
Matti Järvisalo and Tommi Junttila. 2008. Limitations of restricted branching in clause
learning. Constraints, to appear, 29 pages.

© 2008 by authors and © 2008 Springer Science+Business Media

Preprinted with permission.

Limitations of Restricted Branching in Clause Learning

Matti J ärvisalo · Tommi Junttila

Abstract The techniques for making decisions, that is, branching, play a central role in
complete methods for solving structured instances of constraint satisfaction problems (CSPs).
In this work we consider branching heuristics in the contextof propositional satisfiability
(SAT), where CSPs are expressed as propositional formulas.In practice, there are cases
when SAT solvers based on the Davis-Putnam-Logemann-Loveland procedure (DPLL) ben-
efit from limiting the set of variables the solver is allowed to branch on to so called input
variables which provide a strong unit propagation backdoorset to any SAT instance. The-
oretically, however, restricting branching to input variables implies a super-polynomial in-
crease in the length of the optimal proofs for DPLL (without clause learning), and thus
input-restricted DPLL cannot polynomially simulate DPLL.In this paper we settle the case
of DPLL with clause learning. Surprisingly, even with unlimited restarts, input-restricted
clause learning DPLL cannot simulate DPLL (even without clause learning). The opposite
also holds, and hence DPLL and input-restricted clause learning DPLL are polynomially
incomparable. Additionally, we analyze the effect of input-restricted branching on clause
learning solvers in practice with various structured real-world benchmarks.

Keywords propositional satisfiability, branching heuristics, clause learning, DPLL, proof
complexity, problem structure, backdoor sets

This is an extended version of a paper [27] presented at the 13th International Conference on Principles and
Practice of Constraint Programming (CP 2007) in Providence, RI, USA. The first author gratefully acknowl-
edges financial support from Helsinki Graduate School in Computer Science and Engineering, Academy
of Finland (grants #211025 and #122399), Emil Aaltonen Foundation, Jenny and Antti Wihuri Foundation,
Foundation of Technology TES, and Nokia Foundation. The second author gratefully acknowledges the fi-
nancial support from Academy of Finland (grant #112016).

Matti Järvisalo, Tommi Junttila
Helsinki University of Technology TKK
Department of Information and Computer Science
PO Box 5400, FI-02015 TKK, Finland
E-mail: matti.jarvisalo@tkk.fi, tommi.junttila@tkk.fi

2

1 Introduction

Modern complete satisfiability (SAT) solvers (such as [39,40,22,18] among others) pro-
vide an efficient way of solving various real-world problemsas propositional satisfiability.
Typical SAT solvers aimed at solving such structured problems are based on the conjunc-
tive normal form (CNF) levelDavis-Putnam-Logemann-Lovelandprocedure (DPLL) [17,
16] and incorporate techniques such asintelligent branching heuristics, randomizationand
restarts[23], andclause learning[39] for boosting search efficiency.

Branching heuristics, that is, deciding on which variable to next set a value during
search, play an important role in the efficiency of complete SAT methods aimed at solv-
ing typically very large real-world problem instances. Intuitively, the inherent structure of
the problem domain is reflected in individual variables in the SAT encoding, and making
decisions on structurally irrelevant variables may have anexponential effect on the running
times of SAT solvers.

In SAT-based approaches to structured problems such as bounded model checking [10]
and automated planning [33], the CNF encoding is often derived from a transition rela-
tion, where the behavior of the underlying system is dependent on theinput—initial state,
nondeterministic choices due to external control, et cetera—of the system. Empirical case
studies [14,20,45,19] have shown that, in some cases, SAT solvers benefit from restricting
the variables the solver is allowed to branch on to so calledinput (or independent) vari-
ables, corresponding to the input of the underlying system. By noticing that the system
behavior is determined by its input, it is in fact the case that all variables in the SAT en-
coding of the system can be assigned through unit propagation once all input variables have
been assigned values. In other words, the set of input variables is astrong unit propagation
backdoor set[51]—although possibly not ofminimumcardinality. HenceDPLL remains
complete even if branching is restricted to the set of input variables alone. Intuitively, this
drops the raw search space size from 2N to 2I with I ≪ N , whereI andN are the number of
input variables and all variables in the CNF encoding, respectively.

From another point of view to the effects of different techniques for branching, one can
investigate thebest-caseperformance of SAT algorithms throughproof complexity[13], by
studying the relative power of their underlying inference systems (orproof systems) in terms
of the shortest existing proofs in the systems. For two proofsystems,SandS′, we say that
S′ (polynomially) simulates Sif, for all infinite families{Fn} of unsatisfiable CNF formulas,
there is a polynomial that bounds for allFn the length of the shortest proofs inS′ w.r.t. the
length of the shortest proofs inS. If S′ simulatesS and vice versa, thenS andS′ arepoly-
nomially equivalent. If S′ cannot simulateSand vice versa, thenSandS′ areincomparable.
From the practical point of view, ifS′ cannot simulateS, we know that any implementation
of S′ can suffer a notable decrease in efficiency compared to implementations ofS. For ex-
ample, through a formal characterization ofDPLL with clause learning, calledCL, Beame
et al. [9] show thatCL can provide superpolynomially shorter proofs thanDPLL, and thus
DPLL cannot simulateCL.

Considering restricting branching inDPLL algorithms to input variables, a natural ques-
tion to ask iswhether the power of the underlying inference systems ofDPLL-based solvers
is affected by the input-restriction. For DPLL without clause learning, this question is an-
swered in [29]: input-restrictedDPLL cannot simulateDPLL.

In this paperwe settle the case of input-restrictedCL: it turns out that input-restricted
CL cannot simulateCL. This implies that all implementations of clause learningDPLL,
even with optimal heuristics, have the potential of suffering a notable efficiency decrease if
branching is restricted to input variables. In fact, we showthat even with unlimited restarts

3

and the ability to create conflicts at will, input-restricted CL cannot even simulate the ba-
sic DPLL without clause learning. This is surprising, since the unrestricted version of this
variant ofCL can efficiently simulate (general) Resolution [9], being thus very powerful
compared toDPLL. Additionally, we evaluate the effect of input-restrictedbranching on
clause learning with various structured real-world benchmarks, with possible explanations
for the reasons why input-restricted branching can in fact hinder the efficiency of typical
clause learning solvers.

As preliminaries, in Section 2 we define Boolean circuits, which we use for representing
general propositional formulas, and discuss their relation to CNF formulas. We then review
the Resolution proof system and characterizations ofDPLL and CL, and discuss known
results concerning their relative efficiency (Section 3). Section 4 concentrates on the tight
correspondence between a constrained Boolean circuit and its CNF translation from the
viewpoint ofDPLL and clause learning, which is of value in presenting the theoretical results
of this work. The main theoretical and experimental contributions of this paper are presented
in Sections 5 and 6, respectively.

2 Propositional Satisfiability and Constrained Boolean Circuits

In this section we review basic concepts related to propositional satisfiability and define con-
strained Boolean circuits which we use as the representation form for structural formulas.
We also discuss the relationship between constrained Boolean circuits and clausal propo-
sitional (CNF) formulas, and present the translation from constrained Boolean circuits to
CNF which is applied in this work.

2.1 Propositional Satisfiability

Given a Boolean variablex, there are twoliterals, the positive literal, denoted byx, and the
negative literal, denoted by¬x, where¬ is the logical negation (not). As usual, we identify
¬¬x with x. A clauseis a disjunction (∨, or) of distinct literals and a CNF formula is a
conjunction (∧, and) of clauses. When convenient, we view a clause as a finiteset of literals
and a CNF formula as a finite set of clauses; e.g. the formula(a∨¬b)∧ (¬c) can be written
as{{a,¬b},{¬c}}. The sets of variables appearing as positive and negative literals in a CNF
formulaF are denoted byvars+(F) andvars−(F), respectively, and the set of variables by
vars(F); for a clauseC, vars+(C), vars−(C), andvars(C) are defined similarly.

Given a CNF formulaF , a (partial)assignmentfor F is a (partial) functionτ : vars(F)→
{t, f}, wheret andf stand fortrue andfalse, respectively. With a slight abuse of notation, if
τ(x) = v, thenτ(¬x) = ¬v, where¬t = f and¬f = t. A clause issatisfiedby τ if it contains
at least one literall such thatτ(l) = t. If τ(l) = f for every literall in a clause, the clause
is falsified by τ . An assignmentτ satisfiesa CNF formula it satisfies every clause in the
formula. A formula issatisfiableif there is an assignment that satisfies it, andunsatisfiable
otherwise.

2.2 Constrained Boolean Circuits

The correspondence between system input of a real-world problem and propositional vari-
ables in a CNF encoding is not evident. However, in SAT-basedapproaches, direct CNF

4

encodings of a problem domain are rarely used: the problem athand is typically encoded
with a general propositional formulaφ , which is then translated into an equi-satisfiable CNF
formula by introducing additional variables for the sub-formulas ofφ . Boolean circuits(see
e.g. [42]) offer a natural way of presenting propositional formulas in a compact DAG-like
structure withsub-formula sharing, which helps in lowering the number of additional vari-
ables needed. Additionally, the system input of the original problem is presented byinput
gatesin Boolean circuits.

A Boolean circuit over a finite setG of gatesis a setC of equations of formg :=
f (g1, . . . ,gn), whereg,g1, . . . ,gn ∈ G and f : {f, t}n →{f, t} is a Boolean function, with the
additional requirements that (i) eachg∈ G appears at most once as the left hand side in the
equations inC , and (ii) the underlying directed graph

〈G,E(C) = {〈g′,g〉 ∈ G×G | g := f (. . . ,g′, . . .) ∈ C }〉

is acyclic. If〈g′,g〉 ∈ E(C), theng′ is achild of g andg is aparentof g′. Similarly, if there
is a non-empty path from a gateg′ to a gateg in 〈G,E(C)〉, theng′ is adescendantof g. If
g := f (g1, . . . ,gn) is in C , theng is an f -gate (or of typef), otherwise it is aninput gate.
A gate with no parents is anoutput gate. A (partial) assignment forC is a (partial) function
τ : G→ {f, t}. An assignmentτ is consistentwith C if τ(g) = f (τ(g1), . . . ,τ(gn)) for each
g := f (g1, . . . ,gn) in C . Note that a circuit withI input gates has 2I consistent assignments.

A constrained Boolean circuitC τ is a pair〈C ,τ〉, whereC is a Boolean circuit andτ
is a partial assignment forC . With respect to a〈C ,τ〉, each〈g,v〉 ∈ τ is aconstraint, andg
is constrainedto v if 〈g,v〉 ∈ τ . An assignmentτ ′ satisfiesC τ if (i) it is consistent withC ,
and (ii) it respects the constraints inτ , meaning that for each gateg∈ G, if τ(g) is defined,
then τ ′(g) = τ(g). If some assignment satisfiesC τ , thenC τ is satisfiableand otherwise
unsatisfiable.

In the following, we will apply the following Boolean functions as gate types. Notice
that this set of is sufficient for representing all Boolean functions, and on the other hand,
enough for describing the constructions applied in this paper in an intuitive way.

