Matti Jarvisalo and Tommi Junttila. 2008. Limitations of restricted branching in clause
learning. Constraints, to appear, 29 pages.

© 2008 by authors and © 2008 Springer Science+Business Media

Preprinted with permission.

Limitations of Restricted Branching in Clause Learning

Matti J arvisalo - Tommi Junttila

Abstract The techniques for making decisions, that is, branchingy @l central role in
complete methods for solving structured instances of caim$isatisfaction problems (CSPs).
In this work we consider branching heuristics in the contExpropositional satisfiability
(SAT), where CSPs are expressed as propositional formiigstactice, there are cases
when SAT solvers based on the Davis-Putnam-Logemann-aosgrocedure (DPLL) ben-
efit from limiting the set of variables the solver is allowedranch on to so called input
variables which provide a strong unit propagation backdmrto any SAT instance. The-
oretically, however, restricting branching to input vaites implies a super-polynomial in-
crease in the length of the optimal proofs for DPLL (witholduse learning), and thus
input-restricted DPLL cannot polynomially simulate DPLh.this paper we settle the case
of DPLL with clause learning. Surprisingly, even with uniied restarts, input-restricted
clause learning DPLL cannot simulate DPLL (even withoutisilearning). The opposite
also holds, and hence DPLL and input-restricted clauseileg/DPLL are polynomially
incomparable. Additionally, we analyze the effect of inpestricted branching on clause
learning solvers in practice with various structured rgafld benchmarks.

Keywords propositional satisfiability, branching heuristics, dadearning, DPLL, proof
complexity, problem structure, backdoor sets

This is an extended version of a paper [27] presented at ttheld@rnational Conference on Principles and
Practice of Constraint Programming (CP 2007) in ProvideRteUSA. The first author gratefully acknowl-
edges financial support from Helsinki Graduate School in Quter Science and Engineering, Academy
of Finland (grants #211025 and #122399), Emil Aaltonen Eation, Jenny and Antti Wihuri Foundation,
Foundation of Technology TES, and Nokia Foundation. Thersegauthor gratefully acknowledges the fi-
nancial support from Academy of Finland (grant #112016).

Matti Jarvisalo, Tommi Junttila

Helsinki University of Technology TKK
Department of Information and Computer Science
PO Box 5400, FI-02015 TKK, Finland

E-mail: matti.jarvisalo@tkk.fi, tommi.junttila@tkk.fi

1 Introduction

Modern complete satisfiability (SAT) solvers (such as [8922,18] among others) pro-
vide an efficient way of solving various real-world probleasspropositional satisfiability.
Typical SAT solvers aimed at solving such structured pnolslere based on the conjunc-
tive normal form (CNF) leveDavis-Putnam-Logemann-Lovelamqocedure DPLL) [17,
16] and incorporate techniques suchraslligent branching heuristicsandomizatiorand
restarts[23], andclause learnind39] for boosting search efficiency.

Branching heuristics, that is, deciding on which varialdenext set a value during
search, play an important role in the efficiency of completd #ethods aimed at solv-
ing typically very large real-world problem instances.uitively, the inherent structure of
the problem domain is reflected in individual variables ia 8AT encoding, and making
decisions on structurally irrelevant variables may havexponential effect on the running
times of SAT solvers.

In SAT-based approaches to structured problems such aslbdunodel checking [10]
and automated planning [33], the CNF encoding is often ddrivom a transition rela-
tion, where the behavior of the underlying system is depeinde theinput—initial state,
nondeterministic choices due to external control, et eetef the system. Empirical case
studies [14, 20,45, 19] have shown that, in some cases, S&rsdenefit from restricting
the variables the solver is allowed to branch on to so cafipdt (or independent) vari-
ables corresponding to the input of the underlying system. Byiang that the system
behavior is determined by its input, it is in fact the casd #ihvariables in the SAT en-
coding of the system can be assigned through unit propagatice all input variables have
been assigned values. In other words, the set of input Jasabastrong unit propagation
backdoor sef{51]—although possibly not ominimumcardinality. HenceDPLL remains
complete even if branching is restricted to the set of in@utables alone. Intuitively, this
drops the raw search space size frd@ 2 with | < N, wherel andN are the number of
input variables and all variables in the CNF encoding, retyaly.

From another point of view to the effects of different teciugs for branching, one can
investigate théest-cas@erformance of SAT algorithms througioof complexityf13], by
studying the relative power of their underlying inferengstems (oproof systemsn terms
of the shortest existing proofs in the systems. For two psystemsSandS, we say that
S (polynomially) simulates B, for all infinite families {F,} of unsatisfiable CNF formulas,
there is a polynomial that bounds for &) the length of the shortest proofs $1w.r.t. the
length of the shortest proofs @ If S simulatesS and vice versa, theBandS arepoly-
nomially equivalentlf S cannot simulat&and vice versa, theBandS areincomparable
From the practical point of view, i cannot simulaté, we know that any implementation
of S can suffer a notable decrease in efficiency compared to imepi¢ations ofs. For ex-
ample, through a formal characterization@®LL with clause learning, calledL, Beame
et al. [9] show thaCCL can provide superpolynomially shorter proofs tiaPLL, and thus
DPLL cannot simulat€L.

Considering restricting branching bPLL algorithms to input variables, a natural ques-
tion to ask iswvhether the power of the underlying inference systeni¥al -based solvers
is affected by the input-restrictiofror DPLL without clause learning, this question is an-
swered in [29]: input-restricteDPLL cannot simulat®PLL.

In this paperwe settle the case of input-restrictéd: it turns out that input-restricted
CL cannot simulateCL. This implies that all implementations of clause learnbBLL,
even with optimal heuristics, have the potential of suffgra notable efficiency decrease if
branching is restricted to input variables. In fact, we shioat even with unlimited restarts

and the ability to create conflicts at will, input-restridt€L cannot even simulate the ba-
sic DPLL without clause learningThis is surprising, since the unrestricted version of this
variant of CL can efficiently simulate (general) Resolution [9], beinggtvery powerful
compared taDPLL. Additionally, we evaluate the effect of input-restrictbthnching on
clause learning with various structured real-world benatk®, with possible explanations
for the reasons why input-restricted branching can in fantlér the efficiency of typical
clause learning solvers.

As preliminaries, in Section 2 we define Boolean circuitsichiwe use for representing
general propositional formulas, and discuss their rataiiloCNF formulas. We then review
the Resolution proof system and characterization®BEL and CL, and discuss known
results concerning their relative efficiency (Section 3cti®n 4 concentrates on the tight
correspondence between a constrained Boolean circuittar@NF translation from the
viewpoint of DPLL and clause learning, which is of value in presenting thertiteml results
of this work. The main theoretical and experimental contitns of this paper are presented
in Sections 5 and 6, respectively.

2 Propositional Satisfiability and Constrained Boolean Cicuits

In this section we review basic concepts related to projosit satisfiability and define con-
strained Boolean circuits which we use as the representédion for structural formulas.
We also discuss the relationship between constrained Boalgcuits and clausal propo-
sitional (CNF) formulas, and present the translation framnstrained Boolean circuits to
CNF which is applied in this work.

2.1 Propositional Satisfiability

Given a Boolean variablg there are twditerals, the positive literal, denoted by and the
negative literal, denoted byx, where— is the logical negation (not). As usual, we identify
—=x with x. A clauseis a disjunction ¥, or) of distinct literals and a CNF formula is a
conjunction (\, and) of clauses. When convenient, we view a clause as adetitef literals
and a CNF formula as a finite set of clauses; e.g. the fortfawa-b) A (—c) can be written
as{{a,—b}, {—c}}. The sets of variables appearing as positive and negatvalk in a CNF
formulaF are denoted byars* (F) andvars™ (F), respectively, and the set of variables by
vars(F); for a clauseC, vars™ (C), vars— (C), andvars(C) are defined similarly.

Given a CNF formuldr, a (partial)assignmentor F is a (partial) functiort : vars(F) —
{t,f}, wheret andf stand fortrue andfalse respectively. With a slight abuse of notation, if
7(X) =V, thent(—x) = —v, where—t = f and—f =t. A clause issatisfiedby 7 if it contains
at least one literdl such thatr (I) =t. If 7(l) = f for every literall in a clause, the clause
is falsified by t. An assignment satisfiesa CNF formula it satisfies every clause in the
formula. A formula issatisfiableif there is an assignment that satisfies it, amdatisfiable
otherwise.

2.2 Constrained Boolean Circuits

The correspondence between system input of a real-worldlgmroand propositional vari-
ables in a CNF encoding is not evident. However, in SAT-baggatoaches, direct CNF

encodings of a problem domain are rarely used: the problemarad is typically encoded
with a general propositional formulp, which is then translated into an equi-satisfiable CNF
formula by introducing additional variables for the subrfioilas ofg. Boolean circuit{see
e.g. [42]) offer a natural way of presenting propositiorahiulas in a compact DAG-like
structure withsub-formula sharingwhich helps in lowering the number of additional vari-
ables needed. Additionally, the system input of the origprablem is presented biyput
gatesin Boolean circuits.

A Boolean circuit over a finite séB of gatesis a set% of equations of formg :=
f(g1,...,0n), whereg,g1,...,0n € Gandf : {f,t}" — {f,t} is a Boolean function, with the
additional requirements that (i) eaghke G appears at most once as the left hand side in the
equations ir¥’, and (ii) the underlying directed graph

(GE(®)={({d,9)eGxG|g:="f(....d,...) €€}

is acyclic. If (¢, g) € E(%), thend is achild of g andg is aparentof ¢'. Similarly, if there
is a non-empty path from a gageto a gateg in (G,E(%)), thend' is adescendanof g. If
g:= f(g1,...,0n) is in €, theng is an f-gate (or of typef), otherwise it is arinput gate
A gate with no parents is asutput gate A (partial) assignment fo¥ is a (partial) function
T: G — {f,t}. An assignment is consistentith % if 7(g) = f(1(g1),...,7(gn)) for each
g:= f(g1,...,0n) in €. Note that a circuit with input gates has' Zonsistent assignments.
A constrained Boolean circuit’? is a pair(%’, 1), where% is a Boolean circuit and
is a partial assignment f&f . With respect to 4%,), each(g,v) € T is aconstraint andg
is constrainedto v if (g,v) € T. An assignment’ satisfies¢™" if (i) it is consistent with%’,
and (ii) it respects the constraintsinmeaning that for each gates G, if 7(g) is defined,
then1’(g) = 7(g). If some assignment satisfigs', then¢" is satisfiableand otherwise
unsatisfiable
In the following, we will apply the following Boolean funains as gate types. Notice
that this set of is sufficient for representing all Booleandhions, and on the other hand,
enough for describing the constructions applied in thisspapan intuitive way.

