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Abstract. We study a framework called BC SLS for a novel type of stodhdmst
cal search (SLS) for propositional satisfiability (SAT)med specifically at solv-
ing real-world SAT instances, the approach works direatlamon-clausal struc-
tural representation for SAT. This allows for don’t careeadion and justification
guided search heuristics in SLS by applying the circuieleévAT technique of
justification frontiers. In this paper we extend the BC SLgrapch first by de-
veloping generalizations of BC SLS which are probabilatic approximately
complete (PAC). Second, we develop and study adaptive meésshanisms for
BC SLS, including mechanisms based on dynamically adaptiagvaiting pe-
riod for noise increases. Experiments show that a prelirgimaplementation of
the novel adaptive, PAC generalization of the method ofdpas a well-known
CNF level SLS method with adaptive noise (AdaptNovelty+)aocollection of
structured real-world SAT instances.

1 Introduction

While stochastic local search techniques (SLS) such aqg Hre5very efficient in solv-
ing hard randomly generated SAT instances, a major chalentp improve SLS on
structural problems by efficiently handling variable degemcies [6]. In this paper we
extend a recent non-clausal stochastic local search (SE8)ad, BC SLS [7], which
applies similar ideas as typical in clausal SLS methods bigrd in many crucial as-
pects. In particular, BC SLS combines techniques from tireebased complete DPLL
style non-clausal algorithms [8—11]. Aimed specificallysatving real-world SAT in-
stances, BC SLS works directly on a non-clausal structegaksentation for SAT. This
allows for adopting don'’t cares [12] and justification guddeearch heuristics in SLS by
applying ideas from the circuit-level SAT technique of jfisation frontiers [10]. For
a discussion of the relationship between the basic BC SL&adetind both CNF level
and other non-clausal SLS methods, such as [13-15], see [7].

In this work we adopt the basic ingredients of local seardie—+totions of a con-
figuration and a move, the objective function, and the stogpmiriterion—from BC
SLS, and extend the approach. In more detail, we developrgkzations of BC SLS
which (i) areprobabilistically approximately comple{®AC) [16], and which (ii)ex-
ploit adaptive noise mechaniswithin the framework.

It has been observed that the performance of CNF level SLBadst such as those
in the WalkSAT family, varies greatly depending on the clmofieed noise parameter



setting [3, 4]. We show that the same phenomenon is presnitelBC SLS. In the case
of CNF level SLS, in order to avoid manual noise tuning this lea to the development
of automatic noise level mechanisms based on probing tgabsifor selecting a fixed
noise parameter setting before actual search [17], or byta@éy tuning the noise level
during search [4]. Here we adapt latter techniques to the BEf&amework. However,
we discover that compared to the parameter values for appsise used in CNF level
SLS methods, radically different settings are required@®.S. We then show how
to adjust this technique for BC SLS for better performanceddition to the adaptive
noise mechanism based on a static waiting period for no@elnents, we suggest an
alternative based on dynamic waiting periods that depene mio the current state of
the search. While maintaining similar performance, thdiagfon of dynamic waiting
periods gives the possibility of dismissing the fixed consteed in the typical adaptive
noise mechanism based on a static waiting periods.

Applying a novel adaptive noise strategy for BC SLS, we shrpeementally that
a preliminary implementation of an adaptive PAC varianthedf BC SLS method out-
performs a fine-tuned implementation of the CNF level SLSho@tAdaptNovelty+ on
a collection of structured real-world SAT instances.

This paper is organized as follows. First we define Booleacuis and central
concepts related to justifications and don'’t cares (Sect 18 justification-based non-
clausal SLS framework is described in Sect. 3, with analgsigrobabilistically ap-
proximately completeness of different variants of the rodtfSect. 3.1). Section 4 is
focused on developing adaptive noise mechanisms for thesfrerk.

2 Constrained Boolean Circuits

Boolean circuits offer a natural non-clausal represewafibr arbitrary propositional
formulas in a compact DAG-like structure wiglubformula sharingRather than trans-
lating circuits to CNF for solving the resulting SAT instanby local search, in this
work we will work directly on the Boolean circuit represetida.

A Boolean circuitover a finite setG of gatesis a setC of equations of fornmy :=
f(g1,--.,9n), Whereg, g1,...,9, € Gandf : {f,t}" — {f,t} is a Boolean function,
with the additional requirements that (i) eaghe G appears at most once as the left
hand side in the equationsdh and (ii) the underlying directed graph

(G,ECC)={{d',9) eGXxG | g:=f(....,q',...) €C})

is acyclic. If (¢’, g) € E(C), theng’ is achild of g andg is aparentof ¢’. Thede-
scendantandancestorrelations are defined in the usual way as the transitive ohasu
of the child and parent relations, respectivelyg If= f(g1,...,9») isinC, theng is
an f-gate (or of typef), otherwise it is arinput gate The set of input gates i@ is
denoted byinputs(C). A gate with no parents is asutput gate An assignmenfor C
is a (possibly partial) functiom : G — {f,t}. A total assignment for C is consis-
tentif 7(g) = f(7(91),...,7(gn)) for eachg := f(g1,...,g9n) in C. A circuit C has
2linputs(C)] consistent total assignments.

