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Abstract: This paper presents a new platform which can be used for monitoring and 
controlling different educational laboratory processes over the Internet. The platform is 
built for a laboratory course at Helsinki University of Technology. The students can use 
the same platform for different experiments from distance or on the spot, which makes 
the use of the system easy, and the emphasis can be put on the content of the experi-
ments. A special feature implemented in the platform is ability to pass the measurement 
and control signals via a network simulator, and thus the evaluation of the effect of net-
works in control can be studied. Copyright © 2005 IFAC 
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1. INTRODUCTION 

Distance learning unties students from a given place 
and often also from a given time. The web has pro-
vided means to distribute teaching material in an ef-
ficient and more versatile form than a traditional 
textbook can offer. In addition to teaching and learn-
ing, the web offers new possibilities for control engi-
neers. Nowadays, building automation systems, spare 
part dealers’ warehouse balances, and even paper 
mill production statistics are monitored over the 
Internet. The advantages are the same as in learning: 
independency of time and place. 

At the Helsinki University of Technology (TKK) 
students having automation and control engineering 
as their major or minor subject are required to pass a 
laboratory experiment course. During the course the 
students are familiarized with some practical cases 
similar to the problems that could arise in their future 
work as engineers. The course is offered in coopera-
tion by Control Engineering and Automation Tech-
nology laboratories. The experiments were mostly 

built in the 1970’s, but since then the world of auto-
mation and control has significantly changed. The 
development has been recognized, and renewal and 
update of some of the experiments has already been 
reported (Hölttä and Eriksson, 2003; Varso and 
Koivo, 2003). 

The preceding work done in the field of distance 
learning at the Control Engineering Laboratory at 
TKK includes web based courses (Riihimäki et al., 
2003) and illustrating the properties of multivariate 
regression methods in the web using MATLAB Web 
Server (Hölttä and Hyötyniemi, 2003). Since the 
laboratory experiment course was being updated and 
the role of distance learning was becoming more im-
portant, a platform for monitoring and controlling 
laboratory experiments over the Internet was needed. 

This paper describes the educational objectives (sec-
tion 2) and technical details (section 4) of the devel-
oped platform. In section 3, the network delay distri-
butions, which play an essential role in the system, 
are examined. The paper ends with conclusions. 



     

2. EDUCATIONAL OBJECTIVES 

The aim of this work was to develop a scalable moni-
toring and controlling platform that can be used for 
doing educational laboratory experiments on differ-
ent processes over the Internet. In this way students 
can do laboratory experiments partially or completely 
at a distance, whenever it suits them best. 

The platform was designed so that it is possible to 
monitor processes, and change the controllers and 
parameters. Several students can monitor a process at 
the same time, whereas only one can control it. Scal-
ability implies also that new experiments can be 
added to the platform with little effort. 

The fact that a common platform used in several 
laboratory experiments eases the students’ workload. 
It is e.g. not necessary to learn a new user interface 
for each experiment. This becomes even more impor-
tant when experiments are done from a distance. Any 
problem with the user interface may flatten the at-
mosphere and discontinue the experiment. 

Besides distance learning, another new and develop-
ing area related more or less to automation is the use 
of networks in measuring and even in control. The 
really hot topic is the wireless sensor networks, al-
though there are still many issues to be investigated 
before they can be used in real-time control. The 
measurement packets are delayed in networks, and 
the delays are time-varying. The analysis of control 
systems with time-varying delays is difficult, never-
theless, there are results available, see e.g. (Lincoln 
and Bernhardsson, 2000; Koivo and Reijonen, 2004). 

The development of a web based monitoring system 
for the laboratory experiment course gave an excel-
lent opportunity to demonstrate the students how the 
time-varying delays that are caused by different net-
works affect closed loop control. This aspect is 
treated in detail in section 3. In addition to the new 
platform that is used for measuring and visualization 
of results on the course, a new experiment focused on 
network delays was developed. 

3. NETWORK DELAYS 

One of the remote monitoring and controlling system 
objectives was to enable students to see the effect of 
varying network-caused delays in closed loop con-
trol. Instead of implementing a variety of networks 
with hardware, a network simulator called NetSim 
was built. The delay properties of different networks 
vary depending on the communication protocols and 
hardware implementation. Networks can be charac-
terized by delay distributions. There are four delay 
distributions implemented in NetSim: Gaussian 
(Normal), Gamma, Lognormal, and “wireless net-
work delay” distribution. Besides the delay, packet 
loss is possible, i.e. packets may disappear during 

transmissions. The packet loss probability is one of 
the parameters that can be adjusted in NetSim. 

