
Matti Järvisalo, Tommi Junttila, and Ilkka Niemelä. 2008. Justification­based local
search with adaptive noise strategies. In: Iliano Cervesato, Helmut Veith, and Andrei
Voronkov (editors). Proceedings of the 15th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR 2008). Doha, Qatar. 22­27
November 2008. Springer. Lecture Notes in Computer Science, volume 5330, pages
31­46.

© 2008 Springer Science+Business Media

Reprinted with permission.

Reprinted from Iliano Cervesato, Helmut Veith, and Andrei Voronkov, editors, Proceedings of the 15th International Conference
on Logic for Programming, Artificial Intelligence and Reasoning (LPAR 2008), volume 5330 of Lecture Notes in Computer
Science, c© Springer-Verlag 2008, with permission from Springer-Verlag.

Justification-Based Local Search with
Adaptive Noise Strategies

Matti Järvisalo, Tommi Junttila, and Ilkka Niemelä

Helsinki University of Technology (TKK)
Department of Information and Computer Science, P.O. Box 5400, FI-02015 TKK, Finland

{matti.jarvisalo,tommi.junttila,ilkka.niemela}@tkk.fi

Abstract. We study a framework called BC SLS for a novel type of stochastic lo-
cal search (SLS) for propositional satisfiability (SAT). Aimed specifically at solv-
ing real-world SAT instances, the approach works directly on a non-clausal struc-
tural representation for SAT. This allows for don’t care detection and justification
guided search heuristics in SLS by applying the circuit-level SAT technique of
justification frontiers. In this paper we extend the BC SLS approach first by de-
veloping generalizations of BC SLS which are probabilistically approximately
complete (PAC). Second, we develop and study adaptive noisemechanisms for
BC SLS, including mechanisms based on dynamically adaptingthe waiting pe-
riod for noise increases. Experiments show that a preliminary implementation of
the novel adaptive, PAC generalization of the method outperforms a well-known
CNF level SLS method with adaptive noise (AdaptNovelty+) ona collection of
structured real-world SAT instances.

1 Introduction

While stochastic local search techniques (SLS) such as [1–5] are very efficient in solv-
ing hard randomly generated SAT instances, a major challenge is to improve SLS on
structural problems by efficiently handling variable dependencies [6]. In this paper we
extend a recent non-clausal stochastic local search (SLS) method, BC SLS [7], which
applies similar ideas as typical in clausal SLS methods but differs in many crucial as-
pects. In particular, BC SLS combines techniques from structure-based complete DPLL
style non-clausal algorithms [8–11]. Aimed specifically atsolving real-world SAT in-
stances, BC SLS works directly on a non-clausal structural representation for SAT. This
allows for adopting don’t cares [12] and justification guided search heuristics in SLS by
applying ideas from the circuit-level SAT technique of justification frontiers [10]. For
a discussion of the relationship between the basic BC SLS method and both CNF level
and other non-clausal SLS methods, such as [13–15], see [7].

In this work we adopt the basic ingredients of local search—the notions of a con-
figuration and a move, the objective function, and the stopping criterion—from BC
SLS, and extend the approach. In more detail, we develop generalizations of BC SLS
which (i) areprobabilistically approximately complete(PAC) [16], and which (ii)ex-
ploit adaptive noise mechanismswithin the framework.

It has been observed that the performance of CNF level SLS methods, such as those
in the WalkSAT family, varies greatly depending on the chosen fixed noise parameter

setting [3, 4]. We show that the same phenomenon is present also in BC SLS. In the case
of CNF level SLS, in order to avoid manual noise tuning this has led to the development
of automatic noise level mechanisms based on probing techniques for selecting a fixed
noise parameter setting before actual search [17], or by adaptively tuning the noise level
during search [4]. Here we adapt latter techniques to the BC SLS framework. However,
we discover that compared to the parameter values for adapting noise used in CNF level
SLS methods, radically different settings are required in BC SLS. We then show how
to adjust this technique for BC SLS for better performance. In addition to the adaptive
noise mechanism based on a static waiting period for noise increments, we suggest an
alternative based on dynamic waiting periods that depend more on the current state of
the search. While maintaining similar performance, the application of dynamic waiting
periods gives the possibility of dismissing the fixed constant used in the typical adaptive
noise mechanism based on a static waiting periods.

Applying a novel adaptive noise strategy for BC SLS, we show experimentally that
a preliminary implementation of an adaptive PAC variant of the BC SLS method out-
performs a fine-tuned implementation of the CNF level SLS method AdaptNovelty+ on
a collection of structured real-world SAT instances.

This paper is organized as follows. First we define Boolean circuits and central
concepts related to justifications and don’t cares (Sect. 2). The justification-based non-
clausal SLS framework is described in Sect. 3, with analysisof probabilistically ap-
proximately completeness of different variants of the method (Sect. 3.1). Section 4 is
focused on developing adaptive noise mechanisms for the framework.

2 Constrained Boolean Circuits

Boolean circuits offer a natural non-clausal representation for arbitrary propositional
formulas in a compact DAG-like structure withsubformula sharing. Rather than trans-
lating circuits to CNF for solving the resulting SAT instance by local search, in this
work we will work directly on the Boolean circuit representation.

A Boolean circuitover a finite setG of gatesis a setC of equations of formg :=
f(g1, . . . , gn), whereg, g1, . . . , gn ∈ G andf : {f, t}n → {f, t} is a Boolean function,
with the additional requirements that (i) eachg ∈ G appears at most once as the left
hand side in the equations inC, and (ii) the underlying directed graph

〈G, E(C) = {〈g′, g〉 ∈ G×G | g := f(. . . , g′, . . .) ∈ C}〉

is acyclic. If 〈g′, g〉 ∈ E(C), theng′ is a child of g andg is a parentof g′. Thede-
scendantandancestorrelations are defined in the usual way as the transitive closures
of the child and parent relations, respectively. Ifg := f(g1, . . . , gn) is in C, theng is
an f -gate (or of typef), otherwise it is aninput gate. The set of input gates inC is
denoted byinputs(C). A gate with no parents is anoutput gate. An assignmentfor C
is a (possibly partial) functionτ : G → {f, t}. A total assignmentτ for C is consis-
tent if τ(g) = f(τ(g1), . . . , τ(gn)) for eachg := f(g1, . . . , gn) in C. A circuit C has
2|inputs(C)| consistent total assignments.