– NOT(g) evaluates tot if and only if g evaluates tof.
– OR(g1, . . . ,gn) evaluates tot if and only if at least one ofg1, . . . ,gn evaluates tot.
– AND(g1, . . . ,gn) evaluates tot if and only if all g1, . . . ,gn evaluate tot.
– XOR(g1,g2) evaluates tot if and only if exactly one ofg1,g2 evaluates tot.

Example 1A Boolean circuitC τ and its graphical representation are shown in Figure 1. The
circuit models a full-adder with the constraint that the carry-out bitc1 is t. A satisfying truth
assignment for the circuit isτ ′ = {〈c1, t〉,〈t1, t〉,〈o0, f〉,〈t2, f〉,〈t3, t〉,〈a0, t〉,〈b0, f〉,〈c0, t〉}.

C = {c1 := OR(t1,t2)

t1 := AND(t3,c0)

o0 := XOR(t3,c0)

t2 := AND(a0,b0)

t3 := XOR(a0,b0)}

τ = {〈c1, t〉}
a0 b0 c0

AND XOR

OR

AND XORt3t2

t1 o0

c1 t

Fig. 1 A constrained Boolean circuitC τ and its graphical representation.

5

For notational convenience, when well-defined, thejoin of two constrained circuits,
A τ = 〈A ,τ〉 andBθ = 〈B,θ〉, is A τ ∪Bθ = 〈A ∪B,τ ∪θ〉. When applying the join,
we will always make sure that the result is a well-defined constrained Boolean circuit. This
means that the requirements (i) on unique definition and (ii)on acyclicity above are met,
and thatτ ∪θ is a (possibly partial) function.

2.3 Translating Boolean Circuits to CNF

In order to exploit clausal SAT solvers in solving instancesof Boolean circuit satisfiabil-
ity, the circuit in question has to be translated to CNF. In this work we apply the standard
“Tseitin-style” [47] translation. First, a variable ˜g is introduced for each gateg. For encoding
the functionalities of gates, the idea is to represent the logical equivalenceg⇔ f (g1, . . . ,gn)
as clauses; hence for eachg := f (g1, . . . ,gn) the corresponding introduced clauses are as
shown in Table 1. Similarly, a unit clause is added for each constraint〈g,v〉 ∈ τ as shown
in Table 1. Given a constrained Boolean circuitC τ , we will denote its CNF translation by
cnf(C τ).

Table 1 CNF translation for constrained Boolean circuits.

gate or constraint clauses
g := XOR(g1,g2) (¬g̃∨¬g̃1∨¬g̃2), (¬g̃∨ g̃1∨ g̃2), (g̃∨¬g̃1∨ g̃2), (g̃∨ g̃1∨¬g̃2)
g := OR(g1, . . . ,gn) (¬g̃∨ g̃1∨·· · ∨ g̃n), (g̃∨¬g̃1),. . . ,(g̃∨¬g̃n)
g := AND(g1, . . . ,gn) (¬g̃∨ g̃1),. . . ,(¬g̃∨ g̃n), (g̃∨¬g̃1∨·· · ∨¬g̃n)
g := NOT(g1) (¬g̃∨¬g̃1), (g̃∨ g̃1)
〈g, t〉 ∈ τ (g̃)
〈g, f〉 ∈ τ (¬g̃)

2.4 CNF Formulas as Constrained Circuits

Any CNF formulaF = {C1, . . . ,Ck} can naturally be seen as a Boolean circuit. Basically,F
is a Boolean circuit with anAND of ORs which represent the clauses. Formally,circuit(F) :=
〈C ,τ〉 is defined by associating an input gatex with each variablex∈ vars(F), a NOT-gate
g¬x with eachx∈ vars−(F), anOR-gategCi with each clauseCi ∈ F , anAND-gategF with
F , and by settingτ = {〈gF , t〉} and

C :=
{

gF := AND(gC1, . . . ,gCk)
}

∪{g¬x := NOT(x) | x∈ vars−(F)}∪

{gCi := OR(α(l i,1), . . . ,α(l i,ni)) | Ci = {l i,1, . . . , l i,ni} ∈ F}

whereα(¬x) = g¬x andα(x) = x for eachx∈ vars(F).

Example 2The constrained Boolean circuitcircuit(F) for the unsatisfiable CNF formula
F = {{a,b},{a,¬b},{¬a,b},{¬a,¬b}} is shown in Figure 2.

6

AND

OR OROR

XOR XOR

NOT

OR

NOT

t

a b

Fig. 2 The constrained Boolean circuitcircuit({{a,b},{a,¬b},{¬a,b},{¬a,¬b}}).

3 Proof Systems for CNF Formulas

In this section we discuss the propositional proof systems of interest in the context of this
work, with known results on their relative efficiency. First, we formally define proposi-
tional proof systems and the necessary proof complexity theoretic notions. We then review
the well-known Resolution proof system and some of its refinements. After this, we con-
centrate on the Davis–Putnam–Logemann–Loveland (orDPLL) procedure [17,16] and the
additional techniques applied in typicalDPLL-based SAT solvers today—most importantly,
clause learning. In doing so, we go through characterizations of DPLL (with and without
clause learning) as proof systems, which we will apply in thetheoretical part of the work.

3.1 Propositional Proof Systems and Complexity

Formally, apropositional proof system[13] is a polynomial-time computable predicateS
such that a propositional formulaF is unsatisfiable if and only if there is aproof p for
which S(F, p) holds. Thus a proofp of F is acertificateof the unsatisfiability ofF , and a
proof system is a polynomial-time procedure for checking the validity of proofs in a certain
format.

While proof checking is efficient, finding short proofs may bedifficult, or, generally,
impossible since short proofs may not exist for too weak a proof system. As a measure of
hardness of proving unsatisfiability of a CNF formulaF in a proof systemS, the (proof)
complexity CS(F) of F in S is the lengthof the shortest proof ofF in S. For a family{Fn}
of unsatisfiable CNF formulas over an increasing number of variables, the (asymptotic)
complexity of{Fn} is measured with respect to the number of clauses inFn.

For two proof systems,S and S′, we say thatS′ (polynomially) simulates Sif for all
families{Fn} there is a polynomialp such thatCS′(Fn)≤ p(CS(Fn)) for all Fn. If Ssimulates
S′ and vice versa, thenS andS′ arepolynomially equivalent. If there is a family{Fn} for
which S′ does not polynomially simulateS, we say that{Fn} separates Sfrom S′. If Scan
be separated fromS′ and vice versa, thenSandS′ areincomparable. Notice that polynomial
simulation gives a partial order for proof systems based on their relative power.

With these definitions, in order to show that a proof systemS cannot simulate another
systemS′, it suffices to exhibit an infinite family{Fn} of unsatisfiable formulas over an
increasing number of variables, such that the minimum length proofs inS for {Fn} are
asymptotically superpolynomially longer than the minimumlength proofs inS′ with respect
to the number of clauses inFn. It is worth noticing that, from this basic proof complexity

7

theoretic point of view onlyunsatisfiableformulas (and hence proofs of unsatisfiability) are
of interest. Although exponential lower bounds forDPLL on families ofsatisfiableformulas
have been shown in restricted probabilistic contexts [41,2,1,4], a satisfying truth assignment
acts as a polynomial length witness for the satisfiability ofan arbitrary satisfiable formula
F .

3.2 Resolution

The well-known Resolution proof system [44] (RES) is based on theresolution rule. Let
C,D be clauses, andx a Boolean variable. The resolution rule is

{x}∪C {¬x}∪D
C∪D

or, in other words, we candirectly derive C∪D from {x}∪C and{¬x}∪D by resolving
on x. For a given CNF formulaF, aRES derivation of a clause Cfrom F is a sequence of
clausesπ = (C1,C2, . . . ,Cm = C), where eachCi , 1≤ i ≤ m, is either (i) a clause inF (an
initial clause), or (ii) directly derived with the resolution rule from twoclausesCj ,Ck where
1≤ j,k< i (aderived clause). Thelengthof π is m, the number of clauses occurring in it. A
RES proof (for the unsatisfiability)of a CNF formulaF is anyRES derivation of the empty
clause /0 fromF .

Any RES derivationπ = (C1,C2, . . . ,Cm) can be presented as a directed acyclic graph,
in which the leafs are initial clauses and the other nodes represent derived clauses. The edge
relation is defined so that there are edges fromCi andCj to Ck, if and only if Ck has been
directly derived fromCi andCj using the resolution rule. Manyrefinements ofResolution,
in which the structure ofRES proofs is restricted, have been proposed and studied. Here
of particular interest isTree-like Resolution(T-RES), with the requirement that proofs are
representable as trees. This implies that a derived clause,if used multiple times in the proof,
must be derived anew each time starting from initial clauses.

3.2.1 Lower Bounds inRES and its Refinements

Super-polynomial (and even exponential) lower bounds on proof lengths inRES have been
shown for various families of CNF formulas, see [11,24,47,48,15,3,6,7] for examples.
Among the most studied such families is thepigeon-hole principle, which states that there
is no injective mapping from anm-element set into ann-element set ifm > n (that is,m
pigeons cannot sit in fewer thanm holes so that every pigeon has its own hole). We will
consider the casem= n+1 encoded as the CNF formula

PHPn+1
n :=

n+1
∧

i=1

(
n

∨

j=1

pi, j

)

∧
n

∧

j=1

n
∧

i=1

n+1
∧

i′=i+1

(¬pi, j ∨¬pi′, j),

where eachpi, j is a Boolean variable with the interpretation “pi, j is t if and only if the ith

pigeon sits in thej th hole”.

Theorem 1 ([24])There is no polynomial lengthRES proof ofPHPn+1
n .

It is also known thatT-RES is a proper refinement ofRES in the sense thatT-RES cannot
polynomially simulateRES.

8

Theorem 2 ([21,49])T-RES cannot polynomially simulateRES.

This originates from the facts thatregular resolutioncannot simulateRES [21,5], andT-RES

in turn cannot simulate regular resolution [49].

3.3 The Davis–Putnam–Logemann–Loveland Procedure

Most modern complete SAT solvers are based on the Davis–Putnam–Logemann–Loveland
(or DPLL) procedure [17,16]. Given a CNF formulaF as input,DPLL is a depth-first search
procedure building a partial assignmentτ for the variables inF through (i)branchingand
(ii) unit propagation(UP). In branching, the current assignmentτ is extended with the as-
signment (decision) 〈x,v〉, wherev is either f of t, for some unassigned variablex. Unit
propagation refers to applying theunit clause rule. The unit clause rules states that if there
is a clause(l1∨ · · · ∨ lk ∨ l) ∈ F such thatτ(l i) = f for each 1≤ i ≤ k, the current partial
assignmentτ can be extended with〈l , t〉.

An assignment is extended until (i) some variablex would be assigned bothf and t (a
conflict is reached, withx as theconflict variable) or (ii) τ satisfiesF (in which caseDPLL

terminates). In case (i), non-clause learningDPLL solversbacktrackto the last branching
decision which has not been backtracked upon, undoing all assignments made by UP af-
ter the particular decision, and flip the decision.DPLL terminates on an unsatisfiable CNF
formula when there are no untried branches left.

