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Abstract— This paper considers the design of PID controllers 
for systems with varying time-delays. Using the concept of jit-
ter margin combined with the AMIGO tuning rule methodol-
ogy, novel tuning rules that are robust to varying time-delays 
are derived. In addition, we give an expression for the expected 
lower bound of the jitter margin as these tuning rules are ap-
plied. Extensive numerical evaluations demonstrate that, for 
wide range of processes, the new tuning rules achieve signifi-
cant improvements in jitter margin at the expense of only slight 
decreases in other performance criteria. 

I. INTRODUCTION 
NY practical control system suffers from delays. These 
can stem from process dynamics, actuators, sampling 

or communication delays. The delays are often either as-
sumed negligible or constant, but in some cases the variance 
in delay times (the so-called jitter) plays a significant role. 
There exists a variety of methods for control of time-delay 
systems with constant delays, but the toolset for dealing with 
varying time-delays is much more limited. In this paper, PID 
controller tuning for systems with varying time-delays is 
discussed and new jitter-robust tuning rules are developed. 
The tuning rules are based on a KLT-approximation (first-
order lag with delay) of the process, possibly obtained via a 
simple open-loop step response test, and guarantee the 
closed-loop stability under time-varying delays. 

While time-delay systems are abundant in practice, our 
work is partly motivated by the emerging technology of net-
worked control. There is strong current desire to develop 
technologies that allow a transition from today’s wired in-
frastructures to more flexible and cost-efficient wireless 
automation systems. This “wireless migration” requires sig-
nificant advances in a wide range on technologies, including 
wireless communication, networking, software engineering, 
and control. Our focus is on control, and on the design of 
practical controllers that are robust to the varying time-
delays incurred by unreliable communications.    

The PID controller is the most common controller in in-
dustrial applications today, and it is likely to be the most 
important controller also in wireless automation solutions. 
There are many different architectural options for networked 
PID controllers, including the use of “network observers” 
[1] to compensate for delay, jitter, losses and other network 
deficiencies, or simply keeping the architecture of the wired 
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controller and modifying the controller parameters. This 
paper takes the second path, and develops new tuning rules 
that aim at providing good time-domain performance while 
being robust to varying time-delays. Recently, the problem 
of PID controller tuning for integrating processes with vary-
ing time-delays has been considered in [2], but here the fo-
cus is on non-integrating processes. 

The paper is organized as follows: Section II discusses the 
preliminaries required to understand the problem and pre-
sents the methods used. In Section III, the problem is formu-
lated and solved, and the results are used in Section IV to 
derive the tuning rules. In Section V the advantages of using 
the proposed rules are shown via simulations, and Section 
VI states the conclusions. 

II. PRELIMINARIES 

A. PID controller 
The PID (proportional-integral-derivative) controller is the 
most common controller used in industry. There are several 
versions of the basic algorithm 
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where u is the control signal, e the error signal, yr the refer-
ence signal, y the process variable, K the gain, Ti the integra-
tion time, and Td is the derivative time. In this paper we con-
sider the following version of the PID controller, since the 
“text book” version (1) is very sensitive to noise. 
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Here k, ki, and kd are the controller gains, b and c the set-
point weights, and yf is the filtered process variable such that 
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where Y(s) is the Laplace transform of the process variable 
y(t). Tf is the filter time-constant. 

B. Jitter margin 
The jitter margin is an upper bound for additional delay that 
can be added to a closed-loop control system while main-
taining stability. The delay can be of any type (constant, 
time-dependent, random), but the jitter margin determines 
the upper bound for the delay. The formal definition of the 
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jitter margin is given in [3], where three different control-
ler/plant–uncertainty combinations are investigated. The first 
one is shown in Fig. 1, left, where a continuous-time plant 
and a continuous-time controller with controller output un-
certainty are shown. This continuous-time SISO system is 
stable for any time-varying delays defined by 

( ) max( ) ( ) ,      0 ( )v v t t tδ δ δΔ = − ≤ ≤ , (4) 
if 
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< ∀ ∈ ∞
+
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δmax is the jitter margin. The proof of the result is based on 
presenting the uncertainty (varying delay) with an operator 

( ): 1 1F sΔ = Δ −  (s being the Laplace operator) and on the 
small gain theorem. 

