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ABSTRACT 

This paper discusses PID controller tuning for integrating proc-
esses with time-delay and first order lag. Most of the existing 
tuning rules for this kind of processes have the same general 
structure, and the properties of these rules are discussed espe-
cially in connection with varying time-delay systems. The paper 
proposes a novel tuning method that optimizes the closed-loop 
performance with respect to certain robustness constraint while 
considering the delay variance via jitter margin maximization. 
Further, we develop new PID controller tuning rules based on the 
tuning method. The paper discusses the new tuning rules in detail 
and compares them with some of the recently published results. 
The work was originally motivated by the need for robust but 
simultaneously well performing PID controller tuning parameters 
in an agricultural machine case process. We also demonstrate the 
superiority of the proposed tuning rules with this case process.  

1.  INTRODUCTION 

The tuning of the PID controller has been discussed in numerous 
articles and books, and there exists a variety of tuning methods. 
Maybe the best known tuning rules are those proposed by Ziegler 
and Nichols already in 1942. Still today the Z-N methods are 
popular in process control. It is obvious that the Z-N tuning 
methods do not meet the requirements of all the processes in 
today’s industry. An example of this is a networked control sys-
tem where varying time-delays might endanger the stability. 

PID tuning is not a completely solved problem despite of the 
decades of research. On the contrary its research seems to grow 
[1]. Some of the recent tuning methods are presented in [2]. The 
research described in this paper was motivated by the need for 
PID tuning rules for integrating processes where variable trans-
port delays and gain parameters affect the system stability and 
performance. The present tuning rules are investigated in this 
framework and a new tuning method and rules are also proposed. 

The need for tuning rule development was experienced when 
prototyping some of the most recent tuning rules [3] in a case 
process that is presented in Section 2. The section also presents 
the preliminaries required to understand the proposed tuning 
approach and reviews the current tuning rules for the FOLIPD 
(first order lag plus integral plus delay) process model that is 
considered throughout the paper. Section 3 analyzes the proper-
ties of PID controlled FOLIPD systems. Section 4 presents the 

new tuning approach and rules that are compared with other tun-
ing rules in Section 5. Section 6 states the conclusions. 

2. CONTROL SYSTEM 

The general layout of the control system and its components are 
discussed in this section. In addition, the case process is de-
scribed. The PID controller tuning rules currently found in the 
literature are also reviewed. The control system goodness meas-
ures used in this paper such as the distance from the “robustness 
circle” and the jitter margin are presented. 

2.1. Process model 

The general layout of the control system is seen in Figure 1. We 
consider an integrating process in connection with a low-pass 
measurement filter. Alternatively, the low-pass filter can be part 
of the process (integrator + first order lag). In both cases the 
process model is given as 
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This is also known as the FOLIPD model [1], where Kv is the 
velocity gain, TF the filter or lag time constant, L the time-delay, 
and s the Laplace variable. The tuning rules are later developed by 
assuming that TF is fixed by the process measurement setup such 
that adequate noise compensation is achieved.  

2.2. Case process 

In the experiments a real integrating process is used. The process 
is a part of an agricultural tractor, and it consists of a hydraulic 
system, an electronically controllable hydraulic valve, a hydrau-
lic cylinder actuator connected to a weight and a position sensor. 
The position of the weight is controlled. The mass of the weight 
varies and also occasional counterforces by ground contact are 
evident. The hydraulic valve is controlled via CAN bus, and this 
limits the control cycle to 100 ms. The delay of the complete 
system is identified to vary between 200 and 300 ms, consisting 
of communication bus delay, valve dynamics, oil pressure and 
flow in the hydraulic pipes and position measurement delays. The 
integrating case process has a variable transport delay and -gain, 
and with a measurement filter it can be modeled as (1). 
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Figure 1. The general layout of the control system. 

2.3. PID controller 

We consider the continuous-time PID controller of the form [4] 
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where e(τ) = yr(τ) - ym(τ) is the error signal between reference 
signal and measured (filtered) output. The parameters k, ki and kd 
are proportional-, integration- and derivative gains, respectively. 
The set-point weighting parameters b and c are fixed in advance, 
here b = 1 and c = 0. The transfer function of (2) is 

 ( ) 1
i dC s k k k s

s
= + + . (3) 

2.4. AMIGO tuning 

The AMIGO tuning rules (see [3], [5]) were recently developed 
both for non-integrating and integrating processes. The good 
experiences with these tuning rules for non-integrating processes 
encouraged the authors to prototype the AMIGO approach for 
integrating processes in the case process. Nevertheless, the results 
from the case process indicated that the performance of the con-
trol system could be improved by replacing the AMIGO tuning 
with some other method. 