From the proof theoretic point of view,DPLL can be seen as a tableau proof system with
two rules: thebranching ruleand the unit clause rule. The branching rule, correspondingto
branching on a variablex, extends the branch into two branches, one of which is extended
with the entryx and the other with¬x. The unit clause rule, defined above, is similarly
applied by extending the branch withl . As typical, a branch is (fully) extended until we
have both of the entriesx and¬x for some variable, or no new entries can be generated
with the branching and unit clause rules. From an algorithmic point of view, the choice of
in which order branches are extended is part of the solver strategy, and based on adecision
heuristic. The other branch resulting from the particular application of the branching rule is
handled through backtracking. With this intuition, it is clear that a search tree traversed by
a DPLL algorithm corresponds to a binary tableau proof, having theform of a binary tree,
with all branches fully extended. Hence, aDPLL proof will here be such a tableau proof.
The length of aDPLL proof is defined as the number of applications of the branching rule
in the proof.

One-step lookahead(see, e.g., [37]) is an often implemented technique in (non-clause
learning)DPLL algorithms. In one-step lookahead, if there is an assignment v to a currently
unassigned variablex such that the current assignmentτ with the addition of〈x,v〉 leads to a
conflict using unit propagation, thenx is immediately assigned the value¬v. This technique
does not add to the strength ofDPLL, since the same effect can obviously be accomplished
by branching onx.

It is well-known thatDPLL andT-RES can polynomially simulate each other (see [8]
for example). One can show that for any unsatisfiable CNF formula, a minimum length
DPLL proof, with applications of the unit clause rule “simulatedby branching”, always
corresponds one-to-one with a minimum lengthT-RES proof, and vice versa.

Fact 1 DPLL andT-RES are polynomially equivalent.

9

3.3.1 Implication Graphs

Implication graphscapture the ways of deriving values for variables with the unit clause
rule from assignments made by branching. We will apply this concept in the following for
defining clause learning. However, first we need some additional terminology.

A stageof DPLL on a CNF formulaF is characterized by thedecision literalsin the
branch. Considering an arbitrary branch, the variables assigned by branching are calledde-
cision variablesand those assigned values by UP areimplied variables, with analogous
definitions fordecision literalsand implied literals. Thedecision level of a decision vari-
able x is one more than the number of decision variables in the branch before branching
on x. Thedecision level of an implied variable xis the number of decision variables in the
branch whenx is assigned a value. The decision level ofDPLL at any stage is the number of
decision variables in the branch.

For a given CNF formulaF and a set of literalsL, we denote byF,L ⊢UP l the fact that
l can be deduced fromF andL by iteratively applying the unit clause rule.

Definition 1 For a CNF formulaF , the implication graph G= 〈V,E〉 at a given stage of
DPLL with the set of decision literalsD is a directed graph. The set of nodes is defined as

V = {Λ}∪D∪{l | F,D ⊢UP l},

whereΛ is a specialconflict node, and the edge relation is

E = {〈¬l i , l〉 | {l1, . . . , lk, l} ∈ F and¬l1, . . . ,¬lk ∈V}∪

{〈x,Λ 〉,〈¬x,Λ〉 | x,¬x∈V}.

For a given implication graph, a variablex with bothx,¬x∈V is called aconflict variable,
andx,¬x areconflict literals. An implication graph contains a conflict if it contains a conflict
variable;DPLL has a conflict at a given stage if the implication graph at the stage contains a
conflict.

3.4 DPLL with Clause Learning and Modern SAT Solvers

Clause learningDPLL algorithms differ from non-clause learning algorithms in what hap-
pens when reaching a conflict. If a conflict is reached withoutany branching,DPLL (with
or without clause learning) determines the formulaF unsatisfiable. In other cases, non-
clause learningDPLL algorithm perform simple backtracking as previously explained. In
clause learningDPLL algorithms, however, the conflict isanalyzed, and alearned clause
(or conflict clause), which describes the “cause” of the conflict, is added toF . After this
the search is continued typically by applyingnon-chronological backtracking(or conflict-
driven backjumping) for backtracking to an earlier decision level that “caused” the conflict.
Conflict-driven backjumping results in the fact that, as opposed to the basic backtracking in
DPLL, the other branch (opposite value) of decision variables isnot necessarily forced sys-
tematically when backtracking. In other words, branching in clause learningDPLL is seen
simply as assigning values to unassigned variables, ratherthan as a branching rule in which
by branching on a variablex the current branch is always extended into two branches, one
with x and the other with¬x.

10

3.4.1 Conflict Graphs and Conflict Analysis

Similarly as withDPLL, thestageof a clause learningDPLL algorithm is characterized by
the set of decision literals. At a given stage of a clause learningDPLL algorithm, a clause is
calledknownif it either appears in the original CNF formulaF or has been learned earlier
during the search. Conflict analysis is based on aconflict graph, which captures one way
of reaching the conflict at hand from the decision variables by using the unit clause rule on
known clauses.

Definition 2 Given an implication graphG, aconflict graph H= (V,E) based onG is any
acyclic subgraph ofG having the following properties.

1. H containsΛ and exactly one conflict literal pairx,¬x.
2. All nodes inH have a path toΛ .
3. Every nodel ∈V \{Λ} either corresponds to a decision literal or has precisely the nodes

¬l1,¬l2, . . . ,¬lk as predecessors where{l1, l2, . . . , lk, l} is a known clause.

A conflict graph describes a single conflict and contains onlydecision and implied literals
that can be used in reaching the conflict when applying the unit clause rulein some order.
Hence the way of implementing unit propagation in a solver has an effect on the choice of
the conflict graph. The acyclicity of conflict graphs resultsfrom the fact that unit propagation
is not used to rederive already assigned literals.

Conflict clauses are associated withcuts in a conflict graph. Fix a conflict graph con-
tained in an implication graph with a conflict. Aconflict cutis any cut in the conflict graph
with all the decision variables on one side (thereason side) and, in addition toΛ , at least
one conflict literal on the other side (theconflict side). Those nodes on the reason side with
at least one edge going to the conflict side in a conflict cut form a cause of the conflict. With
the associated literals set tot, UP can arrive at the conflict at hand. The disjunction of the
negations of these literals form theconflict clause associated with the conflict cut. The strat-
egy for fixing a conflict cut is called thelearning scheme. A learning scheme which always
learns a currently unknown clause is callednon-redundant.

Example 3A hypothetical conflict graph is illustrated in Figure 3. Decision literals are rep-
resented with filled circles, and implied literals with hollow circles. The decision leveld of
each literall is presented with the labell@d. For example, the conflict variablex13 is at de-
cision level 5. Notice that since the literals at decision level 4 are missing from this conflict
graph, they are not part of the reason for the particular conflict. In the figure two possible
conflict cuts are shown with the associated conflict clauses.

3.4.2 Unique Implication Points, Conflict-Driven Backjumping, andCL Proofs

Typically implemented clause learning schemes are based onunique implication points
(UIPs) [39]. A UIP in a conflict graph is a nodeu on the maximum decision leveld such that
all paths from the decision variablex at leveld to Λ go throughu. Such au always exists
asx satisfies this condition. Intuitively,u is asinglereason for the conflict at leveld. Thus
one can always choose a conflict cut that results in a conflict clause with a UIP as the only
variable from the maximum decision level. Such a conflict clause has the property that the
UIP variable can be immediately set to the value opposite to the current assignment using
the unit clause rule when backtracking (the phrase “the UIP isasserted” is sometimes used).
Furthermore, UIP learning schemes enableconflict-driven backtracking(or backjumping),

11

x̄13@5

x4@5

x̄7@5

x2@5

x5@5

x3@1

x̄9@2

Λ

2-UIP/last UIP cut

1-UIP cut

{x̄5,x8, x̄3,x12}
{x̄4,x8,x12}

x̄12@2

x̄8@3

x13@5

Fig. 3 Example of a conflict graph, and two possible conflict cuts

in whichDPLL backtracks to the maximum decision level of the variables other than the UIP
in a conflict clause. A popular version of UIP learning is the 1-UIP scheme, where a conflict
cut is chosen so that the UIP closest toΛ will be in the associated conflict clause. Differ-
ent learning schemes are evaluated in [52], showing the robustness of the 1-UIP scheme in
practice.

Example 4Recall the conflict graph in Figure 3. The 1-UIP in this graph is the literalx4.
One conflict cut corresponding to the 1-UIP learning scheme is the cut labeled “1-UIP cut”.
The cut labeled “2-UIP cut/last UIP cut” can result from applying thesecond UIP scheme
in which a conflict clause with the UIP second closest toΛ is chosen. In this example, the
“2-UIP cut” is at the same time a cut that can result from applying the last UIP schemein
which a cut with the decision literal on the maximum decisionlevel as the UIP is chosen.

For investigating the efficiency of clause learningDPLL in proof complexity theoretic
terms, we need to have a proof system characterization of clause learningDPLL algorithms.
We will use the following characterization, referred to as the CL proof system. Here we
loosely follow the characterization of [9]. A clause learning proof (orCL proof) induced by
a learning schemeS is constructed by applying branching and the unit clause rule, usingSto
learn conflict clauses when conflicts are reached, so that in the end, aconflict can be reached
at decision level zero. When a conflict cut with a UIP is selected, it is possible to apply
conflict-driven backjumping based on the conflict clause. Otherwise, simple backtracking is
applied. Notice that this definition allows even the most generalnondeterministic learning
scheme[9], in which the conflict cut is selected nondeterministically from the set of all
possible conflict cuts related to the conflict graph at hand.

Hence, aCL proof can be seen as a tree in which the traversal order is marked in the
nodes. Each leaf node in the tree is labeled with a conflict graph, a conflict cut in the graph,
and the decision level onto which to backjump. Now, the proofsystemCL consists ofCL

proofs under any learning scheme. The length of aCL proof is the number of branching
decisions.

12

While the practical efficiency gains of implementing clauselearning intoDPLL-based
algorithms are well-established, the first formal study on the power of clause learning is [9]:
CL can provide exponentially shorter proofs thanT-RES even if no restarts are allowed.
Thus we have the following corollary.

Corollary 1 (of Theorem 1 in [9]) DPLL cannot polynomially simulateCL.

3.4.3 Restarts and theCL- - Proof System

Restartingis an additional technique often implemented in modern solvers. When a restart
occurs, the decisions and unit propagations made so far are undone, and the search con-
tinues from decision level zero. The clauses learned so far remain known after the restart.
Intuitively, restarts help in escaping from getting stuck in hard-to-prove sub-formulas. In
practice, the choice of when and how often to restart is part of the strategy of a solver. When
any number of restarts are allowed during search, we say thatCL hasunlimited restarts. For
a recent investigation into the effect of restarts on the efficiency of clause learningDPLL

algorithms, see [25].
Beame et al. [9] defineCL- - asCL with branching allowed also on already assigned

values. Although being non-typical in practice, this enables creating immediate conflicts at
will. Although it is not known whetherCL can simulateRES, it has been shown that this is
true forCL- - using unlimited restarts.

Theorem 3 ([9]) RES and CL- - with unlimited restarts and any non-redundant learning
scheme are polynomially equivalent.

