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Abstract— This paper discusses tuning of PID controllers for 
varying time-delay systems. We analyze the properties of the 
AMIGO tuning rules of Åström and Hägglund applied to vary-
ing time-delay systems and propose improved tuning rules 
which increase the robustness to delay variations at the expense 
of a small degradation in nominal performance. We suggest a 
tuning scheme that uses the simple AMIGO tuning on an ex-
tended plant, and define the design concepts for extending the 
plant. This approach allows treating the maximum time-delay 
as a design parameter for the tuning rules. The proposed tun-
ing rules are compared via simulations. 

I. INTRODUCTION 
 NY practical control system suffers from delays. These  
 can stem from process dynamics, actuators or sam-

pling. The delays are often either assumed negligible or con-
stant, but in some cases the variance in delay times (jitter) 
plays a significant role. There exists a variety of methods for 
control of time-delay systems with constant delays, but the 
toolset for dealing with varying time-delays is much more 
limited. While time-delay systems are abundant in practice, 
our work is partly motivated by the emerging technology of 
networked control. There is strong current desire to develop 
technologies that allow a transition from today’s wired in-
frastructures to more flexible and cost-efficient wireless 
automation systems. This “wireless migration” requires sig-
nificant advances in a wide range of technologies, including 
wireless communication, networking, software engineering, 
and control. Our focus is on the design of practical control-
lers that are robust to the varying time-delays incurred by 
unreliable communications. 

The PID (proportional-integral-derivative) controller is 
the most common controller in industrial applications today, 
and it is likely to be the most important controller also in 
wireless automation solutions. There are many different ar-
chitectural options for networked PID controllers, including 
the use of “network observers” [1] to compensate for delay, 
jitter, losses and other network deficiencies, or simply keep-
ing the architecture of the wired controller and modifying 
the controller parameters. This paper takes the second path, 
and develops new tuning rules that aim at providing good 
time-domain performance while being robust to varying 
time-delays. 

Recently, the PID tuning problem for varying time-delay 
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systems has been approached using multi-objective optimi-
zation to develop rules that maximize the jitter margin, i.e. 
the maximum value of any additional varying time-delay in 
the control system [2], [3]. This approach might result in 
complicated rule structures, which only apply for a certain 
range of process parameter values. In this paper, we extend 
the simple AMIGO (Approximate M-constrained Integral 
Gain Optimization) tuning rules [4], [5] that have been de-
veloped for PID tuning in process control, such that varying 
time-delays are better taken into account while adhering to 
the simple rule structures. There are AMIGO rules for non-
integrating and integrating processes, but we only consider 
non-integrating processes. The integrating processes are 
treated in [3]. We consider extending the plant with a well 
designed measurement filter before applying the AMIGO 
design on the extended plant. This approach allows using 
the required jitter margin as a parameter to the tuning rules. 

In the next section the basic concepts and preliminaries 
required to understand the problem and the proposed tuning 
approach are presented. The AMIGO tuning that is fre-
quently referred to in the paper is also presented in Section 
II. Based on the AMIGO tuning analysis presented in Sec-
tion III, we propose an extended plant design approach and 
filter design concepts that better fit for varying time-delay 
systems in Section IV. Section V compares the proposed 
tuning and Section VI analyses the delay-dominant proc-
esses separately. Simulation results are presented in Section 
VII and Section VIII states the conclusions. 

II. PRELIMINARIES 

A. PID Controller 
The PID controller is the most common controller used in 
industry. There are several versions of the basic algorithm 
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where u is the control signal, e the error signal, yr the refer-
ence signal, y the process variable, K the gain, Ti the integra-
tion time, and Td the derivative time. In this paper we con-
sider the following version of the PID controller, since the 
“text book” version (1) is very sensitive to noise. 

( ) ( )
0

( ) ( ) ( ) ( ) ( )

( )( )        

t

r f i r f

fr
d

u t k by t y t k y y d

dy tdy tk c
dt dt

τ τ τ= − + −

⎛ ⎞
+ −⎜ ⎟

⎝ ⎠

∫
 (2) 

Simple PID Tuning Rules for Varying Time-Delay Systems 
Lasse M. Eriksson and Mikael Johansson 

A 



 
 

 

Here k, ki, and kd are the controller gains, b and c the set-
point weights, and yf is the filtered process variable such that 
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where Y(s) is the Laplace transform of the process variable 
y(t). Tf is the measurement filter time-constant and n the or-
der of the filter. Typically n equals one or two. 