A constrained Boolean circui® is a pair(C, o), whereC is a Boolean circuit and
a is an assignment fat. With respect to a constrained circdit, each(g,v) € ais a



constraint andg is constrainedo v if (g,v) € «. A total assignment for C satisfies
C« if (i) 7 is consistent wittC, and (ii) respects the constraints:D> «. If some total
assignment satisfigg*, thenC* is satisfiableand otherwiseinsatisfiableln this work
we consider Boolean circuits in which the following Booldanctions are available as
gate types.

NOT(v) istiff visf.

OR(v1,...,v,) istiff at least one oy, ..., v, ist.
AND(v1,...,v,) istiffall vy,... v, aret.
XOR(v1, v2) ist iff exactly one ofvy, vs iSt.

However, notice that the techniques developed in this pegebe adapted for a wider
range of types. In order to keep the presentation and atgosisimpler, we assume that
constraints only appear in the output gates of constraiiredits. Any circuit can be
rewritten into such a normal form by using the rules in [8].

Figure 1 shows a Boolean circuit for a full-adder Withc1 @
the constraint that the carry-out it is t. Formally the cir-
cuit is defined a&€ = {c¢1:=OR(t1, t2),t1:=AND(t3, o),
Oo:ZXOR(tg, Co)7 t2:=AND(a0, bo), t3::XOR(a0, bo)}, and
a = {(c,t)}. A satisfying total assignment for it is
{<cl’t>7 <t17t>’ <007f>’ <t2’f>7 <t37t>’ <a0’t>7 <b07f>’ <Co’t>}'

Therestriction of an assignment to a setG’ C G of
gates is defined as usuale: = {{g,v) €7 | g€ G'}. a0
Given a non-input gatg := f(¢1,...,9,) and a value €
{f,t}, ajustificationfor the pair(g, v) is a partial assign-
mento : {g1,...,9n} — {f,t} to the children ofy such thatf(7(g1),...,7(gn)) = v
holds for all extensionss O o. That is, the values assigned by to the chil-
dren of g are enough to forcg to have the value). A gate g is justified in an
assignmentr if it is assigned, i.ex(g) is defined, and (i) it is an input gate, or
(i) g == f(91,---,9n) € Candrly, g1 is a justification for(g,(g)). For

example, consider the gate in Fig. 1. The possible justifications foft,,f) are
{{ts. 1)}, {(ta. ), (co, O}, {{t. 1), {co. D)}, {(co, T}, and{(ts,1), (co.f)}; of these the
first and fourth one are subset minimal ones. The gate justified in the assignment
T= {<Clat>v <t17f>7 <00’t>7 <t27t>7 <t37f>7 <a07t>7 <b07t>7 <CO’t>}'

A key concept in BC SLS is thpustification congcone(C*, 7) for a constrained
circuitC* under an assignment2 «. The justification cone is defined recursively top-
down in the circuit structure, starting from the constrdigates. Intuitively, the cone is
the smallest set of gates which includes all constrainessgaid, for each justified gate
in the set, all the gates that participate in some subsetmairjustification for the gate.
More formally,jcone(C%, 7) is the smallest one of those s&tf gates which satisfy
the following properties.

2]

Fig. 1: A constrained circuit

1. If (g,v) € a, theng € S.
2. If g € S and (i) g is a non-input gate, (iiy is justified inr, and (iii) (g;, v;) € ¢
for some subset minimal justificatienfor (g, 7(g)), theng; € S.

Notice that by this definitiofcone(C®, 7) is unambiguously defined.



As another key concept, thgstification frontierof C* underr, is the “bottom edge”
of the justification cone, i.e. those gates in the cone thahat justified:

jfront(C,7) = {g € jeone(C*,T) | gis notjustified inr}.

A gatey is interestingin 7 if it belongs to the frontiejfront(C*, 7) or is a descendant
of a gate in it; the set of all gates that are interesting is denoted bynterest(C%, 7).

A gateg is an pbservability don't careif it is neither interesting nor in the justification
conejcone(C%, 7). For instance, consider the constrained cir€éitn Fig. 1. Under the
aSSignment— = {<Clvt>7 <t17 t>7 <007 f>7 <t27f>7 <t37 t>7 <a07f>7 <b07 f>v <COvt>}1 the jUSti'
fication conejcone(C%, 7) is {c1,11,t3,co}, the justification frontieffront(C*, 7) is
{ts}, interest(C“, 7) = {ts, ao, bo}, and the gate& ando, are don't cares.

As observed in [7] if the justification frontigfront(C*, 7) is empty for some to-
tal assignment, then the constrained circwit® is satisfiable. Wheifront(C%, ) is
empty, a satisfying assignment can be obtained by (i) otsigiT to the input gates ap-
pearing in the justification cone, i.e. to the gatejsete(C, 7) Ninputs(C), (i) assign-
ing other input gates arbitrary values, and (iii) recurgiewaluating the values of non-
input gates. Thus, whenevgront(C*, 7) is empty, we say that de facto satisfie€.
For example, the assignmeity, t), (t1,f), (0o, ), (t2, 1), (ts,1), (ao, 1), (bo,t), (co, t)}
de facto satisfies the constrained ciratfitin Fig. 1; a satisfying assignment obtained
by the procedure above {8c4,t), (t1,f), (0o, f), (t2,1), (ts, ), (ao, 1), (bo, 1), {co,T)}.
Also note that if a total truth assignmensatisfie<C®, thenjfront(C*, 7) is empty.