A constrained Boolean circuitCα is a pair〈C, α〉, whereC is a Boolean circuit and
α is an assignment forC. With respect to a constrained circuitCα, each〈g, v〉 ∈ α is a

2

constraint, andg is constrainedto v if 〈g, v〉 ∈ α. A total assignmentτ for C satisfies
Cα if (i) τ is consistent withC, and (ii) respects the constraints:τ ⊇ α. If some total
assignment satisfiesCα, thenCα is satisfiableand otherwiseunsatisfiable. In this work
we consider Boolean circuits in which the following Booleanfunctions are available as
gate types.

– NOT(v) is t iff v is f.
– OR(v1, . . . , vn) is t iff at least one ofv1, . . . , vn is t.
– AND(v1, . . . , vn) is t iff all v1, . . . , vn aret.
– XOR(v1, v2) is t iff exactly one ofv1, v2 is t.

However, notice that the techniques developed in this papercan be adapted for a wider
range of types. In order to keep the presentation and algorithms simpler, we assume that
constraints only appear in the output gates of constrained circuits. Any circuit can be
rewritten into such a normal form by using the rules in [8].

Figure 1 shows a Boolean circuit for a full-adder with
the constraint that the carry-out bitc1 is t. Formally the cir-
cuit is defined asC = {c1:=OR(t1, t2), t1:=AND(t3, c0),
o0:=XOR(t3, c0), t2:=AND(a0, b0), t3:=XOR(a0, b0)}, and
α = {〈c1, t〉}. A satisfying total assignment for it is
{〈c1, t〉, 〈t1, t〉, 〈o0, f〉, 〈t2, f〉, 〈t3, t〉, 〈a0, t〉, 〈b0, f〉, 〈c0, t〉}.

The restriction of an assignmentτ to a setG′ ⊆ G of
gates is defined as usual:τ |G′ = {〈g, v〉 ∈ τ | g ∈ G′}.
Given a non-input gateg := f(g1, . . . , gn) and a valuev ∈
{f, t}, a justification for the pair〈g, v〉 is a partial assign-

a0 b0 c0

AND XOR

OR

AND XORt3t2

o0

c1 t

t1

Fig. 1: A constrained circuit

mentσ : {g1, . . . , gn} → {f, t} to the children ofg such thatf(τ(g1), . . . , τ(gn)) = v

holds for all extensionsτ ⊇ σ. That is, the values assigned byσ to the chil-
dren of g are enough to forceg to have the valuev. A gate g is justified in an
assignmentτ if it is assigned, i.e.τ(g) is defined, and (i) it is an input gate, or
(ii) g := f(g1, . . . , gn) ∈ C and τ |{g1,...,gn} is a justification for〈g, τ(g)〉. For
example, consider the gatet1 in Fig. 1. The possible justifications for〈t1, f〉 are
{〈t3, f〉}, {〈t3, f〉, 〈c0, t〉}, {〈t3, f〉, 〈c0, f〉}, {〈c0, f〉}, and{〈t3, t〉, 〈c0, f〉}; of these the
first and fourth one are subset minimal ones. The gatet1 is justified in the assignment
τ = {〈c1, t〉, 〈t1, f〉, 〈o0, t〉, 〈t2, t〉, 〈t3, f〉, 〈a0, t〉, 〈b0, t〉, 〈c0, t〉}.

A key concept in BC SLS is thejustification conejcone(Cα, τ) for a constrained
circuit Cα under an assignmentτ ⊇ α. The justification cone is defined recursively top-
down in the circuit structure, starting from the constrained gates. Intuitively, the cone is
the smallest set of gates which includes all constrained gates and, for each justified gate
in the set, all the gates that participate in some subset minimal justification for the gate.
More formally,jcone(Cα, τ) is the smallest one of those setsS of gates which satisfy
the following properties.

1. If 〈g, v〉 ∈ α, theng ∈ S.
2. If g ∈ S and (i) g is a non-input gate, (ii)g is justified inτ , and (iii) 〈gi, vi〉 ∈ σ

for some subset minimal justificationσ for 〈g, τ(g)〉, thengi ∈ S.

Notice that by this definitionjcone(Cα, τ) is unambiguously defined.

3

As another key concept, thejustification frontierof Cα underτ , is the “bottom edge”
of the justification cone, i.e. those gates in the cone that are not justified:

jfront(Cα, τ) = {g ∈ jcone(Cα, τ) | g is not justified inτ}.

A gateg is interestingin τ if it belongs to the frontierjfront(Cα, τ) or is a descendant
of a gate in it; the set of all gates that are interesting inτ is denoted byinterest(Cα, τ).
A gateg is an (observability) don’t careif it is neither interesting nor in the justification
conejcone(Cα, τ). For instance, consider the constrained circuitCα in Fig. 1. Under the
assignmentτ = {〈c1, t〉, 〈t1, t〉, 〈o0, f〉, 〈t2, f〉, 〈t3, t〉, 〈a0, f〉, 〈b0, f〉, 〈c0, t〉}, the justi-
fication conejcone(Cα, τ) is {c1, t1, t3, c0}, the justification frontierjfront(Cα, τ) is
{t3}, interest(Cα, τ) = {t3, a0, b0}, and the gatest2 ando0 are don’t cares.

As observed in [7] if the justification frontierjfront(Cα, τ) is empty for some to-
tal assignmentτ , then the constrained circuitCα is satisfiable. Whenjfront(Cα, τ) is
empty, a satisfying assignment can be obtained by (i) restrictingτ to the input gates ap-
pearing in the justification cone, i.e. to the gate setjcone(Cα, τ)∩ inputs(C), (ii) assign-
ing other input gates arbitrary values, and (iii) recursively evaluating the values of non-
input gates. Thus, wheneverjfront(Cα, τ) is empty, we say thatτ de facto satisfiesCα.
For example, the assignment{〈c1, t〉, 〈t1, f〉, 〈o0, f〉, 〈t2, t〉, 〈t3, t〉, 〈a0, t〉, 〈b0, t〉, 〈c0, t〉}
de facto satisfies the constrained circuitCα in Fig. 1; a satisfying assignment obtained
by the procedure above is{〈c1, t〉, 〈t1, f〉, 〈o0, f〉, 〈t2, t〉, 〈t3, f〉, 〈a0, t〉, 〈b0, t〉, 〈c0, f〉}.
Also note that if a total truth assignmentτ satisfiesCα, thenjfront(Cα, τ) is empty.

