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Abstract - This paper studies the tuning of discrete-time 
PID controllers for processes that are observed with sensor 
networks.  It is assumed that a wireless sensor network gath-
ers information from the process.  The characteristics of sen-
sor networks cause varying delays to the measurements, and 
the tuning of a discrete-time PID controller is studied in this 
framework.  Controller tuning rules are developed by opti-
mizing the performance of the closed-loop system with re-
spect to certain cost criteria.  Constrained optimization is 
used for finding optimal controller parameters and to guar-
antee the desired gain and phase margins and stability of the 
system even if the delay varies. 

 
Index Terms - PID controller, varying delay, networked 

control, optimization, sensor networks. 
 

I. INTRODUCTION 

Wireless sensor networks seem to spread out to many 
fields.   Many current research projects in the area concen-
trate on communication protocols and problems in setting 
up energy-aware, high-band networks.  There are yet many 
upper level problems that should be solved before the full 
power of sensor networks can be utilized.  When control 
issues are considered, there are two main problems caused 
by the networks in general: 1) varying delays in transmis-
sion of packets, and 2) packet loss (see e.g. [1], [2], and 
[3]).  This paper concentrates on the former. 

The PID (Proportional – Integral – Derivative) con-
troller is the most common controller algorithm used in 
control systems.  For example, in the mid 1990’s the PID 
controller was used in over 95 % of the control loops in 
process control [4].  The reason for the wide usage is the 
good properties of the controller: it provides feedback, it 
eliminates steady-state offsets and it can anticipate the 
future.  These properties can only be achieved if the con-
troller is well tuned.  The tuning of PID controllers has 
been considered in numerous papers and books, but vary-
ing delays have not been addressed very often.  A recent 
paper by Koivo and Reijonen [5] discusses the tuning of a 
continuous-time PID controller, and mainly a state-
dependent delay.  Here the interest is on discrete-time PID 
controllers, because nowadays controllers are often run by 
computers and calculations are done at discrete times. 

Sensor networks are well suited for monitoring proc-
ess variables, but so far the networks have not been used in 
feedback loops.  Before this can be done, the impact of 
sensor networks on the total performance of the controlled 
process has to be considered.  The main problem is how 
the stability and robustness in the closed-loop control sys-

tem could be guaranteed.  This paper suggests a new 
method for solving this problem. 

The problem of control over networks has been stud-
ied e.g. by Lincoln [1], who has formulated optimal con-
trol for networks with long random delays.  The stability 
analysis of networked control systems has been carried out 
e.g. by Zhang [3].  In their work the theoretical side of the 
control problem is well analyzed.  Still there remains a 
need to consider more practical issues like the tuning of a 
PID controller.  This paper takes a practical approach to 
the problem by developing a new tuning method for dis-
crete-time PID controllers. 

The paper is divided into the following sections: the 
control system and controller properties are discussed in 
Section II.  In Section III the optimization methods that are 
used for solving the problem presented in Section IV are 
discussed.  The tuning results are given in Section V, and 
conclusions are offered in Section VI. 

II. THE CONTROL SYSTEM 

In this study, a new tuning method is developed for 
discrete-time PID controllers in networked control systems 
where time-varying delays are present.  The problem is 
motivated by the increasing interest of using wireless sen-
sor networks in feedback loops.  The control system con-
sists of a process, a discrete-time PID controller, an actua-
tor and a wireless sensor network.  The use of sensor net-
works in process control can be justified by the fact that 
there is no need for expensive cabling of sensors, since the 
sensors operate wirelessly.  Wireless sensors have free 
mobility so that they can be connected to the places where 
the monitored system is moving (rotating axes etc.).  There 
is also more freedom if the monitored process is far away 
from the controller or if the process is very wide, and it is 
difficult (and sometimes impossible) to use wired cou-
pling.  On the other hand, multiple sensors are required for 
redundancy and for guaranteeing reliable operation of the 
whole measurement system.  Fig. 1 presents the control 
system with a wireless feedback loop. 
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Fig. 1. Wireless networked control system. 