Translating Circuits to CNFEach constrained Boolean circdit can be translated
into an equi-satisfiable CNF formutaf(C*) by applying the standard “Tseitin trans-
lation”. In order to obtain a small CNF formula, the idea isrttvoduce a variablg for
each gatg in the circuit, and then to describe the functionality oflegate with a set of
clauses. For instance, amb-gateg := AND(g1, . . ., gn) IS translated into the clauses
(=gV 1), -, (g Vgn),and(gVv —g1 V...V —g,). The constraints are translated into
unit clauses: introduce the claug@g for (g,t) € «, and the clausé-g) for (g,f) € a.

A Note on NegationAs usual in many SAT algorithms, we will implicitly ignore
NOT-gates of formy := NOT(g1); g andg; are always assumed to have the opposite val-
ues. ThusioT-gates are, for instance, (i) “inlined” in thaf translation by substituting
-1 for g, and (i) never counted in an interest geterest(C*, 7).

3 Justification-Based Non-Clausal SLS

In the non-clausal method BC SLS [7] a configuration is désctiby a total truth
assignment as in typical clausal SLS methods. However,dhectausal method works
directly on general propositional formulas representeBlcdean circuits, and hence a
configuration is a total assignment on the gates of the Baaeuit at hand. Moreover,
the key elements of an SLS method — the notion of moves, trexté function, and
the stopping criterion — are substantially different frdme torresponding elements in
clausal SLS methods.

In typical SLS methods for SAT the moves consist of individilips on variable
values in the current configuration. In BC SLS structuralwiealge is exploited for
making moves on gates: a typical move on a gatips the values of a subset g



children so thay becomes locally justified under the new truth assignmenteiger,
moves are focused on a particular subset of the gates, ttiicatfon frontier, which
guides the search to concentrate on relevant parts of ti@nices exploitingobserv-
ability don’t cares In typical clausal SLS methods the objective function meesthe
number of clauses that are falsified by the current truthgassént. In BC SLS the
objective function is based on the concept of justificatimmfier and uses the set of
interesting gates. The notion of a justification frontiexde to a early stopping criterion
where the search can be halted when the circuit has been sbbemle facto satisfiable
which often occurs before a total satisfying truth assigminhas been found.

In this work we extend BC SLS in order to (i) achievembabilistically approxi-
mately completéPAC) generalization of the method, and to @Rploit adaptive noise
mechanismsvithin the framework. The resulting generalized framewsrklescribed
as Algorithm 1. Given a constrained Boolean cirefitthe algorithm performs struc-
tural local search over the assignment spacallothe gates irC (inner loop on lines
3-13). As typical, thenoise parametep € [0, 1] controls the probability of making
non-greedy moves (with = 0 only greedy moves are made). Here we introduce an ad-
ditional parameteq < [0, 1] which leads to PAC variants of BC SLS. We will consider
adaptive noise mechanisms for controlling the valug déiring the search in Sect. 4.

Algorithm 1 Generalized BC SLS

Input: constrained Boolean circuit*, control parameters, ¢ € [0, 1] for non-greedy moves
Output: ade factosatisfying assignment fa“ or “don’t know

Explanations:

T: current truth assignment on all gates with> «

4: next move (a partial assignment)

1: for ¢try := 1to MAXTRIES(C®) do

2: 7 := pick an assignment over all gatesdrs.t.7 O «

3: for move := 1 to MAXMOVES(C%) do

4: if jfront(C*,7) = @ then return 7

5: Select a random gatee jfront(C*, )

6: with probability (1 — p) do %greedy move
7: ¢ := arandom justification from those justifications

for (g, v) € 7 that minimizecost(r, -)

8: otherwise %non-greedy move (with probabilip)
9: if g is constrained imv or with probabilityq do
10: ¢ := arandom justification fofg, v) € 7
11: else
12: 6 :={{g,~7(9))} %flip the value ofy
13: 7= (r\ {{g,~w) | (g,w) € 5})US

14: return “don’t know

For each of the MXTRIES(C®) runs, MAXMOVES(C*) moves are made. As the
stopping criterionwe use the condition that the justification frontj&ont(C*, 1) is
empty. As discussed in Section Zjffont(C¢, 7) is empty, therC? is satisfiable and a
satisfying truth assignment can be computed frorNotice that typically this stopping
criterion is reached before all gates are justified in theentrconfigurationr.



Given the current configuration, we concentrate on making moves on gates in
jfront(C*, 7) by randomly picking a gate from this set. For a gate and its current
valuev in 7, the possiblegreedy movesre induced by the justifications fdy, v).
The idea is to minimize theize of the interest sein other words, the value of the
objective function for a move (justificatiom)is cost(r,d) = |interest(C*, 7')|, where
7 = (7 \ {{g,~w) | (g,w) € §})UJ. Thatis, the cost of a moweis the size of the
interest set in the configuratiot where for the gates mentioneddrwe use the values
in § instead of those if. The move is then selected randomly from those justification
o for (g, v) for which cost(r, §) is smallest over all justifications fdy, v).