However, in this paper the jitter is assumed to be after the 
plant (e.g. sampling jitter) as depicted in Fig. 1, right. Since 
the signals in the control loop are all continuous, and only 
the plant and controller switch their positions, the small gain 
theorem-based stability proof still holds for the control sys-
tem of Fig. 1, right. 

C. AMIGO tuning rules 
The objective of this work was to develop tuning rules for 
the PID controller in varying time-delay systems. The 
AMIGO tuning rules [4] were selected as the point of com-
parison, since they provide controllers with good perform-
ance and robustness properties. The AMIGO tuning rules 
are based on the KLT-process model obtained with a step 
response experiment. The most well-known step response-
based tuning rules were presented by Ziegler and Nichols in 
1942 [5]. The KLT-process model is given 
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1

p sL
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K
P s e
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+
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where Kp is the static gain, T the time-constant, and L the 
time-delay. The parameters can be estimated from a single 
step experiment by drawing a tangent to the inflection point 
of the response. The delay is estimated from the intersection 
of the tangent and the response initial value, the time-
constant from the intersection of the tangent and the re-
sponse final value (from which the delay is subtracted), and 
the static gain from the ratio of response and step final val-
ues (see [4] for details). The AMIGO rules were developed 
by analyzing different properties (performance, robustness 
etc.) of a process test batch. 
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Fig. 1. Continuous-time controller (C) and plant (P) with an 
uncertain time-varying delay (Δ) in the feedback loop. On 
the left, Δ is the controller output uncertainty. On the right, 
Δ is the process output uncertainty. 

The AMIGO tuning rules are 
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In order to use the PID controller with filtering (2), the 
rules are extended as follows [4]: 
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where ωgc is the gain crossover frequency and 
L

L T
τ =

+
 (9) 

is the relative dead-time of the process, which has turned out 
to be an important process parameter for controller tuning.  

The development of the AMIGO rules was based on the 
following robustness criterion: if the Nyquist curve of the 
loop transfer function does not intersect a circle with center 
cR and radius rR defined as 

( ) ( )
22 2 1 2 1,  

2 1 2 1R R
M M Mc r
M M M M

− + −= − =
− −

, (10) 

then the sensitivity function and the complementary sensitiv-
ity function are less than M [6]. The robustness is thus cap-
tured by one parameter only, M. The value M = 1.4 was used 
in the AMIGO rule development, although finally the rules 
did not quite satisfy the constraint. For the process test batch 
a 15 % increase of M was reported. 

In order to get some insight of the jitter margin properties 
of the KLT-processes with AMIGO tuning, the jitter margin 
was calculated for processes with Kp = 1 and different values 
of T and L ranging from 0.1 to 10. The numerical analysis 
revealed that the jitter margin of the control loops with 
AMIGO tuned controllers and a KLT-process depends 
mainly on process delay as 

max, 0.71AMIGO Lδ ≈ ⋅ . (11) 
It was seen that the jitter margin does not depend signifi-
cantly on the time-constant, but it is rather a function of de-
lay. For delay-dominant (L >> T) processes this is favorable, 
since the jitter margin is approximately 70 % of the nominal 
delay. But for lag dominated (T >> L) processes this indi-
cates that the AMIGO rules might give rather poor jitter 
margins, since the jitter margin does not depend on T. 

D. Multi-objective optimization 
The new tuning rules for systems with varying time-delays 
are developed in this paper by optimizing the PID parame-
ters with respect to several objectives. In order to solve the 
optimization problem we use a multi-objective constrained 
optimization method. A general multi-objective optimization 
(here minimization) problem is given as 
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where fl(x) are nonlinear objective functions that are to be 
minimized simultaneously, xi the decision variables and gi(x) 
and hj(x) the nonlinear inequality and equality constraints, 
respectively (e.g. [7]). There are numerous algorithms for 
solving the problem (12), of which the goal attainment 
method will later be used in deriving the tuning rules. The 
goal attainment problem is defined as 

. . ( )

,
g
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s t F x F

x

γ
α γ− ⋅ ≤

∈ Ω

 (13) 

where γ is an auxiliary variable, α is a vector of weights and 
Fg is a vector of goals, i.e. the objective function values that 
should be attained. 

III. JITTER-AWARE TUNING FOR THE KLT-PROCESS 
This paper aims at producing PID tuning rules that ensure 
robustness against time-delay variations in the control loop. 
The rules can be applied based on the KLT-process model of 
the plant that can be easily obtained with a single step re-
sponse experiment. The experiment should be recorded such 
that the varying time-delay does not affect the response. The 
KLT-process model should only capture the lag and the dead 
time of the process. Here, we restrict to stable processes. 