Translating Circuits to CNF.Each constrained Boolean circuitCα can be translated
into an equi-satisfiable CNF formulacnf(Cα) by applying the standard “Tseitin trans-
lation”. In order to obtain a small CNF formula, the idea is tointroduce a variablẽg for
each gateg in the circuit, and then to describe the functionality of each gate with a set of
clauses. For instance, anAND-gateg := AND(g1, . . . , gn) is translated into the clauses
(¬g̃ ∨ g̃1),. . . ,(¬g̃ ∨ g̃n), and(g̃ ∨¬g̃1 ∨ . . .∨¬g̃n). The constraints are translated into
unit clauses: introduce the clause(g̃) for 〈g, t〉 ∈ α, and the clause(¬g̃) for 〈g, f〉 ∈ α.

A Note on Negations.As usual in many SAT algorithms, we will implicitly ignore
NOT-gates of formg := NOT(g1); g andg1 are always assumed to have the opposite val-
ues. ThusNOT-gates are, for instance, (i) “inlined” in thecnf translation by substituting
¬g̃1 for g̃, and (ii) never counted in an interest setinterest(Cα, τ).

3 Justification-Based Non-Clausal SLS

In the non-clausal method BC SLS [7] a configuration is described by a total truth
assignment as in typical clausal SLS methods. However, the non-clausal method works
directly on general propositional formulas represented asBoolean circuits, and hence a
configuration is a total assignment on the gates of the Boolean circuit at hand. Moreover,
the key elements of an SLS method – the notion of moves, the objective function, and
the stopping criterion – are substantially different from the corresponding elements in
clausal SLS methods.

In typical SLS methods for SAT the moves consist of individual flips on variable
values in the current configuration. In BC SLS structural knowledge is exploited for
making moves on gates: a typical move on a gateg flips the values of a subset ofg’s

4

children so thatg becomes locally justified under the new truth assignment. Moreover,
moves are focused on a particular subset of the gates, the justification frontier, which
guides the search to concentrate on relevant parts of the instance exploitingobserv-
ability don’t cares. In typical clausal SLS methods the objective function measures the
number of clauses that are falsified by the current truth assignment. In BC SLS the
objective function is based on the concept of justification frontier and uses the set of
interesting gates. The notion of a justification frontier leads to a early stopping criterion
where the search can be halted when the circuit has been shownto be de facto satisfiable
which often occurs before a total satisfying truth assignment has been found.

In this work we extend BC SLS in order to (i) achieve aprobabilistically approxi-
mately complete(PAC) generalization of the method, and to (ii)exploit adaptive noise
mechanismswithin the framework. The resulting generalized frameworkis described
as Algorithm 1. Given a constrained Boolean circuitCα the algorithm performs struc-
tural local search over the assignment space ofall the gates inC (inner loop on lines
3–13). As typical, thenoise parameterp ∈ [0, 1] controls the probability of making
non-greedy moves (withp = 0 only greedy moves are made). Here we introduce an ad-
ditional parameterq ∈ [0, 1] which leads to PAC variants of BC SLS. We will consider
adaptive noise mechanisms for controlling the value ofp during the search in Sect. 4.

Algorithm 1 Generalized BC SLS
Input: constrained Boolean circuitCα, control parametersp, q ∈ [0, 1] for non-greedy moves
Output: a de factosatisfying assignment forCα or “don’t know”
Explanations:
τ : current truth assignment on all gates withτ ⊇ α

δ: next move (a partial assignment)
1: for try := 1 to MAX TRIES(Cα) do
2: τ := pick an assignment over all gates inC s.t.τ ⊇ α

3: for move := 1 to MAX MOVES(Cα) do
4: if jfront(Cα, τ) = ∅ then return τ

5: Select a random gateg ∈ jfront(Cα, τ)
6: with probability(1 − p) do %greedy move
7: δ := a random justification from those justifications

for 〈g, v〉 ∈ τ that minimizecost(τ, ·)
8: otherwise %non-greedy move (with probabilityp)
9: if g is constrained inα or with probabilityq do

10: δ := a random justification for〈g, v〉 ∈ τ

11: else
12: δ := {〈g,¬τ (g)〉} %flip the value ofg
13: τ := (τ \ {〈g,¬w〉 | 〈g, w〉 ∈ δ}) ∪ δ

14: return “don’t know”

For each of the MAX TRIES(Cα) runs, MAX MOVES(Cα) moves are made. As the
stopping criterionwe use the condition that the justification frontierjfront(Cα, τ) is
empty. As discussed in Section 2 ifjfront(Cα, τ) is empty, thenCα is satisfiable and a
satisfying truth assignment can be computed fromτ . Notice that typically this stopping
criterion is reached before all gates are justified in the current configurationτ .

5

Given the current configurationτ , we concentrate on making moves on gates in
jfront(Cα, τ) by randomly picking a gateg from this set. For a gateg and its current
value v in τ , the possiblegreedy movesare induced by the justifications for〈g, v〉.
The idea is to minimize thesize of the interest set. In other words, the value of the
objective function for a move (justification)δ is cost(τ, δ) = |interest(Cα, τ ′)|, where
τ ′ = (τ \ {〈g,¬w〉 | 〈g, w〉 ∈ δ}) ∪ δ. That is, the cost of a moveδ is the size of the
interest set in the configurationτ ′ where for the gates mentioned inδ we use the values
in δ instead of those inτ . The move is then selected randomly from those justifications
δ for 〈g, v〉 for whichcost(τ, δ) is smallest over all justifications for〈g, v〉.

During anon-greedy move(lines 9–12, executed with probabilityp), we introduce
a new parameterq for guaranteeing the PAC property (for PAC proofs, see Section 3.1).
For non-greedy moves, the control parameterq defines the probability of justifying the
selected gateg by a randomly chosen justification from the set of all justifications for
the value ofg (this is anon-greedy downward move). With probability(1− q) the non-
greedy move consists of inverting the value ofthe gateg itself (a non-greedy upward
move). The idea in upward moves is to try to escape from possible local minima by more
radically changing the justification front. In the special case wheng is constrained, a
random downward move is done with probability 1.