We note that the proof of this theorem in [9] relies on the factthat unit propagation is seen
as applications of the unit clause rule, and hence the rule can also be left unapplied when
convenient. This is non-typical for implementations of clause learningDPLL; they usually
apply unit propagation eagerly whenever possible.

4 Relating CNF Proof Systems and Circuit Structure

A key element in this work is the tight correspondence between a constrained Boolean cir-
cuit C τ and its CNF translationcnf(C τ). In this section we review details on the corre-
spondence of deduction in the CNF translation of a Boolean circuit with the original circuit
structure, and on how branching inDPLL andCL can be restricted based on the original
circuit structure. These details play an integral role in the theoretical results presented in the
next section.

4.1 Unit Propagation on the Level of Circuits

As there is a one-to-one relationship between the gates in a constrained Boolean circuitC τ

and the variables in the corresponding CNF formulacnf(C τ), the variables can be thought to
inherit the structural properties of the gates. For example, aninput variableis a variable that
corresponds to an input gate in the original Boolean circuit, and we will take the liberty of
using the terms “gate” and “variable” synonymously. Furthermore, since the CNF translation
in Table 1 encodes in a natural way the semantics of the gates,unit propagation in the CNF
formula can be seen as working on the level of the circuit. A further discussion on this can

13

be found e.g. in [29], using a unit propagation equivalent characterization of Boolean con-
straint propagation as deduction rules for circuits [31]. Basically, such circuit level Boolean
constraint propagation can set a value on a gate if and only ifunit clause propagation can set
a value on the corresponding Boolean variable in the CNF translation. For example, consider
the gateg := AND(g1,g2) and its CNF translation(¬g̃∨ g̃1)∧ (¬g̃∨ g̃2)∧ (g̃∨¬g̃1∨¬g̃2).
Now whenever the gateg2 is assigned tof, the gateg can be propagated tof by the semantics
of AND. On the CNF level, we can equivalently propagate the variable g̃ to f by applying
the unit clause rule whenever the variable ˜g2 is assigned tof through the clause(¬g̃∨ g̃2).
The same kind of equivalent behaviour is noticed in a “top-down” fashion when assigning
the gateg to t: on the circuit-level, the gatesg1 andg2 can be propagated tot, and on the
CNF level we can equivalently propagate the variables ˜g1 and g̃2 to t through the clauses
(¬g̃∨ g̃1) and(¬g̃∨ g̃2), respectively, by applying the unit clause rule whenever the variable
g̃ is assigned tot.

Hence we will also take the liberty of saying that unit propagation sets a value on a gate
when referring to unit propagation setting a value on the corresponding Boolean variable
in the CNF translation. Similarly, webranch on a gatewhen referring to branching on the
corresponding Boolean variable. Correspondingly, aDPLL or CL proof of a constrained
circuit C τ means a proof of the translationcnf(C τ).

Since unit propagation can be also seen as Boolean constraint propagation on the level
of constrained circuits,DPLL can also be implemented as a circuit level procedure, see,
e.g., [38,31,35,46]. Since conflict graphs are based on how the unit clause rule is applied,
clause learning can also be incorporated in such circuit level DPLL-based solvers [35,46].
Thus the results in this paper concerning the relative powerof input-restricted clause learn-
ing DPLL hold for such circuit level approaches, too. Finally, we note that for instance [35]
does not consider input-restricted branching but applies atop-down branching based on jus-
tification frontiers. The relative proof complexity theoretic power of the related top-down
branching restrictions is analyzed in [29,28].

4.2 Restricting Branching inDPLL andCL to Inputs

In structured application domains of SAT solvers, such as automated planning and bounded
model checking of hardware and software, the problem at handis based on a transition
relation, where the behavior of the underlying system is dependent solely on theinput of
the system. In the Boolean circuit encodingC τ of such a structural problem, the input is
represented by the set of input gates of the circuit,inputs(C). Since the values of the other
gates in the circuit can be evaluated when all the gates ininputs(C) have values, branching
in DPLL with unit propagationcan be restricted to the variables associated withinputs(C)
without losing completeness. Intuitively, the idea is thatsince the number of input gates
|inputs(C)| is often much less than the total amount|G| of gates inC , the search space size
is reduced from 2|G| to 2|inputs(C)|, where|inputs(C)| ≪ |G|.

By allowing branching in theDPLL andCL proof systems on input gates only, we arrive
at the proof systemsDPLLinputs andCLinputs, respectively. From the view of proof complex-
ity, however, in [29] a formal study on the effect of restricting branching inDPLL (without
clause learning) toinputs(C) reveals that this weakens the proof system considerably.

Theorem 4 ([29])DPLLinputs cannot polynomially simulateDPLL.

In the following section, we investigate the proof complexity theoretic effect of input-
restricted branching in the context ofclause learningDPLL-based SAT solving, which is

14

posed as an open question in [29]. In Section 6 we complement this theoretical study by
providing an experimental evaluation of the effect of input-restricted branching.

5 Restricted Branching and Proof Complexity

We will now consider the relative proof complexity theoretic power of input-restricted and
unrestricted branchingCL andDPLL. This will result in the refined relative efficiency hierar-
chy ofDPLL andCL shown in Figure 4. An arrow without a slash from systemSto S′ means
thatScan polynomially simulateS′, and with a slash thatScannot simulateS′. Arrows la-
beled with a∗ are due to trivial subsumption. The new results, detailed inthe following,
are represented by dashed arrows. The missing arrows, disregarding those implied by the
transitivity of the results, represent questions which areopen to the best of our knowledge.

CL- -

RES

DPLLinputs

CLinputs CL- -inputs

T-RES

DPLL CL

[29] [9]
[9]

Fact 1

corollary of [21,49]

*

*

*

*

**

*

Fig. 4 A refined relative efficiency hierarchy for the proof systemsconsidered in this work.

The main result of this paper is characterized by the following theorem.

Theorem 5 DPLL andCL- -inputs (with or without restarts) are incomparable.

This is a direct corollary of the forthcoming Lemmas 1 and 3. Thus we get the following as
a direct corollary.

Corollary 2 CL- -inputs with unlimited restarts cannot polynomially simulateCL.

We now proceed by proving Theorem 5 in two parts. First we showby a simple argument
why DPLL cannot simulateCLinputs. We then discuss further the difference betweenCLinputs

andDPLLinputs by exhibiting an example of a family of Boolean circuits on which CLinputs

cansimulateCL, while DPLLinputs cannotsimulateDPLL. The motivation here is two-fold.
On one hand, this shows the power of clause learning even whenbranching is restricted to
inputs. On the other hand, the example gives an intuitive explanation of why the result in [29]
on the power ofDPLLinputs with respect toDPLL cannot be directly adapted for proving the
analogous result forCLinputs. AlthoughCLinputs can simulateCL on this particular family
of circuits, this is not the case in general for other families. After the example, we proceed
by showing that in fact,CL- -inputs, even with conflict-driven backjumping and unlimited
restarts, cannot even simulateDPLL. The proof relies on so calledredundant gates, and
applies known results on the very powerfulExtended Resolutionproof system [47].

15

5.1 DPLL Cannot SimulateCLinputs

We now show thatDPLL cannot simulateCLinputs. This results from the fact thatDPLL

cannot simulateCL by additionally noticing thatCL andCLinputs are equivalent when con-
sidering circuits representing CNF formulas.

Lemma 1 There is an infinite family of constrained Boolean circuits for whichDPLL has
superpolynomially longer minimum proofs thanCLinputs.

Proof Take any infinite family{Fn} of CNF formulas that is a witness of Corollary 1 stating
thatDPLL cannot simulateCL. Define the family of Boolean circuits{circuit(F) |F ∈{Fn}}.
The simplified CNF formula resulting from applying unit propagation tocnf(circuit(F)) is
effectively the same as the simplified CNF formula resultingfrom applying unit propagation
to F; especially, theOR-gate variables incnf(circuit(F)) that represent the clauses inF
are all assigned tot. ThusCL will only branch on the variables incnf(circuit(F)) that are
associated with the input gates ofcircuit(F) or their negations. ThusCLinputs can simulate
CL on cnf(circuit(F)), and the claim follows by Corollary 1. ⊓⊔

As a direct corollary, we have

Corollary 3 NeitherDPLL nor DPLLinputs can polynomially simulateCLinputs.

Before considering whetherCLinputs can simulateCL or DPLL, we next give a moti-
vating example which illustrates why the results in [29] on the power ofDPLLinputs with
respect toDPLL cannot be directly adapted for proving the analogous resultfor CLinputs.

5.2 A Further Motivating Example

To highlight the strength of clause learning even when branching is restricted to input gates,
we now give an example of a family,{UNSAT-2PARn} wheren≥ 3, of Boolean circuits on
which CLinputs can simulateCL applying the 1-UIP learning scheme, althoughDPLLinputs

cannot simulateDPLL on the family. The circuit

UNSAT-2PARn := UNSAT∪〈PARa
n∪PARb

n, /0〉

consists of two parts:

– the constant size circuit

UNSAT := circuit ({{a,b},{a,¬b},{¬a,b},{¬a,¬b}}) , and

– two copies (fora andb, ρ ∈ {a,b}) of the circuit structure

PARρ
n :=

{

ρ := XOR(yρ
1 ,xρ

1)
}

∪
n−3
⋃

i=1

{

xρ
i := XOR(yρ

i+1,x
ρ
i+1)

}

∪

{

xρ
n−2 := XOR(yρ

n−1,y
ρ
n)

}

.

Basically, PARρ
n computes the parity of then input gatesyρ

1 , . . . ,yρ
n , evaluating to true if

and only if an odd number of them are true.

16

AND

OR OROR

XOR XOR

NOT

OR

NOT

t

a b

XOR XORxa
1

xa
2

ya
1

ya
2

ya
3ya

4

XOR XOR

yb
1 xb

1

yb
2 xb

2

yb
3 yb

4

Fig. 5 The constrained Boolean circuit UNSAT-2PARn for n = 4.

The circuit UNSAT-2PAR4 is shown in Figure 5. Now, since unit propagation will result
in a conflict in the UNSAT sub-circuit for any value of the gatea, UNSAT-2PARn yields a
trivial (constant length) proof inDPLL. It is also easy to see that minimum length proofs
of UNSAT-2PARn are exponential with respect ton in DPLLinputs. This is because, due to
the structure of PARρn , in order to propagate a value for the gatea or b, DPLLinputs has
to branch on all of the inputs in the corresponding PARρ

n sub-circuit. With the chronolog-
ical backtracking process ofDPLL this implies that minimum lengthDPLLinputs proofs of
UNSAT-2PARn are exponential with respect ton.