A. Problem formulation 
In order to derive the new tuning rules for the varying time-
delay systems, it is first analyzed how the PID controller 
should be optimally tuned such that the performance and the 
jitter margin of the closed-loop system would be maximized 
simultaneously, while the robustness of the system would 
remain at the same level as with the AMIGO rules. For this 
investigation the following objective functions are set: 
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where 
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For the optimization problem the following vectors, vari-

ables and constraint functions are defined. 
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The objective function f1(x) is the ITAE criterion and f2(x) 
is the inverse of the jitter margin. The functions are written 
in a form where their values should be minimized to get the 
best results. The total objective function F(x) and the opti-
mization variable x are defined in (17). The optimized pa-
rameters x are the PID controller gains k, ki and kd. The other 
controller parameters (Tf, b, and c) are set by the AMIGO 
rules, (8). If the constraint function g(x) in (18) is positive as 
required, g(x) determines the distance between the Nyquist 
curve of the loop transfer function and the “robustness cir-
cle” (10) in the complex plane. Negative values of g(x) 
would indicate Nyquist curves intersecting the robustness 
circle. The robustness requirement (10) is thus treated as a 
hard constraint. 

B. Solving the optimization problem 
To solve the problem presented in (14) - (18), we use the 
goal attainment method. It provides means to define goal 
values for the objective functions. The goals are chosen as 

1
g AMIGOF J

T L
⎡ ⎤= ⎢ ⎥+⎣ ⎦

, (19) 

where JAMIGO is the ITAE cost criterion value if AMIGO 
tuning rules were used for the controller. For the jitter mar-
gin, the goal is T + L, since this gives relatively large jitter 
margins for both delay-dominant and lag dominated proc-
esses. The weighting of the goals is another way to affect the 
optimization results. If equal under- or overattainment of 
objectives is desired, the weights are chosen α = |Fg|. The 
smaller the weight, the more the respective objective is con-
sidered. Based on the discussion in Section II.C, the jitter 
margin goal is relatively large compared to the jitter margin 
provided by the AMIGO rules for lag dominated processes. 
Because of the trade-off between the objectives, choosing 
the weights equal to the goal values would presumably result 
in poor performance for these processes. To avoid signifi-
cant decrease in performance when T >> L, the weights are 
set otherwise equal to the goal values, but the weight of the 
second objective is multiplied by 2T. Hence, the weights are 
α = [JAMIGO  2T / T + L]. For the robustness constraint we set 
M = 1.5, since the AMIGO rules give M ≈ 1.4 - 1.6. 

The optimization is done using a simulation model with 
controller (2) and process (6). The objective function values 
are calculated at each iteration, and the optimization is run 
until the values of the functions do not decrease further. A 
unit step at 1 s is used as the reference signal that is applied 
to the disturbance input (yr in Fig. 1), and the simulation is 
run until the response of the system reaches the reference 
signal after the step is given and the error remains in zero. 

C. Optimization results 
The PID controller parameters were optimized using 
MATLAB’s fgoalattain function that implements the goal 
attainment method described above. The AMIGO tuning 
rules were used as initial values for the optimization. Differ-
ent values of process time-constants and delays were used. 
The optimization was run using 11 values for both variables, 
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Fig. 2. Jitter margin of the KLT-processes after optimization 
and with AMIGO tuning rules. 

whereas the process gain Kp was kept constant, since it only 
scales the controller gains (see (7)). The values used in the 
optimization were 

[ ] [ ]1,  0.1 1 10 ,  0.1 1 10 .pK T L= = =  (20) 

The purpose of the optimization was to produce tuning 
rules that give the closed-loop system a large jitter margin. 
Fig. 2 compares the jitter margin of the KLT-processes with 
parameters (20) between AMIGO tuning rules and the opti-
mized tuning parameters. The jitter margin is plotted with 
respect to the relative dead time (9) of the process. Investi-
gation of the figure reveals that the jitter margin is improved 
for all processes in the optimization. The relative improve-
ment of the jitter margin compared to the AMIGO tuning is 
shown in Fig. 3 (upper graph). The jitter margin is signifi-
cantly improved for processes with τ < 0.8. 