 

Although many processes have multiple inputs and 
multiple outputs (MIMO), they are generally controlled 
with several SISO (single input – single output) control-
lers.  If a sensor network is used for observing the process 
variables, data fusion methods are needed in order to fuse 
the rich information (measurements y1…yN) provided by 
the sensor network.  The SISO controllers can only use a 
one-dimensional measurement of the process variables.  
Thus the measurements obtained from the sensor network 
have to be combined into one estimate of the real value of 
the controlled variable (denoted       ). 

After fusing the information, the estimate of the con-
trolled variable is transmitted to the controller node that 
calculates the new control signal value u(kh).  There is a 
delay in the feedback loop caused by the sensor network, 
data fusion and estimate transmission, and it is obvious 
that the delay is time-varying.  The total delay is described 
by a single variable τ(t) in Fig. 1.  It is the varying delay 
that makes controller tuning a challenge. 

PID controller tuning has been widely studied for 
processes with constant delays.  E.g. the Smith-predictor or 
the IMC tuning method could be used if the delay was con-
stant.  Generalization of these methods for systems with 
varying delays is not a straight-forward task. 

A. Process model 

The presented tuning method is applicable to linear 
and nonlinear, time invariant and time variant as well as 
continuous- and discrete-time processes.  The process can 
be modeled from first principles or the model can be de-
rived using identification.  A very general process model is 
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Here δx(t) denotes the derivative of process state variable x 
at time t in the case of continuous-time process, and  
x(t + 1) in the case of discrete-time process. 

B. PID controller 

Generally [6], the continuous-time PID controller al-
gorithm is given in time domain as 
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where u is the control signal and e is the error between 
reference yr and process output y.  The controller tuning 
parameters are K (gain), Ti (integration time) and Td (de-
rivative time). The controller is often presented in the form 
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where the tuning parameters are related to those in (2) by 
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The Laplace transform of the PID controller algorithm is 
given in (5) - (8).  The gain of the derivative term at high 
frequencies is limited using a proper approximation [6]. 
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Here N is a filtering time constant.  At low frequencies the 
approximation is quite accurate, but at higher frequencies, 
where measurement noise occurs, the gain is limited.  [6] 

In practice, controllers are discrete-, not continuous-
time.  The continuous-time controller can be approximated 
with a discrete-time one (sampling interval h).  The pro-
portional part of the controller requires only sampling, and 
the backward differences method can be used in the ap-
proximation of the integral and derivative parts.  The dis-
crete-time PID controller algorithm is given in (9) - (12). 
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C. Gain and phase margins 

One way to improve the robustness of a control sys-
tem is to tune the controller such that the gain and phase 
margins of the system are sufficient.  If either gain or 
phase margin of a system becomes negative, the stability 
of the system is lost.  In this study, the desired gain and 
phase margins are determined beforehand and then the 
optimization of controller parameters is performed such 
that these margins act as optimization constraints. 

The gain margin is the number of decibels that the 
open-loop gain can be increased before it reaches 0 dB at 
the frequency where the open-loop phase shift is –180°.  If 
the gain should be decreased, then the gain margin is nega-
tive.  Formally, the gain margin (in decibels) is defined 
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where M(ωpc) is the open-loop frequency function at the 
phase cross-over frequency ωpc.  The phase margin mp is 
the additional phase lag that is allowable before reaching  
–180° at the frequency where M(ω) equals one (0 dB). 

( ) 180p gcm ϕ ω= +  (14) 

Here φ(ωgc) is the phase at the gain crossover frequency 
ωgc, for which M(ωgc) = 1 (or 0 dB).  [7] 
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D. Delays 

Delays play an important role in the field of control in 
sensor (and actuator) networks.  Since the measurements 
are transmitted from sensors to actuator(s) via a wireless 
network, the delays are varying.  Usually the delay distri-
bution depends on the environment and on the equipment, 
but also on the protocols used.  In sensor networks e.g. 
routing affects the time it takes to transmit the measure-
ments through the network.  The effect of the delay, when 
control is considered, is that it decreases the phase margin 
of the controlled system.  In the worst case, the closed-
loop system may become unstable because of the delay. 

