfer function process model 
for which the controller is tuned. Although only lin-
ear models are used here, the tuning method applies
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Fig.2. Optimal PID tuning (modified from [11]). 

for both linear and nonlinear processes. Linearity is 
required in the tool for simplicity, but the tool could 
be extended for nonlinear processes. 

In the middle of the top part of the tool a refer-
ence signal can be selected for the simulations. There 
are three possible reference signals implemented cur-
rently: a step, a sine wave and a series of steps. All 

these signals have certain parameters that can be 
chosen, e.g. the step time.  

The tuning tool supports both continuous- and 
discrete-time PID controllers. The controller type 
can be selected in the upper right corner of the tool. 
There are also three sliders that are used for manual 
tuning of the controllers. Each slider represents a 
certain parameter of the PID controller. Once a slider 
is moved and released, the closed loop system is 
automatically simulated. Thus it is possible to tune 
the controller manually by moving the sliders back 
and forth, and by comparing the results. This is an 
important property, since often reasonable initial 
conditions need to be found before the optimization 
can be executed successfully. Using the sliders the 
controller initial parameters are easily found. Some-
times it is useful to have a possibility to set controller 
parameters very accurately without simulating the 
system. If some parameter values are known, they 
can be given into text boxes next to the sliders. The 
sliders are then automatically moved to the corre-
sponding positions, but the system is not simulated. 

In the middle part of the tool, the user can select 
the signals which are shown in the result figures. The 
recorded signals are reference, response (output), 
input (control), delay and disturbances. The results 
can be drawn in separate figures or in the scope on 
the tool. The former property is useful when compar-
ing certain sets of parameters, and the latter when the 
controller is tuned. There are two scopes on the tool. 
The upper one represents the delay used in the simu-
lations and the lower one can be used for displaying 
the signals. 

 
Fig.3. The PID controller tuning tool – GUI.



 

In the middle of the tool, there is a set of buttons 
and text boxes with which the optimization options 
are set. The five cost functions given in (14) - (18) 
can be used in the optimization. With the text boxes 
the user can set the required gain and phase margins 
for the system, and these are formulated into optimi-
zation constraints in the program. It is possible to 
optimize a controller for a certain process, but it is 
also possible to give several controller sampling in-
tervals or even a set of process time constants for 
which controllers are optimized.  

There are six delay types that can be used for de-
scribing the delay characteristics of a networked con-
trol system. All the delays are process output delays 
(see τ(t) in Fig.1) and the delay types are: constant, 
sinusoidal, state-dependent, random Gaussian dis-
tributed, random uniformly distributed and Gamma 
distributed. The parameters of the delays, such as 
mean value and variance of distributions, can be ad-
justed. 

The effect of load disturbances and measurement 
noise can be examined with the buttons in the lower 
left corner of the tool. Noise brings realism into the 
simulations, since noise is always present in real sys-
tems. Load disturbances are also common, and the 
controller must be able to compensate these distur-
bances as well. If the disturbances are present in the 
simulations and during the optimization, more suit-
able controller parameters are obtained. 

The simulation parameters such as simulation 
time and controller sampling time can be adjusted in 
the lower right corner of the tool. There is also a but-
ton that runs a single simulation after which the re-
sults are presented in the scope. 

In the background, there is a rather complicated 
program that sets up the simulation model based on 
the user’s selections. The model is then simulated 
and results are sent back to the main program that 
presents the results to user via the GUI.  

5.2 Data structures and program blocks 
The basic data type used in the tuning program is a 
structure that contains all the information about proc-
ess, controller, delay, disturbances etc. The data 
structure is built when either simulation or optimiza-
tion buttons are clicked on the GUI. All users’ selec-
tions and simulation information are gathered from 
the GUI and recorded into the structure. Once the 
structure is built, the program inserts the simulation 
information from the structure into the simulation 
model. There are special functions in the program 
that are made for transferring the information easily 
from the GUI into the structure and onwards into the 
simulation model. 

After the optimization procedure, the controller 
parameters and cost function values are added into 
the structure. If the sampling interval or process time 
constants are varied during the optimization and thus 
several controllers are obtained, the results are re-
corded into a structure array. In this way, the results 
are saved in one variable (the array) that is easy to 
handle and e.g. to save on a disk. 

The execution phases of the tuning program are 
presented in Fig.4. It can be seen in the flow chart 
that there are three basic actions that the user can 
choose: simulation, optimization of a single process 
and optimization of several controllers or processes. 
The optimization actions execute the constrained 
optimization algorithm (SQP) which results in 
optimal controller parameters. If several processes or 
controllers are to be optimized at once, the program 
saves the latest results in the structure array and 
updates the controller or process information. Then 
the optimization is rerun with updated parameters. 
The results are shown to the user after the simulation 
or the optimization is successfully terminated. 
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Fig.4. Program execution phases of the tuning tool. 



