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ABSTRACT: Constraint satisfaction deals with developing automated tech-
niques for solving computationally hard problems in a declarative fashion.
The main emphasis of this thesis is on constraint satisfaction techniques for
the propositional satishability problem (SAT).

As solving techniques for propositional satishability have rapidly progressed
during the last 15 years, implementations of decision procedures for SAT,
so called SAT solvers, have been found to be extremely efficient as back-
end search engines in solving large industrial-scale combinatorial problems.
Since SAT solvers have become a standard tool for solving various real-world
problem instances of increasing size and difficulty, there is a demand for
more and more robust and efficient solvers. For understanding the success
(and failures) of SAT solving in specific problem domains, it is important
to investigate how different types of structural properties of SAT instances
are related to the efficiency of solving the instances with different SAT-based
constraint satisfaction techniques. This is the underlying motivation for this
thesis.

The emphasis of the thesis is on search-based SAT solving techniques for
solving structured real-world problems. The work focuses on selected topics
related to the analysis and development of both complete and stochastic local
search methods for SAT. Both experimental and proof complexity theoretic
approaches are applied. The main contributions are three-fold.

The work contributes to the analysis of structure-based branching heuristics.
A proof complexity theoretic power hierarchy is established for DPLL and
clause learning SAT solvers with various structure-based branching restric-
tions. The proof complexity theoretic results are complemented by a detailed
experimental evaluation of the effects of structure-based branching on state-
of-the-art SAT solvers. In connection with structure-based branching in SAT,
the work introduces the Extended ASP Tableaux proof system in the context
of answer set programming, which is a field closely related to SAT solving.

The work also contributes to the development of stochastic local search meth-
ods for structured real-world SAT instances. A novel non-clausal local search
method for SAT is developed by incorporating the concept of justification
frontiers previously applied in the context of complete non-clausal solvers.
Variants of the method are analyzed with respect approximate completeness,
and adaptive noise mechanisms aimed specifically for the method are devel-
oped.

As a third point of view to structure in SAT, the work addresses the problem
of generating hard satishable SAT instances for both DPLL-based and lo-
cal search solvers by introducing the regular XORSAT model. Additionally,
techniques for applying XORSAT instances specifically for benchmarking
equivalence reasoning techniques in SAT solvers are developed.

KEYWORDS: propositional satisfiability, SAT, clause learning, DPLL, stochas-
tic local search, branching heuristics, proof complexity, Boolean circuits,
non-clausal formulas, problem structure, backdoors, hard instances, adap-
tive noise strategies, probabilistically approximately complete, answer set pro-
gramming






TIIVISTELMA: Rajoiteratkaisimet ovat automatisoituja tyokaluja, jotka
mahdollistavat laskennallisesti vaikeiden ongelmien ratkaisemisen deklara-
tivisesti. Tami tyo kisittelee erityisesti lauselogiikan toteutuvuusongelman
(SAT) rajoiteratkaisinmenetelmii, SAT-ratkaisimia.

Lauselogiikan toteutuvuusongelman ratkaisumenetelmien kehityksessi on saa-
vutettu huomattavia edistysaskeleita viimeisten 15 vuoden aikana. Nykyiiin
SAT-ratkaisimet tarjoavat erittiin kilpailukykyisen tavan ratkaista laajoja teol-
lisuuslihtoisid kombinatorisia ongelmia. Ongelmainstanssien kasvaessa ja si-
td myotd vaikeutuessa ratkaisumenetelmien tehokkuudelle asetetaan jatku-
vasti kovenevia vaatimuksia. Teollisuusldhtdisten ongelmien rakenteellisten
ominaisuuksien ja ndiden ongelmien ratkaisemisen haastavuuden vélisen suh-
teen ymmirtiminen on keskeisessii osassa tehokkaiden ratkaisumenetelmien
kehittdmistyossid. Ongelmien rakenteen ja ratkaisutekniikoiden vélisen suh-
teen syviillinen ymmirtiminen ja timin tietimyksen hyddyntiminen on haas-
tava tutkimusongelma, johon myos timi tyo keskittyy.

Tyossi keskitytddn erityisesti rakenteellisille teollisuuslihtoisille ongelmille
suunnattujen hakupohjaisten SAT-ratkaisimien analysointiin ja kehittimiseen.
Tyossd analysoidaan tiydellisia SATratkaisumenetelmii seki kokeellisesti et-
td matemaattisesti. Lisiksi kehitetddn ongelmarakenteen huomioonottavia
satunnaistettuja paikallishakumenetelmii. Tyon tulokset jakautuvat kolmeen
osaan.

Tyossd analysoidaan ongelmien rakenteeseen pohjautuvia, tiydellisissd ha-
kumenetelmissi kiytettivid heuristiikkoja. Saavutetut todistuskompleksisuus-
teoreettiset tulokset koskevat tyypillisien SAT-ratkaisimille ehdotettujen ra-
kennepohjaisten heuristiikkojen suhteellista tehokkuutta. Teoreettisten tu-
losten lisiiksi esitetdiin kattava kokeellinen tarkastelu rakennepohjaisten ha-
kuheuristiikkojen vaikutuksesta klausuulioppivien SAT-ratkaisimien toimin-
nallisuuteen. SAT-ratkaisimien hakuheuristiikkojen analysoinnin lisiiksi tyos-
sid esitetddn redundanttia ongelmarakennetta koskeva tarkastelu SAT-ratkai-
simiin liheisesti liittyvilld rajoiteohjelmointialuella, jota kutsutaan vastaus-
joukko-ohjelmoinniksi.

Tyossi kehitetddn myos uudentyylinen satunnaistettu paikallishakumenetel-
mi. Menetelmi perustuu tydssi esiteltiviin ongelmien rakenteeseen perus-
tuvaan hakuheuristitkkaan. Menetelmin kokeellisen arvioinnin lisiksi analy-
soidaan menetelmin eri variaatioiden likimiiriistd tiydellisyytti, ja kehite-
tddn erityisesti tille menetelmille soveltuvia satunnaisuuden mukautusstra-
tegioita, jotka siitelevit haussa kiytettivin satunnaisuuden méirdd ajonai-
kaisesti.

Lisiksi tyossd kehitetddn SAT-ongelmainstansseja, jotka ovat rakenteellisiin
ominaisuuksiinsa perustuen erittidin haastavia tyypillisille hakupohjaisille SAT-
ratkaisimille. Kehitettivit instanssit soveltuvat seki tiydellisten etti paikallis-
hakutekniikoihin perustuvien SAT-ratkaisimien kokeelliseen arviointiin.

AVAINSANAT:  lauselogiikan toteutuvuusongelma, SAT, klausuulioppimi-
nen, DPLL, satunnaistettu paikallishaku, hakuheuristiikat, todistuskomplek-
sisuus, Boolen piirit, lauselogiikan lauseiden yleinen muoto, ongelmien raken-
ne, vaikeat ongelmainstanssit, satunnaisuuden mukautusstrategiat, likiméérii-
nen tiydellisyys, vastausjoukko-ohjelmointi
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Brief Summary of the Articles

Xii

P1:

P2:

P3:

P4:

P5:

P6:

A novel family of empirically hard structured satisfiable SAT instances
is introduced, and schemes for introducing nonlinearity to the instances
are developed. This makes the instances suitable for benchmarking
solvers with equivalence reasoning techniques. An extensive experi-
mental evaluation shows that state-of-the-art solvers scale exponentially
in the instance size. Compared to other well-known families of satisfi-
able benchmark instances, the presented instance family is among the
hardest.

An extensive experimental evaluation of the effects of structure-based
branching restrictions on the efficiency of solving structured SAT in-
stances is presented. The work provides a thorough analysis of the ef-
fect of branching restrictions on the inner workings of a state-of-the-art
clause learning SAT solver, going deeper than merely measuring the
solution time. Additionally, relaxed branching restrictions based on
structural properties of SAT instances are considered. A preliminary
version [123] of this article was presented at the 14th RCRA Workshop
on Experimental Evaluation of Algorithms for Solving Problems with
Combinatorial Explosion (RCRA'07).

The proof complexity theoretic effect of statically restricting branch-
ing to so called input variables is studied for the widely applied DPLL
method. The main result is that, even with unlimited restarts, input-
restricted branching clause learning DPLL cannot simulate DPLL. A
preliminary version [124] of this article was presented at the 13th In-
ternational Conference on Principles and Practice of Constraint Pro-
gramming (CP’07).

The relative best-case performance of DPLL-based structure-aware SAT
solvers is studied in terms of the power of the underlying proof systems.
The systems result from (i) varying the style of branching and (ii) en-
forcing dynamic restrictions on the decision heuristics. Considering
DPLL both with and without clause learning, a proof complexity theo-
retic efficiency hierarchy is presented for refinements of DPLL result-
ing from combinations of decision heuristics and branching styles.

In analogy with the Extended Resolution proof system for SAT, an ex-
tended tableau calculus for answer set programming (ASP) is intro-
duced. The efficiency of Extended ASP Tableaux is related to Ex-
tended Resolution. Closely related to Extended ASP Tableaux, the
effect of redundant rules on the efficiency of ASP solving is experimen-
tally investigated. A preliminary version [126] of this article was pre-

sented at the 23rd International Conference on Logic Programming
(ICLP’07) and received the ICLP’07 Best Student Paper Award.

Novel stochastic local search (SLS) techniques for solving structured
SAT instances are developed. By harnessing the concept of justifica-
tion frontiers, new SLS heuristics are introduced which concentrate

CONTENTS



P7:

the search into relevant parts of instances, exploit observability don’t
cares and allow for an early stopping criterion.

The BC SLS approach developed in P6 is extended in two ways. Prob-
abilistically approximately complete (PAC) variants of BC SLS are de-
vised. Additionally, adaptive noise mechanisms for BC SLS are devel-
oped, including mechanisms based on dynamically adapting the wait-
ing period for noise increases. This article was also presented at the
2nd International Workshop on Logic and Search (LaSh’08).
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1 INTRODUCTION

The field of constraint satisfaction lies in the intersection of computer sci-
ence, artificial intelligence, and mathematics. It deals with developing auto-
mated techniques for solving computationally hard problems. The problem
domains where constraint satisfaction techniques are applied are typically
characterized by computational intractability: the underlying decision prob-
lems are often NP-complete [80] or even harder.

Problem solving through constraint satisfaction is of declarative nature,
consisting of two parts: modelling and solving. The task of modelling is
to describe the problem to be solved in a chosen mathematical formalism
(a constraint or modelling language) by describing relationships between
variables of the problem through posing constraints over the possible value
assignments for the variables. The result of modelling is a general method
referred to as the translation of the domain-specific problem in the mod-
elling language. The output of a translation for a particular input (problem
instance of the original problem) is referred to as the encoding (of the par-
ticular input). An important property of a translation is that a solution to an
arbitrary instance I of the original problem can be easily extracted from any
value assignment for the variables respecting the constraints in the encoding
of I. The goal of modelling is to provide such an translation. The task of
solving, on the other hand, is to find such a value assignment (a solution to
the encoding of the instance), if one exists.

First-order logic provides characteristic modelling formalisms for prob-
lems of various complexity. Since the decision problem of propositional sat-
isfiability (SAT)—given a propositional logic formula, we are asked whether
there is a satisfying truth assignment for the formula—is NP-complete [58],
the language of propositional logic, a subset of first-order logic, provides a
choice for expressing problems in NP.

The main emphasis of this thesis is on constraint satisfaction techniques
for SAT, or SAT solving. As propositional logic provides a succinct repre-
sentation for studying computational complexity, SAT being an archetypi-
cal NP-complete problem, interest in SAT' is historically mostly of theoret-
ical nature. However, as the solving techniques for propositional satisfia-
bility have rapidly progressed during the last 15 years, implementations of
decision procedures for SAT (SAT solvers) [98] have been found to be ex-
tremely efficient as back-end solving engines for industrial-scale combinato-
rial problems. Typical examples of such real-world application domains of
SAT solvers include automated planning [139, 140, 195, 136, 54|, bounded
model checking (BMC) of hardware and software [38, 39, 148, 20, 171],
and electronic design automation applications such as automated test pat-
tern generation (ATPG) [151, 224, 228] and symbolic trajectory evaluation
(STE) [198]. Additional recent application areas of SAT solving techniques
include problems related to diagnosis and diagnosability testing of discrete-
event systems [194, 103], bioinformatics [170, 231, logical cryptanalysis [175,
178, 66, 73], and model checking of security protocols [19].

The simple formalism of propositional logic has greatly contributed to
the current successes of SAT-based problem solving. On one hand, the
simplicity of the formalism allows for highly efficient solvers to be imple-
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mented through efficient data structures and lean design. On the other
hand, in addition to the fact that problems in NP allow for efficient trans-
lations (reductions) into SAT, very succinct translations (resulting even in
linear size encodings with small coefficients) are known for various problem
domains, which is highly relevant for practical purposes. An additional prac-
tically relevant advantage of typical SAT solvers aimed at solving real-world
problems today is their ability—in addition to deciding whether an satistying
truth assignment for a given SAT instance exists—to construct such a solu-
tion. Furthermore, while SAT does not capture PSPACE [186], SAT-based
approaches have been very successful for the already mentioned PSPACE-
complete problems of automated planning and model checking. 'This is
achieved by restricting the length of solutions sought to polynomial ones in
order to obtain an NP-complete problem. For example, in SAT-based plan-
ning [139] one restricts to polynomial plans; for model checking, this leads
similarly to BMC, bounded model checking [38].

When solving problems with SAT solvers, the propositional formula en-
coding the original problem instance is typically translated into conjunctive
normal norm (CNF, or clausal form) [222], that is, into a conjunction of
disjunctions of Boolean variables and their negations. In this sense, SAT
can be seen as a special case of finite-domain constraint satisfaction prob-
lems (CSPs) [199, 68]. Generally speaking, the language of CSPs allows
one to express conjunctions of arbitrary constraints over variables with given
domains, where individual constraints are seen as relations that express the
feasible value combinations for the specific constraint. Hence, CNF SAT is
the special case of CSPs in which only conjunctions of clausal constraints
on variables with binary domains are allowed. This results in the fact that, in
many cases, advances in understanding and developing solving techniques
for SAT can have implications to the study of constraint satisfaction more
generally. The connection of general CSPs [199, 68, 44] and SAT is fur-
ther highlighted by studies on exploiting SAT techniques for solving CSPs,
as exemplified for instance by [191, 23, 241].

Successfully applied techniques for solving SAT can be divided into two
ideologically different approaches: those based on knowledge compilation
(such as [215, 51, 63]) and the search-based approaches. In this work the
focus is on search-based SAT solving techniques. In contrast to compilation-
based approaches, search-based procedures developed for SAT concentrate
on determining satishability alone, providing a satisfying truth assignment if
one exists. By concentrating on satisfiability alone, the problems of exponen-
tial space consumption often experienced in knowledge complication based
approaches can be avoided, which is a key factor in the success of search-
based SAT solvers.

The most successful SAT solvers aimed at solving structured problems
today are based on the complete Davis—Putnam-Logemann—Loveland pro-
cedure (DPLL) [65, 64]. Such solvers perform an intelligent search over the
whole assignment space (or search space) through backtracking. A highly
relevant aspect of state-of-the-art implementation of DPLL-based SAT solvers
is that they typically are “black boxes”, or in other words, such solvers require
no handpicked parameters from the user.

The relevance of DPLL solvers is nowadays further highlighted by their
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application as a core solver engine for solving the #P-complete [237] prob-
lem of model counting [129, 206, 99, 96, 147] which has applications in the
field of probabilistic reasoning [24, 165, 207], as well as in the Satisfiability
Modulo Theories (SMT) [209, 183, 46] approach, in which the modelling
language is enriched with more expressive constraint types, such as linear
(in)equations, to allow Boolean combinations of such constraints. A fur-
ther motivating example of the importance of SAT solver techniques is their
close relation to solver techniques applied in the rule-based constraint pro-
gramming paradigm of answer set programming (ASP) [182, 87, 26], which
is a form of non-monotonic reasoning [50] under the stable model seman-
tics [88, 86]. Due to the close relationship between stable models and satisfy-
ing truth assignments in propositional logic, many translations of ASP as SAT
have been developed [35, 121], some of which are suited for solving ASP as
SAT using an incremental approach based on SAT solvers [164, 162]. Most
interestingly, however, due to the close relationship between ASP and SAT,
the typical ASP solvers [220, 17, 153, 82] share several features with success-
ful DPLL-based SAT solvers. 'This in turn implies that further advances in
SAT solvers can contribute to more efficient solvers for ASP, as well. Yet an-
other example of the relevance of DPLL-based solvers are the various solvers
developed for solving instances of the PSPACE-complete problem of OBF
satisfiability by extending DPLL-based techniques [53, 155, 245, 205, 93].

In contrast to complete search procedures, stochastic local search (SLS)
methods for SAT (see [218, 213, 217,177, 115, 114, 212, 111] for examples,
and [116] for a general view) are typically based on iterating over solution
candidates by flipping value assignments in the current candidate based on a
neighborhood function. Such procedures are characterized by their inability
to show (generate a proof for) the non-existence of solutions, although re-
cently also local search for unsatisfiability has been considered [189]. While
SLS SAT solvers have proven very successful in solving random satisfiability
problem instances (see [211, 49] for examples), the breakthroughs in apply-
ing SAT solvers in real-world problem domains are due to DPLL-style com-
plete SAT solvers.

1.1 Topics of this Thesis

This work focuses on selected topics related to the experimental and theoret-
ical analysis and development of both complete and stochastic local search
methods for SAT. We will now introduce the main topics addressed in this
thesis.

As search-based SAT solvers have become a standard tool for solving var-
ious real-world problem instances of increasing size and difficulty, there is
demand for more and more robust and efficient solvers. For understanding
the success (and failures) of SAT solving in structured problem domains, it
is important to investigate how different types of structural properties of SAT
instances are related to the efficiency of solving instances using SAT-based
constraint satisfaction techniques. This is the underlying motivation for this
thesis. The emphasis of the thesis is on search-based SAT solving techniques
for solving structured real-world problems.

Knowledge of different types of structural properties of SAT instances is
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related to the efficiency of solving such instances. For example, the experi-
mentally noticed inefficiency of DPLL on CNF SAT instances based on sys-
tems of linear equations modulo two, referred to as XORSAT, has motivated
work on developing additional techniques for DPLL in attempt to lift the ef-
ficiency of DPLL on such instances [28, 109, 157, 242]. 'The contribution
on CNF-level SAT in this thesis addresses the problem of generating bench-
mark instances which are extremely difficult to solve with both DPLL-based
and SLS search techniques.

On the other hand, the study of structure in SAT is closely related to
structural representation forms of SAT instances. Typically SAT solvers—
both DPLL-based and local search procedures—restrict their input to CNF.
However, in addition to difficulty of modelling problems directly in CNF,
a major problem in using CNF encodings is that structural properties, such
as functional dependencies, of the original problem domain are not directly
evident from the resulting CNF formula. Compared to CNF, more natu-
ral representations for arbitrary propositional formulas are often used during
modelling. The problem at hand is typically encoded as a general proposi-
tional formula ¢, which is then translated into an equi-satishable CNF for-
mula. A “standard” linear time translation [233] is typically applied, which
achieves a linear size CNF encoding of any propositional formula by intro-
ducing additional variables for representing the subformula structure of the
original formula. Boolean circuits—and refined notions [149, 1]—provide
a natural, structure-preserving representation form (sometimes referred to as
non-clausal formulas) for modelling typical structured SAT problems as gen-
eral propositional formulas.

There has been work on recovering circuit-level representation from CNF
problem encodings [104, 200, 77]. Unfortunately, this is not a trivial task.
However, by explicitly maintaining the Boolean circuit representation of the
problem encoding, structural properties of general propositional formulas
can be easily detected directly from the structure-preserving representation.
There is a wide body of work on lifting the DPLL procedure to work directly
on Boolean circuits, see [132, 149, 79, 119, 230] for instance. This enables
the development of new solver techniques that attempt to exploit the struc-
tural knowledge. Additionally, a few SLS methods have also been proposed
for general propositional (non-clausal) formulas [208, 137, 187, 223].

Motivated by these consideration, a central part of this thesis concen-
trates on analyzing and developing search-based solver techniques for general
propositional formulas. In more detail, the topics addressed in this thesis are
the following.

Topic 1: Analysis of Structure-Based Branching in DPLL-Style Solvers

Branching heuristics, that is, deciding on which variable to next set a
value during search, play an important role in the efficiency of search.
Techniques for making effective decisions during search are vital. One
way for circuit-level solvers to exploit the explicit structured representa-
tion is to use it for guiding branching heuristics. Intuitively, the inher-
ent structure of the problem domain is reflected in individual variables
in the SAT encoding, and making decisions on structurally irrelevant
variables may have an exponential effect on the running times of SAT
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Topic 3:

1 INTRODUCTION

solvers.