— NOT(g) evaluates ta if and only if g evaluates td.

— OR(g1,...,0n) evaluates ta if and only if at least one o1, . . ., g, evaluates ta.
— AND(ds,...,0n) evaluates ta if and only if all g1, ..., gn evaluate td.

— XOR(g1,0) evaluates ta if and only if exactly one ofy;, g, evaluates ta.

Example 1A Boolean circuit’™ and its graphical representation are shown in Figure 1. The
circuit models a full-adder with the constraint that thergaout bitc; ist. A satisfying truth
assignment for the circuit i = {(cy, 1), (t1,t), (00,), (t2,), (t3,1), (@0, t), (bo,T), (Co, 1) }.

¢ = {C]_ = OR(tl,tz)
ty := AND(t3,Cp)
0p := XOR(t3,Co)

t := AND(@o, bo)
t3 := XOR(ap,bo) }
T={{c;,t)}

Fig. 1 A constrained Boolean circuif™ and its graphical representation.

For notational convenience, when well-defined, jbi@ of two constrained circuits,
AT = (of, 1) and A% = (,0), is T U B = (o7 UPB,TUB). When applying the join,
we will always make sure that the result is a well-defined tairsed Boolean circuit. This
means that the requirements (i) on unique definition and(ipcyclicity above are met,
and thatr U 6 is a (possibly partial) function.

2.3 Translating Boolean Circuits to CNF

In order to exploit clausal SAT solvers in solving instancé8Boolean circuit satisfiabil-
ity, the circuit in question has to be translated to CNF. s thork we apply the standard
“Tseitin-style” [47] translation. First, a variabtgis'introduced for each gate For encoding
the functionalities of gates, the idea is to represent the#d equivalencg < f(9s,...,0n)

as clauses; hence for eagh= f(g,...,0n) the corresponding introduced clauses are as
shown in Table 1. Similarly, a unit clause is added for eaafstraint(g,v) € T as shown

in Table 1. Given a constrained Boolean circéit, we will denote its CNF translation by
enf(€7).

Table 1 CNF translation for constrained Boolean circuits.

gate or constraint clauses

g:= XOR(d1,02) (=GV =01V —=G2), (=GV G1V §2), (GV =GV G2), (GV &1V —G2)
g:=OR(dy,--,Gn) (=GV @1 V- V), (GV=Gr),. .. (G —=Gn)
g:=AND(G1,..-,0n) (=GV 1), - (=GVGn), (GV =GV -+ V)
g:=NOT(g1) (=6V 1), (GV &)

(gt)er (9)

(gf) et (=0)

2.4 CNF Formulas as Constrained Circuits

Any CNF formulaF = {Cy,...,C} can naturally be seen as a Boolean circuit. Basicglly,
is a Boolean circuit with anND of ORs which represent the clauses. Formaliuit(F) :=
(€, 1) is defined by associating an input gate/ith each variable € vars(F), aNOT-gate
g-x with eachx € vars™(F), anoR-gategc, with each claus€; € F, anAND-gategr with
F, and by setting = {(ge,t)} and

% = {Or :=AND(Oc,---,0c,) } U{G-x := NOT(X) | X € vars™ (F)} U
{gci = OR(G(|;71),...,G(|i7ni)) | C = {|i71,...,|i1ni} S F}

whereda (—x) = g-x anda (x) = x for eachx € vars(F).

Example 2The constrained Boolean circuitrcuit(F) for the unsatisfiable CNF formula
F = {{a b}, {a —b},{—a b},{—a —b}} is shown in Figure 2.

Fig. 2 The constrained Boolean circuitrcuit({{a,b},{a, —b},{—-a b},{—-a,—b}}).

3 Proof Systems for CNF Formulas

In this section we discuss the propositional proof systehisterest in the context of this
work, with known results on their relative efficiency. Fjrste formally define proposi-
tional proof systems and the necessary proof complexityréie notions. We then review
the well-known Resolution proof system and some of its refimets. After this, we con-
centrate on the Davis—Putnam-Logemann—LovelandirL) procedure [17,16] and the
additional techniques applied in typidaPLL-based SAT solvers today—most importantly,
clause learning. In doing so, we go through characteriaataf DPLL (with and without
clause learning) as proof systems, which we will apply inttfeoretical part of the work.

3.1 Propositional Proof Systems and Complexity

Formally, apropositional proof systerfl3] is a polynomial-time computable predicabe
such that a propositional formula is unsatisfiable if and only if there is @roof p for
which S(F, p) holds. Thus a proop of F is acertificateof the unsatisfiability of, and a
proof system is a polynomial-time procedure for checkirgwlidity of proofs in a certain
format.

While proof checking is efficient, finding short proofs may di#ficult, or, generally,
impossible since short proofs may not exist for too weak afpsgstem. As a measure of
hardness of proving unsatisfiability of a CNF formiain a proof systens, the (proof)
complexity G(F) of F in Sis thelengthof the shortest proof of in S For a family{F,}
of unsatisfiable CNF formulas over an increasing number afkes, the (asymptotic)
complexity of{F,} is measured with respect to the number of clauség.in

For two proof systemsS and S, we say thaiS (polynomially) simulates 8 for all
families{F,} there is a polynomiap such thaCg (Fn) < p(Cs(Fn)) for all F,. If Ssimulates
S and vice versa, theB and S are polynomially equivalentlf there is a family{F,} for
which S does not polynomially simulatg, we say thafF,} separates $rom S. If Scan
be separated froi and vice versa, theBandS areincomparable Notice that polynomial
simulation gives a partial order for proof systems basecheir telative power.

With these definitions, in order to show that a proof syst&oannot simulate another
systemsS, it suffices to exhibit an infinite family{F,} of unsatisfiable formulas over an
increasing number of variables, such that the minimum kemgoofs inS for {F,} are
asymptotically superpolynomially longer than the minimlemgth proofs irS with respect
to the number of clauses . It is worth noticing that, from this basic proof complexity

theoretic point of view onlynsatisfiabldormulas (and hence proofs of unsatisfiability) are
of interest. Although exponential lower bounds BPLL on families ofsatisfiableformulas
have been shown in restricted probabilistic contexts [41l, 4, a satisfying truth assignment
acts as a polynomial length witness for the satisfiabilitaofarbitrary satisfiable formula
F.

3.2 Resolution
The well-known Resolution proof system [4RKS) is based on theesolution rule Let
C,D be clauses, anda Boolean variable. The resolution rule is

{X}UC {—\X}UD
CuD

or, in other words, we cadirectly derive GJD from {x} UC and {—x} UD by resolving
on x For a given CNF formuld, aRES derivation of a clause @Grom F is a sequence of
clausest = (C1,Cy,...,Cm = C), where eaclf;, 1 <i < m, is either (i) a clause ifr (an
initial clause), or (i) directly derived with the resolution rule from twabause<C;, C, where
1< j,k< i (aderived clausg Thelengthof rris m, the number of clauses occurring in it. A
RES proof (for the unsatisfiabilitydf a CNF formulaF is anyRES derivation of the empty
clause 0 fronF.

Any RES derivationrt= (C1,Cy,...,Cryy) can be presented as a directed acyclic graph,
in which the leafs are initial clauses and the other nodeesemt derived clauses. The edge
relation is defined so that there are edges f@mandC; to Cy, if and only if C¢ has been
directly derived fromC; andC; using the resolution rule. Mamgfinements oResolution,
in which the structure oRES proofs is restricted, have been proposed and studied. Here
of particular interest igree-like ResolutiofT-RES), with the requirement that proofs are
representable as trees. This implies that a derived cldused multiple times in the proof,
must be derived anew each time starting from initial clauses

3.2.1 Lower Bounds iRES and its Refinements

Super-polynomial (and even exponential) lower bounds oofdengths inRES have been
shown for various families of CNF formulas, see [11,24,48714,3,6,7] for examples.
Among the most studied such families is thigeon-hole principlewhich states that there
is no injective mapping from am-element set into an-element set ifm > n (that is,m
pigeons cannot sit in fewer than holes so that every pigeon has its own hole). We will
consider the casm= n+ 1 encoded as the CNF formula

n+1 n n n n+1
PHA ™ = A (\/ pi.j) AAN A EPvopeg),
i=1 j=1 j=li=1i"=i+1

where eaclp; j is a Boolean variable with the interpretatiop; § is t if and only if theith
pigeon sits in thg™ hole”.

Theorem 1 ([24]) There is no polynomial lengtRES proof of PHPYL.

Itis also known thaT-RES is a proper refinement &ES in the sense that-RES cannot
polynomially simulateRES.

Theorem 2 ([21,49])T-RES cannot polynomially simulatRES.

This originates from the facts theggular resolutioncannot simulat®ES [21, 5], andT-RES
in turn cannot simulate regular resolution [49].

3.3 The Davis—Putnam-Logemann-Loveland Procedure

Most modern complete SAT solvers are based on the Davisafatinogemann—Loveland
(or DPLL) procedure [17,16]. Given a CNF formufaas input DPLL is a depth-first search
procedure building a partial assignmantor the variables irF through (i)branchingand
(i) unit propagation(UP). In branching, the current assignmeris extended with the as-
signment @ecision (x,v), wherev is eitherf of t, for some unassigned variabte Unit
propagation refers to applying thuit clause rule The unit clause rules states that if there
is a clausgl1 Vv --- VI VI) € F such thatr(l;) = f for each 1<i < k, the current partial
assignment can be extended witfi, t).

An assignment is extended until (i) some variablould be assigned bothandt (a
conflictis reached, with as theconflict variablg or (ii) T satisfied= (in which caseDPLL
terminates). In case (i), non-clause learnibgLL solversbacktrackto the last branching
decision which has not been backtracked upon, undoing sijasents made by UP af-
ter the particular decision, and flip the decisi@®LL terminates on an unsatisfiable CNF
formula when there are no untried branches left.