 

5.3 Displaying the results 
After tuning the controller, the program automati-
cally displays the optimal tuning parameters and cost 
function values. If only one controller is tuned for a 
certain process, the results are shown in 2D-figures, 
where the horizontal axis represents the controller 
sampling time (in discrete-time PID case) and the 
vertical axis represents the value of the parameter. If 
several processes or sampling intervals are examined 
at once, the results may be shown as in Fig.5 in 3D-
plots. There the controller parameters form surfaces 
as functions of sampling interval and time constant 
of a first order process. From this kind of figures it is 
easy to see how the parameters are affected by the 
sampling interval or process time constant. 

6 Conclusions 
This paper presented a PID controller tuning tool 
which is designed especially for networked control 
systems. There are not many methods for designing 
controllers for networked systems, since the varying 
delays make the tuning and the control design prob-
lematic. The presented tuning procedure is based on 
modeling of processes and network delays. Simula-
tion and optimization techniques are used for finding 
the optimal controller parameters. In the tool, there 
are six different delay types that can be used for 
characterizing the network delays. The parameters of 
the delays, processes and disturbances can be ad-
justed. The tool can utilize constrained optimization 
in order to improve e.g. the robustness of the control 
system. Particularly, in networked control systems 
certain constraints related to the variance of delay 
improve robustness. The optimization can be per-
formed e.g. such that not even some maximum delay 
will endanger the stability. A graphical user interface 
is implemented to make the use of the tuning proce-
dure as easy as possible.  

0
0.5

1

0
5

10
0

5

Sampling timeTime constant

K
p

0
0.5

1

0
5

10
0

0.5

1

Sampling timeTime constant

K
i

0
0.5

1

0
5

10
0

5

Sampling timeTime constant

K
d

0
0.5

1

0
5

10
0

10

20

Sampling timeTime constant

C
os

t

 
Fig.5. An example of the tuning results. 

The tool is implemented with MATLAB soft-
ware. Using the tools included in MATLAB, it is 
possible to compile the tuning tool into a stand-alone 
program. The compilation would enable easy distri-
bution of the tool. The interactivity and an easy user 
interface enable using the tool in education, training 
and control design. The well-designed implementa-
tion of the tuning program facilitates the mainte-
nance and the future development of the tool. 

References: 
[1] V. Hölttä, L. Palmroth, L. Eriksson, Rapid con-

trol prototyping tutorial with application exam-
ples, Sim-Serv, www.sim-serv.com, 2004. 

[2] H. N. Koivo, A. Reijonen, Tuning of PID Con-
trollers for Varying Time-Delay Systems, IEEE 
Int. Conf. on Mechatronics (ICM’04), 2004. 

[3] P. H. Lewis, C. Yang, Basic Control Systems 
Engineering, Prentice Hall, 1997. 

[4] B. Lincoln, Dynamic Programming and Time-
Varying Delay Systems, Ph.D. thesis, Dep. of 
Automatic Control, Lund Inst. of Tech., 2003. 

[5] G. P. Liu, J. B. Yang, J. F. Whidborne, Multiob-
jective Optimisation and Control, Research 
Studies Press Ltd., 2003. 

[6] V. Lucan, P. Simacek, J. Seppälä and H. 
Koivisto, Bluetooth and Wireless LAN Applica-
bility for Real-Time Control, Automaatio2003, 
Helsinki, Finland, 2003. 

[7] J. M. Maciejowski, Predictive Control with 
Constraints, Pearson Education Ltd., 2002. 

[8] A. Mukherjee, On the Dynamics and Signifi-
cance of Low Frequency Components of the 
Internet Load, In Proc. of the First ACM SIG-
COMM Workshop on Internet Measurement, pp. 
281 – 293, San Francisco, USA, 2001. 

[9] A. O’Dwyer, Handbook of PI and PID Control-
ler Tuning Rules, Imperial College Press, 2003. 

[10] N. J. Ploplys, P. A. Kawka and A. G. Alleyne, 
Closed-Loop Control over Wireless Networks, 
IEEE Control Systems Magazine, Vol. 24, pp. 
58 – 71, 2004. 

[11] A. Reijonen, Tuning of PID Controller for Vary-
ing Time-Delay Systems, Master’s thesis, Hel-
sinki University of Technology, 2003. 

[12] K.J. Åström, T. Hägglund, PID Controllers: 
Theory, Design, and Tuning, 2nd ed., Instrument 
Society of America, 1995. 

[13] K. J. Åström, B. Wittenmark, Computer-
controlled Systems – Theory and Design, 3rd 
ed., Prentice Hall, 1997. 

[14] http://www.isc-ltd.com/resource_centre/ 
tech_pid.html, Jan, 18th 2005. 

[15] http://bestune.isclever.com/, Jan, 18th 2005 