From the theoretical point of view, in this work we investigate the best-
case performance of SAT solving procedures using different structure-
based branching heuristics through proof complexity [60, 235, 34].
Proof complexity gives means of studying the relative power of the in-
ference systems (or proof systems) underlying SAT solvers in terms of
the shortest possible proofs in the systems.

The theoretical results presented in this thesis reveal inherent weak-
nesses in various structure-based branching heuristics suggested in the
literature for DPLL-based SAT solvers. Additionally, the theoretical re-
sults are complemented by a detailed experimental evaluation of the
effects of structure-based branching on state-of-the-art SAT solvers.

In connection with structure-based branching in SAT, this work in-
troduces the Extended ASP Tableaux proof system in the context of
answer set programming, which is a field closely related to SAT solv-
ing. 'This part of the thesis brings ideas from the powerful extended
resolution proof system for SAT [233] to the context of ASP.

Development of SLS Methods for Structured SAT Instances

Stochastic local search techniques for SAT are today not competitive
with DPLL on real-world problems. In fact, in the late 90’s there was
a shift from SLS solvers to DPLL-based solvers as the dominating ap-
proach to search-based SAT solving. For widening the applicability of
SLS methods, further work on improving SLS techniques for structural
problems is needed. In particular, developing techniques for handling
variable dependencies efficiently has been identified as a major chal-
lenge [141].

This thesis contributes to the development of stochastic local search
methods for structured real-world SAT instances. A novel non-clausal
local search method for SAT is developed. The method works directly
on the level of Boolean circuits, and applies techniques for handling
variable dependencies in a new way in the context of SLS.

Generating Empirically Hard Satisfiable SAT Instances

For many applications areas, the SAT instances of interest are satisfi-
able, and the key task of a SAT solver is to find a satisfying truth as-
signment [40, 57, 140, 151]. Hence, good performance for satisfiable
instances is very important in practice. In fact, there has recently been
a lot of interest in generating satisfiable problem instances that are em-
pirically hard for both complete and SLS SAT solvers. Structurally
interesting empirically hard satishable instance families are especially
useful in developing effective heuristics for satisfiable instances, and,
in particular, only satisfiable instances are relevant for benchmarking
incomplete SLS methods.

As a contribution to Topic 3, this thesis develops techniques for gener-
ating empirically hard satishable benchmarks. Additionally, techniques



for applying XORSAT=style CNF SAT instances specifically for bench-
marking equivalence reasoning techniques in SAT solvers are devel-
oped.

We will next give general overviews of these three topics with related work.
A concise summary of the contributions to each to the topics is then provided
in Section 1.2.

Topic 1: Analysis of Structure-Based Branching in DPLL-Style Solvers
There has been a significant amount of work on boosting the efficiency of
DPLL solvers. Clause learning [174, 33| can be regarded as the most impor-
tant progressive step in the effectiveness of SAT solvers in structured problem
domains, as witnessed by a sequence of further improved solvers [130, 174,
180, 97, 72], and also by theoretical analysis [33].

Perhaps one of the most studied proof systems for SAT from the perspec-
tive of proof complexity are (unrestricted or general ) resolution [197] and its
refinements (see [52], for instance). Interestingly, there is a tight connection
between resolution and DPLL: it is well-known that DPLL is equivalent to a
refinement of resolution called tree-like resolution. Recently clause learning
DPLL has also been characterized as a proof system called CL [33]. Through
this characterization, Beame et al. [33] show that CL can provide exponen-
tially shorter proofs than DPLL. In other words, DPLL cannot polynomially
simulate [60] CL. This result gives the first theoretical explanation for the
practical efficiency of implemented SAT solvers incorporating clause learn-
ing.

This thesis makes several contributions relating problem structure and
branching heuristics in DPLL-style solvers. A major part of the results deals
with experimental and proof complexity theoretical analysis of the effect of
applying structure-based branching heuristics on the efficiency of DPLL and
CL on the level of Boolean circuits.

Structure-Based Branching in DPLL and Clause Learning

A major part of this work considers structure-based branching restrictions, in
which branching in a SAT solver is restricted —either statically or dynam-
ically—to a subset of variables. The considered branching restrictions are
based on structural properties which are explicit in the Boolean circuit rep-
resentation of the instance at hand.

The idea behind branching restrictions is to limit the set of variables the
solver is allowed to branch on to a small subset I instead of the set V of all
variables in the SAT instance at hand. The solver will then apply its own
dynamic heuristics on the variables in I. In static branching restrictions the
subset of variables I stays invariant for the whole duration of search. With
dynamic branching restrictions the set I is varied during search. It should
be noted that branching variable orderings for DPLL based on structural in-
formation have also been studied [118, 12]. In contrast to the branching
restrictions studied in this thesis, in these works the solver is forced to follow
an order derived from structural properties of the formula.

The motivation behind static branching restrictions is that, by selecting I
so that the solver remains complete, the search space size is radically reduced
from the order of 2I"! to that of 217l where |I| < |N|. In the context of

1 INTRODUCTION



1

DPLL, the concept of a (strong) backdoor set [243, 102, 201] of variables is
closely related to restricting branching: a unit propagation backdoor is a set
of variables such that, once all of these variables have values, all the other
variables are set values by unit propagation.

Although the original motivation for studying backdoors comes from bring-
ing insights into heavy-tailed behavior in combinatorial search [100, 102], a
practical way of exploiting backdoor sets would be to attempt to improve
DPLL search efficiency by backdoor-based branching. In other words, one
can restrict a DPLL SAT solver to branch only on variables in a unit propa-
gation backdoor. However, deciding whether a backdoor set of a given size
exists is intractable in general [227, 69]. With this in mind, knowledge of the
underlying structural properties of variables in the instance at hand makes it
easier to apply branching restrictions when solving the instance.

An example of a natural branching restriction is provided by the set of so
called input (or independent) variables. In SAT-based approaches to struc-
tured problems such as bounded model checking and automated planning,
the CNF encoding is often derived from a transition relation, where the be-
havior of the underlying system is dependent on the input —initial state, non-
deterministic choices due to the external environment, et cetera—of the sys-
tem. Problems such as ATPG that deal with logical circuit designs serve as
additional examples of domains where system input is naturally present. By
noticing that the system behavior is determined by its input, it is in fact the
case that all variables in the SAT encoding of the system can be assigned
through unit propagation once all input variables have been assigned values.
In other words, the set of input variables is a strong unit propagation backdoor
set—although possibly not of minimum cardinality. Hence DPLL remains
complete even if branching is restricted to the set of input variables alone.
In fact, experimental case studies in specific problem domains [92, 225, 91]
have shown that in some cases SAT solvers benefit from restricting the vari-
ables the solver is allowed to branch on to those variables that model the
input of the underlying system.

In contrast to static branching restrictions, in dynamic branching restric-
tions the set on which branching is restricted to is varied during search. One
applied heuristic idea is to apply branching in a top-down fashion, starting
from the constraints imposed on the output gates of the circuit, and to search
for justification for the currently imposed values [150, 166]. This is closely re-
lated to the tableau decomposition rules applied in analytic tableaux [222].
A modification to the actual style of branching in DPLL-based algorithms,
aiming at eagerly justifying the currently unjustified gates, has also been con-
sidered [149].

In this thesis the effects of inputrestricted and top-down branching on
DPLL and CL are studied from a proof complexity perspective. Comple-
menting these theoretical results, an experimental analysis of the effect of
structure-based static branching restrictions on clause learning SAT solvers
is also provided.

Structural Redundancy and Complete Search for ASP

Structured instances arising from real-world problem domains are typically
large. The used propositional encoding naturally has an effect on the size
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of the resulting problem instances. From the solver perspective, instance
size can have a drastic effect on the effectiveness of search, especially as
solvers are required to solve increasingly large problems. Working in the in-
terface of the modelling and solving subtasks, preprocessing techniques [47,
169, 25, 226, 71], which act on the problem instance before actually call-
ing the core solver, have been actively developed. In contrast to modelling,
in preprocessing the input and output language remains the same, with the
additional, natural requirement of preserving the satishability of the input
problem instance. The aim of preprocessing is to transform the problem
instance into another instance that is likely to be easier to solve for the ac-
tual solver. Typically the aim of preprocessing is to decrease the size of the
problem instance —the number of variables and/or the number of constraints
in the instance —with the intuition thatsmaller instances are often easier to
solve than equivalent larger ones. However, as noted for example in [168],
the relationship between problem size and hardness is not at all straightfor-
ward. Considering SAT, an extreme example of this puzzling relationship
is provided through the extended resolution proof system [233]. Extended
resolution is a simple extension of resolution, in which, in addition to apply-
ing the original resolution rule, one can introduce in a controlled manner
so called redundant clauses to the CNF SAT instance at hand. Notably,
this extension results in a very powerful proof system which cannot be poly-
nomially simulated by resolution [59, 235], and thus neither by the typical
DPLL-based SAT solvers today [33].

In this thesis, we exploit known results on the power of extended resolution
in different ways. The proof complexity theoretic results on restricted branch-
ing in DPLL make use of this knowledge in the main proof constructions. On
the other hand, similar techniques are applied in introducing studying the
Extended ASP Tableaux proof system—in analogy with extended resolution
for CNF SAT [233]—in the context of ASP.

Topic 2: Development of SLS Methods for Structured SAT Instances

While the most successful SAT solvers aimed at solving structured prob-
lems are DPLL-based, the quest for alternative solving techniques is impor-
tant, especially for maintaining diversity in the study of novel solver tech-
niques. The fact that SLS procedures often perform poorly compared to
DPLL-based solvers on real-world problems has been identified to be re-
lated to the fact that the heuristic techniques in typical SLS procedures do
not take into account the underlying structural aspects of real-world prob-
lems [141]. One problem in developing efficient techniques for handling
variable dependencies is that typically the most efficient SLS solvers work
on the flat CNF input format. Incorporation of elements from complete
solvers into CNF-level SLS [111, 161, 160] and hybrids of complete and
SLS techniques [176, 196, 106, 13, 154, 75] have been studied to some ex-
tend. However, there seems to be room for novel structure-based SLS tech-
niques exploiting variable dependencies more directly. In contrast to abun-
dance in complete DPLL-style non-clausal algorithms [132, 149, 150, 230],
only a few SLS methods have been proposed for general propositional formu-
las [208, 137, 187]. Common to these SLS approaches is that they attempt
to explicitly exploit variable dependencies through input variables.
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This thesis develops novel non-clausal SLS methods for structured real-
world SAT instances. The underlying idea in the proposed method is to
drive search top-down in the Boolean circuit structure rather than focusing
on input variables as previously suggested [208, 137, 187]. Motivated by
justification frontier heuristics [150] applied in complete circuitlevel SAT
solvers, our search technique looks for a justification for the Boolean circuit
instead of attempting to find a satisfying truth assignment.

Topic 3: Generating Empirically Hard Satisfiable CNF Instances

From the practical perspective, the development of structured, empirically
hard SAT benchmark instances enables the experimental evaluation of new
search techniques such as novel search heuristics.

Among the well-known sources of empirically hard instances are the ran-
dom k-SAT [179, 61] model and its restrictions such as regular random k-
SAT [45]. As observed in [179], the clauses—to—variables ratio parameter
a characterizes the average difficulty of solving the resulting instances with
DPLL. For a fixed k, a sharp easy-hard-easy transition happens at a specific
value of a [61, 142]. At the same critical threshold value of «, a rapid transi-
tion in the fraction of satishable instances occurs. Below the threshold a vast
majority of instances are satisfiable (have a solution), while above the thresh-
old, most instances are unsatishiable (without a solution), with approximately
50% of all instances satisfiable at the threshold. The relative hardness of the
unsatisfiable instances, located in the region above the critical threshold at
which the phase transition takes place, has also been studied from the proof
complexity perspective [55].

However, the satishability of random k-SAT instances cannot be deter-
mined efficiently beforehand, and hence generating hard satisfiable random
instances at the phase transition for benchmarking purposes does not often
serve a purpose. This problem has been addressed by “hiding” solutions by
generating only clauses that are satishied by truth assignments selected be-
forehand [5, 27, 128]. More structured satisfiable benchmark instances have
been developed based on, for example, quasigroup completion [4, 138].

Although systems of linear equations modulo 2 are polynomial-time solv-
able by Gaussian elimination, linear equation systems presented in CNF
(XORSAT) are another well-known source of empirically hard CNF SAT
instances. In the area of circuit verification and logical cryptanalysis there
are problems involving linear substructure (XOR equations) that are very
challenging for SAT solvers [28], which gives one motivation to considering
XORSAT=style benchmark instances. The random A-XORSAT model [193]
even exhibits a phase transition phenomenon similar to that of random k-
SAT. Furthermore, XORSAT models enable the generation of instances with
predefined satishability. Many of the proposed satisfiable XORSAT families
are motivated by spin glass models from statistical physics [81, 127, 181].

Within the scope of Topic 3 in this thesis the generation of empirically
hard satisfiable benchmarks is considered by combining regularity and XOR-
SAT to achieve notably hard satisfiable CNF instance.
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1.2 Summary of Contributions

10

The contributions made in this thesis divide into the three introduced topics
as follows.

Topic 1: Analysis of Structure-Based Branching in DPLL-Style Solvers

1

Publications P2-P5 deal with structure-based branching for DPLL-
style complete solvers.

When applying structure-based branching restrictions in DPLL-based
solvers, a natural question to ask is whether the power of the underly-
ing inference systems of the solvers is affected by the branching restric-
tion. Publications P3 and P4 address the effect of branching restric-
tions on the proof complexity theoretic power of DPLL-based solvers
with and without clause learning. Both static (inputrestricted) and
dynamic (top-down branching variants) branching restrictions are con-
sidered. These studies give answer to the question of the relative power
to the proof systems underlying such branching restricted solvers. As
the main results of P3 and P4, a detailed proof complexity theoretic ef-
ficiency hierarchy for such variants of DPLL and CL (DPLL with clause
learning) is established. These results complement previous results

on selected variations of restricted branching in DPLL (without clause
learning) [125].

In more detail, in P3 we settle the relative efficiency of input-restricted
branching CL. We show that even with unlimited restarts and the abil-
ity to create conflicts at will, input-restricted CL cannot even simulate
the basic DPLL without clause learning. This is surprising, since the
unrestricted version of this variant of CL can efficiently simulate gen-
eral resolution [33], being thus very powerful compared to DPLL. This
implies that all implementations of CL, even with optimal heuristics,
have the potential of suffering a notable efficiency decrease if branch-
ing is restricted to input variables.

In P4 we present a relative ethciency hierarchy for variations of circuit-
level DPLL and CL resulting from combinations of branching heuris-
tics and branching styles. Motivated by ideas from solver development,
we study the variations (i) DPLL-style top-down restricted, (ii) DPLL-
style justification restricted [150, 166], and (iii) ATPG-style justifica-
tion restricted [149] branching DPLL and CL. For example, for DPLL
we establish a strict hierarchy for these variants. Perhaps the most sur-
prising result obtained in P4 is that CL using unlimited restarts with
justification restricted decisions heuristics cannot even simulate the
top-down restricted variant of DPLL. Thus, although the idea of eagerly
and locally justifying the values of currently unjustified constraints is
an intuitively appealing one, it can lead to dramatic losses in the best-
case efficiency of a structure-aware SAT solver even when the powerful
search space pruning technique of clause learning is applied.

Taking a complementary perspective to that of P3 and P4, P2 reports
an extensive experimental evaluation of the effect of static branching
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Topic 2:

INTRODUCTION

restriction on clause learning SAT solving. Notably extending and up-
dating previous case studies on restricted branching [92, 225, 91, 219],
we analyze in detail the effect of statically restricted branching on the
effectiveness of state-of-the-art clause learning and branching heuris-
tics. Previous studies consider mainly input-restricted branching as the
only structural way of restricting the decision making in SAT solvers.
In P2 we devise and apply controlled schemes for allowing branching
additionally on CNF variables other than inputs based on underlying
structural properties of the problems. We relate the differences in effi-
ciency resulting from different structural properties to the effectiveness
of clause learning techniques. Since statically restricted branching can
be seen as an application of backdoor-based branching (using possi-
ble non-minimal backdoor sets), the work in P2 provides insights into
the applicability of backdoor sets for restricting branching heuristics in
clause learning SAT solvers. The experimental results of P2 confirm
that, in general, input-restricted branching can cause a notable loss of
robustness in a clause learning SAT solver. Input-restricted branching
results in, for example, longer conflict clauses on the average, which in
itself makes clause learning less effective and can also hinder the over-
all efficiency of the solver. However, by relaxing the input-restriction
by allowing branching additionally on variables with particular under-
lying structural properties in a systematic fashion, we are able to show
that branching can in fact be restricted quite heavily without making
a clause learning solver notably less efficient. Moreover, the choice
of the structural property on which such a relaxation is based on does
make a difference.

Exploiting known results on the power of the Extended Resolution
proof system for CNF SAT, in P5 we introduce Extended ASP ‘Tableaux
proof system in the context of answer set programming. The exten-
sion rule of Extended ASP Tableaux allows for adding redundant struc-
ture to ASP instances, resulting in the fact that ASP solvers, which
are closely related to DPLL-based SAT solvers, may branch on these
added substructures during search. This work is motivated by the fact
that, while there is an abundance of studies on the proof complexity of
proof systems for SAT, this has not been the case for ASP. The close
relation of ASP and SAT and the respective theoretical underpinnings
of practical solver techniques has also received little attention up un-
til recently, although the fields could gain much by further studies on
these connections. Hence, in this thesis, publication P5 continues in
part bridging the gap between ASP and SAT. This work complements
the recent tableau-style ASP proof system characterizations [84, 85]
of the inference techniques applied in state-of-the-art ASP solvers and
related studies on the (proof complexity) theoretical underpinning of
such solvers [16, 90, 83]. In addition to theoretical observations on
Extended ASP Tableaux, we experimentally study the effect of adding
redundant structure to ASP instances on the efficiency of ASP solvers.

Development of SLS Methods for Structured SAT Instances
Publications P6 and P7 address the challenge of developing SLS SAT
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Topic 3:

solvers which exploit variable dependencies in structured real-world
SAT instances. We develop novel local search SAT solving techniques
aimed at solving structured real-world SAT instances, directly using
Boolean circuits. In contrast to previously suggested non-clausal SLS
methods that focus flipping on input variables [208, 137, 187, 223],
our idea is to drive local search top-down in the circuit structure. By
guiding the search using justification frontiers, we enable exploiting
observability don't cares [204] in the context of local search, drive the
search to relevant parts of the circuit, and offer early stopping criteria
which allow to end the search when the circuit is de facto satisfiable
even if no concrete satisfying truth assignment has been found.

In addition to introducing BC SLS, in P7 we analyze probabilistically
approximate completeness (PAC) [113] of variants of the method, and
achieve the PAC property while keeping the search focused. Further-
more, we develop new adaptive noise mechanisms [114] aimed specif-
ically for BC SLS.

The novel techniques behind BC SLS show promise: a current imple-
mentation of BC SLS can outperform typical CNF-level SLS meth-
ods such as WalkSAT and AdaptNovelty+ in running times and in
the number of moves up to multiple magnitudes of difference on real-
world BMC circuit instances.

Generating Empirically Hard Satisfiable CNF instances

Publication P1 addresses the problem of generating hard satisfiable
CNF SAT instances for both DPLL-based and local search solvers.

We develop a satisfiable CNF family— (random) regular XORSAT —
by transforming random regular graphs into systems of linear equations
modulo 2 presented in CNF. The novelty is that we combine regularity
and randomness in the context of XORSAT by employing random reg-
ular graphs—motivated by their expansion properties—to force proper-
ties which limit unit propagation as much as possible. Due to the sim-
plicity of the model, it is easy to generate large numbers of instances of
the same size. Both DPLL-based and local search state-of-the-art SAT
solvers scale exponentially on regular XORSAT.

Furthermore, we develop techniques for introducing nonlinearity (other
Boolean connectives than XOR) into the equation systems to make
the benchmarks challenging also for CNF-level solvers equipped with
equivalence reasoning techniques. By introducing nonlinearity, even
DPLL solvers with equivalence reasoning techniques scale exponen-
tially on regular XORSAT. However, we observe significant differences
in the effectiveness of different equivalence reasoning techniques.

Compared to several other families of satisfiable instances, regular XOR-
SAT is among the hardest. As suggested by the results of the SAT Com-
petition 2005 (see http://www.satcompetition.org/), already small
instances of regular XORSAT are very hard to solve.

While the reader is kindly requested to refer to the original publications
P1-P7 for particulars, a more detailed discussion of the main results is pro-
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vided in Chapter 4. Before this, we will go through some needed technical
background on propositional satishiability (Chapter 2) and the main ideas
behind the solving methods considered in this work (Chapter 3).
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2 PROPOSITIONAL SATISFIABILITY AND NORMAL LOGIC PROGRAMS

This section reviews relevant background for discussing the main results of
the thesis. Sections 2.1-2.5 provide definitions for concepts related to propo-
sitional satisfiability, constrained Boolean circuits, and normal logic pro-
grams. Additionally, the standard translations between CNF SAT and both
Boolean circuits and normal logic programs under the stable model seman-
tics are reviewed.