Notice that the size of the interest set
gives an upper bound on the number of
gates that still need to be justified (the de-
scendants of the gates in the front). Fol-
lowing this intuition, by applying the ob-
jective function of minimizing the size of
the interest set, the greedy moves drive the
search towards the input gates. Alterna-
tively, one could use the objective of mini-
mizing the size of the justification frontier
since moves are concentrated on gates in
the frontier and since the search is stopped

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10000 20000 30000 40000 50000 60000

move

interest set size (upper)
front size (lower)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10000 20000 30000 40000 50000 60000

move

interest set size (upper)
front size (lower)

Fig. 2: Comparison of dynamics: sizes of inter-
est set and justification frontier

when the frontier is empty. However, we notice that the size of the interest set is more
responsive to quantifying the changes in the configuration than the size of the justifi-
cation frontier, as exemplified in Fig. 2. The size of the frontier typically drops rapidly
close to zero percents from its starting value (the y axis is scaled to[0, 1] in the figure),
and after this remains quite stable until a solution is found. This is very similar to the
typical behavior observed for objective functions based onthe number of unsatisfied
clauses in CNF level SLS methods [18]. In contrast, the size of the interest set can vary
significantly without visible changes in the size of the justification frontier. Using the
size of the interest set rather than the size of the justification frontier also resulted in
better performance in preliminary experiments.

3.1 On the PAC Property in BC SLS

We now analyze under which conditions BC SLS is PAC (probabilistically approxi-
mately complete) [16]. A CNF-level SLS SAT methodS is PAC if, for any satisfiable
CNF SAT instanceF and any initial configurationτ , the probability thatS eventually

6

finds a satisfying truth assignment forF starting fromτ is 1without using restarts, i.e.,
the number of allowed flips is set to infinity and the number of tries to one. A non-PAC
SLS method isessentially incomplete. Examples of PAC CNF level SLS methods in-
clude GWSAT (with non-zero random walk probability) and UnitWalk, while GSAT,
WalkSAT/TABU and Novelty (for arbitrary noise parameter setting) are essentially in-
complete [16, 19]. Here we adapt the definition of PAC to the context of BC SLS.

Definition 1. BC SLS is PAC using fixed parametersp, q if, for any satisfiable con-
strained circuitCα and any initial configurationτ , the probability that BC SLS even-
tually finds a de facto satisfying assignment forCα starting fromτ is 1 when setting
MAX TRIES(Cα) = 1 andMAX MOVES(Cα) = ∞.

It turns out that for a PAC variant of BC SLS, both upward and downward non-
greedy moves are needed.

Theorem 1. The variant of BC SLS where non-greedy downward moves are allowed
with probabilityq, where0 < q < 1, is PAC for any fixed noise parameterp > 0.

Proof. Assume thatCα is satisfiable, the current assignment isτ , andjfront(Cα, τ) 6= ∅.
We show that by executing the inner loop (lines 3–13) at most|G| times the algorithm
reaches a de facto satisfying assignment with probability of at least

(

1

|G|
· p ·min(q ·

1

2|G|
, 1− q)

)|G|

.

First, take any satisfying assignmentτ⋆ for Cα. Recall thatjfront(Cα, τ⋆) = ∅ by
definition. Repeat the following untiljfront(Cα, τ) = ∅.

1. If there is a gateg in the frontierjfront(Cα, τ) such thatτ(g) 6= τ⋆(g), execute the
line 12 that flips the valueτ(g) to τ⋆(g). Note thatg is not constrained byα as both
τ, τ⋆ ⊇ α. Thus this step happens with the probability of at least1

|G| · p · (1 − q).
2. Otherwise the current assignmentτ is such that all the gates in the justification cone

and frontier underτ have the same values as in the satisfying truth assignmentτ⋆.
Take a gateg in the frontierjfront(Cα, τ). Now there is at least one child ofg whose
value differs inτ andτ⋆. Execute the line 10 in a way that only flips the values of
children ofg whose values differ inτ andτ⋆; the value of at least one such child
is flipped. This step happens with the probability of at least1

|G| · p · q ·
1

2|G| , where

the term 1
2|G| comes from the fact that a gate always has less than|G| children, and

thus the probability of picking the desired justification isat least 1
2|G| .

As both steps above (i) flip the value of at least one gate to onein τ⋆ and (ii) never flip
a gate whose value already is the same as inτ⋆, they are executed at most|G| times:
after thisτ = τ⋆ and thusjfront(Cα, τ) = jfront(Cα, τ⋆) = ∅. Naturally, it may happen
that jfront(Cα, τ) = ∅ earlier and the process terminates in fewer than|G| steps; now
τ is not necessary equal toτ⋆ but is de facto satisfying anyway. Therefore, executing
the lines 3–13|G| times transforms the current assignment into a de facto satisfying

assignment with probability of at least
(

1
|G| · p ·min(q · 1

2|G| , 1− q)
)|G|

. Since this is

non-zero whenp > 0 and0 < q < 1, BC SLS finds a satisfying assignment with
probability one as MAX MOVES(Cα) approaches infinity. ⊓⊔

7

Interestingly, at least for the gate types considered here,downward non-greedy moves
can be restricted tominimal justifications without affecting Theorem 1.

However, if non-greedy moves are only allowed either (i) upwards or (ii) down-
wards, then BC SLS becomes essentially incomplete.

Theorem 2. The variant of BC SLS where non-greedy moves are done only upwards
(i.e. whenq = 0) is essentially incomplete for any fixed noise parameterp.

Proof. Consider the constrained circuitCα in Fig. 3; the subcircuitCf is such that the
gated can evaluate both tot or f, depending on the values of the input gates, whileCg is
a subcircuit that only allows the gatee to evaluate tof. Therefore the gated must have
the valuet in any (de facto or standard) satisfying assignment. Furthermore, assume
that the subcircuitCg has fewer gates thanCf .

Assume that the current assignmentτ assigns the gate
d to f and that〈d, f〉 is not justified underτ . Now if τ(b) =
f, the gateb cannot be in the frontier, and the inner loop
(lines 3–13) of BC SLS cannot change the value ofd to t.
If τ(b) = t (and thusb is in the justification cone), either
(i) τ(e) = t implying thatd is a don’t care and thus its
value cannot be changed in the inner loop, or (ii)τ(e) = f
implying thatb is in the frontier and the inner loop can pick
an interest set size minimizing justification forb on line 7
(but random justification on line 10 is not in use asq = 0).