During anon-greedy movfines 9—-12, executed with probabilipy, we introduce
a new parameterfor guaranteeing the PAC property (for PAC proofs, see 8e@&il).
For non-greedy moves, the control parametdefines the probability of justifying the
selected gate by a randomly chosen justification from the set of all juséifions for
the value ofy (this is anon-greedy downward moxaVith probability(1 — ¢) the non-
greedy move consists of inverting the valuetlod gateg itself (a non-greedy upward
move. The idea in upward moves s to try to escape from possilol lminima by more
radically changing the justification front. In the speciake whery is constrained, a
random downward move is done with probability 1.

~ Notice that the size of the interest set o7 ierest set size (upper]
gives an upper bound on the number of front size (lower) ——
gates that still need to be justified (the de- 5
scendants of the gates in the front). Fol- ,
lowing this intuition, by applying the ob-
jective function of minimizing the size of
the interest set, the greedy moves drive the®?
search towards the input gates. Alterna-°!
tively, one could use the objective of mini- 0 = = 0 30000 40000 50000 60000
mizing the size of the justification frontier move
since moves are concentrated on gatestig 2: Comparison of dynamics: sizes of inter-
the frontier and since the search is stopprsd set and justification frontier
when the frontier is empty. However, we notice that the sizéhe interest set is more
responsive to quantifying the changes in the configuratiam the size of the justifi-
cation frontier, as exemplified in Fig. 2. The size of the fientypically drops rapidly
close to zero percents from its starting value (the y axisases! to[0, 1] in the figure),
and after this remains quite stable until a solution is fauFtds is very similar to the
typical behavior observed for objective functions basedrennumber of unsatisfied
clauses in CNF level SLS methods [18]. In contrast, the ditkeedinterest set can vary
significantly without visible changes in the size of the jfisition frontier. Using the
size of the interest set rather than the size of the jusiifiogtontier also resulted in
better performance in preliminary experiments.

3.1 Onthe PAC Property in BC SLS

We now analyze under which conditions BC SLS is PAfBobabilistically approxi-
mately complede[16]. A CNF-level SLS SAT method is PAC if, for any satisfiable
CNF SAT instance” and any initial configuration, the probability thatS eventually



finds a satisfying truth assignment fBrstarting fromr is 1 without using restarts.e.,
the number of allowed flips is set to infinity and the numberieftto one. A non-PAC
SLS method iessentially incompletdexamples of PAC CNF level SLS methods in-
clude GWSAT (with non-zero random walk probability) and tWilk, while GSAT,
WalkSAT/TABU and Novelty (for arbitrary noise parametettisg)) are essentially in-
complete [16, 19]. Here we adapt the definition of PAC to thetext of BC SLS.

Definition 1. BC SLS is PAC using fixed parametersg, if, for any satisfiable con-
strained circuitC* and any initial configuratiorr, the probability that BC SLS even-
tually finds a de facto satisfying assignment @8r starting fromr is 1 when setting
MAXTRIES(CY) = 1 andMAXMOVES(CY) = co.

It turns out that for a PAC variant of BC SLS, both upward angdward non-
greedy moves are needed.

Theorem 1. The variant of BC SLS where non-greedy downward moves aeed
with probabilityq, where0 < ¢ < 1, is PAC for any fixed noise parameter- 0.

Proof. Assume thaf® is satisfiable, the current assignment,igndjfront(C*, 7) # 0.
We show that by executing the inner loop (lines 3-13) at m@ktimes the algorithm
reaches a de facto satisfying assignment with probabiliat teast

1 _ 1 <l
@-p-mln(mw,l—q) .

First, take any satisfying assignmeritfor C*. Recall thafront(C*, 7*) = 0 by
definition. Repeat the following untifront(C*, ) = (.

1. Ifthere is a gate in the frontierjfront(C*, 7) such that-(g) # 7*(g), execute the
line 12 that flips the value(g) to 7*(g). Note thaly is not constrained by as both
7,7* 2 «. Thus this step happens with the probability of at leagst p - (1 — ¢).

2. Otherwise the current assignmens such that all the gates in the justification cone
and frontier under have the same values as in the satisfying truth assignmient
Take a gatg in the frontierjfront(C®, 7). Now there is at least one child givhose
value differs int and7*. Execute the line 10 in a way that only flips the values of
children ofg whose values differ i and7*; the value of at least one such child
is flipped. This step happens with the probability of at Iqé@?t p-q- ﬁ where

the termﬁ comes from the fact that a gate always has less|i#anhildren, and
thus the probability of picking the desired justificatioratsieastﬁ.

As both steps above (i) flip the value of at least one gate tdrone and (ii) never flip

a gate whose value already is the same as‘irthey are executed at mast| times:
after thist = 7* and thugfront(C®, 7) = jfront(C*, 7*) = 0. Naturally, it may happen
thatjfront(C*, 7) = 0 earlier and the process terminates in fewer tf@nsteps; now

7 IS not necessary equal td but is de facto satisfying anyway. Therefore, executing

the lines 3—-13G| times transforms the current assignment into a de factsfygaty
€]

assignment with probability of at Ieaé% -p-min(q- 57,1 — q)) . Since this is

non-zero wherp > 0 and0 < ¢ < 1, BC SLS finds a satisfying assignment with

probability one as MxMOVES(C*) approaches infinity. O



Interestingly, at least for the gate types considered ldm@nward non-greedy moves
can be restricted tminimaljustifications without affecting Theorem 1.