2.1 Constrained Boolean Circuits

A Boolean circuit over a finite set G of gates is a set C of equations of the
form g := f(g1,...,9n), Wwhere g, g1,...,9, € Gand f : {f,t}" — {f;t}
is a Boolean function, with the additional requirements that (i) each g € G
appears at most once as the left hand side in the equations in C, and (ii) the
underlying directed graph

(G,EC)={{g,9) eGxG | g:=f(...q,...)€C})

is acyclic. If (¢',g) € E(C), then ¢’ is a child of g and g is a parent of ¢'.
Similarly, if there is a non-empty path from a gate ¢’ to a gate g in (G, E(C)),
then ¢’ is a descendant of g. If g :== f(g1,...,9s) is in C, then g is an f-
gate (or of type f), otherwise it is an input gate. A gate with no parents is an
output gate. A (partial) assignment for C is a (partial) function 7 : G — {f, t}.
An assignment 7 is consistent with C if 7(g) = f(7(g1),...,7(gs)) for each
g:=f(g1,--.,9.) InC.

A constrained Boolean circuit C* consists of a Boolean circuit C and a
partial assignment « for C. With respect to a constrained circuit C*, each
(g,v) € «ais a constraint, and g is constrained to v if (g,v) € a. An as-
signment 7 satisfies C* if (i) it is consistent with C, and (ii) it respects the
constraints in «, meaning that for each gate g € G, if a(g) is defined, then
a(g) = 7(g). If some assignment satisfies C*, then C* is satisfiable and oth-
erwise unsatisfiable.

Examples of typical Boolean function applied in Boolean circuits as gate
types include the following.

e NOT(v) istifand onlyif v is f.
e OR(v1,...,vy) is tif and only if at least one of vy, ..., v, is t.
e AND(vy,...,v,) istifand onlyifall vy, ..., v, are t.

e XOR(v1,v2) is tif and only if exactly one of vq,vg is t.

Example 2.1 A Boolean circuit and its graphical representation is shown in
Figure 1. The circuit models a full-adder with the constraint that the carry-
out bit ¢; ist. One satistying truth assignment for the circuit is

{<clvt>’ <t17t>7 <007f>7 <t27f>7 <t37t>7 <a07t>7 <b07f>7 <C07t>}'

The set of output gates and input gates in the circuitare {cy, 0o} and {ag, by, co},
respectively.
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C = {c1:=0R(ly,ts)
1 := AND(t3, co)
0o := XOR(t3, cp)
to := AND(ag, by)
t3 := XOR(ag, bo) }

a={{c,t)}

Figure 1: A constrained Boolean circuit C*.

The restriction of an assignment 7 to a set G’ C G of gates is
Tlo ={{g,v) €7 | g€ G'}.

Given a non-input gate g := f(g1, ..., 9,) and a value v € {f,t}, a justifica-
tion for the pair (g, v) is a partial assignment o : {g1,...,9.} — {f,t} over
the children of g for which f(7(¢1),...,7(gs)) = v holds for all extensions
7 D o. That is, the values assigned by ¢ to the children of ¢ are enough to
force g to have the value v. A gate g is justified in an assignment 7 if it is
assigned, i.e., 7(g) is defined, and

(1) g isan input gate, or
(ii) g:= f(g1,---.9n) € Cand T|yg, . 4.y is a justification for (g, 7(g)).

Example 2.2 Consider the gate t1 in Figure 1. The set of possible justifica-
tions for (t1,f) consists of {{t5, )}, {{ts, 1), (co, ) }, {(t3, 1), (co, D)}, {{c0, D)},
and {(ts, t), (co, ) }; the first and fourth are subset minimal ones. Gate t; is
justified in the satistying assignment in Example 2.1.

Given a constrained circuit C* and an assignment 7 2 « for C, the justi-
fication cone of C* under 7, denoted by jcone(C*, 7), is defined recursively
top-down in the circuit structure, starting from the constrained gates. Intu-
itively, the cone is the smallest set of gates which includes all constrained
gates and, for each justified gate in the set, all the gates that participate in
some subset minimal justification for the gate. More formally, jcone(C*, 7) is
the smallest one of those sets S of gates which satisfy the following properties.

1. If (g,v) € a, theng € S.

2. If g € Sand (i) ¢ is a non-input gate, (ii) g is justified in 7, and
(i) {(g;, v;) € o for some subset minimal justification o for (g, 7(g)),
then g; € S.

Notice that by this definition jecone(C®, 7) is unambiguously defined.
The justification frontier of C* under 7 is the “bottom edge” of the justifi-
cation cone, that is, those gates in the cone that are not justified:

jfront(C*,7) = {g € jeone(C*, T) | g is not justified in 7}.

A gate g is interesting in 7 if it belongs to the frontier jfront(C*,7) or is a
descendant of a gate in it. The set of all gates that are interesting in 7 is
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denoted by interest(C®, 7). A gate g is an (observability) don't care if it is
neither interesting nor in the justification cone jcone(C®, 7).

Example 2.3 Consider the constrained circuit C* in Figure 1. Under the
assignment

T= {<Cl’t>7 <t1>t>’ <007f>7 <t27f>> <t37t>’ <a07f>7 <bO>f>7 <CO’t>}7

the justification cone jcone(C*, T) is {c1, t1,t3, ¢o}, the justification frontier,
jfront(C*, 1) is {t3}, interest(C*, 7) = {t3, ao, b}, and the gates ty and og are
don't cares.

When jfront(C*, 7) is empty, a satisfying assignment can be obtained by
(i) restricting 7 to the input gates appearing in the justification cone, that
is, to the gate set jecone(C*, 7) N inputs(C), (ii) assigning other input gates
arbitrary values, and (iii) recursively evaluating the values of non-input gates.

Proposition 2.1 If the justification frontier, jfront(C®, ), is empty for some
assignment 7, then the constrained circuit C* is satisfiable.

Thus, whenever jfront(C®, ) is empty, we say that 7 de facto satisfies C°.

Example 2.4 The assignment

T= {<clvt>7 <t17 f>7 <007 f>7 <t27 t>7 <t37t>7 <a07 t>7 <b()7 t>7 <CO7 t>}
de facto satisties the constrained circuit C* in Figure 1.

Also note that if a total truth assignment 7 satisfies C*, then jfront(C*, 7) is
empty.

Note on Representation Forms for Structured Formulas

Many graph-based representation forms for propositional formulas can be
found in the literature. Some of these, [149, 1, 240] for instance, can be seen
as special cases of our definition for Boolean circuits. AND-inverter graphs
(AIGs) [149] are basically Boolean circuits in which only the gate types AND
and NOT are used. It should be noted that typically work on such graph
presentation forms ([78, 149, 1, 15, 41] among others) deals with techniques
for reducing the size of circuits in order to enable storing very large formulas.
This is also the case with reduced Boolean circuits (RBCs), as defined in [1].
Recently, Boolean circuits have also been called propositional DAGs [240],
although the underlying formalism coincides with Boolean circuits.

Other often studied representation forms for propositional formulas are
provided by the target languages in knowledge compilation. In knowledge
compilation, the basic idea is to first compile the given propositional for-
mula into a specific target normal form in the offline phase. The resulting
representation in the target language is then queried for results in the on-
line phase. ldeally, the target language is a normal form which supports
polynomial time answering for various queries, including model counting,
model enumeration, and equivalence in addition to satisfiability. Many tar-
get compilations have been proposed, including Horn approximations [215]
decomposable negation normal form (DNNF) [63] and ordered binary de-
cision diagrams (OBDDs) [51, 70]. However, the fundamental weakness of
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the compilation-based approaches lies in exponential worst-case space con-
sumption, which in many cases leads to poor scalability.

Although this thesis concentrates on search-based approaches, we note
that the algorithms for building (reduced) OBDDs can be seen as an in-
ference system, which is rather different to DPLL-based methods. For stud-
ies on OBDDs as a proof system from the view point of proof complexity,
see [105, 21, 145, 210].

As a final remark, Boolean expression diagrams (BEDs) [15] aim at ex-
tending BDDs with Boolean circuit style gate types. For a short overview of
BDDs, BEDs, RBCs, and AlGs, we refer the reader to [41].

2.2 CNF SAT

Since the DPLL-based search procedures of interest in this work deal typi-
cally with CNF formulas, we will next define CNF-level SAT and a standard
translation from Boolean circuits to CNF formulas.

Given a Boolean variable z, there are two literals, the positive literal, de-
noted by z, and the negative literal, denoted by =z, where = is the logical
negation (not). As usual, we identify =—z with . A clause is a disjunction (V,
or) of distinct literals and a CNF formula is a conjunction (A, and) of clauses.
When convenient, we view a clause as a finite set of literals and a CNF for-
mula as a finite set of clauses; for example, the formula (a vV —b) A (—¢) can
be written as {{a, —b}, {—c}}. The sets of variables appearing as positive and
negative literals in a CNF formula F are denoted by vars™ (F’) and vars™ (F'),
respectively, and the set of variables by vars(F); for a clause C, vars™(C'),
vars~ ('), and vars(C') are defined similarly.

Given a CNF formula F, a (partial) assignment for F' is a (partial) func-
tion 7 : vars(F) — {t,f}, where t and f stand for true and false, respectively.
With slight abuse of notation, if 7(z) = v, then 7(-z) = —wv, where =t = f
and —f = t. A clause is satisfied by 7 if it contains at least one literal I such
that 7(I) = t. If 7(I) = f{or every literal [ in a clause, the clause is falsified
by 7. An assignment 7 satisfies F' if it satisfies every clause in it. A formula
is satisfiable if there is a total assignment that satisfies it, and unsatisfiable
otherwise.

Any CNF formula F' = {C4, ..., C}} can naturally be seen as a Boolean
circuit. Basically, F' is a Boolean circuit with an AND of ORs which rep-
resent the clauses. Formally, circuit(F') := (C, 7) is defined by associating
an input gate = with each variable z € vars(F'), a NOT-gate g-, with each
x € vars~ (F'), an OR-gate g¢, with each clause C; € F', an AND-gate g with
F, and by setting 7 = {(gp, t)} and

C = {gr:=AND(gc,, .-, 9¢,)} U {9 :==NOT(z) |  €vars” (F)} U
{gCi = OR(CM(li,l), ey a(li,nl)) | Cz = {li,la ey lz,nl} S F}

where a(—x) = g-, and a(z) = z for each « € vars(F).

Example 2.5 The constrained Boolean circuit circuit(F) for the unsatisfi-
able CNF formula F = {{z,y},{z,~w}, {—z,y},{-x,-y}} is shown in
Figure 2.
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Figure 2: The constrained Boolean circuit

CirCUit({{Iv Z/}7 {'7"’ _'y}7 {_‘Iv y}7 {_"Tv _‘ZJ}})

2.3 Translating Boolean Circuits to CNF

In order to exploit CNF-level SAT solvers in solving instances of Boolean cir-
cuit satisfiability, the circuit has to be translated to CNF. A “standard” linear
time translation based on [233] is typically applied, which achieves a linear
size CNF encoding of any propositional formula by introducing additional
variables for representing the subformula structure in the circuit. For encod-
ing the functionalities of gates, the idea is to represent the logical equivalence
g < f(g1,...,9n) as clauses; hence for each g := f(g1,...,gn) the corre-
sponding introduced clauses are as shown in Table 1. Similarly, a unit clause
is added for each constraint (g,v) € 7 as shown in Table 1. Given a con-
strained Boolean circuit C%, we will denote its CNF translation by enf(C%).

Table 1: CNF translation for constrained Boolean circuits.

gate or constraint clauses

g :=XOR(g1, g2) (=g V =G1 vV =g2), (2§ VGV §2), (§V ~g1V g2), (GV G1V —g2)
g:=OR(g1, .., gn) (29VgLV--Vgn), (GV=gi)....(gV ~gn)

g 1= AND(g1, ..., 9n) (=g VvV g1)-(2gV gn), (GV—g1 V-V =gn)

g :=NOT(g1) (2g vV —=§1), (§V §1)

(g, €7 (@)

(9. er (-9)

It should be noted that, in practice, gates of the form g := NOT(g;) are not
typically translated; instead, —g; is substituted for g.

The “standard” translation from constrained Boolean circuits to CNF for-
mulas presented in Table 1 is often (depending on the context) referred to
as “T'seitin translation”, as it follows the encoding of arbitrary propositional
formulas as CNF formulas presented in [233]. A well-known refinement of
this standard encoding is the Plaisted—Greenbaum polarity exploiting trans-
lation [188]. Compact CNF encodings of Boolean circuits (or non-clausal
formulas) are also developed in [67, 185, 120], for instance. However, within
the scope of this work, we will apply the standard translation.

2.4 Normal Logic Programs and Stable Models

In addition to the classical notion of propositional satishability, we consider in
publication P5 answer set programming (ASP), or in other words, constraint
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satisfaction techniques for normal logic programs (NLPs) (in the proposi-
tional case) under the stable model semantics [88, 86].
An NLP II consists of a finite set of rules of the form

T h—ay, ..., Qn,~by, ., by, (1)

where each a; and b; is a propositional atom, and A is either a propositional
atom, or the special symbol L that stands for falsity. The symbol “~” de-
notes default negation. A default literal is a propositional atom a, or its de-
fault negation ~a. A rule r consists of the head, head(r) = h, and a body,
body(r) = {ai,...,a,,~by,...,~by}. Arulerisa fact if body(r) = 0.

The set of atoms occurring in a program II is denoted by atoms(II). We
use the shorthands L™ = {a | @ € L} and L™ = {a | ~a € L} foraset L
of default literals, and ~A = {~a | a € A} for a set A of atoms. This allows
the shorthand head(r) < body(r)* U ~body(r)~ for (1). The set of default
literals of a program IT is dlits(IT) = {a, ~a | a € atoms(II)}.

In ASP, we are interested in stable models [88] (or answer sets) of an NLP
II. An interpretation M C atoms(II) defines which atoms of II are true
(a € M) and which are false (¢ ¢ M). An interpretation M C atoms(II) is a
(classical) model of IT if and only if body(r)* C M and body(r)" N M =0
imply head(r) € M for each rule r € II. A model M of a program II is a
stable model of IT if and only if there is no model M’ C M for ITM | where

MM = {head(r) « body(r)* | 7 € IT and body(r)” N M = ()}

is called the Gelfond-Lifschitz reduct of TI with respect to M. We say that a
program II is satisfiable if it has a stable model, and unsatisfiable otherwise.

In the light of P5, an important class of NLPs are so called tight NLPs, as
defined next. The positive dependency graph of 11, denoted by Dep™*(II), is
the directed graph with atoms(II) and

{{b,a) | Ir € M such that b = head(r) and a € body(r)"}

as the sets of vertices and edges, respectively. An NLP II is tight if there are
no loops in its positive dependency graph Dep(IT).

2.5 Relationship between SAT and ASP

A part of this thesis (namely, publication P5) considers the relationship be-
tween SAT and ASP. For this, we now consider known translations between
these paradigms.

There is a natural linear-size translation from CNF formulas to normal
logic programs so that the stable models of the encoding represent the satis-
fying truth assignments of the original CNF formula faithfully, that is, there
is a bijective correspondence between the satisfying truth assignments and
stable models of the translation [182]. Given a CNF formula F', this transla-
tion nlp(F) introduces a new atom ¢ for each clause C' € F, and atoms a,
and a, for each variable = € vars(F'). The resulting NLP is then

nlp(F) = {ay <« ~ay. G, < ~a, | x € vars(F)} U (2)
{L—r~c|CeF}U 3)
{c—a, |z eC, CeF, xecvars(C)}U “4)
{c —r~a, |~z €C, CeF, xecvars(C)}. (5)
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The rules (2) encode that each variable must be assigned an unambiguous
truth value, the rules in (3) that each clause in F' must be satisfied, while
(4) and (5) encode that each clause is satisfied if at least one of its literals is
satisfied.

Example 2.6 The CNF formula F = {{z,y}, {-x, v}, {z, ~y}, {2z, -y}}
is represented by the normal logic program

nip(F) = { ay « ~ay. Gy — ~a,. ay «— ~a,. 4, — ~a,.
L r~cp L ~eog L ey Lo ~oey.
Cl = Uy. €1 “— Qy. Co — Qy. Cy — ~ay,.

C3 4= ~Qy. Cg 4 Qy. Cy +— ~Gy. Cq — ~ay }.

Contrary to the case of translating SAT into ASP, there is no modular! and
faithful translation from normal logic programs to propositional logic [182].
Moreover, any faithful translation is potentially of exponential size when ad-
ditional variables are not allowed [163]%.

For any tight program II, however, the answer sets of IT faithfully coincide
with the satisfying truth assignments of a linear-size propositional formula
called Clark’s completion [56, 74| of II. Taking a Boolean variable z, for
each a € atoms(II), Clark’s completion is

o = A (;th \ ( A YA :cb))

heatoms(IT)U{ L} rerules(h) \ bebody(r)t bebody(r)~

where rules(h) = {r | head(r) = h}. Notice that there are the special cases
that (i) if 4 is L, then the equivalence becomes the negation of the right
hand side, (ii) if & is a fact, then the equivalence reduces to the clause {z},
and (iii) if & does not appear in the head of any rule, then the equivalence
reduces to the clause {7}, }.

Alinear-size CNF translation of C'(IT), referred to here as the clausal com-
pletion comp(II), is achieved by encoding C/(II) in the style of the Tseitin
translation, through introducing a new Boolean variable zg for each B €
body(TT); we refer the reader to Section 2 of P5 for details.

Hntuitively, for a modular translation, adding an atom as a fact to a program leads to a
local change not involving the translation of the rest of the program [182].

*However, polynomial size propositional encodings using extra variables are known,
see [35, 121].  Also, ASP as Propositional Satishability approaches for solving normal
logic programs have been developed, for example, ASSAT [164] (based on incrementally
adding— possible exponentially many—loop formulas) and ASP-SAT [89] (based on gen-
erating a supported model [48] of the program and testing its minimality—thus avoiding
exponential space consumption).
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3 PROOF SYSTEMS AND SOLVER TECHNIQUES FOR SAT

This chapter concentrates on introducing the propositional proof systems
considered in this work, including DPLL and clause learning, and their circuit-
level counterparts. Moreover, Section 3.6 provides a short overview of the ba-
sic ideas behind typical CNF-level stochastic local search SAT solvers. First
of all, though, we will discuss proof complexity and polynomial simulation,
which provide means of comparing the relative efficiency of proof systems.

3.1 Propositional Proof Systems and Complexity

Proof complexity theory enables the study of relative efficiency of solver tech-
niques by investigating whether the proof systems underlying different solvers
can (polynomially) simulate [60] one another. From the practical point of
view, if proof system S” cannot simulate system S, any implementation of .S’
can suffer a notable decrease in efficiency compared to implementations of
S. Due to this strong interplay between theory and practice, the study of the
relative efficiency of proof systems reveals important new explanations for the
successes and failures of particular solver techniques.

Formally, a propositional proof system [60] is a polynomial-time com-
putable predicate S such that a propositional formula F' is unsatishable if
and only if there is a proof p for which S(F, p) holds. Thus a proofp of F is a
certificate of the unsatisfiability of F', and a proof system is a polynomial-time
procedure for checking the validity of proofs in a certain format.

While proof checking is efficient, finding short proofs may be difficult,
or, generally, impossible since short proofs may not exist for too weak a proof
system. As a measure of hardness of proving unsatishability of a CNF formula
F ina proofsystem S, the (proof) complexity C's(F') of F'in S is the length of
the shortest proof of F' in S. For a family { F,} of unsatishable CNF formulas
over an increasing number of variables, the (asymptotic) complexity of { F}, }
is measured with respect to the number of clauses in F,.

For two proof systems, S and S’, we say that S” (polynomially) simulates
S if for all families { F},} of unsatishiable formulas, Cs/(F},) < p(Cs(F,)) for
all F,,, where p is a polynomial. If S simulates S” and vice versa, then S and
S" are polynomially equivalent. If there is a family {F},} which witnesses the
fact that S” does not polynomially simulate .S, we say that {F},} separates S
from S’. If S can be separated from S’ and vice versa, then S and S’ are
incomparable. Notice that polynomial simulation gives a partial order for
proof systems based on their relative power. We also note that polynomial
simulation, as defined here, differs from the stronger notion of p-simulation
which additionally requires that there is an efficient algorithm to convert the
proof in one system to a short proof in the other system.