B. Jitter margin 
There exists a variety of stability results for varying time-
delay systems (see e.g. [6]). Most of the theorems are in time 
domain, but there are also certain frequency domain criteria 
such as [7]. The criteria presented in [7] are based on the 
assumption that the varying time-delay is bounded. The up-
per bound for the delay is called the jitter margin. The delay 
can be of any type (constant, time-dependent, random), but 
the jitter margin determines the upper bound for it. The for-
mal definition of the jitter margin is given in [7], where 
three different controller/plant–uncertainty combinations in 
continuous- and discrete-time are investigated. The first one 
is shown in Fig. 1, left, where a continuous-time plant and a 
continuous-time controller with controller output uncertainty 
are shown. This continuous-time SISO system is stable for 
any time-varying delays defined by 
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where δmax is the jitter margin. The proof of the result is 
based on presenting the uncertainty (varying time-delay) 
with an operator ( ): 1 1F sΔ = Δ −  (s being the Laplace op-
erator) and on the small gain theorem. 

However, in this paper the jitter is assumed to be after the 
plant (e.g. sampling jitter) as depicted in Fig. 1, right. Since 
the signals in the control loop are all continuous, and only 
the plant and controller switch their positions, the small gain 
theorem-based stability proof, and the resulting criterion (5), 
still hold for the control system in Fig. 1, right. 

C. AMIGO tuning rules 
The objective of this work is to develop simple tuning rules 
for the PID controller in varying time-delay systems. The 
AMIGO tuning rules [4], [5] were selected as the point of 
comparison, since they provide good performance and are 
robust to disturbances in control systems without varying 
time-delays. The AMIGO tuning rules are based on ap-
proximating the process with the so-called KLT-process 
model (first order lag plus delay) possibly determined via a 
simple step experiment, see [4]. The tuning rules are ob-
tained from the KLT-parameters. The most well-known step 
response based tuning rules were presented by Ziegler and 
Nichols already in 1942 [8]. The KLT-process model is 
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Fig. 1. Continuous-time controller (C) and plant (P) with an uncertain time-
varying delay (Δ) in the feedback loop. On the left, Δ is the controller out-
put uncertainty. On the right, Δ is the process output uncertainty. 
where Kp is the static gain, T the time-constant, and L the 
(constant) time-delay. The AMIGO rules were developed by 
analyzing different properties (performance, robustness etc.) 
of a process test batch with over 130 processes, and the re-
sulting tuning rules are 
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In order to use the PID controller with filtering (2), the 
rules are extended as follows [4]: 
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Here τ refers to the relative dead time of the process 
L

L T
τ =

+
, (9) 

which has turned out to be a significant process parameter 
when controller tuning is considered, and ωgc is the gain 
crossover frequency. 

The development of the AMIGO rules was based on the 
following robustness criterion: if the Nyquist curve of the 
loop transfer function does not intersect a circle with center 
cR and radius rR defined as 
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then the sensitivity function and the complementary sensitiv-
ity function are less than M [9]. The robustness is thus cap-
tured by one parameter only, M. The value M = 1.4 was used 
in the AMIGO rule development, although finally the rules 
did not quite satisfy the constraint. For the process test batch 
a 15 % increase of M was reported (M ≈ 1.6). 

III. ANALYSIS OF THE AMIGO TUNING 
In [2] the jitter margin properties of AMIGO tuning are ex-
amined. It is shown that the jitter margin of a pure KLT-
process with AMIGO tuned controller (2) is approximately 
δmax, AMIGO ≈ 0.71⋅L. It is also suggested in [2] that the meas-
urement filter time-constant Tf might have a great impact on 



 
 

 

the jitter margin. To further explore the jitter margin proper-
ties in this case the analytical jitter margin formula is de-
rived here. Consider the pure KLT-process (6) and the con-
troller (2), where the parameters k, ki and kd are tuned ac-
cording to AMIGO tuning rules (7) and (8). The jitter mar-
gin δmax solved from (5) becomes 
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It seems that (11) does not have an analytical solution, 
which could possibly give more insight on the dependency 
of jitter margin on the process parameters. Numerically, 
though, the expression is trivial to solve if a sufficiently 
wide frequency range is used. 