AND

OR

ta

b c

Cf

Cg

d e

Fig. 3: A circuit

In case (ii), asCg has fewer gates thanCf and〈d, f〉 is not justified inτ , the greedy
move will flip the value ofe to t and leaved intact because the whole subcircuitCf

becomes a don’t care and is removed from the interest set. To sum up, whenq = 0 the
inner loop cannot change the value ofd and never finds a de facto satisfying assignment.

⊓⊔

Theorem 3. The variant of BC SLS where non-greedy moves are done only downwards
(i.e. whenq = 1) is essentially incomplete for any fixed noise parameterp.

Proof. Consider again the constrained circuitCα in Fig. 3 with the assumption that the
subcircuitCf is such that the gated can evaluate both tot or f, depending on the values
of the input gates, whileCg is a subcircuit that only allows the gatee to evaluate tof.
Suppose that the current assignmentτ assignsb to t, d to f, ande to t. Now the gate
b is not in the frontier. Because of this and the fact that the line 12 is never executed
whenq = 1, the (incorrect) value ofe cannot be changed in the inner loop (lines 3–13)
of BC SLS. Thusb never appears in the frontier and the (incorrect) value of the gate
d cannot be changed during the execution of the inner loop. Thus a de facto satisfying
assignment is never found. ⊓⊔

3.2 Experiments with non-PAC and PAC variant with Fixed Noise Parameter

Before developing adaptive noise mechanisms for BC SLS (Sect. 4), we look at the
performance of BC SLS with the fixed noise parameter settingp = 0.5. We experi-
ment with a prototype which is a relatively straightforwardimplementation of BC SLS

8

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

N
um

be
r

of
 m

ov
es

 fo
r

m
in

-P
A

C
 B

C
-S

LS

Number of moves for non-PAC BC-SLS

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

N
um

be
r

of
 m

ov
es

 fo
r

m
in

-P
A

C
 B

C
-S

LS

Number of moves for non-PAC BC-SLS

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

N
um

be
r

of
 m

ov
es

 fo
r

P
A

C
 B

C
-S

LS

Number of moves for non-PAC BC-SLS

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

N
um

be
r

of
 m

ov
es

 fo
r

P
A

C
 B

C
-S

LS

Number of moves for non-PAC BC-SLS

Fig. 4.Non-PAC vs min-PAC BC SLS (left), non-PAC vs PAC BC SLS (right)

constructed on top of the bc2cnf Boolean circuit simplifier/CNF translator [20]. In the
implementation, only subset minimal justifications are considered for greedy moves. In
all the experiments of this paper we use as main benchmarks a set of Boolean circuits
encoding the problem of bounded model checking of various asynchronous systems for
deadlocks using the encoding in [21] (as listed in Table 1). Although rather easy for
current DPLL solvers, these benchmarks are challenging fortypical SLS methods. We
limit the number of moves (cutoff) for the variants of BC SLS to 107, and run each
instance 15 times without restarts. When comparing BC SLS toCNF level SLS proce-
dures, we apply exactly the same Boolean circuit level simplification in bc2cnf to the
circuits as in our prototype implementation of BC SLS, and then translate the simplified
circuit to CNF with the standard “Tseitin-style” translation.

As the first experiment we compare the essentially incomplete (“non-PAC”) version
where non-greedy moves are only done upwards (q = 0) to two PAC variants (as de-
tailed in Section 3.1): in “min-PAC” 1% of non-greedy moves are randomly selected
from the set ofminimaljustifications, while in “PAC” 1% of non-greedy moves are ran-
domly selected from the set ofall justifications (that is, in both cases we setq = 0.01
so that the downward non-greedy moves do not become dominating).

It turns out that the variants “non-PAC” and “min-PAC” have quite similar perfor-
mance (left in Fig. 4) except that “non-PAC” exceeds the cutoff more often. Surpris-
ingly, the “PAC” version, where also non-minimal random justifications are allowed,
does not perform as well as the other two variants (right in Fig. 4). With this evidence,
we will in all the following experiments apply the “min-PAC”variant of BC SLS.

In the following experiments, we concentrate on evaluatingadaptive noise mecha-
nisms for BC SLS, and compare the resulting methods to adaptive clausal SLS methods.
We note that a comparison of (“non-PAC”) BC SLS using fixed noise parameter setting
with WalkSAT is provided in [7] with the results that BC SLS exhibits typically a one-
to-four-decade reduction in the number of moves compared toWalkSAT.

4 Adaptive Noise Strategies for BC SLS

Considering CNF level SLS methods for SAT, it has been noticed that SLS performance
can vary critically depending on the chosen noise setting [4], and the optimal noise
setting can vary from instance to instance and within families of similar instances. The

9

same phenomenon is present also in BC SLS. The average numberof moves over 100
runs of BC SLS with different noise parameter settings is shown in Fig. 5 for two
different families of increasingly difficult Boolean circuit instances. This observation
has led to the development of anadaptive noise mechanismfor CNF level SLS in the
solver AdaptNovelty+ [4], dismissing the requirement of a pre-tuned noise parameter.
This idea has been successfully applied in other SLS solversas well [22]. We now
consider strategies for adapting noise in BC SLS.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 n
um

be
r

of
 m

ov
es

p

b12
b10

b8
b7
b6

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 n
um

be
r

of
 m

ov
es

p

b12
b10

b8
b7
b6

 10000

 100000

 1e+06

 1e+07

 1e+08

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 n
um

be
r

of
 m

ov
es

p

10
8

 10000

 100000

 1e+06

 1e+07

 1e+08

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 n
um

be
r

of
 m

ov
es

p

10
8

Fig. 5. Average number of moves for BC SLS with different noise parameter settings;
left: LTS BMC instance family speed-p, right: factoring instance family braun (see
http://www.tcs.tkk.fi/Software/genfacbm/)

4.1 Adaptive Noise in the Context of BC SLS

Following the general idea presented in [4], a generic adaptive noise mechanism for
BC SLS is presented as Algorithm 2. Starting fromp = 0, the noise setting is tuned

Algorithm 2 Generic Adaptive Noise Mechanism
p: noise (initiallyp = 0)
adaptscore: score at latest noise change
adaptstep: step of latest noise change

1: if score< adaptscorethen %%noise decrease
2: p := p − φ

2
· p

3: adaptstep:= step
4: adaptscore:= score
5: else
6: if (step− adaptstep)> WAITING PERIOD() then %%noise increase
7: p := p + φ · (1 − p)
8: adaptstep:= step
9: adaptscore:= score

during search based on the development of the objective function value.Every time
the objective function value is improved, noise is decreased according to line 2. If no
improvement in the objective function value has been observed during the last WAIT-
INGPERIOD() steps, the noise is increased according to line 7, whereφ ∈]0, 1[controls
the relative amount of noise increase. Each time the noise setting is changed, the current
objective function value is then stored for the next comparison.