From the proof theoretic point of vieyPLL can be seen as a tableau proof system with
two rules: thebranching ruleand the unit clause rule. The branching rule, corresponiding
branching on a variable, extends the branch into two branches, one of which is ertnd
with the entryx and the other with-x. The unit clause rule, defined above, is similarly
applied by extending the branch withAs typical, a branch is (fully) extended until we
have both of the entries and —x for some variable, or no new entries can be generated
with the branching and unit clause rules. From an algorithpaiint of view, the choice of
in which order branches are extended is part of the solvetesty, and based ondzcision
heuristic The other branch resulting from the particular applicatibthe branching rule is
handled through backtracking. With this intuition, it i®al that a search tree traversed by
a DPLL algorithm corresponds to a binary tableau proof, havingdhm of a binary tree,
with all branches fully extended. HenceP&LL proof will here be such a tableau proof.
The length of @DPLL proof is defined as the number of applications of the bramghite
in the proof.

One-step lookaheatsee, e.g., [37]) is an often implemented technique in (clanse
learning)DPLL algorithms. In one-step lookahead, if there is an assighmina currently
unassigned variabbesuch that the current assignmenwith the addition of(x,v) leads to a
conflict using unit propagation, theris immediately assigned the valt®. This technique
does not add to the strengthDPLL, since the same effect can obviously be accomplished
by branching orx.

It is well-known thatDPLL and T-RES can polynomially simulate each other (see [8]
for example). One can show that for any unsatisfiable CNF déxma minimum length
DPLL proof, with applications of the unit clause rule “simulateg branching”, always
corresponds one-to-one with a minimum len@tiRES proof, and vice versa.

Fact 1 DPLL and T-RES are polynomially equivalent.

3.3.1 Implication Graphs

Implication graphscapture the ways of deriving values for variables with thé& alause
rule from assignments made by branching. We will apply tbiscept in the following for
defining clause learning. However, first we need some addikierminology.

A stageof DPLL on a CNF formulaF is characterized by thdecision literalsin the
branch. Considering an arbitrary branch, the variableigasd by branching are calletb-
cision variablesand those assigned values by UP amplied variables with analogous
definitions fordecision literalsandimplied literals The decision level of a decision vari-
able xis one more than the number of decision variables in the bréefore branching
onx. Thedecision level of an implied variableig the number of decision variables in the
branch whenxis assigned a value. The decision leveDgfLL at any stage is the number of
decision variables in the branch.

For a given CNF formuld and a set of literalk, we denote by, L Fyp | the fact that
| can be deduced frofa andL by iteratively applying the unit clause rule.

Definition 1 For a CNF formulaF, theimplication graph G= (V,E) at a given stage of
DPLL with the set of decision litera® is a directed graph. The set of nodes is defined as

V={A}UDU{l |F,DFypl},
whereA is a speciatonflict node and the edge relation is

E = {(-I;,I) | {l1,....lx,1} €F and-ly,...,-lkeV}U
{{(GA), (=X, A) | Xx,—~x eV}

For a given implication graph, a variabtevith bothx, —x € V is called aconflict variable
andx, —x areconflict literals An implication graph contains a conflict if it contains a fian
variable;DPLL has a conflict at a given stage if the implication graph at thgescontains a
conflict.

3.4 DPLL with Clause Learning and Modern SAT Solvers

Clause learnindPLL algorithms differ from non-clause learning algorithms ihat hap-
pens when reaching a conflict. If a conflict is reached witleowt branchingPPLL (with

or without clause learning) determines the formilaunsatisfiable. In other cases, non-
clause learnin@PLL algorithm perform simple backtracking as previously ekpd. In
clause learnindPLL algorithms, however, the conflict enalyzed and alearned clause
(or conflict clausg which describes the “cause” of the conflict, is addedFtoAfter this
the search is continued typically by applyingn-chronological backtrackingor conflict-
driven backjumpingfor backtracking to an earlier decision level that “calisbeé conflict.
Conflict-driven backjumping results in the fact that, asag®d to the basic backtracking in
DPLL, the other branch (opposite value) of decision variablesiecessarily forced sys-
tematically when backtracking. In other words, branchimglause learnindpPLL is seen
simply as assigning values to unassigned variables, ritharas a branching rule in which
by branching on a variabbethe current branch is always extended into two branches, one
with x and the other with-x.

10

3.4.1 Conflict Graphs and Conflict Analysis

Similarly as withDPLL, thestageof a clause learnin@PLL algorithm is characterized by
the set of decision literals. At a given stage of a clausanlegDPLL algorithm, a clause is

calledknownif it either appears in the original CNF formukaor has been learned earlier
during the search. Conflict analysis is based aoaflict graph which captures one way
of reaching the conflict at hand from the decision variablesding the unit clause rule on
known clauses.

Definition 2 Given an implication grapks, aconflict graph H= (V,E) based orG is any
acyclic subgraph o having the following properties.

1. H containsA and exactly one conflict literal pai —x.

2. All nodes inH have a path t@\.

3. Everynodé €V \ {A} either corresponds to a decision literal or has preciselytddes
=lg, —lo,...,—lg as predecessors whefig, Io,, Ik, 1 } is a known clause.

A conflict graph describes a single conflict and contains aelgision and implied literals
that can be used in reaching the conflict when applying thealemise rulén some order
Hence the way of implementing unit propagation in a solvexr &raeffect on the choice of
the conflict graph. The acyclicity of conflict graphs resirten the fact that unit propagation
is not used to rederive already assigned literals.

Conflict clauses are associated witlitsin a conflict graph. Fix a conflict graph con-
tained in an implication graph with a conflict. @nflict cutis any cut in the conflict graph
with all the decision variables on one side (fleason sidgand, in addition toA, at least
one conflict literal on the other side (tkhenflict sid¢. Those nodes on the reason side with
at least one edge going to the conflict side in a conflict cubfarcause of the conflict. With
the associated literals settoUP can arrive at the conflict at hand. The disjunction of the
negations of these literals form thenflict clause associated with the conflict.cTite strat-
egy for fixing a conflict cut is called thearning schemeA learning scheme which always
learns a currently unknown clause is calfemh-redundant

Example 3A hypothetical conflict graph is illustrated in Figure 3. Daon literals are rep-
resented with filled circles, and implied literals with tawll circles. The decision level of
each literal is presented with the labb@d. For example, the conflict variablgs is at de-
cision level 5. Notice that since the literals at decisiorelel are missing from this conflict
graph, they are not part of the reason for the particular impnfh the figure two possible
conflict cuts are shown with the associated conflict clauses.

3.4.2 Unique Implication Points, Conflict-Driven Backjumgy andCL Proofs

Typically implemented clause learning schemes are basegnmue implication points
(UIPs) [39]. A UIP in a conflict graph is a nodeon the maximum decision levdlsuch that
all paths from the decision variableat leveld to A go throughu. Such au always exists
asx satisfies this condition. Intuitively is asinglereason for the conflict at level. Thus
one can always choose a conflict cut that results in a conficise with a UIP as the only
variable from the maximum decision level. Such a conflicus&ahas the property that the
UIP variable can be immediately set to the value oppositéiécctirrent assignment using
the unit clause rule when backtracking (the phrase “the B#8sertetlis sometimes used).
Furthermore, UIP learning schemes enatseflict-driven backtrackingor backjumping,

11

{X5, X8, X3, X12}
!

{Xa,%g, %12}
/

X13@5

X3 @1 X13@5

\
N + 1-UIP cut

—————— ' _ N
Xo@2 X12@2 2-UIP/lastUIP cut

Fig. 3 Example of a conflict graph, and two possible conflict cuts

in which DPLL backtracks to the maximum decision level of the variablasmthan the UIP
in a conflict clause. A popular version of UIP learning is tRgIP scheme, where a conflict
cut is chosen so that the UIP closesttawill be in the associated conflict clause. Differ-
ent learning schemes are evaluated in [52], showing thestnbsas of the 1-UIP scheme in
practice.

Example 4Recall the conflict graph in Figure 3. The 1-UIP in this graplthe literalx,.
One conflict cut corresponding to the 1-UIP learning schemtled cut labeled “1-UIP cut”.
The cut labeled “2-UIP cut/last UIP cut” can result from appd thesecond UIP scheme
in which a conflict clause with the UIP second closestits chosen. In this example, the
“2-UIP cut” is at the same time a cut that can result from ajmglythe last UIP schemén
which a cut with the decision literal on the maximum decidmrel as the UIP is chosen.

For investigating the efficiency of clause learnib§LL in proof complexity theoretic
terms, we need to have a proof system characterization wéel@arningdPLL algorithms.
We will use the following characterization, referred to he €L proof systemHere we
loosely follow the characterization of [9]. A clause leamiproof (orCL proof) induced by
a learning schem®is constructed by applying branching and the unit clause ndingSto
learn conflict clauses when conflicts are reached, so thheiarid, aonflict can be reached
at decision level zerdWhen a conflict cut with a UIP is selected, it is possible tplap
conflict-driven backjumping based on the conflict claus&e@tise, simple backtracking is
applied. Notice that this definition allows even the mostegainondeterministic learning
schemd9], in which the conflict cut is selected nondeterminidticdrom the set of all
possible conflict cuts related to the conflict graph at hand.

Hence, aCL proof can be seen as a tree in which the traversal order isetarkthe
nodes. Each leaf node in the tree is labeled with a confligilgra conflict cut in the graph,
and the decision level onto which to backjump. Now, the pmyaftemCL consists ofCL
proofs under any learning scheme. The length @Laproof is the number of branching
decisions.

12

While the practical efficiency gains of implementing clalesgrning intoDPLL-based
algorithms are well-established, the first formal studyl@gower of clause learning is [9]:
CL can provide exponentially shorter proofs th&RES even if no restarts are allowed.
Thus we have the following corollary.

Corollary 1 (of Theorem 1 in [9]) DPLL cannot polynomially simulatéL.

3.4.3 Restarts and thelL-- Proof System

Restartingis an additional technique often implemented in modernesslWVhen a restart
occurs, the decisions and unit propagations made so farretene, and the search con-
tinues from decision level zero. The clauses learned scefanin known after the restart.
Intuitively, restarts help in escaping from getting stunkhiard-to-prove sub-formulas. In
practice, the choice of when and how often to restart is gdheostrategy of a solver. When
any number of restarts are allowed during search, we say thaasunlimited restartsFor

a recent investigation into the effect of restarts on theiefficy of clause learnin@PLL
algorithms, see [25].

Beame et al. [9] defin€L-- as CL with branching allowed also on already assigned
values. Although being non-typical in practice, this eesldreating immediate conflicts at
will. Although it is not known whethe€L can simulateRES, it has been shown that this is
true for CL- - using unlimited restarts.

Theorem 3 ([9]) RES and CL-- with unlimited restarts and any non-redundant learning
scheme are polynomially equivalent.