Some remarks can be made on (11). If the measurement 
filtering is not used, i.e. Tf = n = 0, we get 
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This means that the jitter margin is zero for a KLT-
process with PID controller without measurement filtering. 
The reason for this is the fact that the system does not have 
roll-off at high frequencies. This can be verified from the 
closed-loop system’s Bode diagram, which corresponds to 
the left side of inequality (5). In Fig. 2, a KLT-process with 
parameters Kp = 1, T = 3 and L = 1 in conjunction with an 
AMIGO-tuned PID controller with and without the meas-
urement filter are considered. The solid line represents the 
system’s frequency response amplitude in the case without 
the filter. The dotted line intersecting the solid line repre-
sents the jitter margin criterion (right side of (5)) with  
δmax = 0.5. Obviously, the jitter margin criterion is not satis-
fied in this case. For comparison, the dash-dotted line shows 
the frequency response amplitude for the system with the 
measurement filter that is tuned according to the AMIGO 
rules. For the system with the filter, the jitter margin re-
quirement is clearly satisfied. 

The above analysis verifies the need for the measurement 
filter in varying time-delay systems. In addition, the filter 
naturally reduces the effect of measurement noise and it is 
often considered a prerequisite for using the derivative part 
of the PID controller in practical control systems. Still it 
remains unclear if the AMIGO tuning rule for Tf is optimal 
in jitter-sense. 
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Fig. 2. Closed-loop Bode diagram of a KLT+PID system with and without 
the measurement filter. 

The discussion above motivates a more thorough evalua-
tion of how the measurement filter time-constant affects the 
jitter margin of AMIGO rules. Obviously, the value of Tf 
should not be dominant in the control system, i.e. it should 
be relatively small compared to the process dynamics (time-
constant and delay). If the filter time-constant was dominant 
in the system, losses in performance would be expected. To 
better analyze the relationship between Tf and δmax, the jitter 
margins for a range of KLT-processes with AMIGO-tuned 
PID controller and different filter time-constants Tf are cal-
culated. Kp can be omitted from the analysis, since it is can-
celled by the controller. Fig. 3 shows the jitter margin for 
various values of the process parameters as a function of Tf. 

The batches of curves in Fig. 3 represent the jitter margin 
for certain value of delay (here L = 2, 6 and 10 are used for 
the example). Each curve in one batch corresponds to certain 
value of process time-constant, T. From the figure it is seen 
that the jitter margin is not greatly affected by the process 
time-constant for the relevant range of (small values of) Tf. 
Another remark is that the jitter margin seems to have a cer-
tain maximum value in the range where Tf is relatively 
small. A closer look at the curves reveals that the value of Tf 
maximizing the jitter margin is nearly independent of proc-
ess time-constant T (see the circled positions in the figure). 
Further analysis shows that the optimal value of Tf is linearly 
dependent on L and that a very simple tuning rule for Tf 
could be derived. Using numerous values for L and T in the 
range [0.1 10] and parameter estimation, the optimal value 
of the measurement filter time-constant was identified as 

* 0.17fT L≈ . (14) 
Although this value of Tf differs only slightly from the 

AMIGO tuning rule (Tf = 0.1⋅L for τ > 0.2), it has a signifi-
cant effect on the jitter margin. Whereas the jitter margin for 
AMIGO tuning is approximately 0.71⋅L, (14) gives jitter 
margins 1.16⋅L…1.25⋅L depending on the value of T. Thus, 
an increase of up to 75 % in jitter margin could be achieved 
by this simple modification for the pure KLT-process. 
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Fig. 3. The jitter margin of KLT-process with AMIGO tuning as a function 
of measurement filter time-constant Tf. 

This tuning rule was tested with the same process test 
batch that was used in the derivation of AMIGO rules (see 
[4] and [5] for details). The batch consists of 133 processes 
of nine different types. The jitter margin and the ITAE per-
formance criterion were compared to see how the change of 
filter tuning rule affects robustness and performance. For the 
pure KLT-processes and those that are “close” to KLT in the 
test batch, the tuning rule (14) gives excellent results, i.e. 
better jitter margin without sacrificing the performance. For 
other processes the jitter margin remains almost equal to the 
values provided by the AMIGO tuning. The performance of 
the control systems remains at approximately equal level to 
AMIGO. Since this very simple modification of the AMIGO 
tuning rules does not guarantee better jitter margin and per-
formance for all processes, we next consider a complete 
measurement filter re-design to reach these objectives. 

IV. EXTENDED PLANT DESIGN APPROACH 
This section discusses a new way of designing and tuning 
the filter for the AMIGO tuning rules. The main idea in this 
approach is to allow the desired jitter margin to be an input 
to the tuning rules, which enables adjusting the controller 
performance according to the requirements posed by the 
control system. For instance, this would be very useful for 
networked control systems, where often good estimates of 
the maximum delay can be given. The question is how to 
tune the controller such that the criterion (5) is satisfied for 
the specified jitter margin. Simple tuning rules for which the 
maximum delay can be directly assigned would be desirable 
in many practical cases. In this section we propose such tun-
ing schemes. 