10

Hoos [4] suggests, reporting generally good performance, to useφ = 1
5 and the

static functionθ · C for WAITING PERIOD(), whereθ = 1
6 is a constant andC denotes

the number of clauses in the CNF instance at hand. These parameter values have been
applied also in other CNF level SLS solvers [22].

For BC SLS, as the first step we fixφ accordingly to1
5 , and focus on investigating

the effect of applying different waiting periods for noise increases in the context of
BC SLS. First we investigate using as WAITING PERIOD() a static linear functionθ ·
U , where the numberU of unconstrained gates is multiplied by a constantθ. In fact,
opposed to reported experience with CNF level SLS, it turns out that for BC SLSθ = 1

6
is too large: by decreasingθ we can increase the performance of BC SLS. As shown in
Fig. 6 (left), by decreasingθ to 1

24 we witness an evident overall gain in performance
againstθ = 1

6 (left), and again by decreasingθ from 1
24 to 1

96 (right).

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

#u
nc

on
st

ra
in

ed
/6

#unconstrained/24

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

#u
nc

on
st

ra
in

ed
/6

#unconstrained/24

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

#u
nc

on
st

ra
in

ed
/2

4

#unconstrained/96

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

#u
nc

on
st

ra
in

ed
/2

4

#unconstrained/96

Fig. 6. Comparison of number of moves; left:θ = 1

24
vsθ = 1

6
, right: θ = 1

96
vsθ = 1

24

However, we noticed that changing the
overall scheme in the original adaptive
noise mechanism leads to even better per-
formance for BC SLS. In the novel scheme,
which we callrapidly increasing, when the
waiting period is exceeded, the noise level
is increased aftereachstep until we see the
first one-step improvement in the objective
function. This can be implemented by re-
moving line 8 in Algorithm 2. An example
of the resulting improvement is shown in
Fig. 7, in which the original and rapidly in-

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

O
rig

in
al

 n
oi

se
 in

cr
ea

se
, #

un
co

ns
tr

ai
ne

d/
96

Rapid noise increase, #unconstrained/96

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

O
rig

in
al

 n
oi

se
 in

cr
ea

se
, #

un
co

ns
tr

ai
ne

d/
96

Rapid noise increase, #unconstrained/96

Fig. 7: Comparison of number of moves:
rapidly increasing vs original noise mechanism

creasing noise mechanism are compared usingθ = 1
96 . In the following, we will apply

the rapidly increasing noise mechanism for BC SLS.
We next compare BC SLS withθ = 1

96 to AdaptNovelty+ [23]. Our current proto-
type of BC SLS does compute the effect of moves on the justification cone and interest
set incrementally but is otherwise relatively unoptimized. The results shown in Table 1
are encouraging: BC SLS usually makes much fewer moves and isable to solve more
instances in the given time limit than AdaptNovelty+. Although making moves is slower
in our BC SLS prototype (around 100000 moves per second on average) than in Adapt-

11

Novelty+ (2.5 million per second), BC SLS is very competitive also in running times
on these instances as less moves are usually needed for finding a solution.

It it interesting to look at how the noise level fluctuates during a run with different
values ofθ. An example is provided in Fig. 8 where, using instancedp 12.fsa-b6-s,
the development ofp is shown forθ = 1

6 , 1
24 , 1

96 (from top to bottom) on runs of sim-
ilar length. It appears that with largerθ, a significant portion of moves are wasted on
plateaus, from which we can escape only with a strong noise increase. On the other
hand, for small values, such as196 , the noise level seems to thrash heavily, not focusing
on a specific noise range. From another viewpoint, we observed that lowering the value
of θ basically raises the average noise level.

Table 1.Comparison of AdaptNovelty+ and BC SLS (static adaptive noise mechanism,θ = 1

96
):

101 runs for each instance, 5–minute time limit for each run.succ %: percent of succesful runs.

Instance BC SLSθ = 1

96
AdaptNovelty+

name vars clausessucc % time #moves succ % time #moves
min med min med min med min med