However,CLinputs can produce linear length proofs on the family. In the following we
will say thatCL (or DPLL) branches according to a sequence of assignments(x1 = v1,x2 =
v2, . . .), if it always branches by assigning the value to the variablegiven by the next as-
signment in the sequence, i.e., we would first branch by assigning x1 the valuev1, and so
forth. Now, letCLinputs branch according to the sequence(ya

1 = f, . . . ,ya
n−1 = f). After this,

unit propagation cannot still propagate a value on the gatea, any of thexa
i gates, or any

gate in the UNSAT sub-circuit. Then branch withya
n = f. Now unit propagation sets val-

ues for allxa
i gates without a conflict. The values forxa

1 andya
1 propagate the valuef for

a, which then propagates a conflict at a gate in UNSAT. Notice that xa
1 andya

1 are theonly
reasons for the value ofa. In any conflict graph associated with the branching sequence
(ya

1 = f, . . . ,ya
n = f), ¬a is a 1-UIP, and, furthermore, constitutes a reason for the conflict on

its own. HenceCLinputs can learn as a unit clause the opposite value ofa, and backjump to
the decision level zero. This opposite value will then propagate a conflict without branching,
andCLinputs terminates.

It is interesting to notice howCLinputs can branch on(ya
1 = f, . . . ,ya

n = f) and still avoid
backtracking on these decisions since there is thebottleneckat gatea due to the construc-
tion of UNSAT-2PARn. This shows the strength of clause learning with conflict-driven
backjumping—even with input-restricted branching—due toits ability to backjump over
an exponential size search space by detecting small locallyinconsistent sub-formulas. With

17

this intuition, it is evident that the results in [29] on the power ofDPLLinputs with respect to
DPLL cannot be directly adapted for proving the analogous resultfor CLinputs.

5.3 CL- -inputs Cannot SimulateDPLL

AlthoughCLinputs can simulateCL on the{UNSAT-2PARn} family, this is generally not the
case for other families. In fact, it turns out thatCL--inputs cannot even simulateDPLL, as
detailed next.

We will apply the concept ofredundant gates in constrained Boolean circuits.

Definition 3 A gate in a constrained Boolean circuitC τ is redundantif it is unconstrained
and not a descendant of any constrained gate.

We will assume that circuits do not contain redundant input gates; such inputs can always
be assigned an arbitrary truth value without affecting satisfiability. As shown next, when
consideringCL- -inputs, redundant gates cannot appear in conflict graphs. Intuitively, this is
because redundant gates can only have a value due to unit propagation “upwards” (from
child to parent) on the circuit structure inCL- -inputs; as they, or any of their parents, are
not constrained by definition, they cannot cause a conflict orbe a part of a unit propagation
chain responsible for a conflict. As a consequence of this, redundant gates can never appear
in conflict clauses derived byCL- -inputs.

Lemma 2 Let C τ be an arbitrary constrained Boolean circuit. ConsideringCL- -inputs on
inputcnf(C τ), redundant gates do not occur in any conflict graph at any stage ofCL- -inputs.
This holds whether or not restarts are allowed.

Proof Take any constrained Boolean circuitC τ . The stages in whichCL- -inputs does not
have a conflict are trivial. Now assume that the lemma holds ata stage whereCL--inputs has
mademconflicts. Consider the stage producing the(m+1)th conflict and any conflict graph
associated with the conflict. We next show that the conflict graph contains no redundant
gates. Take any redundant gateg in C τ . If it is not assigned, it cannot appear in the conflict
graph. Now assume thatg is assigned. Sinceg is redundant, it cannot be constrained by
τ . Furthermore,g is not an input gate (by the assumption we made above), and thus g is
assigned not because it was branched on. Therefore,g has been assigned by unit propagation.
Now there are three cases.

– By the induction hypothesis, there are no known learned clauses containing redundant
gates before the(m+1)th conflict, and thereforeg is not assigned by unit propagation
on a learned clause.

– The gateg is assigned because some of its children are assigned, i.e.,by unit propagation
on one of the clauses incnf(C τ) resulting from the equalityg⇔ f (g1, . . . ,gn). Onceg
becomes assigned in this way, all these clauses become satisfied. Therefore, the value
assigned tog by unit propagation could not have caused any of the childrenof g to be
assigned.

– The gateg is assigned due to an assigned value on a parentg′ of g, i.e., by unit prop-
agation on one of the clauses incnf(C τ) resulting from the equalityg′ ⇔ f (. . . ,g, . . .).
Sinceg is redundant,g′ is also redundant. By the arguments above, the only way forg′

to have been assigned in this situation is due to one of its parents’ assigned value. Induc-
tively, this leads to the fact that a redundant output gateo should have been assigned by
unit propagation because one ofo’s parents has been assigned. This is a contradiction,

18

since output gates have no parents. Therefore, the redundant gateg cannot be assigned
because one of its parents is assigned.

Hence, the only reason for a redundant gate to be assigned is that some of its children are
assigned. Furthermore, the value of an assigned redundant gate can only propagate values
to its parents (which are also redundant). On the other hand,since redundant gates are not
constrained byτ , g cannot act as the conflict variable in the conflict graph. Therefore, there
cannot be any path fromg to the conflict node in the implication graph which the conflict
graph is based on. This proves that a redundant gate cannot occur in the conflict graph. ⊓⊔

Although redundant gates can be removed from any constrained Boolean circuit without
affecting its satisfiability, they may have an effect on the length of shortest proofs. Cook [12]
gives a way of introducing a polynomial number of clauses which can be interpreted as re-
dundant gates tocircuit(PHPn+1

n) so that, contrarily tocircuit(PHPn+1
n), the extended circuit

yields polynomial length proofs inRES. As a circuit structure, thisextensionis defined as
EXTn :=

⋃n+1
l=3 EXTl , where

EXTl :=
l−1
⋃

i=1

l−2
⋃

j=1

{

ol−1
i, j := AND(el

i,l−1,e
l
l , j), el−1

i, j := OR(el
i, j ,o

l−1
i, j)

}

,

and eachen+1
i, j is the gatepi, j in circuit(PHPn+1

n). A part of EXTn is illustrated in Figure 6.

The output gates of EXTn aree2
1,1 ande2

2,1,e
3
3,2, . . . ,e

n
n,n−1.

OR OR OR

OR

AND

AND

en−1
i, j

pi, j pi,n pn+1, j

en
i, j en

n, jen
i,n−1

on−1
i, j

on
i, j

Fig. 6 Part of Cook’s extension EXTn to PHPn+1
n as a circuit.

Due to the result in [12], we immediately have a polynomial length RES proof π =
(C1, . . . ,Cm = /0) of the extended PHPn+1

n formula cnf(circuit(PHPn+1
n)∪〈EXTn, /0〉). Intu-

itively, EXTl allows reducing PHPl+1
l to PHPl

l−1 with a polynomial number of resolution
steps. However, since in [12] such a proof is not given explicitly, we include a detailed de-
scription of the proof in Appendix A. For the following, whatis most important is that such
a short proofπ exists, not really the actual details ofπ. 1 The details ofπ, along with EXTn,
are included here for the sake of concreteness and illustration.

1 See remark 6 in Section 5.4 for more details.

19

Using the above-described polynomial lengthRES proof π = (C1,C2, . . . , Cm = /0) for
cnf(circuit(PHPn+1

n)∪〈EXTn, /0〉), we define the circuit construct

E(π) :=
m−1
⋃

i=1

{gCi := OR(g1, . . . ,g j , ĝ j+1, . . . , ĝk) | Ci = {g̃1, . . . , g̃ j ,¬g̃ j+1, . . . ,¬g̃k}}∪

m−1
⋃

i=1

{ĝ := NOT(g) | g̃∈ vars−(Ci)}.

That is, each clauseCi in theRES proof π is simply represented as a correspondingOR-gate.
This allows a simple polynomial lengthDPLL proof of

EPHPn+1
n := circuit(PHPn+1

n)∪〈EXTn, /0〉∪ 〈E(π), /0〉,

while there is no polynomial length proof of EPHPn+1
n in CL- -inputs. Intuitively this is be-

cause E(π) allows DPLL to “verify” the resolution proof of PHPn+1
n extended with EXTn

step-by-step, whileCL- -inputs cannot make use of the redundant gates of EXTn and E(π).
For a high-level view of the structure of EPHPn+1

n , see Figure 7.

AND
t

EXTn

E(π)

circuit(PHPn+1
n)

Fig. 7 High-level view of EPHPn+1
n .

Lemma 3 For the infinite family{EPHPn+1
n } of constrained Boolean circuits,CL- -inputs

with unlimited restarts has superpolynomially longer minimum-length proofs thanDPLL.

Proof A polynomial lengthDPLL proof of EPHPn+1
n is witnessed by the branching sequence

(gC1 = f,gC2 = f, . . . ,gCm−1 = f), as detailed next. By induction oni, we will show that, if
gC1 = t, . . . ,gCi−1 = t, then branching withgCi = f results in a conflict by unit propagation,
and hence immediately setsgCi = t.

The base case. The gategC1 represents the first clauseC1 in π, and thusC1 must belong
to cnf(circuit(PHPn+1

n)∪ 〈EXTn, /0〉). As C1 is a result of applying thecnf translation to a
gateg in circuit(PHPn+1

n)∪〈EXTn, /0〉 (which is part of EPHPn+1
n), settinggC1 = f will result

in a conflict after unit propagation because the functional definition or the constraint of the
gateg is violated. For example, ifg := OR(g1,g2) andC1 = (g̃∨¬g̃1), thengC1 := OR(g, ĝ1)
with ĝ1 := NOT(g1), and the assignmentgC1 = f will propagateg = f andg1 = t, violating
the definition ofg and thus resulting in a conflict.

Now assume as the induction hypothesis that we havegCi′
= t for all 1 ≤ i′ < i. Next

branch withgCi = f. If the ith clauseCi in π belongs tocnf(circuit(PHPn+1
n)∪〈EXTn, /0〉),

branching ongCi = f will result in a conflict after unit propagation as in the basecase.
OtherwiseCi has been derived from two clauses,Cj = C′

j ∪{g̃} andCk = C′
k∪{¬g̃}, in π

for 1≤ j,k < i, by resolving on the variable ˜g. By the induction hypothesis we havegCj = t

20

andgCk = t. On the other hand, asgCi = f, all the gates corresponding to the literals inC′
j ∪C′

k
are assigned tof by unit propagation, implying that unit propagation will assign bothg = t
andg= f asgCj = gCk = t. Thus a conflict is reached, closing the branchgCi = f, andgCi = t
is set by backtracking.

Finally, sinceCm = /0∈ π, there are unit clausesCj = {g̃} andCk = {¬g̃} in π, where
1 ≤ j,k < m. Without loss of generality, assume thatj < k. By induction, at latest after
branching withgCk = f and settinggCk = t by backtracking, we will havegCj = gCk = t in
the branch, and thus bothg= t andg= f, a conflict. This closes the last branch, and we have
a linear sizeDPLL proof of EPHPn+1

n .
Now consider proofs of EPHPn+1

n in CL- -inputs. The non-input gates in〈EXTn, /0〉 ∪
〈E(π), /0〉 are all redundant in EPHPn+1

n , and they cannot be part of a reason for any conflict
in CL- -inputs (Lemma 2). Thus anyCL- -inputs proof of EPHPn+1

n contains aCL- -inputs proof
of PHPn+1

n , which cannot be of polynomial length (Theorems 1 and 3). ⊓⊔

Theorem 5 now follows directly from Lemmas 1 and 3.

5.4 Additional Remarks

Closely related to Lemma 3 and the applied construction EPHPn+1
n , we make the following

additional remarks.