This study makes a comparison between constant and 
random delays.  A constant delay is used as a point of 
comparison for the random Gaussian distributed delay.  
The distribution is cut at zero, since negative delays are not 
realistic.  This kind of delays are detected, e.g. in the Inter-
net, where a path of packets consists of several nodes that 
can be modeled as FIFO queues with random arrivals and 
exponentially distributed service time.  If the number of 
queues traversed increases, the resulting total delay ap-
proaches the Gaussian distribution [2].  Random delays are 
also present in sensor networks, although the delay distri-
bution is other than Gaussian.  The range of the delay is 
more important than the exact form of the distribution and 
the Gaussian distribution is used here for simplicity. 

III. OPTIMIZATION 

The tuning method presented in this paper uses con-
strained optimization in solving the optimal and robust 
controller tuning parameters.  To optimize e.g. the closed-
loop performance, a cost function must be determined.  In 
this study the ITAE (Integral of Time-weighted Absolute 
Error) cost function is used as the optimization criterion.  
The cost depends on the absolute value of error between 
the reference and process output signals.  The error is 
weighted with the time of occurrence of the error.  The 
absolute value ensures the monotonous growth of the cost 
function.  The ITAE cost criterion is 
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Other similar cost criteria could also be determined.  
For example, IAE (Integral of Absolute Error), ISE (Inte-
gral of Square Error) or ITSE (Integral of Time-weighted 
Square Error) could be used.  When designing controllers 
for real systems, often the control signal usage has to be 
considered.  The cost function should then be formulated 
such that it depends on both error and control signals as 
e.g. in optimal control.  In this section the basic methods 
for minimizing a cost function are presented. 

A. Constrained optimization 

There are many methods for unconstrained optimi-
zation (e.g. steepest descent or quasi-Newton’s methods) 
that can be used if the decision variables are not bounded 
and there are no other constraints affecting the optimiza-
tion.  Often in practice, there are several limitations or re-
quirements in the control system and these can be ex-

pressed as constraints.  There are different methods for 
solving unconstrained and constrained optimization prob-
lems.  A general constrained optimization problem can be 
expressed as 
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where f is the objective function to be minimized.  If sin-
gle-objective optimization is used, f is a scalar-valued 
function.  In a multi-objective case f is a vector.  The feasi-
ble set for variables x is determined in (16) by equality and 
inequality constraints or g(x) and h(x), respectively. 

B. Sequential quadratic programming 

Sequential quadratic programming (SQP) is an ad-
vanced method for solving constrained nonlinear optimiza-
tion problems.  The SQP algorithm consists of three main 
phases.  At each iteration the Hessian matrix of the La-
grangian function is first updated.  The Lagrangian is 
given by 
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where λi  and λj are the Lagrange multipliers. 
Secondly, a quadratic programming subproblem is 

solved and the solution is used to calculate a new search 
direction.  Finally, the step length and the next iterate are 
calculated using a proper line search method. 

The main idea of SQP is the formulation of a quad-
ratic programming (QP) subproblem based on a quadratic 
approximation of the Lagrangian function.  The QP sub-
problem is obtained by linearizing the nonlinear con-
straints.  The solution of the QP problem gives an optimal 
search direction which is used to calculate the next iterate 
xk+1.  [8] The QP subproblem is defined 
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Here dk is the search direction at iteration k and Hk is a 
positive definite approximation of the Hessian matrix of 
the Lagrangian function.  The subproblem is solved in the 
presence of linearized constraints.  The new iterate 

1k k k kx x dα+ = +  (19) 

is calculated using the step length αk which is determined 
by a line search procedure so that the objective function is 
decreased sufficiently. 