With these definitions, in order to show that a proof system S cannot
simulate another system S, it suffices to exhibit an infinite family {F},} of
unsatisfiable formulas over an increasing number of variables such that the
minimum length proofs in S for {F,} are asymptotically superpolynomially
longer than the minimum length proofs in S” with respect to the number of
clauses in F},.
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3.2 Resolution

The well-known Resolution proof system [197] (RES) is based on the resolu-
tion rule. Let C, D be clauses, and x a Boolean variable. The resolution rule
s

{z}uC {-2z}UD
cubD

or, in other words, we can directly derive C'U D from {a}UC and {-~z}UD
by resolving on x. F'or a given CNI formula F', a RES derivation of a clause
C from F is a sequence of clauses 7 = (C,Cy, ..., Cpy, = C), where each
C;, 1 <14 <m,is either

(i) a clause in F' (an initial clause), or

(ii) directly derived with the resolution rule from two clauses C;, Cy, where
1 < j,k <i(a derived clause).

The length of m is m, the number of clauses occurring in it. A RES proof (for
the unsatisfiability) of a CNF formula F' is any RES derivation of the empty
clause 0 from F.

Any RES derivation 7 = (C, Cy, . .., Cy,) can be presented as a directed
acyclic graph in which the leafs are initial clauses and other nodes represent
derived clause. The edge relation is defined so that there are edges from C;
and C; to Cy, if and only if Cy has been directly derived from C; and C;
using the resolution rule. Many refinements of Resolution, in which the
structure of RES proofs is restricted, have been proposed and studied. Here
of particular interest is Iree-like Resolution (T-RES), with the requirement
that proofs are representable as trees. This implies that a derived clause, if
subsequently used multiple times in the proof, must be derived anew each
time starting from initial clauses. Other well-known refinements include reg-
ular resolution [233] (any variable can be resolved upon at most once along
any path in the proof from an initial clause to (), Davis—Putnam (or ordered)
resolution [65] (a refinement of regular resolution where every sequence of
variables resolved on in a path from an initial clause to §) respects the same
ordering on the variable).

Super-polynomial (and even exponential) lower bounds on proof lengths
in RES have been shown for various families of CNF formulas, see [55, 107,
233, 234, 62, 6, 29, 31] for examples. It is also known that T-RES cannot
polynomially simulate RES. This originates from the facts that regular res-
olution cannot simulate RES [95, §], and T-RES in turn cannot simulate
regular resolution [235].

3.3 The Davis—Putnam-Logemann-Loveland Procedure

22
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Given a CNF formula F as input, DPLL (as in Davis—Putnam-Logemann—
Loveland [65, 64]) is a depth-first search procedure building a partial assign-
ment 7 for the variables in F' through (i) branching and (ii) unit propagation.
In branching, the current assignment 7 is extended with the assignment (de-
cision) {(z,v), where v is either f of t, for some unassigned variable x. Unit
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propagation refers to applying the unit clause rule. The unit clause rules
states that if there is a clause {l1,..., 1,1} € F such that 7(I;) = ffor each
1 < i < Fk, the current partial assignment 7 can be extended with (I, t).

An assignment is extended until (i) some variable = would be assigned
both f and t (a conflict is reached, with x as the conflict variable) or (ii) T
satisfies F' (in which case DPLL terminates). In case (i), non-clause learning
DPLL solvers backtrack to the last branching decision which has not been
backtracked upon, undoing all assignments made by unit propagation after
the particular decision, and flip the decision. DPLL terminates on an unsat-
ishable CNF formula when there are no untried branches left.

From the proof theoretic point of view, search trees traversed by DPLL al-
gorithms correspond to tableaux in the form of binary trees, which are build
using two rules: the branching rule and the unit clause rule. The branch-
ing rule, corresponding to branching on a variable z, extends a branch into
two branches, one of which is extended with the entry z and the other with
—z. The unit clause rule is similarly applied by extending the branch with
l. Starting from the clauses in the input CNF formula, a branch is (fully)
extended until we have both of the entries  and —z for some variable, or
no new entries can be generated with the branching and unit clause rules.
From an algorithmic point of view, the choice of in which order branches
are extended is part of the solver strategy, and based on a branching (or de-
cision) heuristic. The other branch resulting from the particular application
of the branching rule is handled through backtracking. With this intuition,
a DPLL proof refers to such a tableau proof build using the branching and
unit clause rules. The length of a DPLL proof is defined as the number of
applications of the branching rule in the proof.

One-step lookahead (see [158], for example) is an often implemented
technique in (non-clause learning) DPLL algorithms. In one-step lookahead,
if there is an assignment v to a currently unassigned variable x such that the
current assignment 7 with the addition of (z, v) leads to a conflict using unit
propagation, then z is immediately assigned the value —w. This technique
does not add to the strength of DPLL, since the same effect can obviously be
accomplished by branching on z.

It is well-known that DPLL and T-RES can polynomially simulate each
other (see [32] for example). One can show that for any unsatisfiable CNF
formula, a minimum length DPLL proof, with applications of the unit clause
rule “simulated by branching”, always corresponds one-to-one with a mini-
mum length T-RES proof, and vice versa.

Implication Graphs

Implication graphs capture the ways of deriving values for variables with the
unit clause rule from assignments made by branching. We will apply this
concept in the following for defining clause learning. However, first we need
some additional terminology.

A stage of DPLL on a CNF formula F is characterized by the decision lit-
erals in the branch. Considering an arbitrary branch, the variables assigned
by branching are called decision variables and those assigned values by unit
propagation are implied variables, with analogous definitions for decision lit-
erals and implied literals. 'The decision level of a decision variable x is one
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more than the number of decision variables in the branch before branching
on z. The decision level of an implied variable x is the number of decision
variables in the branch when =z is assigned a value. The decision level of
DPLL at any stage is the number of decision variables in the branch.

For a given CNF formula F' and a set L of literals, we denote by F, L Fyp {
the fact that  can be deduced from F' and L by iteratively applying the unit
clause rule.

Definition 3.1 For a CNF formula F, the implication graph G = (V, E) at
a given stage of DPLL with the set D of decision literals is a directed graph.
The set of nodes is

V={A}UDU{l| F,D Fyp l},
where A is a special conflict node, and the edge relation is

E = {<_|l“l> | {ll,...,lk7l}EFQI]d_'l17...7_\lk€V}U
{<‘L.7A> <_'va> ‘ T, € V}

For a given implication graph, a variable = with both z, mz € V is called a
conflict variable, and x, —~x are conflict literals. An implication graph con-
tains a conflict if it contains a conflict variable; DPLL has a conflict at a given
stage if the implication graph at the stage contains a conflict.

3.4 DPLL with Clause Learning and Modern SAT Solvers

24

There is a significant amount of reported work on boosting the efficiency
of DPLL solvers, by incorporating techniques such as intelligent branching
heuristics (see [112, 158, 180] for examples), novel propagation mechanisms
(for example, binary clause reasoning [22] and equivalence reasoning [157,
110]), efficient propagator implementations (watched literals [180]), ran-
domization and restarts [130, 101, 37|, and clause learning [174] into DPLL.
Clause learning can be regarded as an especially important progressive step
in the development of SAT solvers [130, 174, 180, 97, 72]. While new prop-
agation mechanisms, such as equivalence reasoning, have been successfully
implemented into DPLL, most clause learning solvers still rely on standard
unit propagation as the sole propagator. As for intelligent branching heuris-
tics, while solvers without clause learning incorporate heuristics based on
literal counting [112] and/or one-step lookahead [158, 109, 14], branching
in clause learning solvers is driven by learning. Most clause learning solvers
implement variations of —or build on top of [72, 97, 202] —the variable state
independent decaying sum (VSIDS) heuristic [180]. The basic idea behind
VSIDS is to value variables that have played an active role in reaching recent
conflicts. Moreover, clause learning enables non-chronological backtracking
(or backjumping). Through these ideas, the search space traversal in modern
SAT solvers is guided tightly by clause learning, with the help of unit prop-
agation and restarts. Hence, as noted for example in [117], clause learning
SAT solvers differ notably from implementations of the basic DPLL.

In more detail, clause learning DPLL algorithms differ from non-clause
learning DPLL most notably in what is done when reaching a conflict. If
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a conflict is reached without any branching, DPLL (with or without clause
learning) determines the formula F' unsatishable. In other cases, non-clause
learning DPLL algorithms perform simple backtracking as explained in the
previous section. In clause learning DPLL algorithms, however, the con-
flict is analyzed, and a learned clause (or conflict clause), which describes
the “cause” of the conflict, is added to F'. After this the search is contin-
ued typically by applying non-chronological backtracking (or conflict-driven
backjumping) for backtracking to an earlier decision level that “caused” the
conflict. Conflict-driven backjumping results in the fact that, as opposed to
the basic backtracking in DPLL, the other branch (opposite value) of decision
variables is not necessarily forced systematically when backtracking. In other
words, branching in clause learning DPLL is seen simply as assigning values
to unassigned variables, rather than as a branching rule in which by branch-
ing on a variable x the current branch is always extended into two branches,
one with x and the other with —z.

Conflict Graphs and Conflict Analysis

Similarly as with DPLL, the stage of a clause learning DPLL algorithm is
characterized by the set of decision literals. At a given stage of a clause learn-
ing DPLL algorithm, a clause is called known if it either appears in the orig-
inal CNF formula F' or has been learned carlier during the search. Conflict
analysis is based on a conflict graph, which captures one way of reaching the
conflict at hand from the decision variables by using the unit clause rule on
known clauses.

Definition 3.2 Given an implication graph G, a conflict graph H = (V. E)
based on G is any acyclic subgraph of G having the following properties.

1. H contains A and exactly one conflict literal pair x, —.
2. There is a path from every node in H to A.

3. Every node I € V' \ {A} either (i) corresponds to a decision literal,
or (ii) has precisely the nodes —ly, —la, . .., =l as predecessors, where
{l1,la, ..., Uk, 1} is a known clause.

A conflict graph describes a single conflict and contains only decision and
implied literals that can be used in reaching the conflict when applying the
unit clause rule in some order. Hence the way of implementing unit prop-
agation in a solver has an effect on the choice of the conflict graph. The
acyclicity of conflict graphs results from the fact that unit propagation is not
used to re-derive already assigned literals.

Conflict clauses are associated with cuts in a conflict graph. Fix a conflict
graph contained in an implication graph with a conflict. A conflict cut is
any cut in the conflict graph with all the decision variables on one side (the
reason side) and, in addition to A, at least one conflict literal on the other
side (the conflict side). Those nodes on the reason side with at least one edge
going to the conflict side in a conflict cut form a cause of the conflict. With
the associated literals set to t, unit propagation can arrive at the conflict at
hand. The disjunction of the negations of these literals is the conflict clause
associated with the conflict cut. The strategy for fixing a conflict cut is called
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the learning scheme. A learning scheme which always learns a currently
unknown clause is called non-redundant.

Example 3.1 A hypothetical conflict graph is illustrated in Figure 3. De-
cision literals are represented with filled circles, and implied literals with
hollow circles. ‘The decision level d of each literal I is presented with the la-
bel lQd. For example, the conflict variable 15 is at decision level 5. Notice
that since the literals at decision level 4 are missing from this conflict graph,
they are not part of the reason for the particular conflict. In the figure, two
possible conflict cuts are shown with the associated conflict clauses.

{—z5, s, T3, T12}
! {_‘-'L'4735'8795'12}

12@5 / “.’L‘13@5

I / O\
5175@5 \ A

x13@5

Ig@]

\
N + 1UIP cut

N
—xe@2 —x12@2 2-UIP/last UIP cut

Figure 3: Example of a conflict graph, and two possible conflict cuts

Implication Points, Conflict-Driven Backjumping, and CL

Typically implemented clause learning schemes are based on unique impli-
cation points (UIPs) [174]. A UIP in a conflict graph is a node u on the
maximal decision level d such that all paths from the decision variable x at
level d to A go through u. Such a u always exists as x satisfies this condition.
Intuitively, w is a single reason for the conflict at level d. Thus one can al-
ways choose a conflict cut that results in a conflict clause with a UIP as the
only variable from the maximal decision level. Such a conflict clause has the
property that the UIP variable can be immediately set to the value opposite
to the current assignment using the unit clause rule when backtracking (the
phrase “the UIP is asserted” is sometimes used). Furthermore, UIP learn-
ing schemes enable conflict-driven backjumping, in which DPLL backtracks
to the maximal decision level of the variables other than the UIP in a con-
flict clause. A popular version of UIP learning is the 1-UIP scheme, where
a conflict cut is chosen so that the UIP closest to A will be in the associated
conflict clause. Different learning schemes are evaluated in [244], showing
the robustness of the 1-UIP scheme in practice.

Example 3.2 Recall the conflict graph in Figure 3. The 1-UIP in this graph
is the literal z4. One conflict cut corresponding to the 1-UIP learning scheme
is the cut labeled “I-UIP cut”. 'The cut labeled “2-UIP cut/last UIP cut” can
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result from applying the second UIP scheme in which a conflict clause with
the UIP second closest to A is chosen. In this example, the “2-UIP cut/last
UIP cut” is at the same time a cut that can result from applying the last UIP
scheme in which a cut with the decision literal on the maximal decision level
as the UIP is chosen.

For investigating the efficiency of clause learning DPLL in proof complex-
ity theoretic terms, we need to have a proof system characterization of clause
learning DPLL algorithms. We will use the following characterization, re-
ferred to as the CL proof system. Here we loosely follow the characterization
of [33]. A clause learning proof (or CL proof) induced by a learning scheme
S is constructed by applying branching and the unit clause rule, using S
to learn conflict clauses when conflicts are reached, so that in the end, a
conflict can be reached at decision level zero. When a conflict cut with
a UIP is selected, it is possible to apply conflict-driven backjumping based
on the conflict clause. Otherwise, simple backtracking is applied. Notice
that this definition allows even the most general nondeterministic learning
scheme [33], in which the conflict cut is selected nondeterministically from
the set of all possible conflict cuts related to the conflict graph at hand.

Hence, a CL proof can be seen as a tree in which the traversal order is
marked in the nodes. Fach leaf node in the tree is labeled with a conflict
graph, a conflict cut in the graph, and the decision level onto which to back-
jump. Now, the proof system CL consists of CL proofs under any learning
scheme. The length of a CL proof is the number of branching decisions.

While the practical efficiency gains of implementing clause learning into
DPLL-based algorithms are well-established, the first formal study on the
power of clause learning is [33]: CL can provide exponentially shorter proofs
than T-RES even if no restarts are allowed. Thus DPLL cannot polynomially
simulate CL.

Restarts and the CL- Proof System

Restarting is an additional technique often implemented in modern solvers.
When a restart occurs, the decisions and unit propagations made so far are
undone, and the search continues from decision level zero. The clauses
learned so far remain known after the restart. Intuitively, restarts help in
escaping from getting stuck in hard-to-prove subformulas. In practice, the
choice of when and how often to restart is part of the strategy of a solver.
When any number of restarts are allowed during search, we say that CL has
unlimited restarts. For a recent investigation into the effect of restarts on the
efficiency of clause learning DPLL algorithms, see [117].

Beame et al. [33] define CL- as CL with branching allowed also on al-
ready assigned values. Although being non-typical in practice, this enables
creating immediate conflicts at will. Although it is not known whether CL
can simulate RES, it has been shown that this is true for CL- using unlimited
restarts.

Theorem 3.1 ([33]) RES and CL-with unlimited restarts and any non-redun-
dant learning scheme are polynomially equivalent.

We note that the proof of this theorem in [33] relies on the fact that unit prop-
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agation is seen as applications of the unit clause rule, and hence the rule can
also be left unapplied when convenient. This is non-typical for implemen-
tations of clause learning DPLL; they usually apply unit propagation eagerly
whenever possible.

3.5 Circuit-Level DPLL and CL

28

3

A key element especially in publications P3 and P4 is the tight correspon-
dence between a constrained Boolean circuit C* and its CNF translation
cnf(C%). We will now review details on the correspondence of deduction
in the CNF translation of a Boolean circuit with the original circuit struc-
ture, and on how branching in DPLL and CL can be restricted based on the
original circuit structure.

As there is a one-to-one relationship between the gates in a constrained
Boolean circuit C* and the variables in the corresponding CNF formula
cnf(C®), the variables can be thought to inherit the structural properties of
the gates. For example, an input variable is a variable that corresponds to an
input gate in the original Boolean circuit, and we will take the liberty of using
the terms “gate” and “variable” synonymously. Furthermore, since the CNF
translation in Table 1 encodes in a natural way the semantics of the gates,
unit propagation in the CNF formula can be seen as working on the level of
the circuit. A further discussion on this can be found for example in [125],
using a unit propagation equivalent characterization of Boolean constraint
propagation as deduction rules for circuits [132]. Basically, such circuit-level
Boolean constraint propagation can set a value on a gate if and only if unit
propagation can set a value on the corresponding Boolean variable in the
CNF translation. For example, consider the gate g := AND(gy, g2) and its
CNF translation (=g V 1) A (=g V g2) A (G V —g1 V —ga). Now whenever the
gate g is assigned to £, the gate g can be propagated to f by the semantics of
AND. On the CNF-level, we can equivalently propagate the variable g to f by
applying the unit clause rule whenever the variable g, is assigned to f. The
same kind of equivalent behavior is noticed in a “top-down” fashion when
assigning the gate g to t: on the circuit-level, the gates g7 and g, can be prop-
agated to t, and on the CNF-level we can equivalently propagate the variables
g1 and o to t through the clauses (=g V §1) and (=g V §2), respectively, by
applying the unit clause rule whenever the variable g is assigned to t. Hence
we will also take the liberty of saying that unit propagation sets a value on
a gate when referring to unit propagation setting a value on the correspond-
ing Boolean variable in the CNI' translation. Similarly, we branch on a gate
when referring to branching on the corresponding Boolean variable. Corre-
spondingly, a DPLL or CL proof of a constrained circuit C* means a proof of
the translation cnf(C*).

Since unit propagation can be also seen as Boolean constraint propaga-
tion on the level of constrained circuits, DPLL can also be implemented as
a circuit-level procedure, see, for example, [172, 132, 149, 230]. Since con-
flict graphs are based on how the unit clause rule is applied, clause learning
can also be incorporated in such circuit-level DPLL-based solvers [149, 230].
Thus the results in this thesis (in publications P3 and P4) concerning the
relative power of restricted branching variants of DPLL and CL hold for such
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circuit-level approaches, too.
3.6 Stochastic Local Search Procedures for SAT

In addition to considering DPLL-based complete methods for SAT, in this
thesis (namely, in P6 and P7) we develop novel stochastic local search (SLS)
techniques aimed specifically at solving structured SAT instances.

There is a wide body of work concentrating on the development of effec-
tive SLS methods for SAT (see [218, 213, 217, 177, 115, 114, 212, 111] for
examples, and [116] for a general view). Such methods are typically based
on iterating over solution candidates by flipping value assignments (inverting
the assignment on a single variable) in the current candidate based on a cost
function. In this work, we will compare the novel SLS method we develop
with typical CNI-level SLS methods belonging to the WalkSA'T" family.

The WalkSAT family of SLS methods builds on top of a greedy local
search method for SAT called GSAT [218]. Given a CNF formula F', GSAT
searches for a satisfying truth assignment starting from a randomly chosen
truth assignment over all the variables in F'. One step of GSAT consists of a
move from the current truth assignment (configuration) 7 to another assign-
ment 7’ by flipping the assignment of a single variable in 7. The heuristics for
choosing the greedy move (that is, which variable to flip) is based on the so
called break-count, BREAKCOUNT (F, 7, z). For each variable = € vars(F),
the value of BREAKCOUNT (F, 7, ) is the total number of clauses not satis-
fied by the configuration 7" which results from flipping the value of x in the
current configuration 7. In GSAT, the variable to be flipped is randomly cho-
sen from those variables in F' for which the value of BREAKCOUNT (F) 7, -)
is minimal.

The number of moves is limited to a pre-defined number MAXMOVES,
constituting a try of the algorithm. The number of tries is bounded by the
value MAXTRIES.

The methods in the WalkSAT family of SLS methods fall into the generic
WalkSAT procedure presented as Algorithm 1. Compared to GSAT, the
main novel ideas in the WalkSAT family of methods are focused moves and
the introduction of noise to the search. Moves are focused on the variables
that occur in those clauses in F' which are not satisfied by 7. One move
consists of flipping a variable that occurs in a randomly chosen unsatisfied

Algorithm 1 WalkSAT

Input: CNF formula F', noise parameter p € [0, 1]
Output: a satisfying assignment for /' or “don’t know”
1: for try := 1 to MAXTRIES do
7 := a random truth assignment over all variables in F
for move := 1 to MAXMOVES do
if 7 satisfies I then return 7
C':=arandomly chosen clause not satisfied by 7
v := a variable chosen using heuristic SELECT (F, C, 7)
7 := 7 with the assignment on v flipped

Sk ww

8: return “don’t know”
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clause C. In a greedy move, a variable in C' is flipped for which the value
of BREAKCOUNT (F, 7, ) is minimal over the variables in C. In addition
to greedy moves, non-greedy moves are made, bringing more randomization
into the search. In a non-greedy move, a randomly chosen variable occurring
in the clause C is flipped. The amount of randomization is dictated by the
noise parameter p € [0,1], that is, non-greedy moves are done with proba-
bility p. Intuitively, the introduced noise helps the search in escaping from
local minima.