In AMIGO tuning the process is approximated by the 
KLT-model. In the previous section we concluded that the 
maximum achievable jitter margin for a pure KLT-process 
with AMIGO tuning using (14) gives δmax ≈ 1.2⋅L with rea-
sonably small values of the filter time-constant. Especially 
for lag dominated processes, for which T >> L, the require-
ment for the jitter margin might be considerably bigger than 

the mentioned constraint. Thus the design approach needs to 
be revised. We propose a method where the measurement 
filter is first designed based on the required jitter margin, 
and then the plant is extended with the filter before ap-
proximating the KLT-model of the extended plant,  
Pext(s) = Gf(s)P(s). The PID controller parameters are calcu-
lated using the extended plant’s KLT-approximation and the 
standard AMIGO rules except for the filter time-constant 
(which is already in the system). 

Consider the KLT-process model with a PID controller. 
As shown before, the jitter margin is hard to solve analyti-
cally even for this simple process model case. Nevertheless, 
using well-justified approximations the analysis is signifi-
cantly eased. At high frequencies the following approxima-
tions are valid. 
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Using the AMIGO tuning rule for kd in (15) results in 
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As seen in Fig. 2 and in (16), at high frequencies the fre-
quency response amplitude of the KLT-model with PID con-
troller without the filter remains approximately constant. If 
the system has the filter, it dominates the system behavior at 
high frequencies. In order to make the analysis general, we 
let the measurement filter order n vary and consider cases  
n = 1 and n > 1 separately. Based on (16) the jitter margin of 
the system with an nth order measurement filter becomes 
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For n = 1, the above expression becomes 
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The lower bound is obtained by minimizing the right side of 
the inequality with respect to frequency. It is clearly seen 
that maximizing ω minimizes (18). Solving (18) for Tf at  
ω* = ∞ then gives Tf > 1/3δmax. Since small values of Tf are 
preferred, we finally set the tuning rule as 
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Similarly, for n > 1 we have 
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and the jitter margin becomes 
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Solving (22) for Tf leads to the tuning rule 
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Hence we have the design rules for the measurement filter 
with n ≥ 1. To arrive at a complete PID-tuning, we propose 
to first design the measurement filter (of desired order) us-
ing the rules above, and then include the filter dynamics in 
the plant and apply the AMIGO tuning on the extended plant 
to calculate the remaining controller parameters (k, ki, kd, b 
and c). The previously designed measurement filter is then 
used in the controller. The filter order may be restricted by 
the process or measurement noise properties. If a high-order 
filter is used, losses in performance are presumable. In the 
next section, the proposed filter design guidelines are com-
pared in performance and in jitter margin. 

V. COMPARISON OF THE NEW RULES 
This section compares the tuning rules presented above. We 
restrict to cases where n = 1, 2, 3 to avoid unnecessary high-
order controllers. The rules use the extended plant approach 
where the required jitter margin can be given as an input 
parameter for the design. The proposed design approaches 
are compared with respect to AMIGO tuning in Fig. 4 and 
Fig. 5. We use the AMIGO process test batch and restrict to 
stable processes (integrating processes P6 are omitted). The 
ITAE criterion is used as the performance measure through-
out the study. Fig. 4 shows the relative improvement in jitter 
margin compared to AMIGO tuning for the test batch. For 
the extended plant approaches the objective value for the 
jitter margin is twice as large as the jitter margin of the 
AMIGO tuned process, i.e. the dots in Fig. 4 should all be 
aligned at 100 %. Fig. 5 shows the relative ITAE cost crite-
rion values of the new tuning rules with respect to those of 
AMIGO tuning. Here the value 0 % corresponds to the per-
formance achieved with AMIGO tuning, and positive values 
indicate performance losses when applying the new rules. 

For most of the processes the extended plant approaches 
give promising results, and the improvements in jitter mar-
gins are close to 100 %. Problems arise for processes with 
T < L, i.e. delay-dominant processes. These processes are 
further studied in Section VI. As far as the jitter margin is 
considered, the third-order filter appears to give the most 
accurate results for the test batch, although the ITAE crite-
rion increases the most for the third-order filter. In general, 
the ITAE increases the most for slow processes with large T. 
The increase of ITAE seems in some cases quite significant, 
but this might also stem from the time-weighting in the crite-
rion: if the performance of a process with large T is de-
creased in order to achieve bigger jitter margin, the settling 
time of the process increases. The longer the settling time, 
the more ITAE criterion punishes for error. Since the time is 
integrated, its effect is not linear, but rather squared. 
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Fig. 4. The jitter margin growth percentage compared to AMIGO tuning in 
the test batch. 
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Fig. 5. The relative ITAE cost criterion with respect to the AMIGO tuning 
in the test batch. 