There are several variations of SQP.  E.g. the vector of 
Lagrangian multipliers or the Hessian matrix can be esti-
mated using different approaches.  It has to be taken into 
account that an iterate xk+1 can violate the original nonlin-
ear constraints g(x) and h(x), because the iterate only satis-
fies the local linearized approximations of the constraints.  
A slightly different method called feasible SQP guarantees 
that all iterates satisfy the original constraints.  [9] 



 

IV. PROBLEM STATEMENT 

The problem is to tune a discrete-time PID controller 
for a known process model such that optimal performance 
of the controlled system is achieved despite of the distur-
bances and of the varying delays in the measurements.  
The delay varies, because e.g. the path of packets is not 
constant in sensor networks.  The optimality measure is the 
ITAE cost criterion given in (15).  It is assumed that the 
delay is not measurable and that a constant sampling inter-
val is used.  Thus it is not possible to vary the controller 
sampling interval for compensating the varying delay. 

A unit step is used as the reference signal.  The ITAE 
criterion is well suited for this kind of reference signal, 
because it is desirable that the response of the system 
reaches the reference signal level quickly and that the re-
sponse remains on the reference signal level as time goes 
on.  Oscillation should not occur in the output.  As time 
passes after the step change in reference, weighting of the 
error increases in the ITAE criterion.  In that sense, an op-
timal response does not oscillate, but it rather goes quickly 
and smoothly to the reference. 

Often a controller that is optimally tuned in the per-
formance sense is not robust.  An unexpected disturbance 
may cause the controlled system to go unstable.  Besides 
measurement and load disturbances, varying delays must 
be considered in sensor network based control systems.  In 
order to make the controller more robust, constraints can 
be formulated in the optimization problem such that con-
troller robustness is increased at the expense of maximal 
performance.  The varying delays can be compensated by 
tuning the controller such that the control system has large 
enough gain and phase margins.  The closed-loop system 
must also be stable, i.e. the poles of the discrete-time 
model of the closed-loop system must lie inside the unit 
circle.  The ITAE criterion and the mentioned constraints 
lead to the formulation of an optimization problem as 
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The decision variables in the optimization problem are 
the discrete-time PID controller gain, integration time and 
derivative time, and they constitute the decision vector x as 
shown in (23).  The filtering time constant N of the deriva-
tive part of the controller has a constant value 10.  The 
optimization criterion or the objective function is given in 
(20).  τ(t) is the time-variant delay of the sensor network.  

The response of the system y(t – τ(t), x) depends on the 
controller tuning parameters and on the network delay.  
There are no equality constraints (21).  The inequality con-
straints are formulated such that the PID controller pa-
rameters are positive, there is a 3 dB gain margin and a 60° 
(π/3 rad) phase margin for a known delay distribution p(τ).  
These values of the margins are often used in control sys-
tem design.  If the delay was e.g. Gaussian distributed, the 
gain and phase margins could be calculated using different 
values for the delay between max(0, µ-3σ) and µ+3σ, 
where µ is the expectation value and σ is the deviation of 
the distribution.  In order to have a finite number of con-
straints (the set S in (22)), delay values are taken from the 
distribution at sampling time intervals and the gain and 
phase margins are calculated based on those delays (see 
Fig. 2).  Each value of the delay produces three con-
straints: one for gain and another for phase margin, and the 
third for the closed-loop system stability requirement. 

Each of the n poles of the closed-loop system must lie 
inside the unit circle, i.e. the absolute value of the poles 
must be smaller than one.  To calculate the last constraint, 
a closed-loop transfer function is derived using a discrete-
time approximation of the process, discrete-time PID con-
troller and a given worst case value of the delay τwc, which 
is the worst possible delay of the measurements in the 
network.  For Gaussian distributed delay, τwc = µ + 5σ is 
suitable, and that is also used in Fig. 2.  By using the pre-
sented constraints in the optimization, the gain and phase 
margins are adequate in normal operation of the control 
system, but additionally the closed-loop stability is guaran-
teed for exceptionally long delays. 