The various proposed variants of WalkSAT differ in how the heuristic
SELECT(F,C,7) is defined. We will now present some proposed variants
of SELECT(F, C, 7). The first one is the original WalkSAT heuristic, Walk-
SAT/SKC as defined in [216], which we will in the following refer to simply
as WalkSAT.

WalkSAT/SKC  [216]

If there is a variable in vars(C') which can be flipped without making
any currently satisfied clause unsatisfied, then randomly choose one
such variable and flip it. Otherwise do the following. With probability
(1 —p), select the variable to be flipped from those variables in vars(C)
for which the value of BREAKCOUNT (F, 7, -) is minimal over the vari-
ables in vars(C') (the greedy move), or, with probability p, select the
variable to be flipped randomly from the variables in vars(C).

In addition to using WalkSAT in the experiments in P6, we will use in
P7 a variant of the Novelty+ heuristic, AdaptNovelty+, which uses an adap-
tive mechanism to adjust the noise parameter p during search [114]. The
Novelty+ is itself based on the Novelty heuristic [177], as defined next.

Novelty [177]

If there is a variable = € vars(C') for which it holds that (i) the value
BREAKCOUNT (F, 7, ) is minimal over the variables in vars(C'), and
(ii) = was not flipped in the previous move, then flip z. Otherwise
do the following. With probability (1 — p), flip , or, with proba-
bility p, flip the variable in vars(C') with the second-smallest value of
BREAKCOUNT (F, T, -) over the variables in vars(C'). In each case, ties
are broken by choosing the least recently flipped variable.

Novelty+ [113]

By introducing an additional parameter wp € [0, 1] (setto 0.01in [113]),
do the following. With probability wp, select the variable to be flipped
randomly from the variables in vars(C'), or, with probability (1 — wp),
use the Novelty heuristic.

However, we will postpone the details of the adaptive noise mechanism in
AdaptNovelty+ to Section 4.5, where we develop such mechanisms specifi-
cally for the novel SLS method introduced in this thesis.
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4 OVERVIEW OF MAIN RESULTS

In this section a technical overview of the main results of publications P1-P7
is presented. Typically, proofs and related constructions are omitted when
discussing theoretical contributions. Similarly, only selected experimental
results are presented in detail.

The publications divide into topics as follows.

e Publication P1 addresses the problem of generating hard satishable
CNF SAT instances by introducing the regular XORSAT model. Pub-
lication P1 is discussed in Section 4.1.

e Publications P2-P4 deal with the effects of structure-based branching
restrictions on DPLL-based SAT solvers:

— Publication P2 presents an extensive experimental evaluation of
the effect of static branching restriction on clause learning SAT
solving.

— Publications P3 and P4 address the effect of branching restric-
tions on the proof complexity theoretic power of DPLL and CL.

The main results of P2 are discussed in Section 4.2, and the results of
P3 and P4 in Section 4.3.

e Publication P5 introduces the Extended ASP Tableaux proof system
in the context of answer set programming. The main results of P5 are
discussed in Section 4.4.

e Publications P6 and P7 develop structure-based heuristics for solving
SAT by local search, by introducing the justification-based local search
method BC SLS. The main results of P6 and P7 are discussed in Sec-
tion 4.5.
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4.1 P1: Hard Structured Satisfiable CNF SAT Instances

Irom the perspective of solver development, benchmarks that are empiri-
cally hard for a particular class of SAT solvers reveal the practical gains of
new search techniques. Benchmark sets arising from industrial applications
constitute perhaps the most relevant test cases from a practical perspective.
However, they have some limitations especially in early stages of solver devel-
opment. Industrial benchmarks typically come only as individual instances
that are quite large, which makes them difficult to use in testing new algo-
rithmic ideas, as large instances require substantial effort on optimizing key
routines in the solver. Moreover, benchmarks consisting of a limited number
of individual instances are not well suited for measuring improvement and
scalability.

The constructions for hard CNF families applied in proof complexity the-
oretic analysis exploit instances with specific structure [233, 107, 234, 62, 6].
An example of the practical implications of such constructions comes from
the fact that often families of instances with a high number of symmetries are
considered, based on, for example, the so called pigeon-hole principle [107].
This has motivated the development of specialized symmetry exploiting tech-
niques applied before (see [11], for instance) and during search [159, 203].
In theoretical terms, such techniques bring solvers closer to the power of
symmetric resolution [146, 236).

From the basic proof complexity theoretic perspective, however, only un-
satisfiable formulas (and hence proofs of unsatisfiability) are of interest. Al-
though it has been shown that with certain branching heuristics DPLL search
takes exponential time with high probability on families of satisfiable formu-
las [184, 3, 2, 7], a satisfying truth assignment acts as a polynomial length
witness for the satisfiability of any satisfiable formula.

In many applications the instances of interest are in fact satisfiable and
the key task of a SAT solver is to find a satisfying truth assignment [40, 57,
140, 151]. Satishiable benchmarks are also of interest for comparing different
heuristics in their ability to guide the search towards a satisfying truth assign-
ment. Moreover, only satishable instances are relevant for benchmarking
incomplete local search methods.

Publication P1 considers the problem of generating CNF SAT instances
that are guaranteed to be satisfiable and experimentally hard for both DPLL-
based and SLS SAT solvers. Namely, a family of satisfiable CNF formulas—
(random) Regular XORSAT —is developed and studied by transforming ran-
dom regular graphs into systems of linear equations modulo 2 presented in
CNF. Additionally, techniques for hiding the underlying linearity of XOR-
SAT instances are developed. These techniques enable transforming XORSAT-
style CNF SAT instances into interesting benchmarks especially for evaluat-
ing equivalence reasoning techniques incorporated in SAT solvers.

The Regular XORSAT Construction

Let n be the number of variables in the regular XORSAT instance to be
constructed. Let X = {xg,1,...,2,_1} be an associated set of n Boolean
variables and let Y = {yo,y1,...,yn_1} be a set of n elements, each cor-
responding to an equation in a system of n equations over X. A constraint
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graph G = (V, E)) with bipartition (X,Y") characterizes the occurrences of
the variables in the equations, that is, {x;,y;} is an edge of G if and only if
the variable z; € X occurs in the equation y; € Y. The foundation of the
random regular XORSAT construction lies in selecting a constraint graph
G uniformly at random from the set of all 3-regular graphs with bipartition
(X,Y). Asarunning example for this section, consider the graph in Figure 4.

Figure 4: A 3-regular constraint graph

Once a constraint graph G has been selected, we construct a system of
linear equations based on G as follows. Let A = (a;;) be the n x n matrix
whose entries are defined forall 4,j = 0,1,...,n — 1 by

= 1 if {prl} € E,
K 0 if {I’J,yl} ¢ E.

Then we select uniformly at random a Z € {0,1}" and let b € {0,1}"
so that b = AZ (mod 2). The system of linear equations is now A% = b
(mod 2), where ¥ = (xg, 21, ..., 2Z,_1) is a column vector of variables. Note
that by construction AZ = b (mod 2), so the system always has at least one
solution—if a unique solution is required, then the matrix A must be invert-
ible modulo 2. As an example, from the constraint graph in Figure 4 we
obtain the matrix

A=

bt (O
—_— O = =
—_— e — O
O

For a randomly chosen vector

1 0
- |0 . = |0
=1 we arrive at b = 1
1 0
and the equation system
ro+x1+23 = 0
T+ X2 +T3 = 0 (mod 2)
ZTo —+ To + T3 = ]. ’
Zo +x1+x9 = 0

Finally, we transform the system AZ = b (mod 2) into a CNF formula by in-
troducing for every equation z;, +z;, +x;, = b; (mod 2) a set of four clauses
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that forbid the combinations of truth values that violate the equation. For ex-
ample, the equation =y + z; + z2 = 0 (mod 2) transforms into the clauses
{—x0, @1, "2}, {20, 21, 22}, {w0, 721, 22}, and {wg, 21, ~x2}. For the
running example, the resulting regular XORSAT instance is

{{_LZE(), Xy, _|.I'3}, {"ZC(), xy, .1'3}, {(L’g, -y, ng}, {ZE(), Zy, _L’Eg},
{_LTl, T, _L’L'3}, {_|I1, Ta, Ig}, {(L’l, T, .1,'3}, {Il, o, _|I3},
{20, ~w2, 23}, {70, T2, 773}, {70, 772, ~T3}, {20, T2, T3},
{_'l’(), Ty, _'.TQ}, {_'1’0, Ty, IQ}, {l‘o, Ty, IQ}, {.’L’(), Ty, _'.’1,’2}}.

Experiments

We compare the empirical hardness of regular XORSAT to other known fam-
ilies for both DPLL-based and local search SAT solver. The following bench-
mark families are considered:

random 3-XORSAT: satisfiable random 3-XORSAT at the phase-transition
point o, = 0.918 [193].

Jia et al’s 3-XORSAT : Jia et al’s generator [127] motivated by a spin glass
model [181] on a thombus with cyclic boundary conditions (satisfiable
“spin glass formulas”).

random 3-SAT : random 3-SAT at the phase transition point oy = 4.27 [61].

g-hidden: Jia et al’s generator for “deceptive ¢g-hidden” satishable 3-SAT for-
mulas [128] at ¢ = 0.3 and at the threshold ¢ = 0.618 (¢g-hidden for-
mulas).

We will compare these families to regular XORSAT which we refer to as
follows:

3-regular, unique: regular XORSAT with exactly one satisfying truth assign-
ment.

3-regular, nonunique: regular XORSAT with at least one satisfying truth as-
signment.

The DPLL-based solvers used are the clause learning solvers Satkilite GT1
(that is, MiniSAT [72] with the SatElite preprocessor [71]) and zChaff [180],
and additionally the DPLL-based lookahead solver Satz [156] which does not
incorporate clause learning. Among the instance families, our generator gives
the hardest instances for SatEliteGT1, zChaff and Satz; taking SatEliteGT1
as an example, we have in Figure 5 for each number of variables the median
number of decisions over 15 instances on a base-10 logarithmic scale. Among
SatEliteGTT, zChaff and Satz, the difference between the hardness of regular
XORSAT and the other considered instance families is most drastic for Satz.

In addition to DPLL-based solvers, we experiment with the SLS solvers
WalkSAT [217] and AdaptNovelty+ [114]. As shown in P1, it appears that
regular XORSAT is the hardest of the considered families for local search,
too. Notice that while Survey Propagation [49] (SP) is extremely efficient
in solving random k-SAT formulas, it has been observed to exhibit very poor
performance on XORSAT [28]; thus we do not consider SP here.
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Figure 5:

Motivating the Regular XORSAT Model

The two previously proposed benchmark families most resembling regular
XORSAT are the random 3-XORSAT instances [193] and the 3-XORSAT
family described by Jia et al. [127] motivated by spin glass models from sta-
tistical physics. Comparing regular XORSAT and random 3-XORSAT' (with
forced satisfiability), the regular XORSAT construction uses a random reg-
ular constraint graph whereas in random 3-XORSAT the constraint graph
is formed by associating independently and uniformly a set of three vari-
ables with each of the m equations, m being an additional parameter. Thus,
given n variables, the regular XORSAT construction produces exactly n equa-
tions with exactly three occurrences of each variable, whereas in random 3-
XORSAT the number of occurrences of a variable is a binomially distributed
random variable with expectation 3m/n. Comparing regular XORSAT and
the spin glass 3-XORSAT family described by Jia et al. [127], in the regular
XORSAT construction the regular constraint graph is selected uniformly at
random whereas Jia et al. associate with each (square) n a fixed regular con-
straint graph derived from a y/n x y/n thombic lattice with cyclic boundary.

Given this resemblance to existing benchmarks, it is not immediate why
combining regularity and random selection should yield results any different
compared with existing benchmarks. For example, the clauses-to-variables
ratio commonly used to predict satisfiability and computational difficulty in
the context of random 3-SAT [61] and random 3-XORSAT [193] is equal to
4 for both regular XORSAT and the spin glass 3-XORSAT instances: each
linear equation with 3 variables is expressed with 4 clauses.

Nevertheless, the experiments show that regular XORSAT instances ex-
hibit more rapid exponential scaling for state-of-the-art SAT solvers than
the aforementioned benchmarks. Considering DPLL without clause learn-
ing, the intuition behind the difficulty of solving regular XORSAT instances
comes from the fact that the instances are “highly connected”. This severely
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limits the effectiveness of unit propagation, as explained next.

Suggested in particular by the proofs of hardness in [7, 36, 234] (see
also [33]), the connectedness of an equation system can be measured by the
expansion properties of the underlying constraint graph. Here we focus on
edge expansion. Fora graph G = (V, E) and aset U C V of vertices, let 9oU
be the set of all edges in G that are incident with exactly one vertex in U. Call
OcU the boundary of U. The expansion coefficient of G —alternatively, the
isoperimetric number of G—is defined by

@) mm{m'(g](']' L UCV,1<|U|< ”2/}

To provide an intuition why expansion is relevant in limiting the unit propa-
gation, let us derive an upper bound on the number of unit propagations in
terms of the expansion coethicient A(G) of the constraint graph G underlying
a regular XORSAT instance. Our interest is to bound the number of vari-
ables assigned by unit propagation based on the number of decisions and the
expansion coefficient.

In the present context of linear equations with exactly 3 variables each,
unit propagation can be seen as the application of the following rule until
no more variables become determined: letting S C X be the set of variables
whose value has been determined so far, if the instance contains an equation
with 2 variables in S and 1 variable z; € X\ S, then we can insert z; into S.
We denote by S the closure of S with respect to the unit clause rule. At any
stage of DPLL search, the set of variables assigned by unit propagation is the
unit clause rule closure on the current set of decision variables. Recall that
we write n for the number of variables.

Theorem 4.1 I [S| < (n — 2)h(G)/3, then |S| < (3/(2h(G)) + 1/2)|S].

Assuming that 2(G) has a constant nonzero lower bound as the number of
variables n increases, this theorem shows that the number of variables which
are assigned by unit propagation is linearly bounded by the number of cur-
rent decision variables. Thus, assuming that conflicts are infrequent until
a large number of variables are assigned, the theorem shows that many de-
cision variables are required, and thus the DPLL proof will be large. Thus,
hypothetically, the larger the expansion coefficient h(G), the larger the proof.

To motivate our choice of random regular graphs in this light, we first
observe that computing h(G) for a given graph G is NP-hard [42]. However,
h(G) can be bounded for a d-regular graph G in terms of As(G), the second
largest eigenvalue of an adjacency matrix of G, as follows [9, 10, 229]:

%Z(G) < W(G) < V2d(d = 2(G)). (6)

The construction of explicit infinite families of d-regular graphs with a con-
stant nonzero lower bound on A(G) is a nontrivial task; see [192] and the
references therein for an account of known explicit constructions. For exam-
ple, the family of 3-regular constraint graphs underlying the spin glass XOR-
SAT instances in [127] is not expanding in this sense —it can be checked that
the expansion coefficient has an O(1/y/n) upper bound. Fortunately, most

4 OVERVIEWOF MAIN RESULTS



d-regular graphs have good expansion properties [43, 143], so perhaps the
casiest and most versatile way to obtain a d-regular graph with good expan-
sion properties is to select one uniformly at random. For our present purposes
we require a 3-regular graph admitting a fixed bipartition; also with this re-
striction it is possible to prove that most graphs admit a constant nonzero
lower bound on h(G). Experimentation suggests that, in practice, the stan-
dard uniform sampling procedure we use (see Section 4.1 of P1) produces
graphs with Ay (G) close to 2v/2 ~ 2.8284, which is the asymptotic optimum
in terms of (6) for A2(G) on 3-regular graphs [9, 167]. We note that it has also
been rigorously shown that random regular graphs have near-optimal second
eigenvalues [76).

Schemes for Introducing Nonlinearity

A system of linear equations modulo 2 cannot in itself be considered hard;
both the existence and nonexistence of a solution can easily be determined
by Gaussian elimination. However, DPLL itself does not include any special
techniques for equivalence reasoning. As linear substructures often occur
in real-world application domains of DPLL-based solvers (such as hardware
verification), the gains from introducing equivalence reasoning into DPLL
solvers seem evident. Indeed, equivalence reasoning techniques are a re-
cent development in DPLL-based SAT solvers [109, 157, 242]. 'To facilitate
benchmarking of equivalence reasoning techniques, we propose the follow-
ing schemes for introducing nonlinearity into regular XORSAT.

Naive Scheme. Introduce three new variables x, v, z, and insert the literal
into each original clause. Additionally, add 7 clauses that force x to 0
and y, z into unique truth values.

Covering Scheme. Select a minimal set of variables such that every clause
contains at least one selected variable. For each selected variable, z,
introduce a new variable, y, and then substitute each occurrence of
(respectively, x) in the clauses with x A y (respectively, ~(x A y) =
-z V —y). After all the substitutions have been performed, expand any
conjuncts inside disjuncts to obtain a set of clauses.

The naive scheme is intended for benchmarking preprocessors with re-
spect to their ability to detect the CNF representation of a set of linear
equations that is conditional on a single variable z. The covering scheme is
designed for benchmarking dynamic equivalence reasoning techniques that
are applied during search. Ideally, a solver should be able detect and ex-
ploit the underlying linear substructure that is revealed when variables are
assigned truth values during search. Additionally, extensions of these two ba-
sic schemes called k-Nonlinear Covering Scheme, p-Covering Scheme, and
p-Mixed Covering/Naive Scheme, are provided in P1.

We also investigate in P1 the effect of applying the naive and covering
schemes for regular XORSAT on the efficiency of different DPLL-based solvers.
In addition to SatEliteG'T1, zChaff and Satz, we use march_dl [109] and
EqSatz [157], both of which incorporate equivalence reasoning techniques.
The experiments illustrate fundamental differences between the equivalence
reasoning techniques applied in march_dl and EqSatz; for more details, we
refer the reader to P1.
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Further Developments

To keep the instance size small in relation to the number of variables, in
the present study we have considered only instances in which the underly-
ing constraint graph is d-regular with d = 3, resulting in 3-SAT instances.
Publication P1 mentions investigating the hardness of the Regular XORSAT
instances for d > 3, that is, Regular &-XORSAT, as a topic for further study.
After P1 appeared, the empirical difhiculty of Regular d-XORSAT has been
considered by the author in [122]. As for the mentioned more theoretical
topic for further work in P1 in the form of a more rigorous analytical study
of regular XORSAT, in particular in the context of local search: this question
is addressed in [135], confirming the existence of high “potential barriers”
(as mentioned in P1) based on the expansion properties of the underlying
constraint graphs.
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4.2 P2: Structure-Based Branching in Practice

Publication P2 presents an extensive experimental evaluation of the effect
of structure-based branching restrictions on the efficiency of solving struc-
tural SAT instances. The aim is to provide a detailed picture of the ef-
fect of branching restrictions on the inner workings of modern clause learn-
ing solvers, and to understand how important underlying structural prop-
erties of variables are in making decisions in clause learning SAT solvers.
While clause learning SAT solvers typically work on the CNF-level, we de-
rive the branching restrictions from the Boolean circuit structure underlying
the CNF formulas. The motivation for the starting point of this work is that
the set of input variables—when the underlying circuit structure is known—
provides an easily detectable backdoor.

For the experiments we apply BCMinisat, the Boolean circuit front-end
part of the BC'Tools [131] for the successtul clause learning SAT solver Min-
isat [72]. The benchmark set consists of instances from a number of real-life
application domains, for which Boolean circuits offer a natural representa-
tion form: verification of super-scalar processors [239], integer factorization
based on hardware multiplier designs [190], equivalence checking of hard-
ware multipliers, bounded model checking (BMC) for deadlocks in asyn-
chronous parallel systems modeled as labeled transition systems (LT'Ss) [133],
and linear temporal logic (LTL) BMC of finite state systems with a linear en-
coding [152].

We start with an overview of the effects of restricting branching in Min-
isat to inputs variables on the efficiency of the solver. The inputrestricted
branching BCMinisat is denoted by BCMinisati,pyes. After this, we will con-
sider the effects of relaxing the input-restriction.

Effects of Input-Restricted Branching
We start with the following hypothesis.

Hypothesis 1 The set of input variables, being a relatively small strong back-
door set, provides a branching restriction from which clause learning SAT
solvers using the VSIDS heuristic benefit.

The effect of input-restricted branching varies depending on whether un-
satisfiable or satishiable instances are considered. This is shown in the scatter
plots in Figure 6, where we have the running times of the original unre-
stricted branching BCMinisat and the input-restricted branching BCMinisatinputs
on the = and y axis, respectively.

On unsatisfiable instances, the inputrestriction results in a clear efficiency
decrease, with timed out runs shown on the horizontal line. For satisfiable
instances, there seems to be no clear winner. However, BCMinisatinputs does
timeout on several satisfiable instances, while BCMinisat timeouts only once.