The simulation replicates the statistical properties of 
the simulated networks, not the sequential depend-
ence of the packet delays. In other words, the delay 
distributions are similar to the actual delays, but 
packets sent quickly after one another experience 
different delays, though one would expect that on 
short time scale the delay would be constant. It has 
indeed been shown that the packet delays are corre-
lated (Bolot, 1993). 

3.1 Gaussian distribution 

The Gaussian or normal distribution does not model 
any specific network, but it can be used as a generic 
delay describing some variance in the delay around a 
mean value. It is possible to obtain negative delays 
when using Gaussian distribution (by setting a suffi-
ciently large variance), which in the implementation 
translates to no delay. If the expectation value of a 
Gaussian delay is set to zero, the distribution is actu-
ally turned from a Gaussian to one that has a large 
probability mass at zero, and above zero behaves like 
a normal distribution. 

3.2 Gamma distribution 

In a computer network such as the Internet, the delay 
distribution has been shown to resemble a shifted 
gamma distribution (Mukherjee, 2001). The meas-
ured delay distributions have had a positive minimum 
value from the shortest possible delay (therefore the 
shift), a peak and a long tail, similar to the gamma 
distribution. The gamma probability distribution 
function is given by 
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where Γ is the gamma function 
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and n is the number of hops between first and last 
nodes, α = n / T where T is the mean delay. Fig. 1 
shows the gamma probability distribution function 
for n = [1, 10] with mean delay T = 1. With n = 1 the 
distribution becomes exponential. The variance of the 
gamma distribution is 

 2 2 2/ /n T nσ α= =  (3) 

The shift is accomplished by moving the graph to the 
right. The result of the total network delay distribu-
tion consists of a static and a stochastic component 

 tot static stochasticT T T= +  (4) 



     

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

P
(x

)

Gamma distribution, n = 1..10

n = 1

n = 10

 
Fig. 1. Gamma distribution, n = [1, 10]. 

Table 1. Typical delays (milliseconds) in the Internet. 

Connection 
quality 

Static 
delay 
[ms] 

Variance 
(stochastic 
delay) 

Hops 
(n) 

Loss 
% 

Small 15 5 2 0 
Fast 30 50 15 0 
Normal 70 100 15-25 1 
Slow 400-

800 
500-1200 20 2 

 

where Tstatic is the minimum delay from the network 
and Tstochastic the delay induced by other traffic, ap-
proximated with the gamma distribution. 

3.3 Lognormal distribution 

The lognormal distribution is similar to the gamma 
distribution, and it is derived from the normal distri-
bution by defining a random variable x to have log-
normal distribution if log(x) is normally distributed, 
i.e. N(m,s2) ~ log(x). The lognormal distribution with 
mean µ and variance σ2 is given in eq. (5). 
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m and s2 are mean and variance of the normally dis-
tributed log(x), respectively, and are given by 
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The lognormal distribution is calculated from the 
normal distribution by taking exponents from both 
sides. Gamma and lognormal distributions with mean 
1 and variance 0.5 are compared in Fig. 2. 

The lognormal distribution can also be shifted in the 
same manner as the gamma distribution to get a real-
istic network delay distribution. 
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Fig. 2. Gamma and lognormal probability density 

functions with µ = 1 and σ2 = 0.5. 

3.4 Wireless network delay distribution 

There is a delay implemented in NetSim mimicking 
the behaviour of two wireless nodes. The delay dis-
tribution resembles two gamma distributions, the 
second being smaller and shifted to later time corre-
sponding to retransmissions (Lucan et al., 2003). 

3.5 Packet loss 

Packet loss seems to be random, independent of the 
delay according to the investigation of (Bolot, 1993), 
though in some protocols (e.g. TCP/IP) packet re-
transmissions cause delays. The probability of packet 
loss is adjustable in NetSim. Table 1 shows typical 
values for static (minimum constant) and stochastic 
(variable) round-trip-times in the Internet. The net-
work delays and variances were obtained by pinging 
several servers from all over the world. The means 
and variances were then calculated from the data. 
One could categorize the results into several classes: 

•  Small: Computers in a local area network (LAN) 
•  Fast: Servers from Europe 
•  Normal: Servers from Asia 
•  Slow and unreliable: Servers from Africa 

4. SYSTEM COMPONENTS 

The implemented platform for monitoring and con-
trolling laboratory processes was given the name 
MoCoNet. System hardware consists of computers 
(of which one is a server), an I/O board attached to 
one of the computers, a network router, and process 
equipment. This section discusses the components 
(software and hardware) of the platform. The logical 
architecture of the platform is shown in Fig. 3.  