To solve the optimization problem, the inequality con-
straints (22) need to be put into the general optimization 
problem form as in (16).  By defining ε a small positive 
number, the inequality constraints can be given in the re-
quired form as 
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Fig. 2.  Formation of the optimization constraints. 



 

V. THE TUNING RULES 

The problem presented in (20) - (24) is solved for a 
first order linear process that is controlled with the dis-
crete-time PID controller given in (9) - (12).  The process 
is modeled as a continuous-time transfer function 

1( )
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G s
Ts
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+

. (25) 

Besides the process time constant T, the sampling time 
of the controller must be chosen.  To have a wider view on 
the behavior of optimal controller parameters, the problem 
is solved for different process time constants and controller 
sampling times.  The process time constant is varied be-
tween 0.1 and 10, and the sampling time between 0.1 and 
1.  Two different delay types are considered here: constant 
and random Gaussian distributed. 

The problem is solved using a PID tuning tool de-
scribed in detail in [10].  The tool is implemented with the 
MATLAB/Simulink software and the Optimization Tool-
box extension.  The solution is based on the SQP con-
strained optimization algorithm described briefly in Sec-
tion III.  At each optimization iteration new PID controller 
parameters and optimization constraints are calculated, a 
closed-loop system Simulink model with process, control-
ler and delay is simulated, and the cost function is evalu-
ated.  This iteration is repeated until the cost function value 
does not decrease anymore.  The optimization is performed 
for different combinations of process time constants and 
controller sampling times.  The reference signal that is 
used in the optimization is a unit step at 1 s.  The length of 
a single simulation is 20 s. 

A. Constant delay 

First, a constant delay τ = 1 s is considered.  This case 
is used as a point of comparison for the other case with a 
random delay.  The optimization constraints are calculated 
such that 3 dB gain margin and 60° phase margin are guar-
anteed for the nominal system (with constant delay 1 s).  
Besides these margins, stability is guaranteed for the 
closed-loop system with a worst case delay of 2 s. 

The optimal PID controller parameters for the constant 
delay case are shown in Fig. 3.  The parameters are pre-
sented as 3D plots.  The other horizontal axis is the process 
time constant and the other is the controller sampling time.  
The vertical axis represents the controller parameter value.  
There are three tuning parameters in the PID controller, 
and they are presented separately in Fig. 3 as subfigures.  
The fourth subfigure is the ITAE cost criterion value. 

It can be seen that the gain and the integration time 
form rather smooth surfaces, but the derivative time sur-
face is more or less rough.  The investigation of the cost 
function values reveals that certain sampling times are 
more suited for this constant delay than others.  These bet-
ter sampling times are 0.5 s and 1 s.  This is natural, since 
the delay in these cases is either twice or exactly the length 
of the sampling time. 
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Fig. 3.  Optimal PID controller parameters and ITAE cost function values 

for constant delay τ = 1 s. 

B. Gaussian distributed delay 

The optimal PID controller parameters when the delay 
τ(t) is random Gaussian distributed with mean µ = 1 and 
variance σ2 = 0.1, are shown in Fig. 4.  The gain and phase 
margins of 3 dB and 60°, respectively, are guaranteed for 
delays in the range [max(0, µ - 3σ), µ + 3σ] at sampling 
time intervals.  In addition to that, stability of the closed-
loop system is guaranteed for a worst case delay of µ + 5σ.  
The optimal parameters form rather smooth surfaces.  The 
integration time seems to be nearly independent of the 
process time constant whereas the derivative time is inde-
pendent of the sampling time.  The gain depends clearly on 
both variables. 