We note that the proof of this theorem in [9] relies on the thet unit propagation is seen
as applications of the unit clause rule, and hence the ruleats® be left unapplied when
convenient. This is non-typical for implementations ofuda learningPLL; they usually
apply unit propagation eagerly whenever possible.

4 Relating CNF Proof Systems and Circuit Structure

A key element in this work is the tight correspondence betwaeeonstrained Boolean cir-
cuit T and its CNF translatiornf(¢’"). In this section we review details on the corre-
spondence of deduction in the CNF translation of a Boolesaitiwith the original circuit
structure, and on how branching PPLL and CL can be restricted based on the original
circuit structure. These details play an integral role mttieoretical results presented in the
next section.

4.1 Unit Propagation on the Level of Circuits

As there is a one-to-one relationship between the gatesanstrained Boolean circuit”
and the variables in the corresponding CNF formulg %"), the variables can be thought to
inherit the structural properties of the gates. For exapgpieput variableis a variable that
corresponds to an input gate in the original Boolean cireuitl we will take the liberty of
using the terms “gate” and “variable” synonymously. Funthere, since the CNF translation
in Table 1 encodes in a natural way the semantics of the gatégropagation in the CNF
formula can be seen as working on the level of the circuit. ihier discussion on this can

13

be found e.g. in [29], using a unit propagation equivalerrabterization of Boolean con-
straint propagation as deduction rules for circuits [3gsiBally, such circuit level Boolean
constraint propagation can set a value on a gate if and oahjtitlause propagation can set
a value on the corresponding Boolean variable in the CNElka#ion. For example, consider
the gateg := AND(g1,02) and its CNF translatio(—§V §1) A (=§V &z) A (§V —@1V —Gz).
Now whenever the ga® is assigned t, the gateg can be propagated fdy the semantics
of AND. On the CNF level, we can equivalently propagate the vagigltb f by applying
the unit clause rule whenever the variabjeis assigned té through the clausé-§v §,).
The same kind of equivalent behaviour is noticed in a “topadofashion when assigning
the gateg to t: on the circuit-level, the gategy andg, can be propagated to and on the
CNF level we can equivalently propagate the varialgearidd; to t through the clauses
(=6V G1) and(—§V §2), respectively, by applying the unit clause rule wheneventriable

g is assigned tb.

Hence we will also take the liberty of saying that unit progi@on sets a value on a gate
when referring to unit propagation setting a value on theesponding Boolean variable
in the CNF translation. Similarly, weranch on a gatevhen referring to branching on the
corresponding Boolean variable. CorrespondinglfpRLL or CL proof of a constrained
circuit T means a proof of the translatianf(%7).

Since unit propagation can be also seen as Boolean corngirapagation on the level
of constrained circuitsPPLL can also be implemented as a circuit level procedure, see,
e.g., [38,31,35,46]. Since conflict graphs are based on hewnit clause rule is applied,
clause learning can also be incorporated in such circuél B?LL-based solvers [35,46].
Thus the results in this paper concerning the relative pafemput-restricted clause learn-
ing DPLL hold for such circuit level approaches, too. Fipalle note that for instance [35]
does not consider input-restricted branching but appliep-alown branching based on jus-
tification frontiers. The relative proof complexity theticepower of the related top-down
branching restrictions is analyzed in [29, 28].

4.2 Restricting Branching iDPLL andCL to Inputs

In structured application domains of SAT solvers, such &smated planning and bounded
model checking of hardware and software, the problem at lmhdsed on a transition
relation, where the behavior of the underlying system isedepnt solely on thenput of
the system. In the Boolean circuit encodiid of such a structural problem, the input is
represented by the set of input gates of the ciréuitits(4’). Since the values of the other
gates in the circuit can be evaluated when all the gatesins(¢’) have values, branching
in DPLL with unit propagationcan be restricted to the variables associated ijthts(%")
without losing completeness. Intuitively, the idea is theice the number of input gates
linputs(%)| is often much less than the total amol@f of gates in%’, the search space size
is reduced from &l to 2iPuts(¥)l where|inputs(%)| < |G|.

By allowing branching in th®PLL andCL proof systems on input gates only, we arrive
at the proof systemBPLL;nputs ANACLinputs, respectively. From the view of proof complex-
ity, however, in [29] a formal study on the effect of restirigt branching inrDPLL (without
clause learning) tinputs(%’) reveals that this weakens the proof system considerably.

Theorem 4 ([29]) DPLL;nputs cannot polynomially simulatePLL.

In the following section, we investigate the proof complgitheoretic effect of input-
restricted branching in the context dfwuse learningDPLL-based SAT solving, which is

14

posed as an open question in [29]. In Section 6 we complerhénthteoretical study by
providing an experimental evaluation of the effect of irpestricted branching.

5 Restricted Branching and Proof Complexity

We will now consider the relative proof complexity theoegbower of input-restricted and
unrestricted branchinGL andDPLL. This will result in the refined relative efficiency hierar-
chy of DPLL andCL shown in Figure 4. An arrow without a slash from syst8to S means
thatS can polynomially simulat&, and with a slash tha$ cannot simulateS. Arrows la-
beled with ax are due to trivial subsumption. The new results, detailethénfollowing,
are represented by dashed arrows. The missing arrowsgdidieg those implied by the
transitivity of the results, represent questions whichagren to the best of our knowledge.

corollary of [21,49]

*

CLinputs

Fig. 4 Arefined relative efficiency hierarchy for the proof systeznasidered in this work.

The main result of this paper is characterized by the folhmtheorem.
Theorem 5 DPLL and CL--jnputs (With or without restarts) are incomparable.

This is a direct corollary of the forthcoming Lemmas 1 and Bu3 we get the following as
a direct corollary.

Corollary 2 CL--jnputs With unlimited restarts cannot polynomially simulaie.

We now proceed by proving Theorem 5 in two parts. First we shyasimple argument
why DPLL cannot simulat€Li,p,ts. We then discuss further the difference betw€ep, s
andDPLLi,puts by exhibiting an example of a family of Boolean circuits oni@hCLinputs
cansimulateCL, while DPLL;,,.ts CannotsimulateDPLL. The motivation here is two-fold.
On one hand, this shows the power of clause learning even bagrching is restricted to
inputs. On the other hand, the example gives an intuitivéaegbion of why the resultin [29]
on the power 0DPLL;puts With respect tdPLL cannot be directly adapted for proving the
analogous result fo€Linputs. Although CLinputs €an simulateCL on this particular family
of circuits, this is not the case in general for other farsiliafter the example, we proceed
by showing that in factCL--j,puts, €ven with conflict-driven backjumping and unlimited
restarts, cannot even simulab®LL. The proof relies on so calleedundant gatesand
applies known results on the very powerittended Resolutigproof system [47].

15

5.1 DPLL Cannot Simulat€Ln,yts

We now show thaDPLL cannot simulateCL,,.s. This results from the fact thaPLL
cannot simulat€L by additionally noticing thaCL andCL,p.ts are equivalent when con-
sidering circuits representing CNF formulas.

Lemma 1 There is an infinite family of constrained Boolean circuids Which DPLL has
superpolynomially longer minimum proofs th@hinputs.

Proof Take any infinite family{ /,} of CNF formulas that is a witness of Corollary 1 stating
thatDPLL cannot simulat€L. Define the family of Boolean circuit&ircuit(F) | F € {Fq}}.
The simplified CNF formula resulting from applying unit peation tocnf(circuit(F)) is
effectively the same as the simplified CNF formula resulfiogn applying unit propagation
to F; especially, theor-gate variables irenf(circuit(F)) that represent the clauses fn
are all assigned ta ThusCL will only branch on the variables ienf(circuit(F)) that are
associated with the input gatesafcuit(F) or their negations. ThuSLisputs Can simulate
CL onenf(circuit(F)), and the claim follows by Corollary 1. O

As a direct corollary, we have
Corollary 3 NeitherDPLL nor DPLL;nputs Can polynomially simulat€Linpyts.

Before considering whethell;,,.ts can simulateCL or DPLL, we next give a moti-
vating example which illustrates why the results in [29] be power ofDPLL;nputs With
respect tPLL cannot be directly adapted for proving the analogous résuLi,p,ts.

5.2 A Further Motivating Example

To highlight the strength of clause learning even when branggis restricted to input gates,
we now give an example of a famil{JJNSAT-2PAR,} wheren > 3, of Boolean circuits on
which CLinputs can simulateCL applying the 1-UIP learning scheme, althougRLL;,pts
cannot simulat®PLL on the family. The circuit

UNSAT-2PAR, := UNSATU (PARRUPAR., 0)
consists of two parts:
— the constant size circuit
UNSAT = circuit ({{a,b}, {a, —b},{—-a,b},{—-a,—-b}}), and
— two copies (foraandb, p € {a,b}) of the circuit structure
n-3

PAR] = {p :=x0R(y; x{)} U | {x :==x0R(Y’, 1. X, 1) } U

i=1

{X5-2:=XOR(A 1 YR)}-

Basically, PAR computes the parity of theinput gates/;, ..., yh, evaluating to true if
and only if an odd number of them are true.

16

xl{b <§x>.
b Lot
oP'e o'

Fig. 5 The constrained Boolean circuit UNSAT-2PARYI n= 4.

The circuit UNSAT-2PAR is shown in Figure 5. Now, since unit propagation will result
in a conflict in the UNSAT sub-circuit for any value of the gatdJNSAT-2PAR, yields a
trivial (constant length) proof iDPLL. It is also easy to see that minimum length proofs
of UNSAT-2PAR, are exponential with respect toin DPLL;,,.¢s. This is because, due to
the structure of PAR, in order to propagate a value for the gater b, DPLL;n,uts has
to branch on all of the inputs in the corresponding BAfRib-circuit. With the chronolog-
ical backtracking process @iPLL this implies that minimum lengtBPLL;,,.s proofs of
UNSAT-2PAR, are exponential with respect to

However,CLi,puts Can produce linear length proofs on the family. In the folluyvwe
will say thatCL (or DPLL) branches according to a sequence of assignnignts vy, xp =
vo,...), if it always branches by assigning the value to the varigiten by the next as-
signment in the sequence, i.e., we would first branch by asgjg; the valuev;, and so
forth. Now, letCL,puts branch according to the sequeng@ =f,...,y3_; =f). After this,
unit propagation cannot still propagate a value on the gaany of thex? gates, or any
gate in the UNSAT sub-circuit. Then branch wigh= f. Now unit propagation sets val-
ues for allx® gates without a conflict. The values f&f andy; propagate the valukfor
a, which then propagates a conflict at a gate in UNSAT. Notie¢xfandys are theonly
reasons for the value @ In any conflict graph associated with the branching sequence
(Yd=f,...,ya=f), ~ais a 1-UIP, and, furthermore, constitutes a reason for thélicoon
its own. HenceClLi,,.ts Can learn as a unit clause the opposite valua, @ind backjump to
the decision level zero. This opposite value will then pgaie a conflict without branching,
andCLi,puts terminates.