The users monitoring and controlling processes are 
connected to the server of the system. The server 
takes care of the administrative issues of the plat-
form. The measuring, actuators and control signal 
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Fig. 3. Logical architecture of the platform.  

computing are distributed in the network. All packets 
are transmitted through NetSim that can be used for 
delaying the packets. The server logs all network 
traffic and offers the data to users. 

4.1 Software 

For a user, the only visible part of the system is the 
graphical user interface that is implemented as a web 
page. Besides HTML, Java applets are employed e.g. 
in connecting to the control network and in display-
ing the collected data in a scope. 

The server computer is responsible for maintaining 
connections between users and processes, for running 
a reservation system for controlling the processes 
(which user is allowed run which process and when), 
for collecting all the data into a database and for con-
figuring the network simulator. It is used also for 
configuring the system. 

The server side consists of three Java programs: Da-
tabaseServer, ProcessServer and SignalServer. The 
DatabaseServer listens to process measurement and 
control messages that flow in the local network and 
stores them in a Microsoft Access database located 
on the server. The ProcessServer serves the user in-
terface applet called ProcessControl, and enables the 
user to control processes from a remote location. The 
SignalServer transmits the process measurements to 
the remote location applet. 

From the ProcessControl applet the user can control 
the processes. The user can choose reference signals, 
controllers, and set their tuning, start and stop the 
processes etc. The ProcessControl applet spawns 
ProcessMonitor windows that are like scopes, dis-
playing process measurements. 

The control permission reservation system is a part of 
the ProcessServer. The reservation system maintains 
a list of all clients that have requested to control 
processes. If the user in control releases the control 

or stops the process, the control is passed to the next 
user on the reservation list. 

The measuring and controlling software is run on a 
computer equipped with MATLAB xPC Target real-
time operating system (RTOS). A RTOS is required 
since otherwise it would not be possible to guarantee 
that the next value of the control signal is computed 
fast enough. Since the measuring and real-time con-
trol of processes are done with C code running on 
MATLAB’s RTOS, all uploads (configuration) must 
be done with MATLAB. The MATLAB Web Server 
(MWS) offers tools for updating and configuring 
executable code over Internet. With the MWS it is 
possible to call MATLAB functions from a web page 
and thus upload new parameters into controllers or 
change the measurement channels of the I/O board. 

Process-end software is responsible for measuring 
process variables and for transmitting the measure-
ments into the network. The controller is imple-
mented on the same computer as the measurement 
unit, but the measurement unit, controller and actua-
tor are virtually distributed in a network, since all 
packets are sent via NetSim. Controller and process-
end software can be separated to two computers but, 
in order to save hardware, only one computer is used. 

The server side Java programs are connected to 
MATLAB programs through the MATLAB Web 
Server interface, which is also used for uploading the 
process control models with tuned controllers into the 
xPC Target computer. Once the model is uploaded, 
start and stop messages can be transmitted through 
the MWS to run the real processes. 

4.2 Hardware 

The system contains three physical PC’s, all con-
nected to an Ethernet router. The router acts as a 
gateway to the Internet at the same time. Multicast 
messaging is used inside the LAN, and socket con-
nections to remote user interfaces. Because the net-
work is simulated, it would be possible to realize all 
the modules on a single physical computer as sepa-
rate components or processes. However, the modules 
are separated both in hardware and in software to 
enable testing of different tools and allowing easy 
modification of the system. The physical architecture 
of the implemented system is presented in Fig. 4. 

The process-end computer called xPC Target is 
equipped with an I/O board and the MATLAB xPC 
Target RTOS. The computer is used for executing 
compiled C code including among other things con-
troller algorithm, UDP packet sending and receiving 
and I/O functions. The code is automatically gener-
ated from Simulink models using the Real-Time 
Workshop and the xPC Target Toolbox. This combi-
nation of extensions allows easy prototyping of con-
trol software. 
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Fig. 4. Physical architecture of the platform.  

The server computer is also called the xPC Host, 
because the xPC Target computer can be configured 
from this host. The host runs MATLAB with Simu-
link, Real-Time Workshop and xPC Target Tool-
boxes installed. The host PC can be used for compil-
ing the Simulink models into executable code and the 
code can be uploaded into the target PC using MAT-
LAB Web Server. 

4.3 NetSim 

Networked monitoring and control is usually imple-
mented with some industrial network (Foundation 
Fieldbus, Profibus, CAN-bus). Each network has its 
pros and cons regarding performance and reliability.  