dp 12.fsa-b5-p.bc 953 2966 100 0.1 1.0 4272 149287 100 0.1 0.1 4105 10012
dp 12.fsa-b6-p.bc 1362 4236 100 0.1 0.7 7996 79106 100 0.1 0.1 11006 29010
dp 12.fsa-b7-p.bc 1771 5506 100 0.1 0.6 11504 67705 100 0.1 0.1 23519 72153
dp 12.fsa-b8-p.bc 2180 6776 100 0.2 1.5 21143 142100 100 0.1 0.1 48525 215934
dp 12.fsa-b9-p.bc 2589 8046 100 0.1 4.6 18056 376007 100 0.1 0.3 109929 817996
dp 12.fsa-b5-s.bc 1337 4146 100 0.1 0.1 6234 17642 100 0.1 0.1 9240 22320
dp 12.fsa-b6-s.bc 1746 5416 100 0.1 0.3 9119 37626 100 0.1 0.1 27853 58083
dp 12.fsa-b7-s.bc 2155 6686 100 0.1 1.0 18480 86447 100 0.1 0.1 40098 136157
dp 12.fsa-b8-s.bc 2564 7956 100 0.1 3.1 19857 247490 100 0.1 0.1 60910 369385
dp 12.fsa-b9-s.bc 2973 9226 100 0.3 9.5 38487 730250 100 0.1 2.1 170040 5212785
elevator1-b4-s.bc 439 1343 100 0.1 0.1 394 1707 100 0.1 0.1 2866 81606
elevator1-b5-s.bc 698 2149 100 0.1 0.1 1365 3844 100 0.1 0.5 7961 1254582
elevator1-b6-s.bc 1087 3374 100 0.1 0.8 2507 60052 100 1.4 15.5 3693776 42037729
elevator2-b6-p.bc 682 2115 100 0.1 0.1 982 4366 100 0.1 5.5 149405 15053510
elevator2-b7-p.bc 1253 3952 100 0.1 0.7 4120 37607 93 1.3 82.3 3406967 220184348
elevator2-b6-s.bc 1333 4143 100 0.1 0.2 4389 17761 82 0.3 122.3 832838 329714970
elevator2-b7-s.bc 2063 6478 100 0.2 1.1 11526 65931 6 36.7 - 94059483 -
elevator2-b8-s.bc 3123 9919 67 1.7 179.9 79857 7254453 0 - - - -
mmgt 2.fsa-b6-p.bc 654 2036 100 0.1 0.1 569 12878 100 0.1 0.1 11902 308130
mmgt 2.fsa-b7-p.bc 928 2895 100 0.1 0.2 3027 26968 100 0.1 0.3 80656 1468861
mmgt 2.fsa-b8-p.bc 1317 4119 94 0.1 74.3 6293 6395263 100 0.1 34.0 70058 102384691
mmgt 2.fsa-b6-s.bc 1182 3708 100 0.1 0.1 3148 12644 95 1.8 89.2 4798784 239335425
mmgt 2.fsa-b7-s.bc 1723 5429 100 0.1 6.0 8989 347129 0 - - - -
mmgt 2.fsa-b8-s.bc 2381 7530 100 1.2 29.1 60339 1315753 0 - - - -
mmgt 3.fsa-b7-p.bc 1421 4459 100 0.1 0.4 3456 44913 100 0.1 0.1 26370 377011
mmgt 3.fsa-b9-p.bc 2596 8184 100 0.3 29.4 23771 1759402 27 4.8 - 12129665 -
mmgt 3.fsa-b7-s.bc 2588 8226 100 0.2 2.8 11575 154457 0 - - - -
speed1.fsa-b6-p.bc 498 1514 100 0.1 0.1 385 1159 100 0.1 0.1 1327 26923
speed1.fsa-b7-p.bc 758 2319 100 0.1 0.1 902 2935 100 0.1 0.1 7364 132024
speed1.fsa-b8-p.bc 1021 3132 100 0.1 0.1 2125 7914 100 0.1 0.3 43042 919969
speed1.fsa-b9-p.bc 1284 3944 100 0.1 0.2 3482 17454 100 0.1 2.6 46186 6812540
speed1.fsa-b10-p.bc 1547 4754 100 0.1 0.4 5382 46156 100 0.4 18.5 1000674 48965683
speed1.fsa-b12-p.bc 2073 6368 100 0.2 4.8 20250 499851 15 24.3 - 57759838 -
speed1.fsa-b13-p.bc 2336 7172 100 1.2 40.8123031 4332369 0 - - - -
speed1.fsa-b14-p.bc 2599 7974 34 7.0 - 744191 - 0 - - - -
speed1.fsa-b6-s.bc 666 2026 100 0.1 0.1 603 1278 100 0.1 0.1 2326 13049
speed1.fsa-b7-s.bc 920 2811 100 0.1 0.1 1238 2409 100 0.1 0.1 6308 47237
speed1.fsa-b8-s.bc 1175 3596 100 0.1 0.1 2025 4185 100 0.1 0.1 12134 98165
speed1.fsa-b9-s.bc 1430 4380 100 0.1 0.1 2820 8629 100 0.1 0.1 29602 237623
speed1.fsa-b10-s.bc 1685 5162 100 0.1 0.2 3514 14860 100 0.1 0.3 52643 790049
speed1.fsa-b12-s.bc 2195 6722 100 0.1 1.2 8500 100027 100 0.3 6.6 723313 17287780
speed1.fsa-b13-s.bc 2450 7499 100 0.4 3.7 30637 311209 84 1.5 135.4 3814440 354742108
speed1.fsa-b14-s.bc 2705 8274 100 0.2 12.3 17063 1072742 15 1.8 - 4647662 -
speed1.fsa-b15-s.bc 2960 9047 92 1.2 67.9102953 6013459 3 0.4 - 982942 -

12

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000

p
move

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000

p
move

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

p

move

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

p

move

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

p

move

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

p

move

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000

p

move

Fig. 8. Noise level fluctuations during a run usingθ = 1

6
, 1

24
, 1

96
(from top to bottom)

Now, the original motivation behind developing adaptive noise mechanisms comes
from the fact that the optimal noise level is instance-specific (recall Fig. 5). Apparently a
sufficient amount of noise is needed, which can be achieved bylowering the fixed value
of θ, but then the hence shortened waiting period for noise increases results in unfocused
fluctuations of the noise level. That is, by employing the adaptive noise mechanism
based on static waiting periods, we may have only changed theproblem of finding the
optimal static noise level parameterp into the problem of finding an instance-specific
optimal value forθ. This motivates us to consider, opposed to a static waiting period
controlled by the addition parameterθ, dynamic waiting periodsbased on the state of
search, with the possibility of dismissing the otherwise required constantθ.

We consider two dynamic alternatives: WAITING PERIOD() = jfront(Cα, τ) (the
size of the current justification frontier), and WAITING PERIOD() = interest(Cα, τ)
(the size of the current interest set). The intuition behindusing front is that since the
gate at each step is selected from the justification frontier, the size of the frontier gives
us an estimate on the number of possible greedy moves in orderto improve the objective
function value before increasing the possibility of non-greedy moves (increasing noise).
On the other hand, the size of the interest set is precisely the objective function value.
Intuitively, the greater the objective function value is, the further we are from a solution,
and thus more effort is allowed on finding a good greedy move.

Fig. 9 gives a comparison of performance using the static waiting period withθ =
1
96 with the performance resulting from using dynamic waiting period based on frontier
size (left) and interest set size (right). The dynamic waiting period results in comparable
performance than the static one, although we notice that with the dynamic approach
based on frontier size seems to behave more similarly to the static one than the dynamic
approach based on interest set size.