We observe that, in contradiction with Hypothesis 1, the clause learning
solver Minisat, with the VSIDS heuristics, shows an evident reduction in
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Figure 6: Comparison of BCMinisat and BCMinisatinputs: running times on
unsatisfiable (left) and satishable (right) instances

efficiency when restricting Minisat to branch only on input variables. Inter-
estingly, we observe that inputrestricted branching Minisat manages fewer
decision per second.

Since the clause learning mechanism and the VSIDS heuristics, which
is tightly bound with the learning mechanism, are key factors in the ef-
ficiency of Minisat, we will look for explanations for the performance of
BCMinisatinputs by considering the effect of the input-restriction on the be-
havior of clause learning and VSIDS. In particular, we consider the following
hypotheses.

Hypothesis 2 By restricting branching to input variables, clause learning be-
comes less effective.

Hypothesis 3 By restricting branching to input variables, the solver is forced
to make heuristically unimportant decisions.

An important aspect in the effectiveness of clause learning is the length
of conflict clauses, that is, the number of literals in the clauses. Since a
conflict clause describes an unsatishable part of the search space, shorter
conflict clauses are intuitively exponentially more effective than longer ones.
In Figure 7 we have a comparison of the average lengths of conflict clauses
in the solved instances. With inputrestricted branching the conflict clauses
are typically longer. This supports Hypothesis 2.

Further explanation for the reduced number of decisions per second and
the increase in the length of conflict clauses is provided by comparing BCMin-
isat and BCMinisati,pues with respect to the number of variables assigned by
unit propagation (Figure 8).

We observe that, on the average, BCMinisatinpus does both more propaga-
tion per decision and ventures more often into conflicts. At the same time,
the conflicts BCMinisatinputs ventures into result in longer (and thus less ef-
fective) conflict clauses using the 1-UIP conflict learning scheme. We also
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gations / decision.

observe an increase in the number of conflicts per decision. This leads us to
conjecture the following. The combination of increased number of conflicts
per decision and propagations per second results in a decrease in the number
of decisions the solver is able to make per second. In other words, the input-
restricted branching solver uses relatively more time on propagation and es-
pecially, due to the increased number on conflicts per decision, on conflict
analysis. Additionally, the increase in time used for conflict analysis does not
pay off, since the resulting conflict clauses are longer and thus relatively in-
effective. It is very interesting to notice that an increase in the number of
propagations does not seem to result in increased solver performance. This is
surprising, since it is common to think that the more the solver can unit prop-
agate, the better. It seems that the effectiveness of clause learning depends
more on the specific value assignments that have been made rather than how
many assignments have been made, and is in support of Hypothesis 3. This
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is very much in contrast with DPLL solvers without clause learning, in which
unit propagation plays an important role in pruning the search space due to
standard backtracking and lack of conflict analysis.

Considering Hypothesis 3 further, we observe that the VSIDS heuristic
does not seem to work as intended with input-restricted branching. The num-
ber of unbranchable variables which have better heuristic values than the
best branchable variable can be high per decision. Additionally, the fraction
of increments on branchable variables from the number of all increments to
heuristic values during search can be in some cases even as low as 1%. Since
the heuristic scores of the variables on which BCMinisatinpus is allowed to
branch are very infrequently updated, the inputrestriction results in the risk
of degenerating VSIDS into a random heuristic.

The evidence supporting Hypotheses 2 and 3 leads one to question how
often the original BCMinisat, without any restriction on which variables to
branch on, actually branches on input variables.

Hypothesis 4 Input variables are seldom decision variables.

However, based on further evidence provided in P2, it seems that the rea-
son for the difference in running times for unrestricted and input-restricted
branching Minisat is not due to unrestricted Minisat making relatively few
decisions on input variables, but rather —in disagreement with Hypothesis 4 —
due to the fact the the unrestricted solver can branch on other relevant vari-
ables in addition to inputs.

Based on the evidence provided this far, we conjecture that, at least with-
out fundamentally modifying conflict learning and branching heuristics, it is
unlikely that input-restricted branching can be successfully incorporated into
clause learning solvers with VSIDS. The evidence against Hypothesis 4 leads
us to conjecture that in order to regain robustness of the solver, the input-
restriction needs to be relaxed by allowing branching on additional variables.

Relaxed Structure-Based Branching Restrictions

The conclusions on the performance degrading effects of input-restricted
branching lead us to the question of how the number of variables on which
the solver is allow to branch correlates with solver performance. Can the ro-
bustness of input-restricted branching be improved while still branching on
a subset of variables? Another aspect is whether structural properties of the
variables on which the solver is allowed to branch affect the performance of
the solver.

To investigate these questions, we apply controlled schemes for allowing
branching additionally on CNI variables other than input variables based on
structural properties of Boolean circuits. The general idea here is to allow—
in addition to input variables—branching consistently on the best p% of un-
constrained non-input variables according to criteria that are based on dif-
ferent aspects of the underlying circuit structure. Input variables are always
included for assuring that Minisat remains complete under the restrictions;
that is, we will relax the input-restriction.

We first investigate the following hypothesis.

Hypothesis 5 The more relaxed the branching restriction is, the better the
restriction works with the solver.
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The first relaxation we consider is the random restriction:

Random restriction (denoted by rnd(p)): In addition to input variables, bran-
ching is allowed on p% of randomly chosen unconstrained non-input
variables.

Intuitively, this results in allowing branching evenly across the underlying
circuit structure. The random restriction will also serve as a reference point
for the other structural restrictions we consider.

We ran BCMinisat with the random restriction with the percentage val-
ues p = 10,20, 40, 60, 80. The results as the cumulative number of solved
instances, along with inputrestricted and unrestricted branching Minisat,
are shown in Figure 9. We observe that, in-line with Hypothesis 5, allowing
branching on non-input variables in addition to inputs, the robustness of the
branching-restricted Minisat increases gradually.

Random restriction
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Figure 9: Cumulative number of solved instances for the random branching
restriction

We have now seen that the solver benefits from relaxing the input-restriction.
However, the random restriction does not take into account structural prop-
erties of the selected variables. Following the intuition behind heuristics
found in implementations of DPLL without clause learning—based on lit-
eral counting [112] for example —we now turn our attention to the following
question. In the context of relaxing the input-restriction, how much do struc-
tural properties of the variables on which the solver is additionally allowed to
branch affect the relative performance of the solver? Our hypothesis is the
following.

Hypothesis 6 Structural properties, based on which branching is restricted,
play an important role in the efficiency of the solver.

We consider various structure-based relaxed branching restrictions in P2.
Here we discuss two of them: fanout-based restriction fan(p) and distance-
based maxmin-dist(p). For the others (minmax-dist(p), flow-based restriction
flow(p), and degree-based restriction deg(p)) the reader is referred to P2.

For a gate g in a constrained circuit C* the fanout fanout(g) is the number
of gates whose child g or ¢’ := NOT(g) is. Additionally, let A2 (g) denote

inputs
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the length of the shortest path under the child relation of C* from g to any
input gate. Here NOTs do not contribute to the length of the paths, since they
are not translated. Similarly, AL® | (g) stands for the length of the shortest
path under the parent relation of C* from g to any output gate.

Fanout-based restriction fan(p): Here gates are ranked according to the val-
ues fanout(g), with the criterion that gates with large values are pre-
ferred. 'This is a generalization of the idea of restricting branching to
gates g with fanout(g) > 1 as suggested in the context of SAT-based
ATPG [219].

Distance-based restrictions: We also consider restricting branching based
on the distances of gates from inputs and outputs. In maxmin-dist(p)
gates are ranked according to the values

Hlin{AiI;l:)ﬁts (g) ) Ag:}trinuts (q) }7

with the criterion that gates with large values are preferred. Here the
idea is to concentrate branching on variables that are far from both
input and output variables.

In selecting the p% of variables according to a particular criterion, ties are
broken randomly so that exactly p% of all gates are selected.

We ran BCMinisat with all the considered restrictions and values p =
10, 20,40, 60, 80. The results reveal differences between the effectiveness of
different restrictions, as exemplified in Figure 10. It is interesting to see that
for the fanout and degree-based restrictions only 20% additional branching
variables are enough for the restrictions to reach a level of robustness very
close to unrestricted branching Minisat. For the flow-based restriction, this
holds from 40% on. The distance-based restrictions result in very poor per-
formance, even compared to the random restriction. In accordance with
Hypothesis 6, the choice of the structural criterion does make a difference.
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Figure 10: Cumulative number of solved instances for the structural branch-
ing restrictions
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We look for possible explanations for the fact that the structural property
based on which branching is restricted affects the efficiency of the solver. We
compare the fanout restriction (very close to the original unrestricted solver
in performance), the max-min distance restriction (the worst behaving re-
striction), and also take the random restriction as a reference. The relative
number of branchable variables occurring in the conflict clauses when using
these branching restriction criteria are shown in Figures 11 for p = 20. We
observe a visible difference in the relative number of branchable variables oc-
curring in the conflict clauses. Compared to the other two restrictions, with
the fanout restriction the conflict learning mechanism of Minisat produces
conflict clauses consisting of a high number of variables on which the solver
is allowed to branch.

Branchable conflict literals / conflict literals ___ Branchable conflict literals / conflict literals
_ P <] ;
g 097 T o9t
5 8
< 0.8 1 5 087
o L 0 L
§ 0.7 3 0.7
5 06 1 g 06
[ c
= 05+ 4 8 05+
15 »
S 04t 1 O 04}
c c
g 03 1 S 03y
0.2 S , , , , , , § 0.2 i , , , , , ,
0.20.304050.60.70.809 1 = 0.20.304050.60.70.809 1

Fanout restriction (20%) Fanout restriction (20%)

Figure 11: Comparison of fanout, max-min distance, and random restrictions
for p = 20: relative number of branchable variables occurring in the conflict
clauses

Summary
Concerning Hypotheses 1-4, we make the following conclusions based on
the experiments on input-restricted branching.

o Although the set of input variables provides a relatively small strong
backdoor set, the clause learning SAT solver Minisat, using the VSIDS
heuristic, does not benefit from the restriction as such. The perfor-
mance degrades especially on unsatisfiable instances.

o The effectiveness of clause learning degrades. While the input-restricted
branching solver ventures into more conflicts per decision, conflict
clauses become longer and more time is used on conflict analysis.

e 'The solver runs into more conflicts and propagates more per decision.
However, this does not help in making the search more efficient, since
at the same time the conflict clauses become longer and thus less ef-
fective.

e 'The solver is often forced to branch on variables that are unimportant
with respect to heuristic scores of VSIDS.
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The main conclusions on relaxed branching restrictions are the following.

o Compared to strict branching restrictions, such as the input-restriction,
more relaxed branching restrictions allow the solver to better apply its
clause learning and branching heuristics for making search more effi-
cient.

o The choice of the structural criterion based on which branching is re-
stricted plays an important role in the efficiency of the solver; some
structural criteria, such as fanout-based, seem to allow rather strict re-
strictions without loss in efficiency, while other criteria can perform
even worse than randomly restricting branching.

We conjecture that the number of variables on which the solver is allowed
to branch in the conflict clauses generated during search is a determining
factor for the efficiency of the branchingrestricted solver. Thus, we suggest
that when restricting branching in a clause learning solver, it is important
to ensure that the conflict clauses generated during search contain a high
number of variables on which the solver is allowed to branch. A step into this
direction is taken in a recent work [173] which studies this possibility in the
special case of At-Most-One cardinality constraints.
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4.3 P3and P4: Proof Complexity Theoretic Limitations of Structure-Based Branch-
ing

Considering restricting branching in DPLL, a natural question to ask is whether
the power of the underlying inference systems of DPLL-based solvers is af-
fected by the restriction. By forcing inputrestricted branching on DPLL
without clause learning, this question is answered in [125]: input-restricted
branching DPLL cannot polynomially simulate DPLL. The question for
DPLL with clause learning is left open. Complementing the experimental
results of P2 on the effects of static branching restrictions on clause learning
SAT solving, publication P3 addresses the proof complexity theoretic power
of DPLL-based clause learning SAT solvers with input-restricted branching.
For the case of applying dynamic branching restrictions, the proof complexity
theoretic effect on DPLL without clause learning studied in [125] considered
selected dynamic restrictions. Extending this study, publication P4 addresses
the effect of dynamic “top-down” variants of branching on the proof com-
plexity theoretic power of DPLL-based solvers, both with and without clause
learning.

Input-Restricted Branching CL
In the following, we denote input-restricted branching DPLL, CL, and CL-
by DPLLinputs, CLinputs, and CL—inputs, respectively.

In P3 we show that CLj,pus and the basic DPLL without clause learning
are polynomially incomparable. Hence, CLiypus cannot simulate CL. This
implies that all implementations of clause learning DPLL, even with opti-
mal heuristics, have the potential of suffering a notable efficiency decrease if
branching is restricted to input variables.

The main results of P3 are summarized in Figure 12. In the figure, an
arrow without a slash from system S to S” means that S can polynomially
simulate S’, and with a slash that S cannot polynomially simulate S’. Those
arrow labelled with a reference are known results, and the arrows with the
symbol * are due to trivial subsumption. Disregarding simulation resulting
from transitivity, the missing arrows represent open questions.

In more detail, the results in P3 state that even with unlimited restarts
and the ability to create conflicts at will, CLiyputs cannot simulate the basic
DPLL (which does not apply clause learning). This is surprising, since the
unrestricted version of this variant of CL can efficiently simulate general res-
olution [33], being thus very powerful compared to DPLL. On the other
hand, DPLL cannot simulate CLj,pues which has no restarts.

The reason for why DPLL cannot polynomially simulate CLiypyes follows
easily by using any infinite family {F},} of CNF formulas witnessing the fact
that DPLL cannot polynomially simulate CL [33]. In more detail, define the
family of Boolean circuits {circuit(F) | F € {F,}}. For such a family of
circuits, CLijnputs and CL can branch effectively on the same gates, namely
those corresponding to the variables occurring in each F,,.

A more intricate construction is needed for achieving a witness for the
main result that CL—,pus cannot polynomially simulate DPLL. One key con-
cept in applied in the proof construction is redundant gates in constrained
Boolean circuits.
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Figure 12: A refined relative efficiency hierarchy for original input-restricted
branching variations of DPLL and CL.

Definition 4.1 A gate in a constrained Boolean circuit C* is redundant if it
is unconstrained and not a descendant of any constrained gate.

Considering redundant gates, we prove the following lemma in P3.

Lemma 4.1 Let C® be an arbitrary constrained Boolean circuit. Consider-
ing CL—~nputs on input enf(C*), redundant gates do not occur in any conflict
graph at any stage of CL—jnputs. This holds whether or not restarts are allowed.

Intuitively, this is because redundant gates can only have a value due to
unit propagation “upwards” (from child to parent) on the circuit structure in
Cl~inputs; as such gates, and their parents, are not constrained by definition,
they cannot cause a conflict or be a part of a unit propagation chain respon-
sible for a conflict. As a consequence, redundant gates can never appear in
conflict clauses derived by CL~jnputs-

For constructing an infinite family of Boolean circuits which serves as a
witness for the fact that CL—pus cannot polynomially simulate DPLL, we
apply known results on the resolution complexity of a well-known proposi-
tional encoding PHP”*" of the pigeon-hole principle. Namely, it is known
that there is no polynomial length RES proof of PHP”™* [107]. However,
Cook [59] gives a way of introducing a polynomial number of clauses which
can be interpreted as a redundant circuit structure (EXT,,, #) (without any
constrained gates) to circuit(PHP”*!) so that, contrarily to circuit(PHP™ ™),
the extended circuit

circuit(PHP 1) U (EXT,,, 0)

yields a polynomial length proof 7 in RES. While this does not guarantee a
polynomial length proof in T-RES, we add additional structure E(r) to the
extended circuit EXT,,: we introduce for each clause C; in the RES proof
7 a corresponding OR-gate representing C;. Again, these additional OR gates
are redundant. Through this trick, we end up with the final construct,

EPHP! := circuit(PHP™ ') U (EXT,,, 0) U (E(r), 0),

as illustrated in Figure 13.

By adding these two redundant circuit structures to circuit(PHP?), we
assure that there is a simple polynomial length DPLL proof of EPHP"
Intuitively this is because E(m) allows DPLL to “verify” the resolution proof of
PHP™ ! extended with EXT,, step-by-step. However, there is no polynomial
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Figure 13: High-level view of EPHP!'*'.

length proof of EPHP ™ in CL—j,pus. This is because CL—jppyts cannot make
use of the redundant gates of EXT,, and E(7). This results in the fact that
any Cl—j,puts-proof of EPHPZ+1 will effectively contain a proof of PHPZ“.
Since there is no polynomial length RES proof of PHP”! [107], and RES
can polynomially simulate CL- [33], all CL—j,pus-proof of EPHP? ™ must be
of superpolynomial length.

The Cook’s extension (a variant of EXT,,) presented in [59] is motivated
by investigations into the power of the Extended Resolution proof system
defined by Tseitin [233]. Extended Resolution is the result of adding an
extension rule to RES, which allows for iteratively adding definitions of the
form © < [} Al (or, as a set of clauses, {{z, —ly, —lo}, {—x, 1}, {—x,l2}})
to the CNF formula, where z is a new variable and [, [, are literals in the
current formula. This is equivalent to adding a redundant binary AND gate
of the literals [y, [5 to a constrained Boolean circuit. Notably, it is known that
Extended Resolution is among the most powerful proof systems, and can
simulate, for example, Frege systems (see [144] for more details).

Considering the EPHP"™! construction, notice that for our purposes,
what is most important is that a short RES-proof 7 exists, not really the actual
details of 7. For understanding the general idea behind the explicit construc-
tion of EPHP™*! it is informative to notice that, instead of the pigeon-hole
problem PHP?*! Cook’s extension EXT,, to it, and the resolution proof =
of their combination, one could use any CNF formula F' that (i) does not
have a polynomial-length resolution proof but (ii) has a polynomial-length
extended resolution proof to prove a result similar to Lemma 3 in P3. That
is, for such formula F', DPLL has a polynomial length proof of

circuit(F) U (EXTF, 0) U (E(7r), 0)

while CL—nputs does not, where EXTp is the polynomial size extension of F
and 7p is a polynomial-length resolution proof of

enf(circuit(F) U (EXTg, 0)).

Top-Down Branching Variants of DPLL and CL

Publication P4 presents a study of the proof complexity theoretic effects of ap-
plying so called “top-down” dynamic branching restrictions in DPLL and CL.
The idea is to apply branching in a top-down fashion as follows: starting from
the constraints imposed on the output gates of the circuit, search for justifica-
tion for the currently assigned values [150, 166]. Additionally, in conjunction
with top-down branching, a modification to the actual style of branching in
DPLL-based algorithms, aiming at eagerly justifying the currently unjustified
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gates [149], is also considered. We refer to this as ATPG-style branching in
P4. Although somewhat misleading, this naming comes from the fact that
in [149], automatic test pattern generation (ATPG) is mentioned as one of
the main application areas of their approach.

As the main result in P4 we present a relative efficiency hierarchy for varia-
tions of circuit-level DPLL (with and without clause learning) resulting from
combinations of branching heuristics and branching styles. The variations
are

(i) DPLL-style top-down restricted (as considered in [125] for basic DPLL
without clause learning),

(ii) DPLL-style justification restricted [150, 166], and
(iii) ATPG-style justification restricted [149] branching DPLL.

As in solver implementations, we assume that, in the above-mentioned vari-
ations of DPLL and CL, unit propagation is applied whenever applicable.

We characterize the variants of top-down branching DPLL and CL through
two dynamic branching restrictions.

Top-down restriction: Branching is allowed on gate g if ¢ has a currently
assigned parent. These variants of DPLL and CL are denoted by DPLLyq
and Clg.

Justification-based restriction: Branching is allowed on gate g if ¢ has a cur-
rently assigned and unjustified parent. These variants of DPLL and CL
are DPLLj and CLy.

As an example of the difference between the top-down and justification based
restrictions, consider an OR-gate g := OR(g1, g2, g3). In the case g is currently
assigned to t, with the top-down restriction we are allowed to branch on the
unassigned children of g. In contrast, with the justification-based restriction,
we are allowed to branch on the unassigned children of g only if none of the
children are currently assigned to t.

The underlying DPLL;}tpg system using ATPG-style branching is a varia-
tion of the justification-based restricted branching DPLL;. The difference
between original DPLL-style branching and ATPG-style branching is illus-
trated in Figure 14 with an OR-gate g := OR(g1, g2, g3). Where original
DPLL-style branching is based on branching on a variable (Figure 14 left),
in ATPG-style branching (Figure 14 right) each branch will have a unique
minimal justification for the currently assigned value of the parent (g is t in
the example).

(9,1)

OV g N

(91,6 (g1,F) (g1,t)  (g2,1) (g3,1)
DPLL-style ATPG-style
branching branching

Figure 14: Styles of branching; OR-gate g := OR(g1, g2, g3)
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Notice that ATPG-style branching is similar to the decomposition rules
applied in Smullyan’s analytic tableaux [222], and, depending on context,
could also be called syntactic branching [94]. On the other hand, DPLL-style
branching could be called binary branching or semantic branching [94].
We also note that the reason for not considering CLjaftpg is that in contrast
to DPLL, when branching in CL by assigning a gate to a specific value, the
opposite value of the gate is not necessarily forced systematically through
backtracking.

