
Publication [P3]

M. Pohjola, L. Eriksson, V. Hölttä, T. Oksanen, “Platform for Monitoring and
Controlling Educational Laboratory Processes over Internet”, in Proc. 2005
Congress of the International Federation of Automatic Control (IFAC), Prague,
Czech Republic, July 3-8, 2005, 6 p.

© 2005 IFAC. Reprinted, with permission.

PLATFORM FOR MONITORING AND CONTROLLING EDUCATIONAL
LABORATORY PROCESSES OVER INTERNET

Mikael Pohjola1, Lasse Eriksson1, Vesa Hölttä1, Timo Oksanen2

1Control Engineering Laboratory, Helsinki University of Technology,
P.O.Box 5500, FI-02015 TKK, Finland

2Automation Technology Laboratory, Helsinki University of Technology,
P.O.Box 5500, FI-02015 TKK, Finland

Abstract: This paper presents a new platform which can be used for monitoring and
controlling different educational laboratory processes over the Internet. The platform is
built for a laboratory course at Helsinki University of Technology. The students can use
the same platform for different experiments from distance or on the spot, which makes
the use of the system easy, and the emphasis can be put on the content of the experi-
ments. A special feature implemented in the platform is ability to pass the measurement
and control signals via a network simulator, and thus the evaluation of the effect of net-
works in control can be studied. Copyright © 2005 IFAC

Keywords: Networks, control education, distributed control, simulators, software tools.

1. INTRODUCTION

Distance learning unties students from a given place
and often also from a given time. The web has pro-
vided means to distribute teaching material in an ef-
ficient and more versatile form than a traditional
textbook can offer. In addition to teaching and learn-
ing, the web offers new possibilities for control engi-
neers. Nowadays, building automation systems, spare
part dealers’ warehouse balances, and even paper
mill production statistics are monitored over the
Internet. The advantages are the same as in learning:
independency of time and place.

At the Helsinki University of Technology (TKK)
students having automation and control engineering
as their major or minor subject are required to pass a
laboratory experiment course. During the course the
students are familiarized with some practical cases
similar to the problems that could arise in their future
work as engineers. The course is offered in coopera-
tion by Control Engineering and Automation Tech-
nology laboratories. The experiments were mostly

built in the 1970’s, but since then the world of auto-
mation and control has significantly changed. The
development has been recognized, and renewal and
update of some of the experiments has already been
reported (Hölttä and Eriksson, 2003; Varso and
Koivo, 2003).

The preceding work done in the field of distance
learning at the Control Engineering Laboratory at
TKK includes web based courses (Riihimäki et al.,
2003) and illustrating the properties of multivariate
regression methods in the web using MATLAB Web
Server (Hölttä and Hyötyniemi, 2003). Since the
laboratory experiment course was being updated and
the role of distance learning was becoming more im-
portant, a platform for monitoring and controlling
laboratory experiments over the Internet was needed.

This paper describes the educational objectives (sec-
tion 2) and technical details (section 4) of the devel-
oped platform. In section 3, the network delay distri-
butions, which play an essential role in the system,
are examined. The paper ends with conclusions.

2. EDUCATIONAL OBJECTIVES

The aim of this work was to develop a scalable moni-
toring and controlling platform that can be used for
doing educational laboratory experiments on differ-
ent processes over the Internet. In this way students
can do laboratory experiments partially or completely
at a distance, whenever it suits them best.

The platform was designed so that it is possible to
monitor processes, and change the controllers and
parameters. Several students can monitor a process at
the same time, whereas only one can control it. Scal-
ability implies also that new experiments can be
added to the platform with little effort.

The fact that a common platform used in several
laboratory experiments eases the students’ workload.
It is e.g. not necessary to learn a new user interface
for each experiment. This becomes even more impor-
tant when experiments are done from a distance. Any
problem with the user interface may flatten the at-
mosphere and discontinue the experiment.

Besides distance learning, another new and develop-
ing area related more or less to automation is the use
of networks in measuring and even in control. The
really hot topic is the wireless sensor networks, al-
though there are still many issues to be investigated
before they can be used in real-time control. The
measurement packets are delayed in networks, and
the delays are time-varying. The analysis of control
systems with time-varying delays is difficult, never-
theless, there are results available, see e.g. (Lincoln
and Bernhardsson, 2000; Koivo and Reijonen, 2004).