The lower graph in Fig. 3 shows the ITAE criterion ratio 
between AMIGO and optimal tuning. The performances are 
equal if the percentage is 100 %, and the lower percentages 
indicate decrease in performance for the optimized tuning. 
The performance of the closed-loop system is not necessar-
ily as good as with the AMIGO rules, and in some cases the 
jitter margin improvement comes at the cost of lower per-
formance. There are, though, quite a few controllers that 
perform equal to the AMIGO rules, but simultaneously give 
better jitter margins. To be precise, 60 % of the controllers 
give performance index over 90 % indicating that the ITAE 
cost criterion value is at maximum 10 % higher than with 
the AMIGO rules. Over 90 % of the controllers give per-
formance index over 80 %. Only 1.5 % of the controllers 
perform poorly (performance between 50 % and 60 %), and 
these are the ones with τ < 0.1, i.e. if L << T. Nevertheless, 
for these processes the jitter margin has improved enor-
mously. This is because of two reasons: first, the AMIGO 
tuning gives very small jitter margins for small L, and sec-
ond, the objective value of the jitter margin in the optimiza-
tion is high relative to the nominal delay. Consider, for ex-
ample, the process with L = 0.1 and T = 1. The jitter margin 
goal is 1.1, i.e. 11 times bigger than the delay, and it is 
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Fig. 3. Improvement of the jitter margin and performance 
comparison with respect to the AMIGO tuning rules. 

almost 16 times bigger than the jitter margin with AMIGO 
rules. In these cases, it is hard to reach the goal without sac-
rificing the performance. 

IV. PROPOSED TUNING RULES 

A. Derivation of the tuning rules 
The PID controller parameters k, ki, and kd obtained from the 
optimization were plotted with respect to time-constant and 
delay. The surfaces were smooth overall, but showed some-
what irregular behavior for small values of delay. The tuning 
rules were designed by approximating the surfaces with ex-
plicit functions of T and L. 

First, the problem was scaled into 2D. The parameters 
were plotted against time-constant for fixed values of delay, 
and against delay for fixed values of time-constant. These 
figures are shown for k and ki in Fig. 4 (logarithmic scale for 
parameters). Using these figures, it was possible to derive 
the model structures for the tuning rules. For example, in the 
upper two plots of Fig. 4 it is seen that the parameter k is 
proportional to the time-constant and inversely proportional 
to the delay. Thus a natural candidate for the tuning rule 
structure would be 

1( , ) k k
p

Tk T L a b
K L

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (21) 

ak and bk being the coefficients to be estimated from the op-
timized surface of k. In fact, this model structure equals to 
the AMIGO rules. It turned out that the model structure did 
not have enough degrees of freedom, since the estimated 
surface error was large. Thus, a slightly more complicated 
structure was chosen. 

The search for a good model structure candidate was initi-
ated by investigating how the PID parameter k depends on 
the time-constant at different values of delay. For each value 
of delay L, a line was fitted 

1, 2,( , ) k k
j j jk T L Tθ θ= + , (22) 

where Lj is a constant value of delay (jth line), and θk
1,j and 

θk
2,j are parameters of the jth fitted line. In other words, the 
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Fig. 4. Gains k and ki with respect to process time-constant T 
and delay L. 

dependency on parameters was separated such that k is pro-
portional to the time-constant, and the parameters θk are 
functions of the delay, i.e. 

1 2( , ) ( ) ( )k kk T L L T Lθ θ= ⋅ + . (23) 
The parameter θk

1 is shown as a function of delay in Fig. 
5. The parameter is clearly inversely proportional to the de-
lay. Since also θk

2 was observed to be inversely proportional 
to delay, the following model structure was chosen for k. 

1 2

1 2
1 2 2

( ) ( )

( , ) ( ) ( )
k k

k k
k k k

L L

a a
k T L L T L T b

L L
θ θ

θ θ= ⋅ + = + +  (24) 

a1
k, a2

k and b2
k are the coefficients estimated from the opti-

mized surface of k. 
The model structure for ki was chosen using the same ap-

proach as for k, since the dependencies on T and L seemed 
to have similar shapes (see Fig. 4). Nevertheless, the model 
needed to have more degrees of freedom. Different from 
modeling of k, here the search was initiated by first fitting 
curves for each value of the time-constant, not delay. The 
following model structure was chosen. 
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Fig. 5. Parameter θk