1. Due to the fact that redundant gates do not occur inany conflict graph ofCL- -inputs,
Lemma 3 covers all clause learning schemes based on conflict cuts, including, for ex-
ample, schemes which learnmultiple clausesat each conflict [39]. Additionally, conflict
clause forgetting schemes, which are applied in typical clause learning solvers such
as [18], do not affect this result.

2. We use redundant gates in the EPHPn+1
n construction for simplicity of the proof of

Lemma 3; by a simple modification of EPHPn+1
n one can construct as a witness for

Lemma 3 a constrained circuit with no redundant gates and a single output as the only
constrained gate. The basic idea, illustrated in Figure 8, is to make a small local change
to the EPHPn+1

n circuit construct. In more detail, introduce theOR-gateo1 over the out-
put gatese2

1,1,e
2
2,1, . . . ,e

n
n,n−1 in EXTn. Similarly, introduce theOR-gateo2 over the out-

put gatesgC1, . . . ,gCm−1 in E(π). Now, introduce anOR-gate overo1 ando2. Then, in-
troduce a gatez that is theOR of this gate and a new gateNOT(o1). Finally, constrain
theAND of this gate and the output gate of the unconstrained versionof circuit(PHPn+1

n)
to t. The resulting circuit family can be used in proving Lemma 3 as the values propa-
gated to the non-input gates in EXTn and E(π) cannot be part of any conflict graph in
CL--inputs. This is because the gatezalways evaluates tot; it corresponds to a tautology
of form ¬a∨ (a∨b) and thus effectively makes EXTn and E(π) redundant.

3. Since redundant gates can be removed from constrained Boolean circuits without affect-
ing the existence of satisfying assignments, such gates aretypically removed in practice
before the CNF translation and SAT solving by using the so-called cone-of-influence
reduction[31]. However, applying the cone-of-influence reduction can have a drastic
negative effect on minimum length proofs: if one applies thecone-of-influence reduc-
tion to the circuit family EPHPn+1

n , one obtains the family PHPn+1
n for whichCL- - does

not have polynomial length proofs although the much weaker systemDPLL has short
proofs for the original family EPHPn+1

n (as shown in the proof of Lemma 3).
4. It is interesting to notice thatDPLL solvers with full one-step lookahead can detect

the small proofs of EPHPn+1
n witnessed by the branching sequence(gC1 = f,gC2 =

21

OR OR OR

OR OR OR

OR

OR

OR

AND

AND

NOT

e2
1,1 e2

2,1

gC1

...

...

en
n,n−1

gCm−1

EXTn

circuit(PHPn+1
n)

z

t

o1

o2

E(π)

Fig. 8 Local change to the EPHPn+1
n circuit for removing redundancy of gates in E(π) and EXTn

f, . . . ,gCm−1 = f). In particular, for eachi, lookahead ongCi = f when havinggCj = t
for all j < i in the branch will result in an immediate conflict using unit propagation, as
detailed in the proof of Lemma 3.

5. The Cook’s extension (a variant of EXTn) presented in [12] is motivated by investi-
gations into the power of theExtended Resolution proof systemdefined by Tseitin [47].
Extended Resolution is the result of adding anextension ruletoRES, which allows for it-
eratively addingdefinitionsof the formx⇔ l1∧ l2 (or, as a set of clauses,{{x,¬l1,¬l2},
{¬x, l1},{¬x, l2}}) to the CNF formula, wherex is a new variable andl1, l2 are literals
in the current formula. This is equivalent to adding a redundant binaryAND gate of the
literals l1, l2 to a constrained Boolean circuit. Notably, it is known that Extended Reso-
lution is among the most powerful proof systems, and can simulate, e.g.,Frege systems
(see [34] for more details).

6. Instead of the pigeon-hole problem PHPn+1
n , Cook’s extension EXTn to it, and the reso-

lution proofπ of their combination, one could use any CNF formulaF that (i) does not
have a polynomial size resolution proof but (ii) has a polynomial size extended resolu-
tion proof to prove a result similar to Lemma 3. That is, for such formulaF , DPLL has
a polynomial sized proof ofcircuit(F)∪ 〈EXTF , /0〉 ∪ 〈E(πF), /0〉 while CL- -inputs does
not, where EXTF is the polynomial sized extension ofF andπF is a polynomial sized
resolution proof ofcnf(circuit(F)∪〈EXTF , /0〉).

7. The additional extension E(π) applied above is motivated by a similar construction
which can be used for simulatingFrege proofswith their tree-like variants (see [34,
Chapter 4]).

22

6 Experiments

We evaluate the effect of restricting branching to input variables on the functionality of mod-
ern clause learning solver techniques. The set of benchmarks2 used in the experiments con-
sists of instances from various application domains, for which Boolean circuits offer a natu-
ral representation form: super-scalar processor verification [50], integer factorization based
on hardware multipliers [43], equivalence checking of hardware multipliers [26], bounded
model checking (BMC) for deadlocks in asynchronous parallel systems represented as la-
belled transition systems (LTS) [32], and linear temporal logic (LTL) BMC of finite state
systems with a compact encoding [36]. We use standard PCs with 2-GHz AMD 3200+ pro-
cessors and two gigabytes of memory running Linux, and applya timeout of one hour and a
memory limit of one gigabyte to each SAT solver execution.

For solving the Boolean circuit instances, we apply BCMinisat3 (version 0.26), which
we have modified in order to restrict branching to input variables. BCMinisat is a Boolean
circuit front-end for the successful clause learning SAT solver Minisat [18] (version 1.14).
BCMinisat accepts as input Boolean circuits with various Boolean functions allowed as
gate types, performs circuit-level preprocessing, including Boolean propagation, substruc-
ture sharing, and cone-of-influence reductions to the circuit, normalizing the circuit into a
form which can be translated into CNF applying a standard translation in the style ofcnf

defined in Table 1. BCMinisat feeds the resulting CNF translation and the input-restriction
to Minisat, which then solves the CNF. For each circuit, we obtain 15 CNF instances by
permuting the CNF variable numbering.

Minisat implements 1-UIP clause learning. After each conflict the heuristic value of
each variable on the conflict side and in the conflict clause isincremented by one, and the
values of all variables are decremented by 5%. To avoid hindering efficiency by learning
massive amounts of clauses, the solver also uses a scheme forforgetting learned clauses that
have not occurred on the conflict side in recent conflicts.

6.1 Results

Table 2 gives the minimum, median, and maximum number of decisions for BCMinisat
and input-restricted BCMinisat (BCMinisatinputs) for each benchmark instance. For the in-
stances based on hardware multiplication designs, for which the number of unassigned in-
put variables is 2% or less out of all unassigned variables, BCMinisatinputs shows an ad-
vantage over BCMinisat with respect to the number of decisions. However, for the hard-
ware verification and BMC instances, the overall performance of BCMinisatinputs is much
worse, with timeouts on all verification and half of the LTL BMC instances. The possi-
ble gains of applying input-restricted branching seem to correlate with a very low rela-
tive number of input variables. On the equivalence checkinginstances, we notice that the
number of decision for BCMinisatinputs is more than the brute-force upper bound, e.g.,
for eq-test.atree.braun.10 around 1.4−1.8×106, compared to the brute-force bound
220 ≈ 1.0×106. Considering that we are using a state-of-the-art clause learning solver, this
surprising result is likely due to conflict clause forgetting 4; when forgetting a conflict clause
C, the solver may have to re-examine the search space characterised as unsatisfiable byC.

2 The set of Boolean circuit benchmarks is available athttp://www.tcs.hut.fi/∼mjj/benchmarks/.
3 Part of the BCTools package,http://www.tcs.hut.fi/∼tjunttil/bcsat/.
4 For more evidence corroborating this claim, see [30].

23

Table 2 Minimum (min), median (med), and maximum (max) of number of decisions for BCMinisat and
BCMinisatinputs , with number of timeouts in parenthesis. Thesat column gives the satisfiability of the in-
stance, and #inputs gives the number of unassigned input variables in the CNF translation (percentage in
parentheses). Forud andbb, see the text body.

Number of decisions
BCMinisat BCMinisat inputs

Instance sat #inputs min med max min med max ud bb

Super-scalar processor verification
fvp.2.0.3pipe.1 no 186 (8.2) 61531 384386 1225134 - (15) - (15) - (15) - -
fvp.2.0.3pipe 2 ooo.1 no 305 (11.7) 75962 184798 426489 - (15) - (15) - (15) - -
fvp.2.0.4pipe 1 ooo.1 no 544 (10.4) 188992 209048 271982 - (15) - (15) - (15) - -
fvp.2.0.4pipe 2 ooo.1 no 547 (9.8) 103360720946175241781 - (15) - (15) - (15) - -
fvp.2.0.5pipe 1 ooo.1 no 845 (8.9) 336281 746231 1838599 - (15) - (15) - (15) - -

Equivalence checking hardware multipliers
eq-test.atree.braun.8 no 16 (2.3) 180449 285665 339805 65785 73834 82372 88.5 0.02
eq-test.atree.braun.9 no 18 (2.0) 898917 10555111317785 323688 385398 389890 106.6 0.02
eq-test.atree.braun.10 no 20 (1.8) 375537545405985089443 142895715903901787295 127.9 0.01

Integer factorisation
atree.sat.34.0 yes 60 (0.6) 156733 228792 761620 24820 208880 277896 21.9 0.04
atree.sat.36.50 yes 64 (0.6) 251218 721474 937152 316590 571533 788762 18.4 0.04
atree.sat.38.100 yes 68 (0.6) 284980 1095192 - (1) 190330 498092 1082729 - -
atree.unsat.32.0 no 57 (0.7) 141419 163508 180973 123502 138797 162546 15.3 0.04
atree.unsat.34.50 no 60 (0.6) 248371 287351 404418 223130 244382 301464 18.0 0.04
atree.unsat.36.100 no 64 (0.6) 527237 623889 915810 431576 480469 578331 19.4 0.03
braun.sat.32.0 yes 61 (2.2) 27480 82122 140150 5675 81269 135093 25.6 0.05
braun.sat.34.50 yes 65 (2.1) 30717 152224 353464 43924 110614 223306 25.3 0.05
braun.sat.36.100 yes 69 (2.0) 129771 447716 589449 86134 374884 752645 19.4 0.05
braun.unsat.32.0 no 60 (2.2) 107617 122550 156004 96894 119437 150121 10.4 0.06
braun.unsat.34.50 no 64 (2.0) 215624 263845 341855 213199 258446 316819 9.1 0.06
braun.unsat.36.100 no 68 (1.9) 514725 623671 807610 533575 640111 674470 8.9 0.06

BMC for deadlocks in LTSs
dp 12.i.k10 no 480 (16.0) 513935 639756 987595 2497570 - (10) - (10) - -
key 4.p.k28 no 967 (10.9) 121552 147063 169386 138361 184875 220107 3.7 0.53
key 4.p.k37 yes 1507 (9.8) 56784 321552 1549271 7574 663152 - (1) - -
key 5.p.k29 no 1212 (10.7) 193139 223867 310207 230844 343255 405686 3.9 0.54
key 5.p.k37 yes 1796 (9.8) 104496 421324 1540174 19027 1041807 - (3) - -
mmgt 4.i.k15 no 456 (10.9) 210288 287599 457009 582998 11059862170048 4.2 0.41
q 1.i.k18 no 566 (13.1) 168156 353421 507246 375493 929019 1349785 3.7 0.49