The development of a web based monitoring system
for the laboratory experiment course gave an excel-
lent opportunity to demonstrate the students how the
time-varying delays that are caused by different net-
works affect closed loop control. This aspect is
treated in detail in section 3. In addition to the new
platform that is used for measuring and visualization
of results on the course, a new experiment focused on
network delays was developed.

3. NETWORK DELAYS

One of the remote monitoring and controlling system
objectives was to enable students to see the effect of
varying network-caused delays in closed loop con-
trol. Instead of implementing a variety of networks
with hardware, a network simulator called NetSim
was built. The delay properties of different networks
vary depending on the communication protocols and
hardware implementation. Networks can be charac-
terized by delay distributions. There are four delay
distributions implemented in NetSim: Gaussian
(Normal), Gamma, Lognormal, and “wireless net-
work delay” distribution. Besides the delay, packet
loss is possible, i.e. packets may disappear during

transmissions. The packet loss probability is one of
the parameters that can be adjusted in NetSim.

The simulation replicates the statistical properties of
the simulated networks, not the sequential depend-
ence of the packet delays. In other words, the delay
distributions are similar to the actual delays, but
packets sent quickly after one another experience
different delays, though one would expect that on
short time scale the delay would be constant. It has
indeed been shown that the packet delays are corre-
lated (Bolot, 1993).

3.1 Gaussian distribution

The Gaussian or normal distribution does not model
any specific network, but it can be used as a generic
delay describing some variance in the delay around a
mean value. It is possible to obtain negative delays
when using Gaussian distribution (by setting a suffi-
ciently large variance), which in the implementation
translates to no delay. If the expectation value of a
Gaussian delay is set to zero, the distribution is actu-
ally turned from a Gaussian to one that has a large
probability mass at zero, and above zero behaves like
a normal distribution.

3.2 Gamma distribution

In a computer network such as the Internet, the delay
distribution has been shown to resemble a shifted
gamma distribution (Mukherjee, 2001). The meas-
ured delay distributions have had a positive minimum
value from the shortest possible delay (therefore the
shift), a peak and a long tail, similar to the gamma
distribution. The gamma probability distribution
function is given by

 1() ()
()

n xP x x e
n

αα α − −=
Γ

 (1)

where Γ is the gamma function

 1

0

() n tn t e dt
∞

− −Γ = ∫ (2)

and n is the number of hops between first and last
nodes, α = n / T where T is the mean delay. Fig. 1
shows the gamma probability distribution function
for n = [1, 10] with mean delay T = 1. With n = 1 the
distribution becomes exponential. The variance of the
gamma distribution is

 2 2 2/ /n T nσ α= = (3)

The shift is accomplished by moving the graph to the
right. The result of the total network delay distribu-
tion consists of a static and a stochastic component

 tot static stochasticT T T= + (4)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

P
(x

)

Gamma distribution, n = 1..10

n = 1

n = 10

Fig. 1. Gamma distribution, n = [1, 10].

Table 1. Typical delays (milliseconds) in the Internet.

Connection
quality

Static
delay
[ms]

Variance
(stochastic
delay)

Hops
(n)

Loss
%

Small 15 5 2 0
Fast 30 50 15 0
Normal 70 100 15-25 1
Slow 400-

800
500-1200 20 2

where Tstatic is the minimum delay from the network
and Tstochastic the delay induced by other traffic, ap-
proximated with the gamma distribution.

3.3 Lognormal distribution

The lognormal distribution is similar to the gamma
distribution, and it is derived from the normal distri-
bution by defining a random variable x to have log-
normal distribution if log(x) is normally distributed,
i.e. N(m,s2) ~ log(x). The lognormal distribution with
mean µ and variance σ2 is given in eq. (5).

21 log()

21
() e , 0

2

x m

s
P x x

xs π

 −  −     = > (5)

m and s2 are mean and variance of the normally dis-
tributed log(x), respectively, and are given by

22

2 2
log , log 1m s

µ σ
µσ µ

       = = +     +   
 (6)

The lognormal distribution is calculated from the
normal distribution by taking exponents from both
sides. Gamma and lognormal distributions with mean
1 and variance 0.5 are compared in Fig. 2.

The lognormal distribution can also be shifted in the
same manner as the gamma distribution to get a real-
istic network delay distribution.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

P
(x

)

Gamma and Lognormal pdfs

Gamma
Lognormal

Fig. 2. Gamma and lognormal probability density

functions with µ = 1 and σ2 = 0.5.