However, if non-greedy moves are only allowed either (i) apdg or (ii) down-
wards, then BC SLS becomes essentially incomplete.

Theorem 2. The variant of BC SLS where non-greedy moves are done onlgrdpw
(i.e. wheng = 0) is essentially incomplete for any fixed noise parampter

Proof. Consider the constrained circdit' in Fig. 3; the subcircuiCy is such that the

gated can evaluate both tioor f, depending on the values of the input gates, whjjés

a subcircuit that only allows the gateto evaluate td. Therefore the gaté must have

the valuet in any (de facto or standard) satisfying assignment. Furtbee, assume

that the subcircuiC’, has fewer gates thati;.

Assume that the current assignmendssigns the gate at

d tof and that(d, f) is not justified under. Now if 7(b) =

f, the gateb cannot be in the frontier, and the inner loop

(lines 3—13) of BC SLS cannot change the valuel ¢f t.

If 7(b) =t (and thusb is in the justification cone), either

(i) 7(e) = t implying thatd is a don't care and thus its

value cannot be changed in the inner loop, or«i})

implying thatb is in the frontier and the inner loop can p|ck

an interest set size minimizing justification foon line 7

(but random justification on line 10 is not in useg@s: 0).

In case (i), asC, has fewer gates thafi; and (d,f) is not justified inr, the greedy

move will flip the value ofe to t and leaved intact because the whole subcircalg

becomes a don’t care and is removed from the interest setimiaip, whery = 0 the

inner loop cannot change the valueiadnd never finds a de facto satisfying assignment.
O

Fig. 3: Acircuit

Theorem 3. The variant of BC SLS where non-greedy moves are done onlyvaaras
(i.e. wheng = 1) is essentially incomplete for any fixed noise parameter

Proof. Consider again the constrained ciratiitin Fig. 3 with the assumption that the
subcircuitC'y is such that the gatécan evaluate both toor f, depending on the values
of the input gates, whil€’, is a subcircuit that only allows the gatgo evaluate td.
Suppose that the current assignmerassigns to t, d to f, ande to t. Now the gate

b is not in the frontier. Because of this and the fact that the lL2 is never executed
wheng = 1, the (incorrect) value of cannot be changed in the inner loop (lines 3-13)
of BC SLS. Thush never appears in the frontier and the (incorrect) value efgate

d cannot be changed during the execution of the inner loops Bhde facto satisfying
assignment is never found. ad

3.2 Experiments with non-PAC and PAC variant with Fixed Noise Parameter

Before developing adaptive noise mechanisms for BC SLSt(8gcwe look at the
performance of BC SLS with the fixed noise parameter sefting 0.5. We experi-
ment with a prototype which is a relatively straightforwémplementation of BC SLS



1e+07 > 1e+07
e

1le+06 | 1e+06 |

100000 | 100000

10000 | 10000 -

1000 1000

Number of moves for min-PAC BC-SLS
Number of moves for PAC BC-SLS

100 7 L L L L 100 el L L L L
100 1000 10000 100000 le+06 le+07 100 1000 10000 100000 1e+06 1le+07
Number of moves for non-PAC BC-SLS Number of moves for non-PAC BC-SLS

Fig. 4.Non-PAC vs min-PAC BC SLS (left), non-PAC vs PAC BC SLS (right

constructed on top of the bc2cnf Boolean circuit simpli@F translator [20]. In the

implementation, only subset minimal justifications aresidared for greedy moves. In
all the experiments of this paper we use as main benchmamiscd Boolean circuits

encoding the problem of bounded model checking of varioys@sonous systems for
deadlocks using the encoding in [21] (as listed in Table 1thdugh rather easy for
current DPLL solvers, these benchmarks are challengintyfocal SLS methods. We
limit the number of moves (cutoff) for the variants of BC SL&107, and run each

instance 15 times without restarts. When comparing BC SLEGNB level SLS proce-

dures, we apply exactly the same Boolean circuit level sfioption in bc2cnf to the

circuits as in our prototype implementation of BC SLS, arehtiranslate the simplified
circuit to CNF with the standard “Tseitin-style” transtaii

As the first experiment we compare the essentially incoragfteon-PAC”) version
where non-greedy moves are only done upwagds: (0) to two PAC variants (as de-
tailed in Section 3.1): in “min-PAC” 1% of non-greedy moves aandomly selected
from the set ofminimaljustifications, while in “PAC” 1% of non-greedy moves are+an
domly selected from the set afl justifications (that is, in both cases we get 0.01
so that the downward non-greedy moves do not become dommipati

It turns out that the variants “non-PAC” and “min-PAC” haweitg similar perfor-
mance (left in Fig. 4) except that “non-PAC” exceeds the ffutwre often. Surpris-
ingly, the “PAC” version, where also non-minimal randomtjfisations are allowed,
does not perform as well as the other two variants (right ¢n #). With this evidence,
we will in all the following experiments apply the “min-PA@ariant of BC SLS.