The tuning method proposed in this paper takes the similar 
approach as the AMIGO tuning, where the process is modeled 
with a simple first order linear model or the integrator model. The 
model is developed in the spirit of Ziegler-Nichols via step re-
sponse experiments. The tuning rules are then derived based on 
the few process parameters (gain, time constant, delay). 

The AMIGO tuning for integrating processes is based on 
characterizing the process using the IPD (integral plus delay) 
model structure [1] 

 ( ) sLvK
P s e

s
−= . (4) 

After numerous analyses of parameter relationships and ex-
tensive studies of robustness and performance, the following 
tuning rules are proposed in [3] and [5] for integrating processes. 
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This tuning is called AMIGO tuning (approximate M-constrained 
integral gain optimization). 

2.5. PID tuning rules for FOLIPD  

As the AMIGO tuning rules were originally tested with the case 
process with unsatisfactory results, other PID tuning rules for 
integrating processes were investigated. For the pure integrator 
process there are several tuning methods, but for the FOLIPD 
there are not so many.  

Numerous tuning rules are collected into Handbook of PI and 
PID Controller Tuning rules [1], also for FOLIPD process model. 
Most of the tuning rules for FOLIPD are given in the form  

 ,  0,  F
i d

v v

aTak k k
K L K L

= = =  (6) 

where a is tuned with various methods. Vitečkova et al. [6] have 
tuned a based on overshoot criterion and O'Dwyer [1] has derived 
a from gain and phase margins. Numerical values of a vary 
roughly from 0.3 to 1.0. By writing out the open-loop equation  
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it can be seen that the open-loop, and thus also the closed-loop, is 
independent of the values of Kv and TF. In other words the con-
troller structure eliminates those known process parameters.  

Other tuning rules for FOLIPD are presented by Rivera and 
Jun [7], and these rules are converted in [1] into form 
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where λ is an adjustable parameter, value that should correspond 
approximately to the closed-loop response speed.  

If the lag TF in (1) is rather small compared to the delay L, 
the tuning rules for IPD can also be used. Åström and Hägglund 
[4] propose the following rules based on Ziegler-Nichols ultimate 
cycle equivalent method  

 2

0.94 0.94 0.47,  ,  
2i d

v vv

k k k
K L KK L

= = = . (9) 

All the tuning rules collected in [1] for IPD and FOLIPD 
were tested with the case process using simulation. Some rules 
seemed to work only for a certain range of process parameters L 
and TF, and some rules gave unsatisfactory performance versus 
robustness ratio that is an important factor in the case process.  

2.6. Robustness for disturbances: The M-circle 

The development of the AMIGO rules was based on the follow-
ing robustness criterion: if the Nyquist curve of the loop transfer 
function does not intersect a circle with center cR and radius rR 
defined as 
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the sensitivity function and the complementary sensitivity func-
tions are less than M for all frequencies [8]. The robustness is 
thus captured by one parameter only, M. The value M = 1.4 was 
used in the AMIGO rule development, although finally the rules 
did not quite satisfy the constraint. For the test process batch a  
15 % increase of M was reported, resulting in M ≈ 1.6. 

2.7. Robustness for delay variance: The jitter margin 

Whereas the robustness parameter M concerns the disturbances 
such as measurement noise, in the case process also other type of 
robustness is required. The process suffers from varying time-
delays as mentioned in Section 2.2. Often such time-delays are 
known to be bounded, and it might be tempting to design a worst-
case controller using the maximum delay. Unfortunately, a con-
troller designed for the maximum delay does not guarantee that 
the closed-loop system would be stable as the delay varies in the 
range from the minimum to the maximum value. [9] 

Recently proposed stability criteria for systems with varying 
time-delays [10] are suitable for our usage, since they can be 
formulated as objective functions in the optimization of PID con-
troller parameters. The jitter margin is an upper bound for addi-
tional delay that can be added into a closed-loop control system 
while maintaining stability. The delay can be of any type (con-
stant, time-dependent, random), but the jitter margin determines 
the bound for the maximum value of the delay. A continuous-
time SISO system is stable for any time-varying delays defined 
by 

 ( ) max( ) ( ) ,      0 ( )v v t t tδ δ δΔ = − ≤ ≤  (11) 

if 
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where δmax is the maximum additional delay (the jitter margin). 
This criterion has been successfully applied in the derivation of 
PID tuning rules for non-integrating processes in varying time-
delay systems [11]. 