3.4 Wireless network delay distribution

There is a delay implemented in NetSim mimicking
the behaviour of two wireless nodes. The delay dis-
tribution resembles two gamma distributions, the
second being smaller and shifted to later time corre-
sponding to retransmissions (Lucan et al., 2003).

3.5 Packet loss

Packet loss seems to be random, independent of the
delay according to the investigation of (Bolot, 1993),
though in some protocols (e.g. TCP/IP) packet re-
transmissions cause delays. The probability of packet
loss is adjustable in NetSim. Table 1 shows typical
values for static (minimum constant) and stochastic
(variable) round-trip-times in the Internet. The net-
work delays and variances were obtained by pinging
several servers from all over the world. The means
and variances were then calculated from the data.
One could categorize the results into several classes:

• Small: Computers in a local area network (LAN)
• Fast: Servers from Europe
• Normal: Servers from Asia
• Slow and unreliable: Servers from Africa

4. SYSTEM COMPONENTS

The implemented platform for monitoring and con-
trolling laboratory processes was given the name
MoCoNet. System hardware consists of computers
(of which one is a server), an I/O board attached to
one of the computers, a network router, and process
equipment. This section discusses the components
(software and hardware) of the platform. The logical
architecture of the platform is shown in Fig. 3.

The users monitoring and controlling processes are
connected to the server of the system. The server
takes care of the administrative issues of the plat-
form. The measuring, actuators and control signal

P
R
O
C
E
S
S

MEASURE

ACTION

CONTROL
NET
SIM

USERS
SERVER,

DATABASE

LA
N

P
R
O
C
E
S
S

MEASURE

ACTION

CONTROL
NET
SIM

USERS
SERVER,

DATABASE

LA
N

Fig. 3. Logical architecture of the platform.

computing are distributed in the network. All packets
are transmitted through NetSim that can be used for
delaying the packets. The server logs all network
traffic and offers the data to users.

4.1 Software

For a user, the only visible part of the system is the
graphical user interface that is implemented as a web
page. Besides HTML, Java applets are employed e.g.
in connecting to the control network and in display-
ing the collected data in a scope.

The server computer is responsible for maintaining
connections between users and processes, for running
a reservation system for controlling the processes
(which user is allowed run which process and when),
for collecting all the data into a database and for con-
figuring the network simulator. It is used also for
configuring the system.

The server side consists of three Java programs: Da-
tabaseServer, ProcessServer and SignalServer. The
DatabaseServer listens to process measurement and
control messages that flow in the local network and
stores them in a Microsoft Access database located
on the server. The ProcessServer serves the user in-
terface applet called ProcessControl, and enables the
user to control processes from a remote location. The
SignalServer transmits the process measurements to
the remote location applet.

From the ProcessControl applet the user can control
the processes. The user can choose reference signals,
controllers, and set their tuning, start and stop the
processes etc. The ProcessControl applet spawns
ProcessMonitor windows that are like scopes, dis-
playing process measurements.

The control permission reservation system is a part of
the ProcessServer. The reservation system maintains
a list of all clients that have requested to control
processes. If the user in control releases the control

or stops the process, the control is passed to the next
user on the reservation list.

The measuring and controlling software is run on a
computer equipped with MATLAB xPC Target real-
time operating system (RTOS). A RTOS is required
since otherwise it would not be possible to guarantee
that the next value of the control signal is computed
fast enough. Since the measuring and real-time con-
trol of processes are done with C code running on
MATLAB’s RTOS, all uploads (configuration) must
be done with MATLAB. The MATLAB Web Server
(MWS) offers tools for updating and configuring
executable code over Internet. With the MWS it is
possible to call MATLAB functions from a web page
and thus upload new parameters into controllers or
change the measurement channels of the I/O board.

Process-end software is responsible for measuring
process variables and for transmitting the measure-
ments into the network. The controller is imple-
mented on the same computer as the measurement
unit, but the measurement unit, controller and actua-
tor are virtually distributed in a network, since all
packets are sent via NetSim. Controller and process-
end software can be separated to two computers but,
in order to save hardware, only one computer is used.

The server side Java programs are connected to
MATLAB programs through the MATLAB Web
Server interface, which is also used for uploading the
process control models with tuned controllers into the
xPC Target computer. Once the model is uploaded,
start and stop messages can be transmitted through
the MWS to run the real processes.