VI. DELAY-DOMINANT PROCESSES 
The results in Fig. 4 indicate that the extended plant ap-
proach might have some fundamental limitations for delay-
dominant processes. The performance of the tuning rules is 
modest for processes for which T < L, where the variables 
refer to the plant’s KLT-approximation parameters. 

The above presented problems gave reasons for investi-
gating the extended plant approach generally for delay-
dominant processes. The behavior of the jitter margin with 
respect to the filter time-constant was examined using the 
extended plant approach similarly as was done in Fig. 3 for 
the standard AMIGO tuning. This study was done with 
KLT-parameters in the ranges T = [0.02…1] and L = [1, 2]. 
Fig. 6 shows an example of the results with parameters 
T = 0.5 and L = 1 for n = 1, 2, 3, but consistent behavior was 
observed for all parameter combinations tested. 

As seen in Fig. 6, for n = 1, the jitter margin has an upper 
bound and increasing Tf does not increase the jitter margin 
infinitely. The upper bound is independent of L at least 
when T << L. Based on the study with a range of parameter 
values, the upper bound for the jitter margin was identified 
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Fig. 6. The jitter margin of a delay-dominant KLT-process with extended 
plant approach. 
to be max(δmax,n=1) ≈ 4T, e.g. in Fig. 6 it is two seconds. We 
can conclude that for delay-dominant processes, the first-
order filter and extended plant approach, will return very 
small jitter margins compared to L (δmax ≤ 4T << L). This 
was clearly seen in Fig. 4 with process type P1. For small 
values of T (the values on the left) the jitter margin is very 
small compared to AMIGO tuning. 

For the second and third-order filters the jitter margin 
grows linearly with Tf excluding the range where Tf is very 
small. Thus the dependency of the jitter margin on the filter 
time-constant may be discovered and this allows developing 
tuning rules for Tf based on the desired jitter margin. For 
n = 2, the linear part of the curve in Fig. 6 was identified as 

max2.3 3 ,    0.5f fT L Tδ= − ≥ . (24)  
Since the jitter margin decreases rapidly in the range  

0 < Tf < 0.5, the lower bound of Tf in (24) is justified. The 
parameter fitting of (24) was based on a large number of 
process parameter combinations, not only on Fig. 6. 

Similarly for n = 3, the relationship between filter time-
constant, jitter margin and KLT-parameters was found to be 

max ,    0.3f fT L T Tδ= − − ≥ . (25) 
The tuning rules presented in this section are only used 

for delay-dominant processes and the tuning rules (19) and 
(23) for lag dominated processes (T ≥ L). In all cases, the 
filter is first designed and the extended plant design is then 
applied. If this proposed strategy is applied on the process 
test batch, the jitter margins are improved, as seen in Fig. 7. 
The figure shows the results for measurement filter orders 
two and three. The first-order filter case is omitted, because 
it is not well suited for delay-dominant systems, as shown in 
Fig. 6. The modifications of the tuning rules for delay-
dominant processes are well justified and seem to give de-
sired results. Fig. 7 should be compared with Fig. 4 that pre-
sents the same results without the above modifications. The 
high jitter margins for the delay-dominant processes come at 
some loss of performance, although for certain processes the 
performance is almost equal to the AMIGO tuning. 
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Fig. 7. Modified extended plant approach. Growth of the jitter margin. 

VII. SIMULATION RESULTS 
In this section we demonstrate the use of the proposed tun-
ing rules and compare the performance and robustness to 
varying time-delays between AMIGO and proposed tuning. 
We experiment the rules with both delay-dominant and lag 
dominated processes. The process models used in the simu-
lations are 

( ) ( )

exp,1

exp,2 2

1( ) ,
0.3 1

1( ) .
1 0.1 0.14 1

sP s e
s

P s
s s s

−=
+

=
⎡ ⎤+ + +⎣ ⎦

 (26) 

The former is a pure KLT-process and the latter is the 
first one of P9-type processes in the test batch. First, the 
processes’ KLT-approximations are derived. The KLT-
parameters for the first process are the true process parame-
ters (Kp = 1, T = 0.3 and L = 1) the process being delay-
dominant. For the other process, the KLT-parameters are  
Kp = 1, T = 1 and L = 0.137 the process being lag dominated. 