LTL BMC by linear encoding
1394-4-3.p1neg.k10 no 1845 (5.6) 141822 155295 164900 138468 148545 156839 6.6 0.34
1394-4-3.p1neg.k11 yes 2023 (5.5) 72988 128708 203647 34619 55575 189434 9.0 0.32
1394-5-2.p0neg.k13 no 1940 (5.0) 125840 143928 158320 146144 156527 186468 6.7 0.32
brp.ptimonegnv.k23 no 461 (6.7) 106338 130577 259025 193839 302930 356313 4.1 0.28
brp.ptimonegnv.k24 yes 481 (6.7) 43013 96775 162114 13699 74907 260481 5.5 0.27
csmacd.p0.k16 no 1794 (2.9) 229192 316082 376280 269520 341751 381248 4.9 0.28
dme3.ptimo.k61 no 6375 (26.3) 314659 549686 1658757 - (15) - (15) - (15) - -
dme3.ptimo.k62 yes 6506 (26.3) 427100 688505 1545603 - (15) - (15) - (15) - -
dme3.ptimonegnv.k58 no 5982 (26.3) 324770 568864 962967 - (15) - (15) - (15) - -
dme3.ptimonegnv.k59 yes 6113 (26.3) 303921 480073 1136938 - (15) - (15) - (15) - -
dme5.ptimo.k65 no 10750 (26.8) 497190 735741 1839619 - (15) - (15) - (15) - -

Figure 9 gives a cumulative plot of the number of solved instances, showing a drastic de-
crease in performance for the input-restriction.

The effect of input-restriction varies depending on whether unsatisfiable or satisfiable
instances are considered (Figure 10). For the unsatisfiableinstances the plot correlates well
with Corollary 2, with timed out runs on the horizontal line.For satisfiable instances, there
seems to be no clear winner, although when selecting from therelative small set of input
variables, the probability of choosing a satisfying assignment is intuitively greater.

24

 0

 100

 200

 300

 400

 500

 0 1000 2000 3000

#i
ns

ta
nc

es
 s

ol
ve

d

Time (s)

Minisat
Minisat on inputs

 0

 100

 200

 300

 400

 500

 0 1000 2000 3000

#i
ns

ta
nc

es
 s

ol
ve

d

Time (s)

Minisat
Minisat on inputs

Fig. 9 Comparison of input-restricted branching and unrestricted Minisat: cumulative number of solved in-
stances

 10

 100

 1000

 10000

 10 100 1000 10000

M
in

is
at

 o
n

in
pu

ts
 (

s)

Minisat (s)

Unsatisfiable

 10

 100

 1000

 10000

 10 100 1000 10000

M
in

is
at

 o
n

in
pu

ts
 (

s)

Minisat (s)

Unsatisfiable

 10

 100

 1000

 10000

 10 100 1000 10000

M
in

is
at

 o
n

in
pu

ts
 (

s)

Minisat (s)

Satisfiable

 10

 100

 1000

 10000

 10 100 1000 10000

M
in

is
at

 o
n

in
pu

ts
 (

s)

Minisat (s)

Satisfiable

Fig. 10 Comparison of input-restricted branching and unrestricted Minisat as scatter plots: running times on
unsatisfiable (left) and satisfiable (right) instances

We also observe that the VSIDS branching heuristics [40] applied in Minisat might not
work as intended with the input-restriction. The number of unbranchable variables which
have better heuristic values than the best branchable variable can be high per decision (me-
dian of averages:ud in Table 2), e.g., foreq-test.atree.braun.10 on the average there
are, per decision, over 100 unbranchable variables with better heuristic scores than the best
branchable one. From another point of view, the fraction of increments on branchable vari-
ables from the number of all increments to heuristic values during search can be in some
cases even as low as 1% (median:bb in Table 2)—running the risk of VSIDS degenerating
into a random heuristic. These observations imply that in order to incorporate branching
restrictions in clause learning solvers, the restriction itself should be taken into account in
developing suitable heuristics and learning schemes.

As a final remark, we refer to [30] for a more in-depth experimental investigation into
the effects of restricted branching—not limited to the input-restriction and hence extending
the experimental evidence provided here—on the efficiency of clause learning solvers.

25

7 Conclusions

We investigate the effect of restricting branching in clause learning SAT solving on the ef-
ficiency of the underlying inference system from the view of proof complexity. It is known
that the unrestricted version of the considered variant of clause learning can efficiently sim-
ulate general resolution, being thus very powerful compared to the basicDPLL (with no
clause learning). However, we show the surprising result that input-restricted clause learn-
ing cannot even simulate the basicDPLL. This implies that all implementations of clause
learning, even with optimal heuristics, have the potentialof suffering a notable efficiency
decrease if branching is restricted to input variables. Theexperimental evidence shows that
by restricting branching the robustness of SAT solvers can decrease, and that input-restricted
branching does not go well with clause learning based heuristics of modern solvers.

Acknowledgements We thank Ilkka Niemelä for numerous discussions on the topic of this work, and Emilia
Oikarinen for help on the resolution proof construction in Appendix A.

References

1. Achlioptas, D., Beame, P., Molloy, M.: Exponential bounds for DPLL below the satisfiability threshold.
In: J.I. Munro (ed.) Proceedings of the 15th Annual ACM-SIAMSymposium on Discrete Algorithms
(SODA’04), pp. 139–140. SIAM (2004)

2. Achlioptas, D., Beame, P., Molloy, M.S.O.: A sharp threshold in proof complexity yields lower bounds
for satisfiability search. Journal of Computer and System Sciences68(2), 238–268 (2004)

3. Alekhnovich, M.: Mutilated chessboard problem is exponentially hard for resolution. Theoretical Com-
puter Science310(1–3), 513–525 (2004)

4. Alekhnovich, M., Hirsch, E.A., Itsykson, D.: Exponential lower bounds for the running time of DPLL
algorithms on satisfiable formulas. Journal of Automated Reasoning35(1–3), 51–72 (2005)

5. Alekhnovich, M., Johannsen, J., Pitassi, T., Urquhart, A.: An exponential separation between regular
and general resolution. In: Proceedings on 34th Annual ACM Symposium on Theory of Computing
(STOC’02), pp. 448–456. ACM (2002)

6. Beame, P., Culberson, J.C., Mitchell, D.G., Moore, C.: The resolution complexity of random graphk-
colorability. Discrete Applied Mathematics153(1–3), 25–47 (2005)

7. Beame, P., Impagliazzo, R., Sabharwal, A.: The resolution complexity of independent sets and vertex
covers in random graphs. Computational Complexity16(3), 245–297 (2007)

8. Beame, P., Karp, R.M., Pitassi, T., Saks, M.E.: The efficiency of resolution and Davis–Putnam proce-
dures. SIAM Journal on Computing31(4), 1048–1075 (2002)

9. Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing the potential of clause
learning. Journal of Artificial Intelligence Research22, 319–351 (2004)

10. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking using SAT procedures
instead of BDDs. In: Proceedings of the 36th Conference on Design Automation (DAC’99), pp. 317–320.
ACM Press (1999)

11. Chvátal, V., Szemerédi, E.: Many hard examples for resolution. Journal of the ACM35(4), 759–768
(1988)

12. Cook, S.A.: A short proof of the pigeon hole principle using extended resolution. SIGACT News8(4),
28–32 (1976)

13. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. Journal of Symbolic
Logic 44(1), 36–50 (1979)

14. Copty, F., Fix, L., Fraer, R., Giunchiglia, E., Kamhi, G., Tacchella, A., Vardi, M.Y.: Benefits of bounded
model checking at an industrial setting. In: G. Berry, H. Comon, A. Finkel (eds.) Proceedings of the
13th International Conference on Computer Aided Verification (CAV’01), Lecture Notes in Computer
Science, vol. 2102, pp. 436–453. Springer (2001)

15. Dantchev, S., Riis, S.: ”Planar” tautologies hard for resolution. In: Proceedings of the 42nd IEEE Sym-
posium on Foundations of Computer Science (FOCS’01), pp. 220–229. IEEE Computer Society (2001)

16. Davis, M., Logemann, G., Loveland, D.: A machine programfor theorem proving. Communications of
the ACM 5(7), 394–397 (1962)

26

17. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM7(3),
201–215 (1960)

18. Eén, N., Sörensson, N.: An extensible SAT-solver. In:E. Giunchiglia, A. Tacchella (eds.) Revised Se-
lected Papers of the 6th International Conference on Theoryand Applications of Satisfiability Testing
(SAT’03), Lecture Notes in Computer Science, vol. 2919, pp. 502–518. Springer (2004)

19. Giunchiglia, E., Maratea, M., Tacchella, A.: Dependentand independent variables in propositional sat-
isfiability. In: S. Flesca, S. Greco, N. Leone, G. Ianni (eds.) Proceedings of the European Conference
on Logics in Artificial Intelligence JELIA’02,Lecture Notes in Artificial Intelligence, vol. 2424, pp.
296–307. Springer (2002)

20. Giunchiglia, E., Massarotto, A., Sebastiani, R.: Act, and the rest will follow: Exploiting determinism in
planning as satisfiability. In: B.B. C. Rich J. Mostow, R. Uthurusamy (eds.) Proceedings of the 15th
National Conference on Artificial Intelligence (AAAI’98),pp. 948–953. AAAI Press (1998)

21. Goerdt, A.: Regular resolution versus unrestricted resolution. SIAM Journal on Computing22(4), 661–
683 (1993)

22. Goldberg, E., Novikov, Y.: Berkmin: A fast and robust SAT-solver. In: Proceedings of the 2002 Design,
Automation and Test in Europe Conference (DATE’02), pp. 142–149. IEEE Computer Society (2002)

23. Gomes, C.P., Selman, B., Kautz, H.A.: Boosting combinatorial search through randomization. In: B.B.
C. Rich J. Mostow, R. Uthurusamy (eds.) Proceedings of the 15th National Conference on Artificial
Intelligence (AAAI’98), pp. 431–437. AAAI Press (1998)

24. Haken, A.: The intractability of resolution. Theoretical Computer Science39(2–3), 297–308 (1985)
25. Huang, J.: The effect of restarts on the efficiency of clause learning. In: M.M. Veloso (ed.) Proceedings

of the 20th International Joint Conference on Artificial Intelligence (IJCAI’07), pp. 2318–2323. AAAI
Press (2007)

26. Järvisalo, M.: Equivalence checking multiplier designs (2007). SAT Competition 2007 benchmark de-
scription,http://www.tcs.hut.fi/∼mjj/benchmarks/

27. Järvisalo, M., Junttila, T.: Limitations of restricted branching in clause learning. In: C. Bessiere (ed.)
Proceedings of the 13th International Conference on Principles and Practice of Constraint Programming
(CP 2007),Lecture Notes in Computer Science, vol. 4741, pp. 348–363. Springer (2007)

28. Järvisalo, M., Junttila, T.: On the power of top-down branching heuristics. In: Proceedings of the 23rd
AAAI Conference on Artificial Intelligence (AAAI-08), pp. 304–309. AAAI Press (2008)

29. Järvisalo, M., Junttila, T., Niemelä, I.: Unrestricted vs restricted cut in a tableau method for Boolean
circuits. Annals of Mathematics and Artificial Intelligence 44(4), 373–399 (2005)

30. Järvisalo, M., Niemelä, I.: The effect of structural branching on the efficiency of clause learning SAT
solving: An experimental study. Journal of Algorithms (2008). doi:10.1016/j.jalgor.2008.02.005, in
press.