In the following experiments, we concentrate on evaluatidgptive noise mecha-
nisms for BC SLS, and compare the resulting methods to adagtusal SLS methods.
We note that a comparison of (“hon-PAC”) BC SLS using fixedsegiarameter setting
with WalkSAT is provided in [7] with the results that BC SLShilzits typically a one-
to-four-decade reduction in the number of moves compargdi@SAT.

4 Adaptive Noise Strategies for BC SLS

Considering CNF level SLS methods for SAT, it has been ndtibat SLS performance
can vary critically depending on the chosen noise settilggddd the optimal noise
setting can vary from instance to instance and within fagitf similar instances. The



same phenomenon is present also in BC SLS. The average nofitheres over 100
runs of BC SLS with different noise parameter settings isnsh@n Fig. 5 for two
different families of increasingly difficult Boolean ciritunstances. This observation
has led to the development of adaptive noise mechanisior CNF level SLS in the
solver AdaptNovelty+ [4], dismissing the requirement ofra-puned noise parameter.
This idea has been successfully applied in other SLS sob®nsell [22]. We now
consider strategies for adapting noise in BC SLS.

1e+07 le+08

16406 [ ax, o b7 e
i le+07

le+06 \ /

100000

ALEIEN

Average number of moves
Average number of moves

10000 N e \ e
L M i N\ e
oy 100000 R T

1000 ' i

H
100 10000
01 02 03 04 05 06 07 08 0.9 01 02 03 04 05 06 0.7 0.8 09 1
P P

Fig.5. Average number of moves for BC SLS with different noise partmn settings;
left: LTS BMC instance family speed-p, right: factoring tasce family braun (see
http://www.tcs.tkk.fi/Software/genfacbm/)

4.1 Adaptive Noise in the Context of BC SLS

Following the general idea presented in [4], a generic adapibise mechanism for
BC SLS is presented as Algorithm 2. Starting frpm= 0, the noise setting is tuned

Algorithm 2 Generic Adaptive Noise Mechanism
p: noise (initiallyp = 0)
adaptscore: score at latest noise change
adaptstep: step of latest noise change
. if score< adaptscorethen %% noise decrease
pi=p—%-p
adaptstep:= step
adaptscore:= score
else
if (step— adaptstep)> WAITING PERIOD() then %% noise increase
p=p+¢-(1-p)
adaptstep:= step
adaptscore:= score

N~ NE

during search based on the development of the objectiveifumealue.Every time
the objective function value is improved, noise is decrdaszording to line 2. If no
improvement in the objective function value has been oleseduring the last WiT-
INGPERIOD() steps, the noise is increased according to line 7, whexe0, 1[ controls
the relative amount of noise increase. Each time the noisegé changed, the current
objective function value is then stored for the next congari

10



Hoos [4] suggests, reporting generally good performamcests = % and the
staticfunction@ - C for WAITING PERIOD(), whered = é is a constant an@' denotes
the number of clauses in the CNF instance at hand. These pamanalues have been
applied also in other CNF level SLS solvers [22].

For BC SLS, as the first step we fixaccordingly to%, and focus on investigating
the effect of applying different waiting periods for noisetieases in the context of
BC SLS. First we investigate using asAWING PERIOD() a static linear functior -

U, where the numbell of unconstrained gates is multiplied by a constani fact,
opposed to reported experience with CNF level SLS, it tutristaat for BC SLSY) = %

is too large: by decreasirtgwe can increase the performance of BC SLS. As shown in
Fig. 6 (left), by decreasing to i we witness an evident overall gain in performance
against) = ¢ (left), and again by decreasiigrom o; to o (right).

1e+07

1e+07

1e+06 1e+06

100000 ¢ 100000 ¢

10000 10000
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w000 p 1 1000 |

100 ¥ . . . . 100 ¥ . . . .
100 1000 10000 100000 1e+06 1e+07 100 1000 10000 100000 1e+06 1e+07

#unconstrained/24 #unconstrained/96

Fig. 6. Comparison of number of moves; left= - vsf = 1, right:6 = & vsf =

However, we noticed that changing thg
overall scheme in the original adaptiv§
noise mechanism leads to even better pér- ze+e
formance for BC SLS. In the novel scheme,
which we callrapidly increasingwhen the §
waiting period is exceeded, the noise level 000 |
is increased aftezachstep until we see the$
first one-step improvementin the objectivg
function. This can be implemented by re8 w00l oo .. .. .

. . . . 10 1000 10000 100000 le+06 1e+07
moving line 8 in Algorithm 2. An example Rapid noise increase, #unconstrained/96
of the resulting improvement is shown iRig. 7: Comparison of number of moves:
Fig. 7, in which the original and rapidly insapidly increasing vs original noise mechanism
creasing noise mechanism are compared u%iﬁg%. In the following, we will apply
the rapidly increasing noise mechanism for BC SLS.