1 with respect to delay. 
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Furthermore, the following dependencies were identified 
3 2

1 1 1 1
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2 2 2 2
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which gave the final model structure 
3 2 2

1 1 1 2 2 2
2( , )

i i i i i i

i
a T b T c a T b T c

k T L
LL

+ + + +
= + . (27) 

Derivative gain kd was simpler to model, and the resulting 
model structure is 

2
1 2( , ) d d

dk T L a T a T= + . (28) 

B. Tuning rules 
The proposed tuning rules are based on the KLT-process 
model. The coefficients and rule structures were obtained by 
analyzing 121 KLT-processes with different values for time-
constants and delays. It should be noted that the rules are 
derived for time-constants and delays in the range [0.1, 10], 
and using the formulas outside of these ranges might give 
infeasible parameters. However, the method for finding the 
tuning rules as presented in this paper could be applied for 
deriving tuning rules for processes that are out of the range 
of these rules. 

The proposed jitter-aware PID controller tuning rules are 
1 0.4 0.04 0.16 ,

p

Tk
K L

−⎛ ⎞= +⎜ ⎟
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 (29) 

3 2 2
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100i
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K LL

⎛ ⎞− + − + += +⎜ ⎟
⎝ ⎠

(30) 

( )21 0.4 11 .
100d

p

k T T
K
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V. PERFORMANCE COMPARISON 
This section gives an example of applying the proposed tun-
ing rules and also compares them with AMIGO tuning. First, 
a general comparison is made by analyzing the performance, 
robustness and jitter margin criteria for the KLT-process. 

A. Comparison of the rules 
The tuning rules (29) - (31) are approximations of the opti-
mized tuning parameters, and thus differences in perform-
ance, jitter margin and robustness are expected when com-
paring the rules and the optimized parameters. In the follow-
ing figures the proposed tuning rules are compared with 
AMIGO tuning in various aspects. In the upper plot of Fig. 6 
the improvement of the jitter margin is presented for the 
KLT-process with parameters (20) similarly as in Fig. 3. For 
example, value 100 % indicates that the proposed tuning 
rules give 100 % better jitter margin than the AMIGO rules. 
The lower plot of Fig. 6 shows the ITAE ratio of AMIGO 
and proposed tuning. The proposed tuning rules give better 
jitter margin for all KLT-processes. In 13 % of the processes 
also the performance increases which means that there are
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Fig. 6. Improvement of the jitter margin and performance 
comparison between AMIGO and proposed tuning rules. 

processes for which both the jitter margin and performance 
are improved. It can be seen that the jitter margin increases 
by over 50 % for all processes where 0 ≤ τ ≤ 0.95. The rela-
tive decrease of performance is greatest for certain processes 
where τ is small, i.e. L << T, as was the case for the opti-
mized parameters (see Fig. 3). The relative increase of the 
jitter margin is smallest for large values of τ. This is because, 
as mentioned before, the AMIGO rules give quite good jitter 
margins for the delay-dominant processes where 0.9 ≤ τ ≤ 1, 
i.e. L >> T. In the cases with large L it might pay off to use 
more sophisticated control algorithms to compensate for the 
delay (e.g. the Smith predictor, [8]). 

The proposed tuning rules were also experimented with 
the process test batch that was used in the development of 
AMIGO rules (133 processes, see [4]). For the non-
integrating processes, whose KLT-parameters are in the re-
quired range, the proposed tuning rules give significant en-
hancements in jitter margin and performance. 

The jitter margin of the proposed tuning rules seems to 
have a smoothly behaving lower bound as can be seen in 
Fig. 6. It is possible to estimate the lower bound of the jitter 
margin based on τ. Let f(τ) be this lower bound and  
δmax,NEW(τ) the jitter margin of the proposed tuning rules. The 
lower bound is smaller than the relative growth (percentage) 
of the jitter margin (Fig. 6) for all τ, i.e. 

max, max,

max,

( ) ( )
( ) 100%,    0 1

( )
NEW AMIGO

AMIGO

f
δ τ δ τ

τ τ
δ τ

⎛ ⎞−
≤ ⋅ ≤ ≤⎜ ⎟⎜ ⎟
⎝ ⎠

. (32) 

Based on (11) and (32), the jitter margin for the KLT-
process when applying the proposed tuning rules is ap-
proximately 

( )max, 0.71 ( ) 1NEW L fδ τ≥ ⋅ ⋅ + . (33) 
The function f(τ) was estimated from the lowest jitter margin 
values in Fig. 6. The following function was obtained. 