4.2 Hardware

The system contains three physical PC’s, all con-
nected to an Ethernet router. The router acts as a
gateway to the Internet at the same time. Multicast
messaging is used inside the LAN, and socket con-
nections to remote user interfaces. Because the net-
work is simulated, it would be possible to realize all
the modules on a single physical computer as sepa-
rate components or processes. However, the modules
are separated both in hardware and in software to
enable testing of different tools and allowing easy
modification of the system. The physical architecture
of the implemented system is presented in Fig. 4.

The process-end computer called xPC Target is
equipped with an I/O board and the MATLAB xPC
Target RTOS. The computer is used for executing
compiled C code including among other things con-
troller algorithm, UDP packet sending and receiving
and I/O functions. The code is automatically gener-
ated from Simulink models using the Real-Time
Workshop and the xPC Target Toolbox. This combi-
nation of extensions allows easy prototyping of con-
trol software.

Process 1

Gateway

Internet

User 1

ProcessControl
ProcessMonitor

LAN

Process 2 Process N. . .

User N

ProcessControl
ProcessMonitor

. . .

NetSim
RTOS

xPC Target
Server, DB
xPC Host

Process 1

Gateway

Internet

User 1

ProcessControl
ProcessMonitor

User 1

ProcessControl
ProcessMonitor

LAN

Process 2 Process N. . .

User N

ProcessControl
ProcessMonitor

User N

ProcessControl
ProcessMonitor

. . .

NetSimNetSim
RTOS

xPC Target
RTOS

xPC Target
Server, DB
xPC Host

Server, DB
xPC Host

Fig. 4. Physical architecture of the platform.

The server computer is also called the xPC Host,
because the xPC Target computer can be configured
from this host. The host runs MATLAB with Simu-
link, Real-Time Workshop and xPC Target Tool-
boxes installed. The host PC can be used for compil-
ing the Simulink models into executable code and the
code can be uploaded into the target PC using MAT-
LAB Web Server.

4.3 NetSim

Networked monitoring and control is usually imple-
mented with some industrial network (Foundation
Fieldbus, Profibus, CAN-bus). Each network has its
pros and cons regarding performance and reliability.

In this work 100 Mbps Ethernet is used as a real net-
work. Even if Ethernet is not an industrial network, it
can be used in small solutions for controlling proc-
esses with quite high time constants over network.

One of the objectives of the presented platform was
to show the control properties of a networked system
with varying delays. The delay for control and meas-
urement signals could be generated using long wires,
for example in this case the messages could be sent
back and forth in the Internet. However, for educa-
tional purposes the network properties should be easy
to vary in order to show the effect of each property.
For comparison it should also be possible to replicate
the delays occurring during the experiments. There-
fore the network visible to other modules is simu-
lated with a device, NetSim, connected to the actual
network. The delay properties of the used Ethernet
network are considered insignificant with respect to
the simulated variables.

Network properties can be divided into two parts,
delay and loss of packets. In deterministic networks
the loss probability is zero. Both of these statistical
properties can be time-varying or time-invariant.

NetSim hardware is a desktop PC with the QNX
RTOS. All control and measurement packets in the
control network are transmitted via NetSim. When a
packet is received, the loss probability is calculated.

If loss filter is passed, the delay is randomized from
the selected distribution, a retransmitting timestamp
is calculated and the packet is put to queue to wait
until the real-time clock reaches the timestamp. An-
other thread of the software is responsible of trans-
mitting packets back to the network.

UDP/IP packets are used in the local network. This is
because UDP packets have low latency when com-
pared to TCP communication, and there is no need to
know what other modules belong to the network as
multicast messaging is used. In practice it is impossi-
ble to use exactly the same messages for receiving
and transmitting, so one UDP port is used for receiv-
ing messages and the other for transmitting. The net-
work properties can be configured remotely, using a
third UDP port.

4.4 Communication protocol

A specific inter-component communication protocol
was needed. The ProcessAscii-protocol (PAP) was
developed for asynchronous transmission of process
information over a text based connection. The proto-
col supports queries of e.g. process properties, and it
transmits control and measurement signals.

A PAP message consists of a message identifier,
header and data. The messages are separated with a
newline character. The format of the message is:

$MID#Header#Data|*

The message begins with a $ followed by a three
character message identifier. The header is between
the #-characters. If there is no header, only one #-
character is used. The whole message is terminated
by a star *. Multiple items in data are separated with
a vertical bar character |.