Fig. 5 shows the difference in PID controller parame-
ters and in cost functions between the constant and random 
delay cases.  The negative values in Fig. 5 indicate that the 
parameter in concern is smaller in constant delay case than 
in random delay case.  It can be seen that if the delay is 
random, in general smaller controller gain and integration 
time should be used.  The difference in the gain parameter 
increases as the sampling time decreases and time constant 
increases.  The difference in integration time is more de-
pendent on the sampling time than process time constant. 
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Fig. 4.  Optimal PID controller parameters and ITAE cost function values 

for random Gaussian distributed (µ = 1, σ2 = 0.1) delay. 
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Fig. 5.  Comparison of PID controller parameters in constant and random 

delay cases (random subtracted from constant). 

For derivative time bigger values should be used, if 
the delay is random.  Especially in the case of slow proc-
esses, i.e. large time constants, the derivative time should 
be increased significantly.  For random delay the cost 
function shows an increase of approximately 5 units for all 
time constants and sampling times except for the two well 
suited sampling times of constant delay (0.5 s and 1 s).  
When using these sampling times the difference in cost 
function values is even bigger. 

VI. CONCLUSIONS 

The paper has presented a method for discrete-time PID 
controller tuning in varying time-delay systems.  Varying 
delays are present in control systems if sensor networks are 
used for collecting process data.  The tuning parameters 
produced by the presented method are designed for con-
trollers with constant sampling interval.  Thus it is not re-
quired to measure the delay of each transmitted packet 
when applying the method in practice.  The controller is 
tuned rather for a known delay distribution than for exact 
delays.  It is possible to measure the delay distributions in 
advance, and the tuning method can be applied for a stan-
dard PID controller without any modifications to it.  The 
method is based on well-known optimization and simula-
tion techniques, but here the gain and phase margins from 
classical control theory are formulated in the optimization 
problem as constraints to improve the robustness of the 
closed-loop system with respect to varying delays.  Mainly 
first order processes were investigated in the paper, but the 
method is general in the sense that it can be used for higher 
order, linear or nonlinear processes as far as they can be 
modeled.  Besides wireless sensor networks, the method is 
also applicable for other networked control systems. 

The optimal tuning rules were presented for first order 
linear processes as functions of process time constants and 
of controller sampling time.  The tuning rules were opti-
mized with respect to the ITAE cost criterion.  Compari-
sons between the optimal parameters in constant and ran-
dom Gaussian distributed delay cases were made.  It was 
seen that optimization creates rather smooth parameter 
surfaces, but in the constant delay case especially the de-

rivative term surface becomes a little grainy.  The diffi-
culty of varying delays in a feedback loop can be seen in 
the cost function values.  When the constant delay cost 
function values were compared with those of random 
Gaussian distributed delay, it was seen that the cost was 
clearly higher in the latter case.  Even though the control-
lers were optimized with respect to the same cost criterion 
and the expected worst case delays were almost the same 
in both cases, the varying delay caused significant in-
creases in cost. 

In sensor network based control systems the PID con-
troller has to make decisions of the control signal value at 
each sampling time without knowing the length of delay.  
Thus the controller is unaware of how old measurements it 
is handling.  The measurements from the process output 
may easily arrive in disorder to the controller because of 
the varying delays, but still the controller should be able to 
maintain the stability and robustness of the controlled sys-
tem.  The presented method is able to produce controller 
tuning parameters that are optimal and robust. 

The tuning method is knowledge intensive in the sense 
that the process model and the controller structure have to 
be known in advance.  Anyway, this cannot be seen as a 
major drawback, since most of the advanced control meth-
ods are model based.  The method requires some knowl-
edge of the delays that are present in the system, but it is 
not necessary to carefully model e.g. the delay distribution. 

The formulation of the problem with varying delays, 
discrete-time PID controller, and suggested constraints is 
new.  The tuning method has been presented and its prop-
erties have been discussed.  The future work consists of 
generating more general tuning rules for a wider range of 
processes.  Also MIMO systems should be considered, 
because the interactions between the subsystems affect the 
controller tuning.  Especially in dense actuator networks 
these issues arise.  Development of coordination principles 
is also required for sensor and actuator networks, where 
varying delays are present. 
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