In this work 100 Mbps Ethernet is used as a real net-
work. Even if Ethernet is not an industrial network, it 
can be used in small solutions for controlling proc-
esses with quite high time constants over network.  

One of the objectives of the presented platform was 
to show the control properties of a networked system 
with varying delays. The delay for control and meas-
urement signals could be generated using long wires, 
for example in this case the messages could be sent 
back and forth in the Internet. However, for educa-
tional purposes the network properties should be easy 
to vary in order to show the effect of each property. 
For comparison it should also be possible to replicate 
the delays occurring during the experiments. There-
fore the network visible to other modules is simu-
lated with a device, NetSim, connected to the actual 
network. The delay properties of the used Ethernet 
network are considered insignificant with respect to 
the simulated variables. 

Network properties can be divided into two parts, 
delay and loss of packets. In deterministic networks 
the loss probability is zero. Both of these statistical 
properties can be time-varying or time-invariant. 

NetSim hardware is a desktop PC with the QNX 
RTOS. All control and measurement packets in the 
control network are transmitted via NetSim. When a 
packet is received, the loss probability is calculated. 

If loss filter is passed, the delay is randomized from 
the selected distribution, a retransmitting timestamp 
is calculated and the packet is put to queue to wait 
until the real-time clock reaches the timestamp. An-
other thread of the software is responsible of trans-
mitting packets back to the network.  

UDP/IP packets are used in the local network. This is 
because UDP packets have low latency when com-
pared to TCP communication, and there is no need to 
know what other modules belong to the network as 
multicast messaging is used. In practice it is impossi-
ble to use exactly the same messages for receiving 
and transmitting, so one UDP port is used for receiv-
ing messages and the other for transmitting. The net-
work properties can be configured remotely, using a 
third UDP port. 

4.4 Communication protocol 

A specific inter-component communication protocol 
was needed. The ProcessAscii-protocol (PAP) was 
developed for asynchronous transmission of process 
information over a text based connection. The proto-
col supports queries of e.g. process properties, and it 
transmits control and measurement signals. 

A PAP message consists of a message identifier, 
header and data. The messages are separated with a 
newline character. The format of the message is: 

$MID#Header#Data|* 

The message begins with a $ followed by a three 
character message identifier. The header is between 
the #-characters. If there is no header, only one #-
character is used. The whole message is terminated 
by a star *. Multiple items in data are separated with 
a vertical bar character |. 

The PAP includes several special messages and 
command-reply pairs. Fig. 5 shows an example of 
using the protocol when a new client contacts the 
server in order to control one of the processes. 

ServerClient

$CMD#RequestControl#1|*

$INF#RequestControl#10|*

$ANS#RequestControl#1|*

$CMD#BuildModel#1|0.025|Steps|1.0|PID|1.0;1.0;0.0|*

ANS#BuildModel#1|*

$CMD#StartProcess#1|*

$ANS#StartProcess#1|*

10 seconds later

Model build and upload

Process starts running

 
Fig. 5. PAP messages during process start-up. 



     

 
Fig. 6. GUI of monitoring and controlling system. 

4.5 Graphical user interface 

With the graphical user interface (GUI) of MoCoNet 
it is possible to monitor and control in real-time proc-
esses that are connected to the system. Besides the 
process, controller, network type and reference signal 
may be selected with the GUI. Also controller pa-
rameters can be changed (controller tuning) and pre-
viously collected measurements observed with GUI’s 
scope. If the process is changed, a picture of it is up-
dated on the GUI screen. The user interface seen in 
Fig. 6 is implemented using Java and HTML. 

In Fig. 7, a laboratory process is controlled and moni-
tored with the scope of the MoCoNet platform. The 
process is simple, but it is difficult to control because 
of a variable network delay. It can be seen that multi-
ple signals can be tracked at once and that e.g. the 
scale of the scope can be adjusted. 

5. CONCLUSIONS 

A platform for remote monitoring and controlling of 
an educational laboratory processes was described in 
this paper. This kind of a system enables teaching 
more students with fewer resources, since it is possi-
ble to do an entire experiment remotely without help 
from the teaching staff. With cooperation between 
universities, students can use a laboratory process 
located in a different university, even in a different 
country. Further study using the platform is needed to 
evaluate the efficiency of such distance learning 
when compared to traditional laboratory courses. 

The architecture of the platform enables easy addi-
tion of new processes and simultaneous access of 
several users. A simple and versatile protocol was 
developed for communication between the compo-
nents of the system. The platform can also be used 
for simulating and demonstrating different types of 
delays that occur in computer networks – a highly 
relevant topic in future control systems. 

 
Fig. 7. Observing control performance on a scope. 
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