We next compare BC SLS with = % to AdaptNovelty+ [23]. Our current proto-
type of BC SLS does compute the effect of moves on the judiific@one and interest
set incrementally but is otherwise relatively unoptimizéde results shown in Table 1
are encouraging: BC SLS usually makes much fewer moves aagleso solve more
instances in the given time limit than AdaptNovelty+. Alttgh making moves is slower

in our BC SLS prototype (around 100000 moves per second aag@kgthan in Adapt-

1le+07

100000

1000
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Novelty+ (2.5 million per second), BC SLS is very compe#ti&lso in running times
on these instances as less moves are usually needed fogfandaiution.

It it interesting to look at how the noise level fluctuatesidgra run with different
values of). An example is provided in Fig. 8 where, using instadpel 2. f sa- b6- s,
the development gf is shown forf = %, ﬁ, % (from top to bottom) on runs of sim-
ilar length. It appears that with largér a significant portion of moves are wasted on
plateaus, from which we can escape only with a strong noisease. On the other
hand, for small values, such gs, the noise level seems to thrash heavily, not focusing
on a specific noise range. From another viewpoint, we obdehat lowering the value
of 6 basically raises the average noise level.

Table 1. Comparison of AdaptNovelty+ and BC SLS (static adaptiveseonechanisnt) = %):
101 runs for each instance, 5—minute time limit for each suicc %: percent of succesful runs.

Instance BCSLSH = ¢ AdaptNovelty+
name vars clausegsucc %| time #moves succ %| time #moves
min med min med min med min med

dp_12.fsa-b5-p.bc 953 29 100 0.1 1. 4272 14928} 100 0.1 0.1 4105 10012
dp.12.fsa-b6-p.bc 1362 42 100 0.1 0.7 7996 7910 1000 0.1 0.1 11006 29010
dp.12.fsa-b7-p.bc 1771 55 100, 0.1 0.9 11504 6770 100, 0.1 0.3 23519 72153
dp.12.fsa-b8-p.bc 2180 67 100 0.2 1.5 21143 14210 100| 0.1 0.1 48525 215934
dp.12.fsa-b9-p.bc 2589 80 100 0.1 4. 18056 37600 100 0.1 0.3 109929 817996
dp.12.fsa-b5-s.bc 1337 41 100 0.1 0.1 6234 17642 100 0.1 0.1 9240 22320
dp.12.fsa-b6-s.bc 1746 54 100 0.1 0.3 9119 3762 1000 0.1 0.1 27853 58083
dp.12.fsa-b7-s.oc 2155 66 100 0.1 1. 18480 8644 100, 0.1 0.1 40098 136157
dp.12.fsa-b8-s.oc 2564 79 100] 0.1 3.1 19857 24749 100, 0.1 0.1 60910 369385
dp.12.fsa-b9-s.bc 2973 92 100 0.3 9.5 38487 73025 100 0.1 2.1 170040 5212785
elevatorl-b4-s.bc 439 134 100 0.1 0.1 394 1707 100/ 0.1 0.1 2866 81606
elevatorl-b5-s.bc 698 214 100, 0.1 0.1 1365 3844 100| 0.1 04 7961 1254582
elevatorl-b6-s.bc 1087 337 100, 0.1 0.4 2507 60052 100| 1.4 15.5 3693776 42037729
elevator2-b6-p.bc 682 211% 100 0.1 0.1 982 4366 100] 0.1 5.5 149405 15053510

(e

DO OO OO O,

o

3=

elevator2-b7-p.bc 1253 3952 100, 0.1 0.7 4120 37607 93| 1.3 82.3 3406967 220184348
elevator2-b6-s.bc 1333 4148 100, 0.1 0.2 4389 1776} 82| 0.3 122.3 832838 329714970
elevator2-b7-s.bc 2063 6478 100 0.2 1.1 11526 6593} 6|36.7 194059483 -
elevator2-b8-s.bc 3123 9919 67| 1.7 179.9 79857 725445( 0 - - - -

mmgt2.fsa-b6-p.oc 654 203p 100 0.1 0.1 569 1287ﬂ 100 0.1 0.1 11902 308130
mmgt2.fsa-b7-p.oc 928 289p 100 0.1 0.4 3027 2696 100 0.1 0.3 80656 1468861
mmgt2.fsa-b8-p.bc 1317 4119 94| 0.1 74.3 6293 6395264 100 0.1 34.0 70058 102384691
mmgt2.fsa-b6-s.bc 1182 37(¢)8 100 0.1 0.1 3148 12644 95| 1.8 89.3 4798784 239335425

mmgt2.fsa-b7-s.bc 1723 54
mmgt2.fsa-b8-s.bc 2381 75
mmgt3.fsa-b7-p.bc 1421 444
mmgt3.fsa-b9-p.bc 2596 818§
mmgt3.fsa-b7-s.bc 2588 82
speedl.fsa-b6-p.bc 498 151
speedl.fsa-b7-p.bc 758 23]
speedl.fsa-b8-p.bc 1021 313
speedl.fsa-b9-p.bc 1284 394
speedl.fsa-b10-p.bc 1547 47