For both processes the standard AMIGO tuning rules, and 
for the lag dominated process the proposed tuning rules with 
n = 1, 2, 3 were calculated. For the delay-dominant process, 
only the second- and third-order filter designs were applied, 
because as explained in Section VI, the first-order filter is 
not applicable for delay-dominant processes. For the new 
rules, the design parameter δmax = 2δmax,AMIGO was chosen. In 
the simulations, a varying time-delay (square-wave form) of 
maximum amplitude 1.9δmax,AMIGO was added after the true 
plant and different controllers were experimented in this 
setting. The unit step responses of the systems with various 
controllers can be seen in Fig. 8 (delay-dominant) and Fig. 9 
(lag dominated). The resulted controller parameters are 
shown in Table 1 and Table 2, respectively. 

The step responses of the delay-dominant process (Fig. 8) 
show that all the systems are stable for the specific realiza-
tion of the varying time-delay, although the AMIGO-tuned 
system shows signs of being close to unstable. According to 
(5), the AMIGO-tuned system is not guaranteed to be stable 



 
 

 

TABLE 1. CONTROLLER PARAMETERS FOR THE KLT-PROCESS. 
Controller δmax k ki kd Tf ITAE 
AMIGO 0.65 0.33 0.54 0.08 0.1 13.98 
Ext. n = 2 1.33 0.56 0.43 0.27 0.5 12.17 
Ext. n = 3 1.28 0.48 0.40 0.23 0.3 10.83 

TABLE 2. CONTROLLER PARAMETERS FOR THE P9-PROCESS. 
Controller δmax k ki kd Tf ITAE 
AMIGO 0.21 3.47 7.04 0.23 0.014 ∞ 
Ext. n = 1 0.39 2.22 3.44 0.24 0.14 2.32 
Ext. n = 2 0.42 2.00 3.04 0.24 0.071 2.02 
Ext. n = 3 0.44 1.83 2.69 0.24 0.054 2.10 

with the used amplitude of time-delay, but this does not 
mean that the system would necessarily be unstable. The 
controllers tuned using the extended plant approach are 
guaranteed to be stable for this case, and they also give bet-
ter ITAE values for the response. 

The lag dominated system (Fig. 9) with standard AMIGO 
controller is unstable, but the extended plant approach gives 
good responses. Of the extended plant designs the controller 
with the first-order filter gives the largest overshoot. The 
controllers with second- and third-order filters give accu-
rately the desired jitter margins (as seen in Table 2), but the 
requirement is not quite satisfied with the first-order filter. 
Nevertheless, for both processes the proposed tuning rules 
give excellent results with respect to both robustness to jitter 
and performance, compared to the standard AMIGO design. 

VIII. CONCLUSIONS 
The paper considered the problem of tuning the PID control-
ler in varying time-delay systems. The work is partly moti-
vated by the increasing need for tuning schemes that account 
for variable time-delays that appear, for example, in net-
worked control systems. Since the PID has many appealing 
properties, simplicity being one of the most important, this 
study concentrated on deriving new tuning rules for the con-
troller with the emphasis on jitter margin, nominal perform-
ance and simplicity of the rules. 

0 5 10 15 20 25 30
0

0.5

1

1.5

Time (s)

A
m

pl
itu

de

Pexp,1, ITAE: AMIGO: 13.9799, n = 2: 12.1728, n = 3: 10.8327

 

 
yref

AMIGO
n = 2
n = 3

 
Fig. 8. Step responses for the KLT-process with varying time-delay. 
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Fig. 9. Step responses for the P9-type process with varying time-delays. 

The paper suggested an extended plant approach to com-
plement the AMIGO tuning for varying time-delay systems. 
It was seen that the proposed approach results in jitter-aware 
and well-performing controllers. The measurement filter is 
first designed with the proposed tuning rules to meet a cer-
tain jitter margin objective. The extended plant with the fil-
ter is then approximated by the simple KLT-model, and 
AMIGO tuning gives the rest of the controller parameters. 
The order of the measurement filter can be chosen based on 
requirements. The third-order filter gives the most accurate 
results with respect to the required jitter margin, but might 
also cause the largest degradations in closed-loop system 
performance. In addition, for all the designs, there is an ob-
vious trade-off between high jitter margin and performance. 
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