The results of P4 are summarized in Figure 15. For example, for DPLL
without clause learning, we establish a strict hierarchy, with the ATPG-style
branching, justification restricted DPLL variant (DPLLjaftpg) being the weak-
est system. Perhaps the most surprising result obtained is that clause learning
DPLL with justification restricted decision heuristics (CL;j¢) cannot even sim-
ulate the top-down restricted variant without clause learning (DPLLyy). Thus,
although the idea of eagerly and locally justifying the values of currently un-
justified constraints is an intuitively appealing one, it can lead to dramatic
losses in the best-case efficiency of a structure-aware SAT solver even when
the powerful search space pruning technique of clause learning is applied.
It is also worth noticing that, considering the variants of CL, the results hold
also in the case the systems are all allowed restarts.

[125]
atpg - ) — - -
DPLLI?E [ DPLL; | DPLLy | DPLL
* *
A A A
Tk T |* 33T | *
Y Y Y
CLJf 4% > CLtd - CL
* *

Figure 15: Refined relative efficiency hierarchy for original top-down branch-
ing variations of DPLL and CL.

For some intuition behind the proofs, in order to separate DPLLj and
DPLL:™®, for example, we use a known result on the efficiency of clausal
tableaux (CT), a tableau proof system for CNF formulas. Namely, it is
known that CT cannot polynomially simulate T-RES [18]. As is shown in
P4, DPLLE™ and CT are in fact polynomially equivalent on CNF formu-
las, and, on the other hand, DPLLj is polynomially equivalent to DPLL and
hence to T-RES on CNF formulas, it follows that DPLLE™ cannot polyno-
mially simulate DPLLj¢ follows.

The circuit construction applied in showing that DPLLj cannot polyno-
mially simulate DPLLyy is based on the EPHP” ! family of circuits used in
P3. The circuit(PHP?*") and EXT,, remain intact. However, in order to
assure that DPLLyy can (in a top-down fashion) “verify” the polynomial RES
proof as in the case of DPLL for EPHP"*! in P3, we modify the E(7) part
of EPHP!™. The modified version P(r) of E() is illustrated in Figure 16.
The idea here is to introduce gates of the form h; := AND(gc;, hi+1) in addi-
tion to the gates g¢, in E() representing the ith clause C; in 7.

While we refer to P4 for the particulars, the intuitive idea is that DPLLy
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(downto 1)

hm—3 @ '

Figure 16: The P(7) circuit construct.

can (in a top-down fashion) “verify” the polynomial RES proof for EPHP
embedded in the P(7) part of the circuit

circuit(PHP 1) U (EXT,, 0) U (P(x), 0).

Since our aim is to show that DPLLj cannot polynomially simulate DPLLyq,
we additionally introduce a simple constrained circuit structure on top of the
output gates of P(7) and circuit(PHP?*"). The final resulting circuits con-
struct, PPHP? ! is illustrated in Figure 17. Now, DPLL4 can (in a top-down
fashion) “verify” the polynomial RES proof for EPHP” ! embedded in the
P(r) part of PPHP”*!. However, DPLL;¢ can never branch on the gates in
P(m) which would be necessary for achieving a polynomial-length proof for
PPHP!*!. Again, the intuition here is that any DPLL;¢-proof of PPHP?*
must contain a (necessarily superpolynomial-length) proof of PHP"*!. In
fact, even CLj¢ has not polynomial-length proofs for the circuit construction
based on EPHP!*!, which gives us the result that even CLj¢ cannot polyno-
mially simulate DPLLg.

Figure 17: High-level view of PPHP*!.

For further work, an interesting question left open in P4 (recall Figure 15),
is whether CL¢y can simulate CL (or DPLL).
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4.4 P5: Extended ASP Tableaux and Redundancy in ASP

Although ASP solvers for normal logic programs have been available for
many years [220, 17, 153, 82], the deduction rules applied in such solvers
have only recently been formally defined as a proof system, which we will
here refer to as ASP Tableaux or ASP-T [84]. ASP-T is a sound and com-
plete tableau proof system for normal logic programs, that is, there is a com-
plete non-contradictory ASP tableau for a NLP IT if and only if IT is satisfi-
able [84]. As argumented in [84], current ASP solver implementations are
tightly related to ASP-T, with the intuition that the branching (cut) rule is
made deterministic with decision heuristics, while the deduction rules de-
scribe the propagation mechanism in ASP solvers. This is very similar to
DPLL-based SAT solvers.

As typical for tableau-based proof systems, an ASP tableau for a NLP II is
a binary tree of the following structure. The root of the tableau consists of
the rules IT and the entry F_L for capturing that L is always false. The non-
root nodes of the tableau are single entries of the form Ta or Fa, where a €
atoms(IT)Ubody(IT). As typical for tableau methods, entries are generated by
extending a branch (a path from the root to a leaf node) by applying one of
the rules in Figure 1 in P5; if the prerequisites of a rule hold in a branch, the
branch can be extended with the entries specified by the rule. However, we
will not discuss the various deduction rules in ASP-T here in detail. While
we refer the reader to P5 for details, the following example aims at giving an
intuitive idea of ASP-T.

Example 4.1 An ASP-T proof (a closed ASP-T tableau) for the program
II={a«b ~a b c c— ~b}

is shown in Figure 18, with the rule applied for deducing each entry given
in parentheses. For example, the entry Fa has been deduced from a «—
b, ~a in II and the entry T{b, ~a} in the left branch by applying the rule
(g) Backward ‘True Body. On the other hand, T{b, ~a} has been deduced
from a < b, ~a inII and the entry Ta in the left branch by applying the rule
(i§), that is, rule (i) by the fact that the condition § “Backward True Atom”
is fulfilled (in 11, the only body with atom a in the head is {b, ~a}). The
tableau in Figure 18 has two closed (contradictory) branches:

(MU{F_L}, Ta, T{b,~a},Fa) and

(MU{FL} Fa,F{b,~a}, Fb, T{~b}, Tc, T{c}, Th).

As discussed in detail in P5, ASP-T and T-RES are in fact polynomially
equivalent under the translations comp and nlp. Although the similarity of
unit propagation in DPLL and propagation in ASP solvers is discussed in [90,
83], we stress the direct connection between ASP-T and T-RES. In detalil,
T-RES and ASP-T are equivalent in the sense that (i) given an arbitrary tight
NLP II, the minimum-length proofs for comp(II) in T-RES are polynomially
bounded with respect to the minimum-length proofs for II in ASP-T, and
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b—c
¢ ~b
Fl
Ta Fa
T{b,~a} (if) F{b,~a} (e)
Fa (g) Fb (c)
X T{~b} (b)
Tec (d)
T{c}  (b)
Tb (d)
X

Figure 18: An ASP-T proof for Il = {a « b, ~a. b < c. ¢ «— ~b}.

(ii) given an arbitrary CNF formula F, the minimum-length proofs for nlp(F")
in ASP-T are polynomially bounded with respect to the minimum-length
proofs for I in T-RES.

Motivated by the very powerful extended resolution proof system [233]
for CNF SAT, in publication P5 we introduce an extension rule to ASP-T,
which results in Extended ASP ‘lableaux (E-ASP-T), an extended tableau
proof system for ASP.

The idea of the extension rule for ASP-T is that one can define names for
conjunctions of default literals.

Definition 4.2 Given a normal logic program II and two literals l;,ls €
dlits(IT), the (elementary) extension rule for ASP-T adds the rule p «— Iy, 1>
to II, where p & atoms(IT) U { L}.

It is essential that p is a new atom for preserving satishability. After an appli-
cation of the extension rule one considers program II" = ITU {p « 1, >}
instead of the original program II. Notice that atoms(II') = atoms(II) U{p}.
Thus when the extension rule is applied several times, the atoms introduced
in previous applications of the rule can be used in defining further new atoms
(see Example 4.2 below).

When convenient, one can apply a generalization of the elementary ex-
tension. By allowing one to introduce multiple bodies for p, the general
extension rule adds a set of rules

U{p — ity lig | p & atoms(II) U{L} and [, € dlits(II)}

into TI. Notice that equivalent constructs can be introduced with the ele-
mentary rule. For example, bodies with more than two literals can be de-
composed with balanced parentheses using additional new atoms.

Example 4.2 Consider a normal logic program II such that atoms(II) =
{a,b}. We apply the general extension rule and add a definition for the

disjunction of atoms a and b, resulting in the program

NMuU{c—a.c—b}.
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An equivalent construct can be introduced by applying the elementary exten-
sion rule twice: first add the rule d < ~a, ~b, and then the rule ¢ « ~d, ~d.

An E-ASP-T proof of program II is an ASP-T proof T of II U E, where
E is a set of extending (program) rules generated with the extension rule
in E-ASP-T. 'The length of an E-ASP-T proof is the length of T plus the
number of program rules in E.

A key point is that applications of the extension rule do not affect the
existence of stable models. In other words, E-ASP-T is sound and complete,
as detailed in P5.

Extended ASP Tableaux and Extended Resolution
We relate E-ASP-T with E-RES in P5 by showing in detail that these two
proof systems are polynomially equivalent under the translations comp and

nlp.

Theorem 4.2 E-RES and E-ASP-T are polynomially equivalent proof sys-
tems in the sense that

(i) considering tight normal logic programs, E-RES under the translation
comp polynomially simulates E-ASP-T, and

(ii) considering CNF formulas, E-ASP-T under the translation nlp polyno-
mially simulates E-RES.

The proof details are rather similar to the key points used in P3 when arguing
why DPLL has short proofs for the EPHP”™ family of CNF formulas. In
other words, one can think of the proof of part (ii) of Theorem 4.2 as an
interpretation of the main proof constructs applied in P3 in the context of

ASP.

The Extension Rule and Well-Founded Deduction

An interesting question regarding the possible gains of applying the extension
rule for ASP-T with the ASP tableau rules is whether the additional exten-
sion rule allows one to simulate well-founded deduction (See ASP-T rules
(h1),(h1),(it), and (if) in P5) with the other deduction rules (See ASP-T
rules (b)—(g),(h§),(i§) in P5; for tight NLPs, these rules are equivalent to unit
propagation on the clausal completion of a program). We show that this is
not the case; the extension rule does not allow us to simulate reasoning re-
lated to unfounded sets and loop formulas. In more detail, by removing rules
(ht),(hi),(it), and (if) from E-ASP-T, the resulting tableau method becomes
incomplete for NLPs.

Theorem 4.3 The tableau rules (a)—(g), (h§), and (i§) in addition to the ex-
tension rule do not result in a complete proof system for normal logic pro-
grams under stable model semantics.

Experiments

In addition to the theoretical results, in P5 we experimentally evaluate how
well current state-of-the-art ASP solvers can make use of the additional struc-
ture introduced to programs using the extension rule. For the experiments,
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we ran the solvers smodels [220] (a widely used lookahead solver), clasp [82]
(with many techniques—including conflict learning—adopted from DPLL-
based SAT solvers), and cmodels [89] (a SAT-based ASP solver running the
clause learning SAT solver zChatf as the back-end).

We compare the number of decisions and running times of each of the
solvers on the NLP representation of PHP" ! and EPHP” ™. Additionally, a
family CPHP?*" of NLPs is considered, for which PHP!*! ¢ CPHP!*! C
EPHP”*! holds; however, we refer the reader to Section 6 of P5 for details
on CPHP"*!,

While the number of decisions for the conflict-learning solvers clasp and
cmodels is somewhat reduced by the extensions, the solvers do not seem to be
able to reproduce the polynomial size proofs that exist for EPHP?*!, and we
do not observe a dramatic change in the running times compared to PHP”*
With a timeout of 2 hours, smodels gives no answer for n = 12 on PHP”*.
However, on EPHP™™ smodels returns without any branching, which is
due to the fact that smodels, using lookahead, can find the short proof which
“verifies” the polynomial resolution proof encoded in EPHP™*!. For the
detailed results, we refer the reader to Table 1 of P5.

In the second experiment, we study the effect of having a modest number
of redundant rules on the behavior of ASP solvers. For this we apply the
procedure ADDRANDOMREDUNDANCY (1, 7, p) shown in Algorithm 2.

Algorithm 2 ADDRANDOMREDUNDANCY (II, n, p)

1. Fori = 1to [{55n]:

la. Randomly select I, 15 € dlits(IT) such that iy # I.
Ib. T :=T U {r; < 1,1}, where r; & atoms(IT) U {_L}.

2. Return IT

Given a program II, the procedure iteratively adds rules of the form r; < Iy, [
to II, where Iy, Iy are random default literals currently in the program and r;
is a new atom. The number of introduced rules is p% of the integer n.

The median, minimum, and maximum number of decisions and run-
ning times for the solvers on ADDRANDOMREDUNDANCY (PHP” n, p)
are shown in Figure 19 for the percentages p = 50,100 .. . ., 450 over 15 trials
for each value of p. The mean number of decisions (left) and running times
(right) on the original PHP"*! are presented by the horizontal lines. Notice
that the number of added atoms and rules is linear to n, which is negligi-
ble to the number of atoms (in the order of n2) and rules (n?) in PHP?*".
For similar running times, the number of holes n is 10 for clasp and smodels
and 11 for cmodels. The results are interesting: each of the solvers seems
to react individually to the added redundancy. For cmodels (b), only a few
added redundant rules are enough to worsen its behavior. For smodels (c),
the number of decisions decreases linearly with the number of added rules.
However, the running times grow fast at the same time, most likely due to
smodels’ lookahead.

The most interesting effect is seen for clasp; clasp benefits from the added
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rules with respect to the number of decisions, while the running times stay
similar on the average, contrarily to the other solvers. In addition to this ro-
bustness against redundancy, we believe that this shows promise for further
exploiting redundancy added in a controlled way during search; the added
rules give new possibilities to branch on definitions which were not available
in the original program. However, for benefiting from redundancy with re-
spect to running times, optimized lightweight propagation mechanisms are

essential.
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Figure 19: Effects of adding randomly generated redundant rules to PHP?
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4.5 P6 and P7: Structure-Based Techniques for Stochastic Local Search

In P6 and P7 a novel non-clausal SLS method for structured real-world SAT
instances is developed. The aim is to bring structure-exploiting techniques
into local search for SAT in order to lift the performance of local search
SAT solving especially on structured real-world problem domains. We em-
ploy Boolean circuits as the representation of general propositional formulas.
Motivated by justification frontier heuristics (see [150] for example) applied
in complete circuit-level SAT solvers in electronic design automation, our
search technique looks for a justification for the Boolean circuit instead of
focusing on finding a satisfying truth assignment. The idea is to be able to
drive local search more top-down in the overall structure of the circuit rather
than in a bottom-up mode as is done in local search techniques focusing on
input variables. This is done by guiding the search using justification fron-
tiers that enable exploiting observability don't cares (see [204] for example),
drive the search to relevant parts of the circuit, and offer early stopping crite-
ria which allow to end the search when the circuit is de facto satishable even

if no concrete satisfying truth assignment has been found.

BC SLS

The BC SLS framework is described as Algorithm 3. Given a constrained
Boolean circuit C*, the algorithm performs structure-based local search over
the assignment space of all the gates in C (inner loop on lines 3-16). As
typical, the noise parameter p € [0, 1] controls the probability of making
non-greedy moves (with p = 0 only greedy moves are made). We also in-
troduce an additional parameter ¢ € [0, 1] which leads to a probabilistically
approximately complete (PAC) generalization of BC SLS. We note that this
general BC SLS is the version presented in P7, having an additional random
choice in the non-greedy move controlled by ¢. The version described in P6

results from fixing ¢ = 0.

For each of the MAXTRIES (C*) runs, MAXMOVES (C*) moves are made.
As the stopping criterion we use the condition that the justification frontier
jfront(C*, ) is empty. As discussed in Section 2.1, if jfront(C*, 7) is empty,
then C” is satishable and a satisfying truth assignment can be computed in
linear-time from 7. Notice that typically this stopping criterion is reached

before all gates are locally justified in the current configuration 7.

Given the current configuration 7, we focus moves on locally justifying
gates in jfront(C*, 7) by randomly picking a gate g from this set. For a gate
¢ and its current value v in 7, the possible greedy moves are induced by the
justifications for (g, v). The idea is to minimize the size of the interest set. In
other words, the value of the objective function for a move (justification) § is

cost(7,d) = |interest(C*, )],

where 7" = (7 \ {{g,~w) | (g,w) € 6}) U ¢. In other words, the cost of a
move ¢ is the size of the interest set in the configuration 7" where for the gates
mentioned in 0 we use the values in 0 instead of those in 7. 'The move is then
selected randomly from those justifications ¢ for (g, v) for which cost(7, ¢) is

smallest over all justifications for (g, v).
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Algorithm 3 General BC SLS

Input: constrained Boolean circuit C*, control parameters p, ¢ € [0, 1]
for non-greedy moves
Output: a de facto satisfying assignment for C* or “don’t know”
Explanations:
7: current truth assignment on all gates with 7 2 «
0: next move (a partial assignment)
1: for try := 1 to MAXTRIES(C*) do
2 7 := pick an assighment over all gates inC s.t. 7 O «
3 for move := 1 to MAXMOVES(C%) do
4: if jfront(C*, 7) = () then return 7
5
6
7

Select a random gate g € jfront(C*, 7)
with probability (1 — p) do Jogreedy move
0 := a random justification from those justifications
for (g,v) € 7 that minimize cost(r, -)

8: otherwise %non-greedy move (with probability p)
9: if ¢ is constrained in «

10: 9 := arandom justification for (g, v) € 7

11: else

12: with probability (1 — ¢) do

13: 0 :={{g,~7(9))} %flip the value of g
14: otherwise

15: 0 := arandom justification for (g, v) € T

6 =\ {lg, ) | (g,w) €5} US

17: return “don’t know”

For non-greedy moves (lines 9-15, executed with probability p), the con-
trol parameter ¢ defines the probability of justifying the selected gate g by a
randomly chosen justification from the set of all justifications for the value of
g (this is a non-greedy downward move). With probability (1 — ¢) the non-
greedy move consists of inverting the value of the gate g itself (a non-greedy
upward move). The idea in upward moves is to try to escape from possible
local minima by more radically changing the justification frontier. In the
special case when ¢ is constrained in «, a random downward move is done
with probability 1.

Notice that the size of the interest set gives an upper bound on the num-
ber of gates that still need to be justified (the descendants of the gates in the
frontier). Following this intuition, by applying the objective function of min-
imizing the size of the interest set, the greedy moves drive the search towards
the input gates. Alternatively, one could use the objective of minimizing the
size of the justification frontier since moves are concentrated on gates in the
frontier and since the search is stopped when the frontier is empty. However,
we notice that the size of the interest set is more responsive to quantifying
the changes in the configuration than the size of the justification frontier, as
exemplified in Figure 20. The size of the justification frontier typically drops
rapidly close to zero from its starting value (the y axis is scaled to [0, 1] in the
figure), and after this remains quite stable until a solution is found. This is
very similar to the typical behavior observed for objective functions based on
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the number of unsatisfied clauses in CNF-level SLS methods [214]. In con-
trast, the size of the interest set can vary significantly without visible changes
in the size of the justification frontier.

0.7 i .
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Figure 20: Comparison of dynamics: sizes of interest set and justification
frontier

Comparison with CNF-Level SLS Methods

One of the main advantages of the proposed BC SLS method over CNF-
level local search methods is that BC SLS can exploit observability don't
cares. As an example, consider the circuit in Figure 21, where the gate g; is
constrained to true and the other t and f symbols depict the current configu-

ration 7.
Bl
* g2 @ gs

‘ complex A

subcucult H
)
(5 O

Figure 21: Exploiting don't cares

All the gates, except ge, in the complex subcircuit rooted at the gate g, are
don't cares under 7. Therefore BC SLS can ignore the subcircuit and ter-
minate after flipping the input gate g5 as the justification frontier becomes
empty. On the other hand, assume that we translate the circuit into a CNF
formula by using the Tseitin translation enf (recall Section 2.3). If we apply
a CNF-level SLS algorithm such as WalkSAT on the CNF formula, observ-
ability don’t cares are no longer available in the sense that the algorithm must
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find a total truth assignment that simultaneously satisfies all the clauses orig-
inating from the subcircuit. This can be a very complex task.