3. ANALYSIS OF FOLIPD TUNING RULES 

For the FOLIPD process model most of the PID tuning rules have 
the same general structure (6), i.e. PD controller. According to 
(7), when these tuning rules are applied, the open-loop system 
becomes independent of TF and Kv. The Nyquist curve of the 
open-loop transfer function is 

( )( ) sin( ) cos( ) .sL
ol

s j

a aG j e L j L
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ω ω ω
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=

= = − +  (13) 

This indicates that with high frequencies the Nyquist curve con-
verges to the origin. The parameters a and L determine the dis-
tance from (-1,0) such that with higher values of a the gain mar-
gin decreases. The jitter margin of the system becomes 
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In order to calculate the analytical expression for the jitter 
margin in the FOLIPD case with the controller tuning (6), the 
expression (14) should be minimized with respect to frequency 
ω. This turns out to be a hard problem analytically, but rather 
easy using numerical methods. For the analysis of the jitter mar-
gin we concentrate on parameter ranges 0.368 ≤ a ≤ 1.008 and 
0.01 ≤ L ≤ 100. The range for a is chosen similarly as in [6] 
where a determines the overshoot of the closed-loop response (0 
– 50 %). The range for delay L is simply chosen to be very wide. 
The jitter margin for the FOLIPD process model with the PD 
controller (6) is shown in Figure 2 with respect to parameters a 
and L. A closer look at the jitter margin surface reveals that for a 
fixed a the jitter margin is nearly linear function of delay L. For 
practical use of this analysis, it would be convenient to have an 
expression for a (the closed-loop “performance” parameter) as a 
function of L and δmax. Often the minimum delay (L) and the 
possible additional delay (δmax) of the system are known, but the 
problem is how to select between robustness and performance 
(a). Thus we calculate an approximation for the jitter margin and 
solve it for a. The jitter margin surface can be approximated by 

 max
0.9485 0.6356 L

a
δ ⎛ ⎞= −⎜ ⎟

⎝ ⎠
, (15) 

which gives 

 
max

0.9485
0.6356

La
Lδ

=
+

. (16) 

This is the maximum value for gain a that can be used with cer-
tain jitter margin requirement. For example, if the process mini-
mum time-delay is L = 0.5 and the required jitter margin is 50 % 
of L, it is possible to use gain a = 0.8352 which gives approxi-
mately 30 % overshoot for the closed-loop system with good per-
formance. In order to have less overshoot, the gain a can be de-
creased without endangering the stability, since the smaller values 
of a increase the jitter and gain margins. In the chosen range of 
parameters the estimate (15) gives a maximum error of ±2.5 % of 
the true jitter margin (14). 

4. NEW TUNING APPROACH 

In this section we propose a new PID controller tuning approach 
that explicitly takes into account the robustness criteria presented 
in Section 2. We introduce two objective functions to be opti-
mized simultaneously, and use simulation based constrained op-
timization to solve the optimal parameters for the PID controller 
in connection with the FOLIPD process. The tuning rules are then 
derived based on the parameter surfaces produced in the optimi-
zation phase. Multi-objective optimization is used for solving the 
problem, since the optimal controller parameters should minimize 
more than one conflicting objectives simultaneously. 
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Figure 2. The jitter margin (FOLIPD + PD controller). 

4.1. Multi-objective optimization 

In order to solve the controller tuning problem we use multi-
objective constrained optimization. A general multi-objective 
optimization (here minimization) problem is given as 
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where fl(x), l = 1…k, are nonlinear objective functions that are to 
be minimized simultaneously, xi are the decision variables and 
gi(x) and hj(x) are the nonlinear inequality and equality con-
straints, respectively (see e.g. [12]). There are numerous algo-
rithms for solving the above problem, of which the goal attain-
ment method will later be used for deriving the tuning rules. The 
goal attainment problem is defined as 

 

   
s.t.     ( )

         ,
g

Min
F x F

x

γ
α γ− ⋅ ≤
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where γ is an auxiliary variable, α is a vector of weights and Fg is 
a vector of goals, i.e. the objective function values that should be 
attained. 

4.2. Problem formulation 

In order to apply multi-objective optimization the objective func-
tions must be set. We use the ITAE cost criterion to measure the 
performance of the closed-loop system. The other criterion is the 
jitter margin that should be maximized. The robustness with re-
spect to disturbances is also taken into account by introducing an 
optimization constraint that keeps the open-loop Nyquist curve 
outside the robustness circle (10) similarly as in the AMIGO 
rules. Here M = 1.5 is used as the robustness parameter, which 

approximately corresponds to the obtained value that was re-
ported with AMIGO tuning rules. Note that we use this value as a 
hard constraint, whereas in AMIGO rules M = 1.4 was rather a 
soft constraint or an objective. As mentioned before the AMIGO 
rules finally had to relax (increase) this value up to 15 %. 

The optimization problem is formulated in (19)-(22), where 
f1,2(x) are the objective functions to be minimized and g(x) is the 
constraint function that the decision variables x must satisfy. 