It is interesting to notice howLinputs Can branch oriyd =f,...,y3 = f) and still avoid
backtracking on these decisions since there istitleneckat gatea due to the construc-
tion of UNSAT-2PAR,. This shows the strength of clause learning with conflictedr
backjumping—even with input-restricted branching—dustsoability to backjump over
an exponential size search space by detecting small lacainsistent sub-formulas. With

17

this intuition, it is evident that the results in [29] on thewer of DPLL;, s With respect to
DPLL cannot be directly adapted for proving the analogous résuLi,,ts.

5.3 CL--jnputs Cannot Simulat®PLL

Although CL;npues can simulateCL on the{UNSAT-2PAR,} family, this is generally not the
case for other families. In fact, it turns out th@kt--,,.ts cannot even simulatBPLL, as
detailed next.

We will apply the concept afedundant gates in constrained Boolean circuits

Definition 3 A gate in a constrained Boolean circ#it is redundantif it is unconstrained
and not a descendant of any constrained gate.

We will assume that circuits do not contain redundant in@iesj;, such inputs can always
be assigned an arbitrary truth value without affectingséatility. As shown next, when
consideringCL--j,puts, redundant gates cannot appear in conflict graphs. Irelytithis is
because redundant gates can only have a value due to unégarign “upwards” (from
child to parent) on the circuit structure {i--i,,.ts; as they, or any of their parents, are
not constrained by definition, they cannot cause a conflibeax part of a unit propagation
chain responsible for a conflict. As a consequence of thilmgant gates can never appear
in conflict clauses derived bYL--jnputs-

Lemma 2 Let €T be an arbitrary constrained Boolean circuit. Considerifig--inputs ON
inputenf(€T), redundant gates do not occur in any conflict graph at anyes@gL- -inputs-
This holds whether or not restarts are allowed.

Proof Take any constrained Boolean circ#it’. The stages in whiclL--jnputs does not
have a conflict are trivial. Now assume that the lemma holdsstige wher€L--i,pu:s has
madem conflicts. Consider the stage producing thet 1)th conflict and any conflict graph
associated with the conflict. We next show that the confliapgrcontains no redundant
gates. Take any redundant ggti ¢*. If it is not assigned, it cannot appear in the conflict
graph. Now assume thatis assigned. Sincg is redundant, it cannot be constrained by
1. Furthermoreg is not an input gate (by the assumption we made above), asdyttsu
assigned not because it was branched on. Thereftwas been assigned by unit propagation.
Now there are three cases.

— By the induction hypothesis, there are no known learnedselsueontaining redundant
gates before thém+ 1)th conflict, and thereforg is not assigned by unit propagation
on a learned clause.

— The gategyis assigned because some of its children are assignetlyiumijt propagation
on one of the clauses imf(%’") resulting from the equalitg < f(gi,...,0n). Onceg
becomes assigned in this way, all these clauses becomBeshatiEherefore, the value
assigned t@ by unit propagation could not have caused any of the childfento be
assigned.

— The gateg is assigned due to an assigned value on a pafenttg, i.e., by unit prop-
agation on one of the clausesdnf(4’") resulting from the equalitg’ < f(...,q,...).
Sinceg is redundantg is also redundant. By the arguments above, the only wag' for
to have been assigned in this situation is due to one of ienpsirassigned value. Induc-
tively, this leads to the fact that a redundant output gagbould have been assigned by
unit propagation because oneas parents has been assigned. This is a contradiction,

18

since output gates have no parents. Therefore, the redugdtay cannot be assigned
because one of its parents is assigned.

Hence, the only reason for a redundant gate to be assignedtisame of its children are
assigned. Furthermore, the value of an assigned redund&ntgn only propagate values
to its parents (which are also redundant). On the other t&inde redundant gates are not
constrained by, g cannot act as the conflict variable in the conflict graph. &fwee, there
cannot be any path from to the conflict node in the implication graph which the conflic
graph is based on. This proves that a redundant gate canntioche conflict graph. O

Although redundant gates can be removed from any constt&inelean circuit without
affecting its satisfiability, they may have an effect on #egth of shortest proofs. Cook [12]
gives a way of introducing a polynomial number of clausesciltan be interpreted as re-
dundant gates tarcuit(PHPY1) so that, contrarily taircuit(PHPY™1), the extended circuit
yields polynomial length proofs iRES. As a circuit structure, thisxtensioris defined as
EXTpn:= U3 EXT', where

1-11-2

exti= (J U {d = ano(d; 1.d). dit = ord .0l)

i=1j=1

and eacftﬁj}“l is the gatep; j in circuit(PHPI*Y). A part of EXT, is illustrated in Figure 6.
The output gates of EXJaree]; ande3 ;,€3,,..., €, ;.

Fig. 6 Part of Cook’s extension EXjlto PHF“n+1 as a circuit.

Due to the result in [12], we immediately have a polynomialgign RES proof 7=
(Cy,...,Cm = 0) of the extended PHP! formula cnf(circuit(PHP™) U (EXTy,0)). Intu-
itively, EXT' allows reducing PHP! to PHR _, with a polynomial number of resolution
steps. However, since in [12] such a proof is not given ekptiave include a detailed de-
scription of the proof in Appendix A. For the following, whistmost important is that such
a short proofr exists, not really the actual details wf! The details ofr, along with EXT,,
are included here for the sake of concreteness and illigsirat

1 See remark 6 in Section 5.4 for more details.

19

Using the above-described polynomial len§thS proof m= (C1,Cy, ..., Cy = 0) for
enf (circuit(PHPYY) U (EXT,, 0)), we define the circuit construct

m-1

E(T[) = U {gcl = OR(gla'"agjvgj+la~'~7gk) | Ci :{gla"~7gj7_‘gj+17'“a_‘gk}}u
=

{§:=NoT(g) | §€ vars (Ci)}.
1

That is, each claug@ in theRES proof rris simply represented as a correspondimggate.
This allows a simple polynomial lengtbPLL proof of

EPHP™L .= circuit(PHPY™) U (EXTn, 0) U (E(11), 0),

while there is no polynomial length proof of EPHP in CL- -inputs- INtuitively this is be-
cause Em) allows DPLL to “verify” the resolution proof of PHP! extended with EXF
step-by-step, Whil€L--inputs CaNnot make use of the redundant gates of FXid E).
For a high-level view of the structure of EPHP, see Figure 7.

Fig. 7 High-level view of EPHE*1,

Lemma 3 For the infinite family{EPHFﬂ“} of constrained Boolean Circuits;L- -jnputs
with unlimited restarts has superpolynomially longer mioim-length proofs thaDPLL.

Proof A polynomial lengtrDPLL proof of EPHE* is witnessed by the branching sequence
(o, =f,0c, =f,...,0c, , =), as detailed next. By induction anwe will show that, if
Oc, =t,...,0c,_, =t, then branching witlyc, = f results in a conflict by unit propagation,
and hence immediately saig =t.

The base case. The gajg represents the first clau€g in 11, and thu<C; must belong
to cnf(circuit(PHPY™) U (EXT,,0)). As C; is a result of applying thenf translation to a
gateg in circuit(PHPY™) U (EXT,,0) (which is part of EPHP'Y), settingge, = f will result
in a conflict after unit propagation because the functiomdinition or the constraint of the
gateg is violated. For example, § := OR(g1,92) andCy = (§V —§1), thengc, := OR(g,01)
with §1 := NOT(g1), and the assignmeggt, = f will propagateg = f andg; =t, violating
the definition ofg and thus resulting in a conflict.

Now assume as the induction hypothesis that we lgaye=t for all 1 <i" <i. Next
branch withge, = f. If the ith clauseC; in 17 belongs tocnf (circuit(PHPY) U (EXT,, 0)),
branching ongc, = f will result in a conflict after unit propagation as in the basese.
OtherwiseC;j has been derived from two claus€},= Cj U {§} andCy = G U {—@}, in it
for 1 < j,k<i, by resolving on the variablg. By the induction hypothesis we hage; =t

20

andgc, =t. Onthe other hand, ag, =T, all the gates corresponding to the Iiteralqmc{(
are assigned tbby unit propagation, implying that unit propagation wilsagn bothg =t
andg = f asgc; = go, =t. Thus a conflict is reached, closing the brageh=f, andgc, =t
is set by backtracking.

Finally, sinceCr, = 0 € 1, there are unit claus&®; = {§} andCy = {—§} in 7, where
1 < j,k < m. Without loss of generality, assume thak k. By induction, at latest after
branching withgc, = f and settingye, = t by backtracking, we will havec; = ge = tin
the branch, and thus both=t andg = f, a conflict. This closes the last branch, and we have
alinear sizeDPLL proof of EPHP*L,

Now consider proofs of EPHP?! in CL--inputs- The non-input gates iKEXTy,0) U
(E(m),0) are all redundant in EPHIP, and they cannot be part of a reason for any conflict
in CL-~jnputs (Lemma 2). Thus ang.L- -jnputs proof of EPHP’,;+l contains &L--jnputs Proof
of PHP*L, which cannot be of polynomial length (Theorems 1 and 3). O

Theorem 5 now follows directly from Lemmas 1 and 3.

5.4 Additional Remarks

Closely related to Lemma 3 and the applied construction EPHRve make the following
additional remarks.

1. Due to the fact that redundant gates do not occuanyconflict graph ofCL--jnputs,
Lemma 3 covers all clause learning schemes based on configtiocluding, for ex-
ample, schemes which leammultiple clausesit each conflict [39]. Additionally, conflict
clause forgetting schemes, which are applied in typicalsgalearning solvers such
as [18], do not affect this result.