31. Junttila, T.A., Niemelä, I.: Towards an efficient tableau method for boolean circuit satisfiability checking.
In: J.W. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.K. Lau, C. Palamidessi, L.M. Pereira, Y. Sagiv, P.J.
Stuckey (eds.) Proceedings of the 1st International Conference on Computational Logic (CL’00),Lecture
Notes in Computer Science, vol. 1861, pp. 553–567. Springer (2000)

32. Jussila, T., Heljanko, K., Niemelä, I.: BMC via on-the-fly determinization. International Journal on
Software Tools for Technology Transfer7(2), 89–101 (2005)

33. Kautz, H.A., Selman, B.: Planning as satisfiability. In:B. Neumann (ed.) Proceedings of the 10th Euro-
pean Conference on Artificial Intelligence (ECAI’92), pp. 359–363. John Wiley and Sons (1992)

34. Kraj́ıček, J.: Bounded arithmetic, propositional logic, and complexity theory,Encyclopedia of Mathe-
matics and Its Applications, vol. 60. Cambridge University Press (1995)

35. Kuehlmann, A., Ganai, M.K., Paruthi, V.: Circuit–basedBoolean reasoning. In: Proceedings of the 38th
Design Automation Conference (DAC’01), pp. 232–237. ACM (2001)

36. Latvala, T., Biere, A., Heljanko, K., Junttila, T.A.: Simple bounded LTL model checking. In: A.J. Hu,
A.K. Martin (eds.) Proceedings of the 5th International Conference on Formal Methods in Computer-
Aided Design (FMCAD’04),Lecture Notes in Computer Science, vol. 3312, pp. 186–200. Springer
(2004)

37. Li, C.M., Anbulagan: Heuristics based on unit propagation for satisfiability problems. In: M. Pollack
(ed.) Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI’97), pp.
366–371. Morgan Kaufmann (1997)

38. Marques-Silva, J., Guerra e Silva, L.: Solving satisfiability in combinational circuits. IEEE Design &
Test of Computers20(4), 16–21 (2003)

39. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfiability. IEEE
Transactions on Computers48(5), 506–521 (1999)

40. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT
solver. In: Proceedings of the 38th Design Automation Conference (DAC’01), pp. 530–535. ACM (2001)

27

41. Nikolenko, S.I.: Hard satisfiable instances for DPLL-type algorithms. Journal of Mathematical Sciences
126(3), 1205–1209 (2005)

42. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1995)
43. Pyhälä, T.: Factoring benchmarks for SAT-solvers (2004). http://www.tcs.hut.fi/Software/

genfacbm/
44. Robinson, J.A.: A machine oriented logic based on the resolution principle. Journal of the ACM12(1),

23–41 (1965)
45. Strichman, O.: Tuning SAT checkers for bounded model checking. In: E.A. Emerson, A.P. Sistla (eds.)

Proceedings of the 12th International Conference on Computer Aided Verification (CAV’00),Lecture
Notes in Computer Science, vol. 1855, pp. 480–494. Springer (2000)

46. Thiffault, C., Bacchus, F., Walsh, T.: Solving non-clausal formulas with DPLL search. In: M. Wallace
(ed.) Proceedings of the 10th International Conference on Principles and Practice of Constraint Program-
ming (CP’04),Lecture Notes in Computer Science, vol. 3258, pp. 663–678. Springer (2004)

47. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: A. Slisenko (ed.) Studies
in Constructive Mathematics and Mathematical Logic, Part II, Seminars in Mathematics, V.A. Steklov
Mathematical Institute, Leningrad, vol. 8, pp. 115–125. Consultants Bureau (1969). English translation
appears in J. Siekmann and G. Wrightson, editors, Automation of Reasoning 2: Classical Papers on
Computational Logic 1967–1970 pages 466–483, Springer 1983

48. Urquhart, A.: Hard examples for resolution. Journal of the ACM 34(1), 209–219 (1987)
49. Urquhart, A.: The complexity of propositional proofs. Bulletin of Symbolic Logic1(4), 425–467 (1995)
50. Velev, M.N., Bryant, R.E.: Superscalar processor verification using efficient reductions of the logic of

equality with uninterpreted functions to propositional logic. In: L. Pierre, T. Kropf (eds.) Correct Hard-
ware Design and Verification Methods, Proceedings of the 10th IFIP WG 10.5 Advanced Research Work-
ing Conference (CHARME’99),Lecture Notes in Computer Science, vol. 1703, pp. 37–53. Springer
(1999)

51. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In: G. Gottlob, T. Walsh
(eds.) Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI’03),
pp. 1173–1178. Morgan Kaufmann (2003)

52. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning in a boolean
satisfiability solver. In: Proceedings of the 2001 International Conference on Computer-Aided Design
(ICCAD’01), pp. 279–285. ACM (2001)

A Polynomial length RES proof of EPHPn+1
n

TheRES proof consists of four components, out of which the first three will be applied iteratively in a level-
wise fashion froml = n+ 1 to l = 3. The intuitive idea is that at levell we will derive PHPl−1

l−2 from PHPl
l−1

and EXTl in a polynomial number of resolution steps.

1. Resolve on the gatesol−1
i, j , wherei = 1, . . . , l +1 and j = 1, . . . , l , using the clauses in the CNF translation

of el−1
i, j := OR(el

i, j ,o
l−1
i, j) andol−1

i, j := AND(el
i,l−1,e

l
l , j).

2. Derive the long clause{el−1
i,1 , . . . ,el−1

i,l−2} from {el
i,1, . . . ,e

l
i,l−1} for eachi = 1, . . . , l −1.

3. Derive the short clauses of the form{¬el−1
i,k ,¬el−1

j,k } for 1≤ i, j ≤ l −1 and 1≤ k≤ l −2.
4. After iterating steps 1-3 froml = n+ 1 down tol = 3, derive the empty clause in two step from the

clauses in PHP21.

We will describe these steps now in more detail.

1. For eachel−1
i, j := OR(el

i, j ,o
l−1
i, j) we have the clauses

{¬el−1
i, j ,el

i, j ,o
l−1
i, j },{el−1

i, j ,¬el
i, j},{el−1

i, j ,¬ol−1
i, j },

and for eachol−1
i, j := AND(el

i,l−1,e
l
l , j) the clauses

{ol−1
i, j ,¬el

i,l−1,¬el
l , j},{¬ol−1

i, j ,el
i,l−1},{¬ol−1

i, j ,el
l , j}.

In particular, when resolving on the gateol−1
i, j , we obtain from these clauses the clauses

{¬el−1
i, j ,el

i, j ,e
l
i,l−1},{¬el−1

i, j ,el
i, j ,e

l
l , j},{el−1

i, j ,¬el
i,l−1,¬el

l , j}.

28

2. The derivation is described in Figure 11. Notice that, at each step, the variable resolved upon is under-
lined. Recall that{en+1

i,1 , . . . ,en+1
i,n } is the clause{pi,1, . . . , pi,n} in PHPn+1

n .

3. Figure 12 shows how to derive the clauses of the form{¬el−1
i,k ,¬el−1

j,k }.
4. By recursively applying the derivations in Figures 11 and12 from l = n+1 to l = 3, one can thus derive

the clauses{e2
1,1}, {e2

2,1}, and{¬e2
1,1,¬e2

2,1}. Finally, the empty clause can be derived from these clauses
with two resolution steps.

However, one can see that derived clauses in each PHPl
l−1 are used multiple times in theRES proof. For

example, for eachl , the clause{el
l ,1, . . . ,e

l
l ,l−1} is used in the order ofl times in the derivation shown in

Figure 11. Hence the end result is not aT-RES proof.

(repeat forj = 2, . . . , l −2)

(repeat forj = 1, . . . , l −2)

{el−1
i,1 , . . . ,el−1

i,l−2}

{el−1
i,1 , . . . ,el−1

i,l−2,e
l
i,1, . . . ,e

l
i, j , . . . ,e

l
i,l−2}

{el−1
i,1 , . . . ,el−1

i,l−2,e
l
i,1, . . . ,e

l
i,l−2,¬el

i,l−1}

{el−1
i,1 , . . . ,el−1

i,l−2,e
l
i,1, . . . ,e

l
i,l−2,e

l
l ,l−1,¬el

i,l−1}

{el−1
i,1 ,el

i,1, . . . ,e
l
i,l−2,e

l
l ,2, . . . ,e

l
l , j , . . . ,e

l
l ,l−1}

{el
i,1, . . . ,e

l
i,l−1}

{el−1
i,1 ,el

i,1, . . . ,e
l
i,l−2,¬el

l ,1}

{el
l ,1, . . . ,e

l
l ,l−1} (in PHPl

l−1)

{el−1
i,1 ,¬el

i,l−1,¬el
l ,1} (from step 1.)

{el−1
i, j ,¬el

i,l−1,¬el
l , j} (from step 1.)

{el
i,1, . . . ,e

l
i,l−1} (in PHPl

l−1)

{¬el
i,l−1,¬el

l ,l−1} (in PHPl
l−1)

(in PHPl
l−1)

{el−1
i, j ,¬el

i, j} (in PHPl
l−1)

Fig. 11 How to derive{el−1
i,1 , . . . ,el−1

i,l−2} in a polynomial number of resolution steps using Cook’s extension

for PHPn+1
n

29

{¬el
i,k,¬el

l ,k}

{¬el−1
j,k ,el

j,k,¬el
i,k} {¬el

i,k,¬el
j,k}

{¬el−1
i,k ,el

i,k,e
l
l ,k}

{¬el−1
i,k ,el

i,k,¬el
j,k}

{¬el−1
j,k ,¬el

i,k}

{¬el−1
j,k ,el

j,k,e
l
j,l−1}{¬el−1

i,k ,el
i,k,¬el

j,l−1}

{¬el−1
i,k ,¬el−1

j,k ,el
i,k}

{¬el−1
i,k ,¬el−1

j,k }

{¬el
i,l−1,¬el

j,l−1}{¬el−1
i,k ,el

i,k,e
l
i,l−1}

{¬el−1
i,k ,¬el−1

j,k ,el
i,k,e

l
j,k}

{¬el
j,k,¬el

l ,k}{¬el−1
j,k ,el

j,k,e
l
l ,k}

(in PHPl
l−1)

(from step 1.)

(in PHPl
l−1)(from step 1.)(from step 1.) (from step 1.)

(in PHPl
l−1)

(in PHPl
l−1)

Fig. 12 How to derive{¬el−1
i,k ,¬el−1

j,k } in a polynomial number of steps using Cook’s extension for PHPn+1
n