We can also analyze how BC SLS behaves on flat CNF input. To do this,
we associate a CNF formula F' = Cy A ... A O}, with a constrained CNF
circuit ccirc(F) = (C, a) as follows. Take an input gate g, for each variable
x occurring in F'. Now

C = {g9c, = OR(g, - q1,) | Ci=(LV...Viy)}U
{9-o :=NOT(g,) | "z € U_,C;}

and the constraints force each “clause gate” g¢, to true, that is, we set o =
{{9c,,t) | 1 <i <k} This is illustrated in Figure 22 for F' = (z1 V —22) A

(mxg V3 V 2y).
t t @
€3
Gaq gzz 913 Gz

Figure 22: A CNF circuit

When BC SLS is run on a CNF circuit, it can only flip input variables.
If input gates were excluded from the set interest(C®, 7) of interesting gates,
then [interest(C*, 7)| would equal to the number of unjustified clause gates
in the configuration 7. Thus the greedy move cost function cost(, -) would
equal to that applied in WalkSAT measuring the number of clauses that are
fixed/broken by a flip. Since input gates are included in interest(C®, 7), the
BC SLS cost function also measures, in CNF terms, the number of variables
occurring in unsatisfied clauses.

Comparison with Non-Clausal Methods

SLS techniques working directly on non-clausal problems closest to our work
include [208, 137, 187]. They are all based on the idea of limiting flipping to
input (independent) variables whereas we allow flipping all gates (subformu-
las) of the problem instance. Moreover, in these approaches the greedy part
of the search is driven by a cost function which is substantially different from
the justification-based cost function that we employ. Sebastiani [208] gener-
alizes the GSAT heuristic to general propositional formulas and defines the
cost function by (implicitly) considering the CNF form cnf(¢) of the general
formula ¢: the cost for a truth assignment is the number of clauses in cnf(¢)
falsified by the assignment. The approaches of Kautz and Selman [137] and
Pham et al. [187] both use a Boolean circuit representation of the problem
and employ a cost function which, given a truth assignment for the input
gates, counts the number of constrained output gates falsified by the assign-
ment. This cost function provides limited guidance to greedy moves in cases
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where there are few constrained output gates or they are far from the input
gates. A worst-case scenario occurs when the Boolean circuit given as in-
put has a single output gate implying that the cost function can only have
the values 0 or 1 for any flip under any configuration. Such a cost function
does not offer much direction for the greedy flips towards a satisfying truth
assignment. The cost function in BC SLS appears to be less sensitive to the
number of output gates or their distance from the input gates. This is because
the search is based on the concept of a justification frontier which is able to
distribute the requirements implied by the constrained output gates deeper
in the circuit.

On Probabilistically Approximate Completeness

We analyze under which conditions BC SLS is PAC (probabilistically ap-
proximately complete) [113]. A CNF-level SLS SAT method S is PAC if,
for any satisfiable CNI SAT instance F' and any initial configuration 7, the
probability that S' eventually finds a satisfying truth assignment for F starting
from 7 is | without using restarts, i.e., the number of allowed flips is set to in-
finity and the number of tries to one. A non-PAC SLS method is essentially
incomplete. Examples of PAC CNF-level SLS methods include GWSAT
(with non-zero random walk probability) and UnitWalk, while GSAT, Walk-
SAT/TABU and Novelty (for arbitrary noise parameter setting) are essentially
incomplete [113, 111]. Here we adapt the definition of PAC to the context
of BC SLS.

Definition 4.3 BC SLS is PAC using fixed parameters p, q if, for any satis-
fiable constrained circuit C* and any initial configuration 7, the probability
that BC SLS eventually finds a de facto satistying assignment for C* starting
from 7 is 1 when setting MAXTRIES (C*) = 1 and MAXMOVES (C*) = oc.

It turns out that for a PAC variant of BC SLS, both upward and downward
non-greedy moves are needed.

Theorem 4.4 The variant of BC SLS where non-greedy downward moves
are allowed with probability ¢, where 0 < ¢ < 1, is PAC for any fixed noise
parameter p > 0.

Interestingly, downward non-greedy moves can be restricted to minimal
justifications without affecting Theorem 4.4. However, if non-greedy moves
are only allowed either (i) upwards or (ii) downwards, then BC SLS becomes
essentially incomplete.

Theorem 4.5 The variant of BC SLS where non-greedy moves are done only
upwards (that is, when ¢ = 0) is essentially incomplete for any fixed noise
parameter p.

Theorem 4.6 The variant of BC SLS where non-greedy moves are done only
downwards (that is, when ¢ = 1) is essentially incomplete for any fixed noise
parameter p.
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Experimental Results Related to P6

In order to evaluate the ideas behind the BC SLS framework in P6, we
implemented a prototype of BC SLS on top of the bc2enf Boolean circuit
simplifier/CNF translator [131]. In this first prototype, the computation of
justification cone is implemented directly by the definition.

As an implementational decision, when making greedy and random moves
justifications are selected from the set of subset minimal justifications for the
gate value; for a true OR-gate and false AND-gate, the value of a single child is
inverted, and for a true OR-gate and false AND-gate the values of all children
are inverted.

As structural benchmarks we use a set of Boolean circuits encoding bound-
ed model checking of asynchronous systems for deadlocks [108]°. Although
rather easy for DPLL-based solvers, these benchmarks are challenging for
typical SLS methods.

For comparing BC SLS with CNF-level SLS methods, we apply exactly
the same Boolean circuit level simplification in beZenf to the circuits as
in our prototype (including, for example, circuit-level propagation that is
equivalent to unit propagation), and then translate the simplified circuit to
CNF with the Tseitin-style translation implemented in beZenf for running
the CNF-level methods.

The experimental results presented in tabular form in P6 compare the
number of moves made by WalkSAT and a straightforward prototype imple-
mentation of BC SLS with ¢ = 0. The noise parameter p for making non-
greedy moves was set to the default value of 50% for both WalkSAT and BC
SLS. Here we will provide another view to these results. A comparison of
the number of moves is shown in Figure 23. For each data point (z,v), =
represents the number of moves made by WalkSAT on the ith best run and

3Available at http: //www.tcs.tkk.fi/“mjj/benchmarks/.
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Figure 23: BC SLS and WalkSAT: Comparison of number of moves

4 OVERVIEW OF MAIN RESULTS 63



64

10 F ]

Z) o %
0 %o 8 @QO
(@] 0% §
m 00 g o@p
1r & 6 ° o o 7]
B8 o 5 & ° o
OO
B 87 F L8 T g 0
6 §° & e g‘gg} oog0 ® & 8% o
3 @%o/ 58 © -8 & o
O 0% S S0 o s 3 EN @
0.1 g S o o o g0 o o o ® 58 B
B o §o58 8 &S00 & 0587 &
- RS 00 SO o 3o
O O BIOWVWWO 6O WOROW®O O O
0 2000 0 00 o oe®m 00 °
G oo oo ® o o o o 3
001 b’ . . . i
0.01 0.1 100

1 10
WalkSat

Figure 24: BC SLS and WalkSAT: Comparison of running times

y the number of moves by BC SLS on the ith best run. The data is gathered
over 21 runs (thatis, ¢ = 1,...,21) without restarts (MAXTRIES(C* = 1))
and with MAXMOVES(C®) = 10? for each run. The horizontal and verti-
cal lines at 5 - 10° represent runs where a satisfying truth assignment was not
found with 10° moves. We notice that, quite generally, BC SLS needs up to
multiple orders of magnitude less moves than WalkSAT.

Compared to moves, it is practically more relevant to compare the run-
ning times of different methods. While such comparison is not provided in
P6, we provide one here (Figure 24). The running times for WalkSAT are
from the fast implementation of the method found in the UBCSAT SLS
solver [232]. 'The running times for BC SLS are from a current implementa-
tion by T" Junttila in which the computation of heuristics (justification front,
cone, interest set) is incremental. The time out was set to 5 minutes, with the
timed out runs on the horizontal and vertical lines. The data points represent
the running times in a similar fashion as in Figure 23 for moves. We notice
that, while WalkSAT and BC SLS seem to be equally competitive on easier
instances, BC SLS shows better scalability as instances get harder. Especially
noticeable is the large number of timed out runs for WalkSAT.

Experiments with Adaptive Noise Strategies for BC SLS

Considering CNF-level SLS methods for SAT, it has been noticed that SLS
performance can vary critically depending on the chosen noise setting [114],
and the optimal noise setting can vary from instance to instance and within
families of similar instances. The same phenomenon is present also in BC
SLS. This observation has led to the development of an adaptive noise mech-
anism for CNF-level SLS in the solver AdaptNovelty+ [114], dismissing the
requirement of a pre-tuned noise parameter. This idea has been successfully
applied in other SLS solvers as well [160]. In P7 we consider adaptive noise

strategies for BC SLS.
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Following the general idea presented in [114], a generic adaptive noise
mechanism for BC SLS is presented as Algorithm 4. Starting from p = 0,

Algorithm 4 Generic Adaptive Noise Mechanism

p: noise (initially p = 0)
adapt_score: score at latest noise change
adapt_step: step of latest noise change
- if score < adapt_score then %% noise decrease
p=p—5-p
adapt_step := step
adapt_score := score
else %% noise increase
if (step — adapt_step) > WAITINGPERIOD() then
p=p+o-(1-p)
adapt_step := step
adapt_score := score

DA e A A A > o

the noise setting is tuned during search based on the development of the ob-
jective function value. Every time the objective function value is improved,
noise is decreased according to line 2. If no improvement in the objective
function value has been observed during the last WAITINGPERIOD() steps,
the noise is increased according to line 7, where ¢ € ]0, 1] controls the rel-
ative amount of noise increase. Fach time the noise setting is changed, the
current objective function value is then stored for the next comparison.

Hoos [114] suggests, reporting generally good performance, to use ¢ = +
and the static function 6 - C' for WAITINGPERIOD(), where 6 = 1 is a con-
stant and C' denotes the number of clauses in the CNF instance at hand.
These parameter values have been applied also in other CNF-level SLS
solvers [160].

For BC SLS, we fix ¢ accordingly to 1. In other words, we focus on in-
vestigating the effect of applying different waiting periods for noise increases
in the context of BC SLS. As the first step, in P7 we investigate using as
WAITINGPERIOD() a static linear function defined by the number of un-
constrained gates multiplied by a constant 6. In fact, opposed to reported
experience with CNF-level SLS [114], it turns out that, for BC SLS, the
value 6 = £ is too large: by decreasing 6, we can increase the performance of
BC SLS. As shown in P7, by decreasing 6 to 5; we witness an evident overall
gain in performance against @ = 1, and again by decreasing ¢ from 3; to
5. However, we noticed that changing the overall scheme in the original
adaptive noise mechanism leads to even better performance for BC SLS. In
the novel scheme that we call rapidly increasing, when the waiting period is
exceeded, the noise level is increased after each step until we see the first
one-step improvement in the objective function. This can be implemented
by removing line 8§ in Algorithm 4.

While the reader is referred to P7 for more detailed experimental results
on variations of adaptive noise for BC SLS, we will here provide a comparison
of the running times of AdaptNovelty+ implementation in UBCSAT [232]
and BC SLS with § = g using the rapidly increasing noise strategy.

The results are encouraging. Again, here we will provide another view
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to these results, complementing the results presented in Table 1 in P7. Al-
though making moves is slower in the current implementation of BC SLS
(around 300.000 moves per second on average) than in AdaptNovelty+ (around
2.5 million per second), BC SLS is very much competitive in running times
on these instances (see Figure 20) as less moves are usually needed for find-
ing a solution (as shown in Figure 25).
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Figure 26: Adaptive BC SLS and AdaptNovelty+: Comparison of running
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Dynamic Waiting Periods

With experimental evidence provided in P7, we notice that by employing
the adaptive noise mechanism based on static waiting periods, we may have
only changed the problem of finding the optimal static noise level parameter
p into the problem of finding an instance-specific optimal value for 6. This
motivates us to consider, opposed to a static waiting period controlled by the
addition parameter 0, dynamic waiting periods based on the state of search,
with the possibility of dismissing the otherwise required constant 6.

We consider in P7 two dynamic alternatives for adjusting the waiting pe-
riod: WAITINGPERIOD() = jfront(C*, 7) (the size of the current justifi-
cation frontier), and WAITINGPERIOD () = interest(C®, 7) (the size of the
current interest set). The intuition behind using the size of the justification
frontier is that, since the gate at each step is selected from the justification
frontier, the size of the frontier gives us an estimate on the number of possi-
ble greedy moves in order to improve the objective function value before in-
creasing the possibility of non-greedy moves (increasing noise). On the other
hand, the size of the interest set is precisely the objective function value. In-
tuitively, the greater the objective function value is, the farther we are from a
solution, and thus more effort is allowed on finding a good greedy move.

While we refer to P7 for details, interestingly enough these dynamic wait-
ing periods result in comparable performance as with the small static waiting
period of # = ¢ on the considered set of BMC Boolean circuit benchmarks.
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This work aims at contributing to the understanding of the relationship of
structural aspects of real-world SAT instances and the effectiveness of search-
based SAT solving techniques for such problems.

A major contribution of this work addresses the effect of structure-based
branching heuristics on the efficiency of typical complete SAT solver tech-
niques based on DPLL and clause learning. This topic is well-motivated by
the fact that, while techniques such as novel decision heuristics and clause
learning have been the focus of much attention, the structural properties un-
derlying CNF encodings of real-world problems have not been extensively
studied from the view point of branching restrictions. Although branching
plays a key role in search for satishability, there still is no general consensus
on what type of structural properties (if any) reflect variables with high im-
portance with respect to efficiency of search, and how such knowledge could
be exploited in making SAT solvers more robust.

With propositional proof complexity as the framework, we show in P3 that
when branching is statically restricted to input variables in clause learning
DPLL, the resulting underlying proof system weakens considerably; input-
restricted branching clause learning DPLL and basic DPLL are polynomi-
ally incomparable. This holds even when input-restricted branching clause
learning DPLL is allowed unlimited restarts and the ability to branch on vari-
ables with already assigned values. This also implies that all implementations
of clause learning DPLL, even with optimal heuristics, have the potential of
suffering a notable efficiency decrease when input-restricted branching is ap-
plied.

The experimental results of P2 confirm that, in general, input-restricted
branching can cause a notable loss of robustness in a clause learning SAT
solver. For example, inputrestricted branching results in longer conflict
clauses on the average, which in itself makes clause learning less effective
and can also hinder the overall efficiency of the solver. However, by relaxing
the branching restriction in a systematic fashion, branching can in fact be
restricted quite heavily without making a clause learning solver notably less
efficient. Moreover, the choice of the structural property on which such a
relaxation is based on does make a difference.

In addition to the static branching restriction based on input variables,
in P4 we study the proof complexity theoretical effect of dynamically re-
stricting branching in DPLL and clause learning based on variations of top-
down branching. The result is a relative efficiency hierarchy for variations of
circuit-level DPLL and CL. Perhaps the most surprising result obtained in P4
is that CL using unlimited restarts with justification restricted decision heuris-
tics cannot even simulate the top-down restricted variant of DPLL. Thus, al-
though the idea of eagerly and locally justifying the values of currently unjus-
tified constraints is an intuitively appealing one, it can lead to dramatic losses
in the best-case efficiency of a structure-aware clause learning SAT solver.

In connection with structure-based branching in SAT, the work in P5 in-
troduces the Fxtended ASP Tableaux proof system in the context of answer
set programming. Exploiting known results on the power of the extended
resolution proof system for CNF SAT, the extension rule of Extended ASP
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Tableaux allows for adding redundant structure to ASP instances. Through
the extension rule ASP solvers, which are closely related to DPLL-based SAT
solvers, may branch on the substructures introduced to programs using the
extension rule. A major motivation behind P5 is to continue bridging the
gap between search-based methods for ASP and SAT. In addition to theoret-
ical observations on Extended ASP Tableaux, the effect of adding redundant
structure to ASP instances on the efficiency of ASP solvers is experimentally
studied.

Another aspect of structure-based search techniques for SAT addressed in
this work is the challenge of improving stochastic local search techniques
for structured SAT instances and, in particular, developing new techniques
that exploit variable dependencies in the context of SLS. A novel non-clausal
SLS method, BC SLS, for structured SAT instances is developed in P6, with
the aim of lifting the performance of local search SAT solving especially on
instances stemming from real-world problem domains. Motivated by justifi-
cation frontier based heuristics applied in complete circuit-level SAT solvers
in electronic design automation, the presented SLS method looks for a jus-
tification for the Boolean circuit instead of focusing on finding a satistying
truth assignment. The idea is to be able to drive local search more top-down
in the overall structure of the circuit rather than in a bottom-up mode as is
done in local search techniques focusing on input variables. The justification
frontier based SLS heuristics enables observability don't cares to be exploited
in SLS and offers an early stopping criterion for ending the search.

In P7 variants of BC SLS are analyzed with respect to the PAC property,
highlighting that PAC can be achieved while still keeping the search focused
with the justification frontier based heuristics. Furthermore, adaptive noise
mechanisms aimed specifically for BC SLS are considered and experimented
with. A current implementation of BC SLS can outperform typical CNF-
level SLS methods such as WalkSAT and AdaptNovelty+ in running times
and in the number of moves up to multiple magnitudes of difference on real-
world BMC circuit instances.

As a third point of view to structure in SAT, the work in P1 addresses the
problem of generating hard satishable SAT instances for both DPLL-based
and local search solvers by introducing the regular XORSAT model. Moti-
vated by the good expansion properties of random regular graphs, the model
combines regularity and randomness in the underlying constraint graphs of
the instances in order to generate exceptionally difficult CNF SAT instances.
Techniques for applying XORSAT instances specifically for benchmarking
equivalence reasoning techniques in SAT solvers are also developed.

5.1 Topics for Further Work

We conclude by discussing some possibilities for further work related to the
topic of this thesis.

The experimental results on restricting branching in clause learning SAT
solvers imply that, in general, many branching restrictions based on natural
structural properties of circuit gates do not give notable gains. Can such,
relatively small branching restrictions still be found, for example, by further
analyzing combinations of structural properties? Moreover, if static branch-
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ing restrictions do not increase efficiency on their own, as it scems by the
experimental results in this work, one could investigate more complex, dy-
namic branching restrictions for structural problems; an interesting question
is whether solver efficiency could be increased by developing structure-aware
branching restriction techniques that act dynamically in cooperation with
clause learning, especially for Boolean circuit level SAT solvers such as [230].

Another relevant direction of further study is the possibility of restricting
branching based on the known structure of known/novel CNF encodings of
more general Boolean constraints. A step into this direction is taken in a
recent work [173] which studies this possibility in the special case of At-Most-
One cardinality constraints. Could intelligent domain specific branching
restrictions result in practical gains, for instance, in satishiability modulo the-
ories (SMT) solvers, where the constraint structure is more complicated than
that in the pure SAT-based approaches?

Questions related to a more exact proof complexity theoretic characteriza-
tion of the power of clause learning solvers compared to the results presented
in [33] are still open: what is exactly the relative power of clause learning
DPLL without restarts? Can it polynomially simulate RES without further
relaxations? Within the results achieved in this work, a positive answer to
this question would further clarify, for example, the hierarchy shown in Fig-
ure 12. Related to the power of clause learning and DPLL-based solvers,
additional interesting questions to investigate deal with the effect of applying
additional search techniques, such as polynomial time propagation mech-
anisms other than unit propagation, which may raise the power of clause
learning even beyond resolution. For instance, specialized symmetry exploit-
ing techniques during search [159, 203] intuitively bring the resulting solvers
closer to the power of symmetric resolution [146, 236]; applying formula
caching [30] in DPLL serves as another interesting example.

The question of whether the underlying power of extended resolution,
based on redundancy, could be harnessed in even a limited way for achiev-
ing practical gains in SAT solvers is an intriguing one. 'To the best of our
knowledge, by now extended resolution has been applied in the context of
SAT solving mainly in compactly representing BDD construction [221, 134]
as extended resolution proofs. Would it be possible to harness ideas related to
extended resolution, for example, for creating problem domain specific auto-
mated reformulation techniques for SAT encodings with practical relevance?

Considering structure-based stochastic local search for SAT, there are many
possibilities for further study within and related to the BC SLS method de-
veloped in this work. One aspect is to study the applicability of justification-
based local search solving for logical combinations of more general con-
straints, arising from constraint programming (CP) and SMT, for instance.
Another aspect would be to perform an in-depth study of the applicability of
different structure-based SLS heuristics on instances with different structural
properties. Furthermore, for testing the limits of SLS methods on real-world
problem instances, effective restart strategies for SLS should be investigated.
As a unifying view to the development of more efficient complete and SLS
solvers, the potential of devising robust hybrid methods, incorporating tech-
niques from both DPLL-based and SLS methods, should be studied further.

Taking a general view to constraint satisfaction, the approaches developed
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in the closely related fields of SAT, SMT, ASP, and CP have all particu-
lar advantages when solving real-world problems. A unifying understanding
of what is needed for achieving efficient and robust constraint satisfaction
methods for different structured real-world problem domains remains a ma-
jor challenge. The right level of abstraction in the core language on which
the search for satisfaction is performed —which today varies from high-level
CP languages, where vast numbers of global constraints are available, to the
very low-level language of CNF SAT—plays a key role in enabling the de-
velopment of efficient constraint satisfaction solvers. This motivates further
work in understanding the relationships between these languages, and, in
particular, further investigations into structure-preserving decompositions of
high-level constraint models using low-level primitive constraint types.
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