 1
0 0

( ) ( ) ( ) ( )rf x t e t d t y t y t dτ τ
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where 

 [ ]T
i dx k k k=  and ( ) ( ) ( )H j C j P jω ω ω= . (22) 

4.3. Tuning results 

The controller tuning problem was solved using MATLAB’s 
Optimization Toolbox and fgoalattain function. The weights of 
the goal attainment method were chosen such that both perform-
ance (19) and jitter margin (20) were equally weighted. The goal 
for ITAE criterion was set equal to the ITAE criterion for the 
Vitečkova et al. [6] tuning (6) with a = 0.4 corresponding to 
overshoot of 10 % for the closed-loop system. The goal for the 
jitter margin was set to TF + L corresponding to the effective 
dead-time of the process. This margin would allow the delay to 
increase by 100 % from the effective dead-time while guarantee-
ing the stability. Note that this is in some cases quite a high ob-
jective, but as it is handled as an objective rather than a con-
straint, it is reasonable. The initial values of the controller pa-
rameters for the optimization were chosen according to the 
Vitečkova et al. [6] tuning. The range for parameters TF and L 
was chosen from 0.01 to 100, but only values for which the ratio 
TF / L remains in the range [0.1, 10] were considered. This re-
striction was motivated on one hand by simulation accuracy, 
since the system tends to become stiff for values outside of this 
range, and on the other hand by reasoning. One of the parameters 
easily becomes negligible outside this range. 

The optimization results are presented in Figure 3, where 
controller gains (k, ki and kd) and the ITAE cost are presented 
with respect to the process nominal delay L and process time 
constant TF. The controller gain k increases as L and TF decrease. 
The integral gain ki remains in zero. The derivative gain kd de-
creases as L and TF decrease. The ITAE cost increases naturally 
as the delay increases, but also as TF increases. Figure 4 shows 
the open-loop Nyquist curves when applying the optimal tuning 
to the FOLIPD process (1). 
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Figure 3. Optimized PID controller parameters. 

4.4. Tuning rules 

Based on the controller parameter surfaces the tuning rules were 
developed. This phase included both determining the rule struc-
ture and estimating the coefficients. The rule identification was 
done similarly as in [11]. As with the other FOLIPD tuning rules 
the integral gain is zero, and the proportional and the derivative 
gains are inversely proportional to the process velocity gain Kv. 
The proposed tuning rules for the FOLIPD processes are 
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5. EXPERIMENTS 

The developed tuning rules were utilized in the case process. The 
step response of the process was recorded in varying cases. Iden-
tification of the process parameters was automated with a 
MATLAB script. It was found out that the process gain Kv varies 
between 1.3 and 2.2 and the transport delay L between 0.25 and 
0.35. Reasonable values for the measurement filter time constant 
TF are 0.10-0.20. Based on the set of identification results, the 
process was fixed with parameters Kv = 1.8, L = 0.25, TF = 0.15.  

5.1. Comparison of tuning rules by simulation 

All the tuning rules collected in [1] for IPD and FOLIPD were 
tested with the case process model using simulation. The new 
tuning rules were compared to these. Figure 6 presents the ro-
bustness properties and the simulated step responses of the case 
process when using different tuning rules. On the left, there are 
the Nyquist curves and on the right, the unit step responses. 
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The loop transfer function Nyquist curves and the robustness circle with M = 1.5
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Figure 4. Optimized open-loop systems’ Nyquist curves. 

The circles in Figure 6 represent the robustness circle (10) 
with M = 1.5. Only the proposed tuning and Vitečkova et al. [6] 
tuning give good performance with adequate robustness proper-
ties that fulfill the servo control requirements presented above. 
Nevertheless, the proposed tuning gives a better settling time and 
robustness properties simultaneously, and there is no overshoot. 
The lowest plots of Figure 6 compare the step responses and ro-
bustness properties between the proposed rules and the Vitečkova 
et al. rules with overshoot of 10 %. It can be concluded that the 
new rules are superior to the other rules in many respects. 

5.2. Experiments with the real process 

In the case process the response of the hydraulic valve is not 
linear to the control signal in the whole range, but in the experi-
ments only a part of the full range was used (0-40 %), where the 
valve is approximately linear to the control signal. This control 
signal limitation was also taken into account in the simulations. 
The comparison of the simulated and real process step responses 
using the new PID tuning rules is presented in the Figure 5. 

6. CONCLUSIONS 

In this paper the PID controller tuning for integrating processes 
was considered. The few existing tuning rules for FOLIPD proc-
ess model were analyzed with respect to robustness for distur-
bances and for varying time-delay. The common structure of 
these tuning rules was analyzed and the dependency of tuning 
rule performance parameter and time-delay robustness criterion 
was shown. In addition, a novel tuning method for the PID con-
troller was proposed and based on the design concept, new tuning 
rules were developed. The new tuning rules were tested by simu-
lation and in a case process. The new tuning rules were shown to 
outperform the other known tuning rules for FOLIPD process. 
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Figure 5. Step response with simulator and real process 
using the new rules. 
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Figure 6. Comparison of loop transfer function Nyquist curves (robustness circle with M = 1.5) and unit step responses. 
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