2. We use redundant gates in the ERHPconstruction for simplicity of the proof of
Lemma 3; by a simple modification of EPEP one can construct as a witness for
Lemma 3 a constrained circuit with no redundant gates andgiesoutput as the only
constrained gate. The basic idea, illustrated in Figure & make a small local change
to the EPHIRJrl circuit construct. In more detail, introduce tb&-gateo; over the out-
put gatese? €5 ,,....€ , in EXT,. Similarly, introduce theRr-gateo, over the out-
put gatesic, . - .,9c,, , in E(7). Now, introduce aror-gate overo; ando,. Then, in-
troduce a gate that is theoRr of this gate and a new gateoT(o;). Finally, constrain
the AND of this gate and the output gate of the unconstrained vedsiaircuit(PHPY1)
to t. The resulting circuit family can be used in proving Lemmas3te values propa-
gated to the non-input gates in EX&nd E) cannot be part of any conflict graph in
CL--inputs- This is because the gatalways evaluates tp it corresponds to a tautology
of form —aV (aV b) and thus effectively makes EXTand E) redundant.

3. Since redundant gates can be removed from constrainddd@oaircuits without affect-
ing the existence of satisfying assignments, such gatdypgically removed in practice
before the CNF translation and SAT solving by using the dtedaone-of-influence
reduction[31]. However, applying the cone-of-influence reductiom teve a drastic
negative effect on minimum length proofs: if one applies ¢bae-of-influence reduc-
tion to the circuit family EPHP!, one obtains the family PHIP! for which CL-- does
not have polynomial length proofs although the much weakstesnDPLL has short
proofs for the original family EPHP! (as shown in the proof of Lemma 3).

4. It is interesting to notice thaDPLL solvers with full one-step lookahead can detect
the small proofs of EPHP! witnessed by the branching sequerigg, = f,gc, =

21

circuit(PHPIL)

Fig. 8 Local change to the EPHP! circuit for removing redundancy of gates irfi/8 and EXT,

f,....0c, , =f). In particular, for each, lookahead orgc; = f when havingge; =t
for all j <iinthe branch will result in an immediate conflict using unibjpagation, as
detailed in the proof of Lemma 3.

5. The Cook’s extension (a variant of EXTpresented in [12] is motivated by investi-
gations into the power of thExtended Resolution proof systeefined by Tseitin [47].
Extended Resolution is the result of addingeatension ruleo RES, which allows for it-
eratively addinglefinitionsof the formx < 11 Al (or, as a set of clause§{x, —1l1, I},
{=%11},{-x,12}}) to the CNF formula, wherg is a new variable any, |, are literals
in the current formula. This is equivalent to adding a re@undinaryAND gate of the
literalsly, |, to a constrained Boolean circuit. Notably, it is known thatehded Reso-
lution is among the most powerful proof systems, and canlsimue.g.Frege systems
(see [34] for more details).

6. Instead of the pigeon-hole problem PHP, Cook’s extension EXJto it, and the reso-
lution proof 1T of their combination, one could use any CNF formBlghat (i) does not
have a polynomial size resolution proof but (ii) has a potpial size extended resolu-
tion proof to prove a result similar to Lemma 3. That is, focls@iormulaF, DPLL has
a polynomial sized proof ofircuit(F) U (EXTE,0) U (E(7%),0) while CL--jnpues doeS
not, where EXF is the polynomial sized extension Bfand & is a polynomial sized
resolution proof oknf(circuit(F) U (EXTg,0)).

7. The additional extension(E) applied above is motivated by a similar construction
which can be used for simulatingrege proofswith their tree-like variants (see [34,
Chapter 4]).

22

6 Experiments

We evaluate the effect of restricting branching to inputalales on the functionality of mod-
ern clause learning solver techniques. The set of benclshasked in the experiments con-
sists of instances from various application domains, foctvBoolean circuits offer a natu-
ral representation form: super-scalar processor veiificgb0], integer factorization based
on hardware multipliers [43], equivalence checking of & multipliers [26], bounded
model checking (BMC) for deadlocks in asynchronous pdrallstems represented as la-
belled transition systems (LTS) [32], and linear tempoogji¢ (LTL) BMC of finite state
systems with a compact encoding [36]. We use standard P@2viHz AMD 3200+ pro-
cessors and two gigabytes of memory running Linux, and apgilypeout of one hour and a
memory limit of one gigabyte to each SAT solver execution.

For solving the Boolean circuit instances, we apply BCMaffigversion 0.26), which
we have modified in order to restrict branching to input Jalga. BCMinisat is a Boolean
circuit front-end for the successful clause learning SAlvesioMinisat [18] (version 1.14).
BCMinisat accepts as input Boolean circuits with variousoBan functions allowed as
gate types, performs circuit-level preprocessing, indgdoolean propagation, substruc-
ture sharing, and cone-of-influence reductions to the itjrnormalizing the circuit into a
form which can be translated into CNF applying a standandstedion in the style oénf
defined in Table 1. BCMinisat feeds the resulting CNF traiwtaand the input-restriction
to Minisat, which then solves the CNF. For each circuit, weaob15 CNF instances by
permuting the CNF variable numbering.

Minisat implements 1-UIP clause learning. After each confihe heuristic value of
each variable on the conflict side and in the conflict clauseciemented by one, and the
values of all variables are decremented by 5%. To avoid hinglesfficiency by learning
massive amounts of clauses, the solver also uses a scheforgfgting learned clauses that
have not occurred on the conflict side in recent conflicts.

6.1 Results

Table 2 gives the minimum, median, and maximum number ofsitats for BCMinisat
and input-restricted BCMinisat (BCMinisgi.:s) for each benchmark instance. For the in-
stances based on hardware multiplication designs, fortwttie number of unassigned in-
put variables is 2% or less out of all unassigned variabl@MBiisat,..s shows an ad-
vantage over BCMinisat with respect to the number of denssidiowever, for the hard-
ware verification and BMC instances, the overall perforngaotBCMinisaf,pyts is much
worse, with timeouts on all verification and half of the LTL BMnstances. The possi-
ble gains of applying input-restricted branching seem toetate with a very low rela-
tive number of input variables. On the equivalence checkistances, we notice that the
number of decision for BCMinis@t,ts is more than the brute-force upper bourelg.,
for eq-test.atree.braun.10 around 14 — 1.8 x 10f, compared to the brute-force bound
220 ~ 1.0 x 10°. Considering that we are using a state-of-the-art clawsaileg solver, this
surprising result is likely due to conflict clause forgegtfn when forgetting a conflict clause
C, the solver may have to re-examine the search space chisadtas unsatisfiable .

2 The set of Boolean circuit benchmarks is availabletatp : //www. tcs . hut . £i/~mjj/benchmarks/.
3 Part of the BCTools packagettp: //www.tcs.hut.fi/~tjunttil/becsat/.
4 For more evidence corroborating this claim, see [30].

23

Table 2 Minimum (min), median fned), and maximumrfax) of number of decisions for BCMinisat and
BCMinisatnpyts, With number of timeouts in parenthesis. Téet column gives the satisfiability of the in-
stance, and ifiputs gives the number of unassigned input variables in the CN#slkasion (percentage in
parentheses). Fard andbb, see the text body.

Number of decisions

BCMinisat i BCMinisatinputs
Instance [sat] #inputs [[min [med | max [min [med | max [[ud [bb
Super-scalar processor verification
fvp.2.0.3pipe.1 no| 186 (8.2) || 61531 [384386[1225134] - (15) | -(15) | -(15) || - | -

fvp.2.0.3pipe_2_000. no| 305 (11.7) || 75962 |184798|426489|| - (15) | - (15) | - (15) - -
fvp.2.0.4pipe_1_o00. no| 544 (10.4) ||188992(209048|271982|| - (15) | - (15) | - (15) - -
fvp.2.0.4pipe_2_000. no| 547 (9.8) |[10336071209461745241781| - (15) | - (15) | - (15) - -

fvp.2.0.5pipe_1_000.1 |no| 845(8.9) ||336281|746231[1838599| - (15) | - (15) | - (15) - -
Equivalence checking hardware multipliers
eq-test.atree.braun.8 [no| 16(2.3) [|180449|285665|339805| 65785 | 73834 | 82372 [|88.5[0.02
eq-test.atree.braun.9 [no| 18(2.0) [|898917(10555111317785|323688|385398|389890([106.6/0.02
eq-test.atree.braun.10[no| 20 (1.8) [[375537445405985089443[1428957159039(01787295[127.9/0.01

===

Integer factorisation

atree.sat.34.0 yes| 60 (0.6) |[[156733|228792(761620(| 24820 |208880(277896(|21.9(0.04
atree.sat.36.50 yes| 64 (0.6) [[251218|721474[937152(|316590(571533|788762(|18.4|0.04
atree.sat.38.100 yes| 68 (0.6) [[284980[1095197 - (1) |/190330|{498092(1082729| - -
atree.unsat.32.0 no| 57(0.7) ||141419|163508|180973||123502|138797|162546|(15.3|0.04
atree.unsat.34.50 no| 60 (0.6) [|248371|287351|404418((223130|244382{301464(/18.0{0.04
atree.unsat.36.100 no| 64(0.6) [|527237|623889|915810(|431576|480469|578331(/19.4{0.03
braun.sat.32.0 yes| 61(2.2) || 27480 | 82122 [140150|| 5675 | 81269 |135093||25.6[0.05
braun.sat.34.50 yes| 65(2.1) || 30717 [152224|353464|| 43924 [110614|223306(|25.3|0.05
braun.sat.36.100 yes| 69 (2.0) [[129771|447716(589449(| 86134 |374884(752645(|19.4(0.05
braun.unsat.32.0 no| 60 (2.2) ||107617|122550|156004|| 96894 [119437]|150121((10.4|0.06
braun.unsat.34.50 no| 64 (2.0) ||215624|263845|341855((213199|258446|316819|| 9.1 |0.06
braun.unsat.36.100 no| 68(1.9) ||514725(623671|807610||533575/640111|674470|| 8.9 |0.06
BMC for deadlocks in LTSs

dp_12.3.k10 no| 480 (16.0) [[513935[639756]987595[[249757q - (10) | - (10) | - -
key 4.p.k28 no| 967 (10.9) |[|121552|147063|169386|| 138361|184875(220107(| 3.7 {0.53
key 4.p.k37 yes| 1507 (9.8) || 56784 |321552[154927]| 7574 |663152| - (1) - -
key-5.p.k29 no[1212 (10.7)||193139|223867|310207|| 230844| 343255 405686(| 3.9 {0.54
key 5.p.k37 yes| 1796 (9.8) || 104496{421324(1540174| 19027 (1041807 - (3) - -
mmgt 4.i.k15 no| 456 (10.9) |[|210288|287599|457009((582998(1105986217004§| 4.2 |0.41
q-1.i.k18 no| 566 (13.1) ||168156|353421|507246|| 375493|929019[1349785| 3.7 {0.49
LTL BMC by linear encoding