4 3 2( ) 12.3 17.1 5.5 0.72f τ τ τ τ= − + − + . (34) 
These equations give an approximation of the jitter margin 
based on the KLT-parameters without a need for more com-
plicated calculations such as (5). 

In Fig. 7 the robustness of the proposed tuning rules is 
evaluated by drawing the loop transfer function Nyquist 
curves and the robustness circle (10) with M = 1.5. The fig-
ure shows that most of the curves do not intersect the ro-
bustness circle, but there are few curves that go inside the 
circle indicating that the robustness constraint is not com-
pletely fulfilled. This also happens with the AMIGO tuning 
rules. A profound comparison reveals that the robustness is 
on the average improved with the new rules. 

B. Simulation example 
There are nine different types of processes in the process test 
batch with different values of parameters (typically delay 
and time-constant). For example, process type P1 is the 
KLT-process with process gain Kp = 1, delay L = 1 and time-
constant ranging from 0.02 to 1000. To demonstrate the su-
periority of the proposed tuning, we select for a simulation 
example the process type P9, for which the AMIGO tuning 
gives a relatively small jitter margin. The processes P9 are 
given 

( )( )9 2

1( ) ,  0.1,0.2,...,1.0.
1 ( ) 1.4 1 p

p p

P s T
s sT sT

= =
+ + +

 (35) 

To obtain better jitter margins for the processes (35) the 
proposed tuning rules are applied. First, KLT-approxima-
tions of the processes are required. Regardless of the value 
of parameter Tp, the process gain of (35) is Kp = 1. The up-
per plot of Fig. 8 shows the KLT-parameter values T and L 
for processes P9. The lower plot shows the jitter margins 
when AMIGO tuning or the proposed tuning are applied 
based on the KLT-models. It can be seen that the KLT-
parameters fit in the range of the new tuning rules, and they 
can be applied. The proposed tuning gives considerably lar-
ger jitter margins for processes (35). 

The nominal (without additional delay) step responses of 
the P9-processes with AMIGO tuning and proposed tuning 
are shown in Fig. 9. AMIGO gives responses with overshoot 
whereas the proposed tuning gives better damped responses. 
The settling times are approximately the same for both tun-
ing rules. But when an additional time-delay is added into 
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Fig. 7. The loop transfer function Nyquist curves. 
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Fig. 8. KLT-process parameters (upper) and jitter margins 
(lower) with AMIGO tuning and the proposed tuning for P9. 

the control loop, the responses of the AMIGO tuned proc-
esses go unstable if the delay amplitude is large enough. The 
control loops that are tuned with the proposed tuning are less 
sensitive to additional delay. Fig. 10 shows the step re-
sponses of process P9(Tp = 0.1), when the additional delay 
has a maximum value of 0.26 s. The figure shows how the 
AMIGO tuned process goes unstable while the proposed 
tuning rules still give stable response with little oscillation. 

VI. CONCLUSIONS 
This paper considered the problem of designing tuning rules 
for PID controllers in systems with varying time-delays. 
Inspired by the AMIGO tuning rules for the classical PID 
control set-up, we have exploited on the concept of jitter 
margin to develop tuning rules that are robust to varying 
time-delays. The optimal controller parameters were first 
solved by simultaneous performance and jitter margin 
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Fig. 9. P9 step responses with AMIGO and proposed tuning. 
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Fig. 10. Process P9(Tp = 0.1) step response when an addi-
tional random delay of maximum amplitude 0.26 s is added 
into the control loop. 

maximization for a KLT-process, and based on the obtained 
surfaces the new tuning rules were identified. Numerical 
examples have demonstrated that it is possible to achieve 
significant improvements in jitter margin at the expense of 
only slight decrease in other performance criteria.  

This paper deals only with continuous-time PID controller 
and plant model, but the methodology could be extended to 
the discrete-time case. For networked control systems, for 
example, the discrete-time controller case appears very rele-
vant. Furthermore, tuning rules have only been developed 
for the parameters k, ki and kd. It may be useful to develop 
design rules also for the other controller parameters, in par-
ticular for the filtering time-constant Tf, which has a direct 
influence on the jitter margin. 
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