This difference is highlighted by looking at the fluctuations of the noise level for
the dynamic waiting periods (exemplified in Fig. 10). Especially the noise level fluctu-
ation resulting from the interest set size approach seems tobe more focused than when
using the static waiting period withθ = 1

96 (recall Fig. 8 (bottom)), avoiding some of
the observed thrashing behavior without needing to choose aspecific value forθ. The

13

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

N
um

be
r

of
 m

ov
es

 fo
r

|fr
on

t|

Number of moves for #unconstrained/96

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

N
um

be
r

of
 m

ov
es

 fo
r

|fr
on

t|

Number of moves for #unconstrained/96

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

N
um

be
r

of
 m

ov
es

 fo
r

|in
te

re
st

|

Number of moves for #unconstrained/96

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

N
um

be
r

of
 m

ov
es

 fo
r

|in
te

re
st

|

Number of moves for #unconstrained/96

Fig. 9. θ = 1

96
vs front (left);θ = 1

96
vs interest (right).

question of to what extend thrashing may affect performanceis an interesting aspect of
further work.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10000 20000 30000 40000 50000 60000 70000

p

move

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10000 20000 30000 40000 50000 60000 70000

p

move

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10000 20000 30000 40000 50000 60000 70000

p

move

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

p

move

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

p

move

Fig. 10.Noise level fluctuation during a run using front (top) and interest set size (bottom)

5 Conclusions

We extend a recent framework BC SLS [7] for a novel type of stochastic local search
(SLS) for SAT. We analyze in detail under which conditions the extended framework is
probabilistically approximately complete and under whichessentially incomplete. We
develop and study adaptive noise mechanisms for BC SLS. The results suggest that,
compared to the parameter values for adapting noise used in CNF level SLS methods,
radically different settings are required in BC SLS. As morefundamental changes to the
CNF level noise mechanism, we demonstrate improvements in performance for BC SLS
by introducing therapidly increasingnoise mechanism, and show that there is promise
for dismissing the static waiting period constantθ required in current CNF level noise
mechanisms bydynamicallyadapting the waiting period for noise increases. Compared
to well-known CNF level SLS methods, a prototype implementation of the framework
performs favorably w.r.t. the number of moves, showing promise for more optimized
implementations of the procedure. An interesting questionregarding dynamic waiting
periods is whether CNF level SLS methods can gain from similar mechanisms.

Acknowledgements.Research supported by Academy of Finland (grants #122399
and #112016). Järvisalo additionally acknowledges financial support from HeCSE grad-

14

uate school, Emil Aaltonen Foundation, Jenny and Antti Wihuri Foundation, Nokia
Foundation, and Finnish Foundation for Technology Promotion.

References

1. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability prob-
lems. In: AAAI. (1992) 440–446

2. Selman, B., Kautz, H., Cohen, B.: Noise strategies for improving local search. In: AAAI.
(1994) 337–343

3. McAllester, D., Selman, B., Kautz, H.: Evidence for invariants in local search. In: AAAI.
(1997) 321–326

4. Hoos, H.: An adaptive noise mechanism for WalkSAT. In: AAAI. (2002) 655–660
5. Braunstein, A., Mézard, M., Zecchina, R.: Survey propagation: An algorithm for satisfiabil-

ity. Random Structures and Algorithms27(2) (2005) 201–226
6. Kautz, H., Selman, B.: The state of SAT. Discr. Appl. Math.155(12) (2007) 1514–1524
7. Järvisalo, M., Junttila, T., Niemelä, I.: Justification-based non-clausal local search for SAT.

In: ECAI. Volume 178 of Frontiers in AI and Applications., IOS Press (2008) 535–539
8. Junttila, T., Niemelä, I.: Towards an efficient tableau method for Boolean circuit satisfiability

checking. In: CL 2000. Volume 1861 of LNAI., Springer (2000)553–567
9. Kuehlmann, A., Ganai, M., Paruthi, V.: Circuit-based Boolean reasoning. In: DAC, ACM

(2001) 232–237
10. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust Boolean reasoning for equiva-

lence checking and functional property verification. IEEE T-CAD 21(12) (2002) 1377–1394
11. Thiffault, C., Bacchus, F., Walsh, T.: Solving non-clausal formulas with DPLL search. In:

CP. Volume 3258 of LNCS., Springer (2004) 663–678
12. Safarpour, S., Veneris, A., Drechsler, R., Lee, J.: Managing don’t cares in Boolean satisfia-

bility. In: DATE’04, IEEE (2004)
13. Sebastiani, R.: Applying GSAT to non-clausal formulas.J.Artif.Intell.Res.1 (1994) 309–314
14. Kautz, H., McAllester, D., Selman, B.: Exploiting variable dependency in local search. In: IJ-

CAI poster session. (1997)http://www.cs.rochester.edu/u/kautz/papers/
dagsat.ps.

15. Pham, D., Thornton, J., Sattar, A.: Building structure into local search for SAT. In: IJCAI.
(2007) 2359–2364

16. Hoos, H.H.: On the run-time behaviour of stochastic local search algorithms for SAT. In:
AAAI. (1999) 661–666

17. Patterson, D.J., Kautz, H.: Auto-Walksat: A self-tuning implementation of Walksat. In: SAT,
4th Workshop on Theory and Application of Satisfiability Testing. (2001)

18. Selman, B., Kautz, H.: An empirical study of greedy localsearch for satisfiability testing.
In: AAAI. (1993) 46–51

19. Hirsch, E., Kojevnikov, A.: UnitWalk: A new SAT solver that uses local search guided by
unit clause elimination. Ann. Math. Artif. Intell.43(1) (2005) 91–111

20. Junttila, T.: The BC package and a file format for constrained Boolean circuitshttp:
//www.tcs.hut.fi/∼tjunttil/bcsat/.

21. Heljanko, K.: Bounded reachability checking with process semantics. In: CONCUR. Volume
2154 of LNCS., Springer (2001) 218–232

22. Li, C., Wei, W., Zhang, H.: Combining adaptive noise and look-ahead in local search for
SAT. In: SAT. Volume 4501 of LNCS., Springer (2007) 121–133

23. Tompkins, D., Hoos, H.: UBCSAT: An implementation and experimentation environment
for SLS algorithms for SAT and MAX-SAT. In: SAT 2004 Revised Selected Papers. Volume
3542 of LNCS., Springer (2005) 306–320

15