1394-4-3.plneg.k10 no| 1845 (5.6) ||141822|155295|164900|| 138468 148545|156839|| 6.6 {0.34
1394-4-3.plneg.ki11 yes| 2023 (5.5) || 72988 |128708|203647|| 34619 | 55575 [189434(| 9.0 (0.32
1394-5-2.pOneg.k13 no| 1940 (5.0) || 125840(143928|158320|| 146144 |156527|186468|| 6.7 |0.32

brp.ptimonegnv.k23 no| 461 (6.7) [|106338|130577|259025|| 193839|302930|356313(| 4.1 [0.28
brp.ptimonegnv.k24 yes| 481 (6.7) || 43013 | 96775 [162114|| 13699 | 74907 |260481|| 5.5 [0.27

csmacd.p0.k16 no| 1794 (2.9) ||229192|316082| 376280|| 269520| 341751 | 381248|| 4.9 |0.28
dme3.ptimo. k61 no [6375 (26.3)|| 314650| 5496861656757 - (15) | - (15) | -(16) || - | -
dme3 . ptimo.k62 yes| 6506 (26.3)||427100| 688505(1545603| - (15) | - (15) | -(15) || - | -

dme3.ptimonegnv.k58 | N0|5982 (26.3)||324770|568864| 962967|| - (15) | -(15) | -(35) || - | -
dme3.ptimonegnv.k59 |yes| 6113 (26.3)||303921| 480073[1136938| - (15) | -(15) | -(15) || - | -
dmeb . ptimo . k65 no [10750 (26.8)|497190| 735741[1839619| - (15) | - (15) | -(15) || - | -

Figure 9 gives a cumulative plot of the number of solved imsts, showing a drastic de-
crease in performance for the input-restriction.

The effect of input-restriction varies depending on whetnesatisfiable or satisfiable
instances are considered (Figure 10). For the unsatisfiadtiences the plot correlates well
with Corollary 2, with timed out runs on the horizontal lifkor satisfiable instances, there
seems to be no clear winner, although when selecting fronnetla¢ive small set of input
variables, the probability of choosing a satisfying assignt is intuitively greater.

24

500
8 400
o
2]
9 300 +
(%)
S /
IS
® 200
c
® H
100 N
i Minisat
0 Minisat on inputs ————
0 1000 2000 3000
Time (s)

Fig. 9 Comparison of input-restricted branching and unrestfidténisat: cumulative number of solved in-
stances

Unsatisfiable Satisfiable
10000 T T - 10000 T T
- g +
@ P @ + N *
e 2 + gt
2 1000 F ¢ 4ty " E 2 1000 } Lt ﬁ‘ - i
o Hﬂu***m p o .t +
c i c - E
£ g £ T S
c o +:+ i» c R 4 +++*\1 +
o o o . ’ZV +
3 100 | T e 1 3 100 5 4 e e 4
= +%“ = TR AN !
= e = e
* PR N
10 ¥ra " L 10 Lt &
10 100 1000 10000 10 100 1000 10000
Minisat (s) Minisat (s)

Fig. 10 Comparison of input-restricted branching and unresttitténisat as scatter plots: running times on
unsatisfiable (left) and satisfiable (right) instances

We also observe that the VSIDS branching heuristics [40liegn Minisat might not
work as intended with the input-restriction. The number wbrnanchable variables which
have better heuristic values than the best branchableblewgan be high per decision (me-
dian of averagesud in Table 2), e.g., foeq-test.atree.braun.10 on the average there
are, per decision, over 100 unbranchable variables witletbleeéuristic scores than the best
branchable one. From another point of view, the fractiomoféments on branchable vari-
ables from the number of all increments to heuristic valugind search can be in some
cases even as low as 1% (medibh:in Table 2)—running the risk of VSIDS degenerating
into a random heuristic. These observations imply that @eoto incorporate branching
restrictions in clause learning solvers, the restrictigelf should be taken into account in
developing suitable heuristics and learning schemes.

As a final remark, we refer to [30] for a more in-depth experntakinvestigation into
the effects of restricted branching—not limited to the inmstriction and hence extending
the experimental evidence provided here—on the efficieficlanise learning solvers.

25

7 Conclusions

We investigate the effect of restricting branching in cilearning SAT solving on the ef-
ficiency of the underlying inference system from the view afqd complexity. It is known
that the unrestricted version of the considered variantaafse learning can efficiently sim-
ulate general resolution, being thus very powerful comgpacethe basidDPLL (with no
clause learniny However, we show the surprising result that input-rettd clause learn-
ing cannot even simulate the ba®i®LL. This implies that all implementations of clause
learning, even with optimal heuristics, have the poterdfaguffering a notable efficiency
decrease if branching is restricted to input variables. &tperimental evidence shows that
by restricting branching the robustness of SAT solvers emnahse, and that input-restricted
branching does not go well with clause learning based hesisf modern solvers.

Acknowledgements We thank llkka Niemela for numerous discussions on thectopthis work, and Emilia
Oikarinen for help on the resolution proof construction ipp&ndix A.

References

10.

11.

12.

13.

14.

15.

16.

. Achlioptas, D., Beame, P., Molloy, M.: Exponential boaridr DPLL below the satisfiability threshold.

In: J.1. Munro (ed.) Proceedings of the 15th Annual ACM-SIAy¥mposium on Discrete Algorithms
(SODA04), pp. 139-140. SIAM (2004)

. Achlioptas, D., Beame, P., Molloy, M.S.O.: A sharp th@dhin proof complexity yields lower bounds

for satisfiability search. Journal of Computer and Systerari®es68(2), 238-268 (2004)

. Alekhnovich, M.: Mutilated chessboard problem is expuiadly hard for resolution. Theoretical Com-

puter Scienc810(1-3), 513-525 (2004)

. Alekhnovich, M., Hirsch, E.A., ltsykson, D.: Exponemtiawer bounds for the running time of DPLL

algorithms on satisfiable formulas. Journal of Automated$®eing35(1-3), 51-72 (2005)

. Alekhnovich, M., Johannsen, J., Pitassi, T., Urquhart,A exponential separation between regular

and general resolution. In: Proceedings on 34th Annual AGNhi®sium on Theory of Computing
(STOC'02), pp. 448-456. ACM (2002)

. Beame, P., Culberson, J.C., Mitchell, D.G., Moore, C.e Tésolution complexity of random gragph

colorability. Discrete Applied Mathematidb3(1-3), 25-47 (2005)

. Beame, P, Impagliazzo, R., Sabharwal, A.: The resaiutemplexity of independent sets and vertex

covers in random graphs. Computational Compleki{8), 245—-297 (2007)

. Beame, P, Karp, R.M., Pitassi, T., Saks, M.E.: The efiyeof resolution and Davis—Putnam proce-

dures. SIAM Journal on Computirgfl(4), 1048-1075 (2002)

. Beame, P,, Kautz, H.A., Sabharwal, A.: Towards undeditgnand harnessing the potential of clause

learning. Journal of Artificial Intelligence Researz® 319-351 (2004)

Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu,:Xsymbolic model checking using SAT procedures
instead of BDDs. In: Proceedings of the 36th Conference aigbeAutomation (DAC'99), pp. 317-320.
ACM Press (1999)

Chvatal, V., Szemerédi, E.: Many hard examples fooltg®n. Journal of the ACM35(4), 759-768
(1988)

Cook, S.A.: A short proof of the pigeon hole principlengsextended resolution. SIGACT Ne8#t),
28-32 (1976)

Cook, S.A., Reckhow, R.A.: The relative efficiency ofpweitional proof systems. Journal of Symbolic
Logic 44(1), 36-50 (1979)

Copty, F., Fix, L., Fraer, R., Giunchiglia, E., Kamhi, Gacchella, A., Vardi, M.Y.: Benefits of bounded
model checking at an industrial setting. In: G. Berry, H. @omA. Finkel (eds.) Proceedings of the
13th International Conference on Computer Aided Verifarat{CAV’01), Lecture Notes in Computer
Sciencevol. 2102, pp. 436—-453. Springer (2001)

Dantchev, S., Riis, S.: "Planar” tautologies hard faofetion. In: Proceedings of the 42nd IEEE Sym-
posium on Foundations of Computer Science (FOCS'01), pp-229. IEEE Computer Society (2001)
Davis, M., Logemann, G., Loveland, D.: A machine progfantheorem proving. Communications of
the ACM 5(7), 394-397 (1962)

26

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

Davis, M., Putnam, H.: A computing procedure for quasdifon theory. Journal of the ACM(3),
201-215 (1960)

Eén, N., Sorensson, N.: An extensible SAT-solver.EInGiunchiglia, A. Tacchella (eds.) Revised Se-
lected Papers of the 6th International Conference on ThaodyApplications of Satisfiability Testing
(SAT’03), Lecture Notes in Computer Scieneel. 2919, pp. 502-518. Springer (2004)

Giunchiglia, E., Maratea, M., Tacchella, A.: Dependamd independent variables in propositional sat-
isfiability. In: S. Flesca, S. Greco, N. Leone, G. lanni (e&s0oceedings of the European Conference
on Logics in Artificial Intelligence JELIAO2Lecture Notes in Artificial Intelligencevol. 2424, pp.
296-307. Springer (2002)

Giunchiglia, E., Massarotto, A., Sebastiani, R.: Aag ¢he rest will follow: Exploiting determinism in
planning as satisfiability. In: B.B. C. Rich J. Mostow, R. Uthsamy (eds.) Proceedings of the 15th
National Conference on Atrtificial Intelligence (AAAI'98pp. 948-953. AAAI Press (1998)

Goerdt, A.: Regular resolution versus unrestrictedluti®n. SIAM Journal on Computing2(4), 661—
683 (1993)

Goldberg, E., Novikov, Y.: Berkmin: A fast and robust Sadlver. In: Proceedings of the 2002 Design,
Automation and Test in Europe Conference (DATE’02), pp.-14®. IEEE Computer Society (2002)
Gomes, C.P.,, Selman, B., Kautz, H.A.: Boosting combiigtsearch through randomization. In: B.B.
C. Rich J. Mostow, R. Uthurusamy (eds.) Proceedings of tte Mational Conference on Atrtificial
Intelligence (AAAI'98), pp. 431-437. AAAI Press (1998)

Haken, A.: The intractability of resolution. Theoreti€omputer Scienc@9(2—3), 297-308 (1985)
Huang, J.: The effect of restarts on the efficiency ofsgdearning. In: M.M. Veloso (ed.) Proceedings
of the 20th International Joint Conference on Atrtificialdifigence (IJCAI'07), pp. 2318-2323. AAAI
Press (2007)

Jarvisalo, M.: Equivalence checking multiplier desig2007). SAT Competition 2007 benchmark de-
scription,http://www.tcs.hut.fi/~mjj/benchmarks/

Jarvisalo, M., Junttila, T.: Limitations of restridtéranching in clause learning. In: C. Bessiere (ed.)
Proceedings of the 13th International Conference on Rrieeiand Practice of Constraint Programming
(CP 2007)Lecture Notes in Computer Scieneel. 4741, pp. 348-363. Springer (2007)

Jarvisalo, M., Junttila, T.: On the power of top-dowarhing heuristics. In: Proceedings of the 23rd
AAAI Conference on Artificial Intelligence (AAAI-08), pp.@—-309. AAAI Press (2008)

Jarvisalo, M., Junttila, T., Niemeld, I.: Unresteidtvs restricted cut in a tableau method for Boolean
circuits. Annals of Mathematics and Atrtificial Intelligend4(4), 373—399 (2005)

Jarvisalo, M., Niemela, I.: The effect of structurahiching on the efficiency of clause learning SAT
solving: An experimental study. Journal of Algorithms (8D0 doi:10.1016/j.jalgor.2008.02.005, in
press.