1

100 0.1 6.0 8989 347129 o - - - -
1001 1.2 29.1 60339 131575§ o - - - -
100/ 0.1 0.4 3456 4491 1000 0.1 0.1 26370 377011
100 0.3 29.4 23771 175940¢ 27| 4.8 -12129665 -
100 0.2 2.4 11575 15445} o - - - -
100 0.1 0.1 385 1159 1000 0.1 0.1 1327 26923
100 0.1 0.1 902 2934 1000 0.1 0.1 7364 132024
100 0.1 0.3 2125 7914 100, 0.1 0.3 43042 919969
100/ 0.1 0.2 3482 174544 100 0.1 2.4 46186 6812540
100 0.1 0.4 5382 4615 100| 0.4 18.5 1000674 48965683
100 0.2 4.4 20250 49985( 15(24.3 157759838 B

E RN TS0~ OO

speedl.fsa-b12-p.bc 2073  63¢8
speedl.fsa-b13-p.bc 2336 71})2 100 1.2 40.§123031 4332369 o - - - -
speedl.fsa-b14-p.bc 2599 797 34| 7.0 4744191 of -

100 0.1 0.1 603 1274 100, 0.1 0.3 2326 13049
100 0.1 0.3 1238 240 100, 0.1 0.3 6308 47237
100, 0.1 0.3 2025 418 100, 0.1 0.1 12134 98165
100, 0.1 0.1 2820 862 1000 0.1 0.1 29602 237623
100 0.1 0.2 3514 1486 100 0.1 0.3 52643 790049
100, 0.1 1.2 8500 10002 100, 0.3 6.9 723313 17287780
100 0.4 3.7 30637 31120 84| 1.5 135.4 3814440 354742108
100 0.2 12.3 17063 107274 15 1.8 - 4647662 -
92 1.2 67.9102953 601345 3| 0.4 - 982942 -

speedl.fsa-b6-s.bc 666 203
speedl.fsa-b7-s.bc 920 28]
speedl.fsa-b8-s.bc 1175 35
speedl.fsa-b9-s.bc 1430 43
speedl.fsa-b10-s.bc 1685 51
speedl.fsa-b12-s.bc 2195 67
speedl.fsa-b13-s.bc 2450 74
speedl.fsa-b14-s.bc 2705 82
speedl.fsa-b15-s.bc 2960 90

~ND ONNOOFOBRN
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Now, the original motivation behind developing adaptivéseanechanisms comes
from the fact that the optimal noise level is instance-dpegiecall Fig. 5). Apparently a
sufficient amount of noise is needed, which can be achievéalimring the fixed value
of 8, butthen the hence shortened waiting period for noise asgeresults in unfocused
fluctuations of the noise level. That is, by employing thepiva noise mechanism
based on static waiting periods, we may have only changegrtitdem of finding the
optimal static noise level parameteinto the problem of finding an instance-specific
optimal value forf. This motivates us to consider, opposed to a static waitergpp
controlled by the addition parametg&rdynamic waiting perioddased on the state of
search, with the possibility of dismissing the otherwisguieed constam.

We consider two dynamic alternatives:AWING PERIOD() = jfront(C%, 7) (the
size of the current justification frontier), andAWING PERIOD() = interest(C%, T)
(the size of the current interest set). The intuition behisthg front is that since the
gate at each step is selected from the justification frorttiersize of the frontier gives
us an estimate on the number of possible greedy moves intoriteprove the objective
function value before increasing the possibility of noeepty moves (increasing noise).
On the other hand, the size of the interest set is preciselplfective function value.
Intuitively, the greater the objective function value e further we are from a solution,
and thus more effort is allowed on finding a good greedy move.

Fig. 9 gives a comparison of performance using the statitingaperiod withg =
% with the performance resulting from using dynamic waitirgipd based on frontier
size (left) and interest set size (right). The dynamic waifperiod results in comparable
performance than the static one, although we notice thdt thi¢ dynamic approach
based on frontier size seems to behave more similarly ta#tie sne than the dynamic
approach based on interest set size.

This difference is highlighted by looking at the fluctuasioof the noise level for
the dynamic waiting periods (exemplified in Fig. 10). Espéigithe noise level fluctu-
ation resulting from the interest set size approach seefns toore focused than when
using the static waiting period with = % (recall Fig. 8 (bottom)), avoiding some of
the observed thrashing behavior without needing to choageeific value fol. The

Fig. 8. Noise level fluctuations during a run usifig= é
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question of to what extend thrashing may affect performasae interesting aspect of
further work.
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Fig. 10.Noise level fluctuation during a run using front (top) ancnest set size (bottom)

5 Conclusions

We extend a recent framework BC SLS [7] for a novel type oflséstic local search
(SLS) for SAT. We analyze in detail under which conditions éxtended framework is
probabilistically approximately complete and under whédsentially incomplete. We
develop and study adaptive noise mechanisms for BC SLS. dhéts suggest that,
compared to the parameter values for adapting noise useNfnl&sel SLS methods,
radically different settings are required in BC SLS. As miorgdamental changes to the
CNF level noise mechanism, we demonstrate improvemengsfonmance for BC SLS
by introducing theapidly increasingnoise mechanism, and show that there is promise
for dismissing the static waiting period constémequired in current CNF level noise
mechanisms bgynamicallyadapting the waiting period for noise increases. Compared
to well-known CNF level SLS methods, a prototype implemgateof the framework
performs favorably w.r.t. the number of moves, showing gsenfor more optimized
implementations of the procedure. An interesting questagarding dynamic waiting
periods is whether CNF level SLS methods can gain from simikechanisms.
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