The PAP includes several special messages and
command-reply pairs. Fig. 5 shows an example of
using the protocol when a new client contacts the
server in order to control one of the processes.

ServerClient

$CMD#RequestControl#1|*

$INF#RequestControl#10|*

$ANS#RequestControl#1|*

$CMD#BuildModel#1|0.025|Steps|1.0|PID|1.0;1.0;0.0|*

ANS#BuildModel#1|*

$CMD#StartProcess#1|*

$ANS#StartProcess#1|*

10 seconds later

Model build and upload

Process starts running

Fig. 5. PAP messages during process start-up.

Fig. 6. GUI of monitoring and controlling system.

4.5 Graphical user interface

With the graphical user interface (GUI) of MoCoNet
it is possible to monitor and control in real-time proc-
esses that are connected to the system. Besides the
process, controller, network type and reference signal
may be selected with the GUI. Also controller pa-
rameters can be changed (controller tuning) and pre-
viously collected measurements observed with GUI’s
scope. If the process is changed, a picture of it is up-
dated on the GUI screen. The user interface seen in
Fig. 6 is implemented using Java and HTML.

In Fig. 7, a laboratory process is controlled and moni-
tored with the scope of the MoCoNet platform. The
process is simple, but it is difficult to control because
of a variable network delay. It can be seen that multi-
ple signals can be tracked at once and that e.g. the
scale of the scope can be adjusted.

5. CONCLUSIONS

A platform for remote monitoring and controlling of
an educational laboratory processes was described in
this paper. This kind of a system enables teaching
more students with fewer resources, since it is possi-
ble to do an entire experiment remotely without help
from the teaching staff. With cooperation between
universities, students can use a laboratory process
located in a different university, even in a different
country. Further study using the platform is needed to
evaluate the efficiency of such distance learning
when compared to traditional laboratory courses.

The architecture of the platform enables easy addi-
tion of new processes and simultaneous access of
several users. A simple and versatile protocol was
developed for communication between the compo-
nents of the system. The platform can also be used
for simulating and demonstrating different types of
delays that occur in computer networks – a highly
relevant topic in future control systems.

Fig. 7. Observing control performance on a scope.

REFERENCES

Bolot, J. C. (1993). Characterizing End-to-End
Packet Delay and Loss in the Internet. Journal of
High-Speed Networks, 2, pp. 289 – 298.

Hölttä, V. and Eriksson, L. (2003). Teaching control-
ler design and system identification: A laboratory
experiment with real-time control. In: Proceed-
ings of the Nordic MATLAB Conference 2003 (L.
Gregersen, Ed.), pp. 121 – 126. Copenhagen,
Denmark.

Hölttä, V. and Hyötyniemi, H. (2003). Computer-
aided education: Experiences with MATLAB
Web Server and Java. In: Preprints of the IFAC
Symposium ACE 2003 (J. Lindfors, Ed.), pp. 63 –
68, Oulu, Finland.

Koivo, H. N. and Reijonen, A. (2004). Tuning of PID
Controllers for Varying Time-Delay Systems. In:
Proceedings of the IEEE International Confer-
ence on Mechatronics ICM'04, Istanbul, Turkey.

Lincoln, B. and Bernhardsson, B. (2000). Optimal
Control over Networks with Long Random De-
lays. In: Proceedings of the International Sympo-
sium on Mathematical Theory of Networks and
Systems. Perpignan, France.

Lucan, V., Simacek, P., Seppälä, J. and Koivisto, H.
(2003). Bluetooth and Wireless LAN Applicabil-
ity for Real-Time Control. Automaatio2003, Hel-
sinki, Finland.

Mukherjee, A. (2001). On the Dynamics and Signifi-
cance of Low Frequency Components of the
Internet Load. In: Proceedings of the First ACM
SIGCOMM Workshop on Internet Measurement,
pp. 281 – 293, San Francisco, USA.

Riihimäki, P., Ylöstalo, T., Zenger, K. and Maasalo,
V. (2003). A new self-study course on the web:
Basic mathematics of control. In: Preprints of the
IFAC Symposium ACE 2003 (J. Lindfors, Ed.),
pp. 149 – 153, Oulu, Finland.

Varso, J. and Koivo, H. N. (2003). Multivariable PI-
control of a lamp system. In: Preprints of the
IFAC Symposium ACE 2003 (J. Lindfors, Ed.),
pp. 299 – 304, Oulu, Finland.