Junttila, T.A., Niemela, |.: Towards an efficient tahlenethod for boolean circuit satisfiability checking.
In: J.W. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.K. Lau, C.|Baidessi, L.M. Pereira, Y. Sagiv, P.J.
Stuckey (eds.) Proceedings of the 1st International Center on Computational Logic (CL'0Q)ecture
Notes in Computer Scienceol. 1861, pp. 553-567. Springer (2000)

Jussila, T., Heljanko, K., Niemela, I.: BMC via on-tfie-determinization. International Journal on
Software Tools for Technology Transfé2), 89—101 (2005)

Kautz, H.A., Selman, B.: Planning as satisfiability. BaNeumann (ed.) Proceedings of the 10th Euro-
pean Conference on Atrtificial Intelligence (ECAI'92), pfa98-363. John Wiley and Sons (1992)
Krajicek, J.: Bounded arithmetic, propositionalitogand complexity theoryEncyclopedia of Mathe-
matics and Its Applications/ol. 60. Cambridge University Press (1995)

Kuehlmann, A., Ganai, M.K., Paruthi, V.: Circuit-badgablean reasoning. In: Proceedings of the 38th
Design Automation Conference (DAC'01), pp. 232—-237. ACNIq2)

Latvala, T., Biere, A., Heljanko, K., Junttila, T.A.:r§ple bounded LTL model checking. In: A.J. Hu,
A.K. Martin (eds.) Proceedings of the 5th International f2oence on Formal Methods in Computer-
Aided Design (FMCAD’'04),Lecture Notes in Computer Scienaml. 3312, pp. 186—-200. Springer
(2004)

Li, C.M., Anbulagan: Heuristics based on unit propagafior satisfiability problems. In: M. Pollack
(ed.) Proceedings of the 15th International Joint Confezeon Atrtificial Intelligence (IJCAI'97), pp.
366-371. Morgan Kaufmann (1997)

Marques-Silva, J., Guerra e Silva, L.: Solving satidfitgtin combinational circuits. IEEE Design &
Test of Computer20(4), 16—21 (2003)

Marques-Silva, J.P., Sakallah, K.A.: GRASP: A seardgorithm for propositional satisfiability. |IEEE
Transactions on Computed§(5), 506-521 (1999)

Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., MaB.: Chaff: Engineering an efficient SAT
solver. In: Proceedings of the 38th Design Automation Camnfee (DAC'01), pp. 530-535. ACM (2001)

27

41. Nikolenko, S.l.: Hard satisfiable instances for DPLpélgorithms. Journal of Mathematical Sciences
126(3), 1205-1209 (2005)

42. Papadimitriou, C.H.: Computational Complexity. AddiswWesley (1995)

43. Pyhala, T.: Factoring benchmarks for SAT-solversO@0 http://www.tcs.hut.fi/Software/
genfacbm/

44, Robinson, J.A.: A machine oriented logic based on thelugen principle. Journal of the ACM2(1),
23-41 (1965)

45, Strichman, O.: Tuning SAT checkers for bounded modetkihg. In: E.A. Emerson, A.P. Sistla (eds.)
Proceedings of the 12th International Conference on Coenphitded Verification (CAV’00),Lecture
Notes in Computer Scienceol. 1855, pp. 480—-494. Springer (2000)

46. Thiffault, C., Bacchus, F., Walsh, T.: Solving non-dalformulas with DPLL search. In: M. Wallace
(ed.) Proceedings of the 10th International ConferencerimeiBles and Practice of Constraint Program-
ming (CP’04),Lecture Notes in Computer Scieneel. 3258, pp. 663—-678. Springer (2004)

47. Tseitin, G.S.: On the complexity of derivation in propiosal calculus. In: A. Slisenko (ed.) Studies
in Constructive Mathematics and Mathematical Logic, ParSeminars in Mathematics, V.A. Steklov
Mathematical Institute, Leningradol. 8, pp. 115-125. Consultants Bureau (1969). Englishsiiation
appears in J. Siekmann and G. Wrightson, editors, AutomaifoReasoning 2: Classical Papers on
Computational Logic 1967-1970 pages 466—483, Springe3 198

48. Urquhart, A.: Hard examples for resolution. Journahef ACM 34(1), 209—-219 (1987)

49. Urquhart, A.: The complexity of propositional proofsulRtin of Symbolic Logicl(4), 425-467 (1995)

50. Velev, M.N., Bryant, R.E.: Superscalar processor aatiibn using efficient reductions of the logic of
equality with uninterpreted functions to propositionagio In: L. Pierre, T. Kropf (eds.) Correct Hard-
ware Design and Verification Methods, Proceedings of thie IFOP WG 10.5 Advanced Research Work-
ing Conference (CHARME'99)Lecture Notes in Computer Sciena®l. 1703, pp. 37-53. Springer
(1999)

51. Williams, R., Gomes, C.P., Selman, B.: Backdoors tochiptase complexity. In: G. Gottlob, T. Walsh
(eds.) Proceedings of the Eighteenth International Janf&ence on Artificial Intelligence (IJCAI'03),
pp. 1173-1178. Morgan Kaufmann (2003)

52. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.figient conflict driven learning in a boolean
satisfiability solver. In: Proceedings of the 2001 Inteiovzd! Conference on Computer-Aided Design
(ICCAD'01), pp. 279-285. ACM (2001)

A Polynomial length RES proof of EPHP*!
The RES proof consists of four components, out of which the firstéhngll be applied iteratively in a level-

wise fashion froml =n+1tol = 3. The intuitive idea is that at levelwe will derive PHH{% from PHR_,
and EXT in a polynomial number of resolution steps.

1. Resolve onthe gateﬁ;_’-l, wherei=1,....1+1andj=1,...,l, using the clauses in the CNF translation
—1. | -1 |—1.
ofr:gl.j = oR(d ;,0;%) ando} ;* := AND(d| ;.9 ;).
2. Derive the long clausgd 1%,...,d %} from {e,....d, ;} foreachi=1,...,1 - 1.

3. Derive the short clauses of the fofme], *,—€| !} for 1<i,j <l —1land 1<k <I-2.
4. After iterating steps 1-3 frorh=n+ 1 down tol = 3, derive the empty clause in two step from the
clauses in PHP

We will describe these steps now in more detail.

1. Foreacte ;' := oR(€ ;,0) we have the clauses

{-e;td .0 et e b (e oty

and for eacto} ;* := AND(d, _,,¢ ;) the clauses

{O!le?ﬁd.l—lvﬁd.j }7{ﬁohlvéufl}v{ﬁOE.ijl?e{?j}

In particular, when resolving on the galk:?l, we obtain from these clauses the clauses

{ﬁé;jl?ell‘j 7ejl‘lfl}7{ﬁé|fjlvél.jve{‘j}v{éjlvﬂe%.lfl7ﬁd.j}~

28

2. The derivation is described in Figure 11. Notice that,aahestep, the variable resolved upon is under-
lined. Recall thafel7*,... &'} is the clausgpi1, ..., i} in PHPL

3. Figure 12 shows how to derive the clauses of the ford\ *, ~¢|,}.

4. By recursively applying the derivations in Figures 11 a8drom| = n+ 1tol = 3, one can thus derive
the clauseg€? , }, {€2,}, and{—€Z |, ~€Z, }. Finally, the empty clause can be derived from these clauses
with two resolution steps.

However, one can see that derived clauses in eac BH#e used multiple times in thRES proof. For
example, for each, the clause{d ,,...,d, ;} is used in the order of times in the derivation shown in
Figure 11. Hence the end result is not &RES proof.

{‘%J.rw--"':lj'.L} {4317E, ﬂe|‘1} (from step 1.)

(inPHR_,)

/ felj" 8y} (romstep 1)

(repeat forj =2,...,1 —2)

Geditdidiadindid

\

-1 -1
{4,1 >~-ve{.|72-q1=-~~~,é|.|72=ﬁé|.|71} {91'1@} (in PHE_,)

\

-1 -1)
{6{1 ﬁ---weli,lfza Alﬁ""d«l""’é"’z} {é,_-l ﬁd,j} (in PHH—l)

LY 5

\

(repeat forj =1,...,1 —2)

{dit - dih
Fig. 11 How to derive{e,!fll,... ,q!]}Z} in a polynomial number of resolution steps using Cook’s resitan
for PHPIL

29

(from step 1) (inPHR_,)
{ﬂ%’}l,d.kﬁ@} {i.lfgﬂ 1)

(inPHR_,) (from step 1) (from step 1) (inPHR_,) (from sth
{ﬁd.k-ﬁ} {ﬁeljll'elj,k'i} {ﬁ‘%l.ilve{.kvi} (=€ o) {ﬁéjfklve’j.kve’j.vl}{ﬁé&lve{,k»ﬁ i1
(inPHA_))
{ﬁelj}lﬁﬂﬁe'i,k} {-e o€} {ﬁéllﬁ_kvﬁ} {ﬁdilvﬁe’jllv‘éi,k:i}
(et e et e e
ekt e}

Fig. 12 How to derive{ﬂéil,ﬂe'jj(l} in a polynomial number of steps using Cook’s extension foPPH

