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Abstract. Sparse regression is the problem of selecting a parsimonious
subset of all available regressors for an efficient prediction of a target
variable. We consider a general setting in which both the target and re-
gressors may be multivariate. The regressors are selected by a forward
selection procedure that extends the Least Angle Regression algorithm.
Instead of the common practice of estimating each target variable in-
dividually, our proposed method chooses sequentially those regressors
that allow, on average, the best predictions of all the target variables.
We illustrate the procedure by an experiment with artificial data. The
method is also applied to the task of selecting relevant pixels from images
in multidimensional scaling of handwritten digits.

1 Introduction

Many practical data analysis tasks, for instance in chemistry [1], involve a need to
predict several target variables using a set of regressors. Various approaches have
been proposed to regression with a multivariate target. The target variables are
often predicted separately using techniques like Ordinary Least Squares (OLS)
or Ridge Regression [2]. An extension to multivariate prediction is the Curds and
Whey procedure [3], which aims to take advantage of the correlational structure
among the target variables. Latent variable models form another class with the
same goal including methods like Reduced Rank, Canonical Correlation, Prin-
cipal Components and Partial Least Squares Regression [4].

Prediction accuracy for novel observations depends on the complexity of the
model. We consider only linear models, where the prediction accuracy is tradi-
tionally controlled by shrinking the regression coefficients toward zero [5, 6]. In
the latent variable approach the data are projected onto a smaller subspace in
which the model is fitted. This helps with the curse of dimensionality but the
prediction still depends on all of the regressors. On the contrary, sparse regres-
sion aims to select a relevant subset of all available regressors. Many automatic
methods exist for the subset search including forward selection, backward elimi-
nation and various combinations of them. Least Angle Regression (LARS) [7] is
a recently introduced algorithm that combines forward selection and shrinkage.

The current research in sparse regression is mainly focused on estimating a
univariate target. We propose a Multiresponse Sparse Regression (MRSR) algo-
rithm, which is an extension of the LARS algorithm. Our method adds those



regressors sequentially to the model, which allow the most accurate predictions
averaged over all the target variables. This allows to assess the average im-
portance of the regressors in the multitarget setting. We illustrate the MRSR
algorithm by artificially generated data and also apply it in a discriminative
projection of images representing handwritten digits.

2 Multiresponse Sparse Regression

Suppose that the targets are denoted by an n × p matrix T = [t 1 · · · tp] and
the regressors are denoted by an n × m matrix X = [x 1 · · · xm]. The MRSR
algorithm adds sequentially active regressors to the model

Y k = XW k (1)

such that the n×p matrix Y k = [yk
1 · · · yk

p] models the targets T appropriately.
The m × p weight matrix W k includes k nonzero rows in the beginning of the
kth step. Each step introduces a new nonzero row and, thus, a new regressor to
the model. In the case p = 1 MRSR coincides with the LARS algorithm. This
makes MRSR rather an extension than an improvement of LARS.

Set k = 0, initialize all elements of Y 0 and W 0 to zero, and normalize both
T and X to zero mean. The columns of T and the columns of X should also
have the same scales, which may differ between the matrices. Define a cumulative
correlation between the jth regressor x j and the current residuals

ck
j = ||(T −Y k)Tx j ||1 =

p∑
i=1

|(t i − yk
i )Tx j |. (2)

The criterion measures the sum of absolute correlations between the residuals
and the regressor over all p target variables in the beginning of the kth step.
Let the maximum cumulative correlation be denoted by ck

max and the group of
regressors that satisfy the maximum by A, or formally

ck
max = max

j
{ck

j }, A = {j | ck
j = ck

max}. (3)

Collect the regressors that belong to A as an n×|A| matrix XA = [· · · x j · · ·]j∈A
and calculate an OLS estimate

Ȳ
k+1 = XA(X T

AXA)−1X T
AT . (4)

Note that the OLS estimate involves k + 1 regressors at the kth step.
Greedy forward selection adds regressors based on (2) and the OLS esti-

mate (4) is used. However, we define a less greedy algorithm by moving from
the MRSR estimate Y k toward the OLS estimate Ȳ

k+1, i.e. in the direction
U k = Ȳ

k+1 −Y k, but we will not reach it. The largest step possible is taken
in the direction of U k until some x j , where j /∈ A, has as large cumulative



correlation with the current residuals as the already added regressors [7]. The
MRSR estimate Y k is updated

Y k+1 = Y k + γk(Ȳ k+1 −Y k). (5)

In order to make the update, we need to calculate the correct step size γk.
The cumulative correlations ck+1

j may be obtained by substituting (5) into (2).

According to (4), we may write X T
A(Ȳ k+1 −Y k) = X T

A(T −Y k). This gives
the cumulative correlations in the next step as a function of γ

ck+1
j (γ) = |1− γ|ck

max for all j ∈ A (6)

ck+1
j (γ) = ||ak

j − γbk
j ||1 for all j /∈ A, (7)

where ak
j = (T −Y k)Tx j and bk

j = (Ȳ k+1 −Y k)Tx j . A new regressor with
index j /∈ A will enter the model when (6) and (7) are equal. This happens if
the step size is taken from the set

Γj =

{
ck
max + sTak

j

ck
max + sTbk

j

}
s∈S,

(8)

where S is the set of all 2p sign vectors of size p× 1, i.e. the elements of s may
be either 1 or −1. The correct choice is the smallest of such positive step sizes
that introduces a new regressor

γk = min{γ | γ ≥ 0 and γ ∈ Γj for some j /∈ A}, (9)

which completes the update rule (5).
The weight matrix, which satisfies (5) and (1) may be updated

W k+1 = (1− γk)W k + γkW̄
k+1

, (10)

where W̄
k+1 is an m× p sparse matrix. Its nonzero rows, which are indexed by

j ∈ A, contain the corresponding rows of the OLS parameters (X T
AXA)−1X T

AT .
The parameters of the selected regressors are shrunk according to (10) and the
rest are kept at zero during the steps k = 0, . . . ,m − 2. The last step coincides
with the OLS parameters. The selection of the final model from m possibilities
is based on prediction accuracy for novel data.

3 Multidimensional Scaling

Multidimensional scaling (MDS) [8] is a collection of techniques for exploratory
data analysis that visualize proximity relations of objects as points in a low-
dimensional Euclidean feature space. Proximities are represented as pairwise
dissimilarity values δij . We concentrate on the Sammon criterion [9]

E(Y ) =
n∑

i=1

∑
j>i

αij(||ŷ i − ŷ j ||2 − δij)2. (11)
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Fig. 1. Results for the artificial data: (left) Estimates of the weights wji and (right)
cumulative correlations cj as a function of the number of regressors in the model

Normalization coefficients αij = 2/(n(n − 1)δij) put focus on similar objects.
The vector ŷ i is the ith row of an n× p feature configuration matrix Y .

Differing from the ordinary Sammon mapping, we are not only seeking for
Y that minimizes the error (11), but also the parameterized transformation
from the data space to the feature space that generates Y as a function of
an n × m matrix X . More specifically, we define Y as a linear combination
of some relevant columns of X . Next, a gradient descent procedure for such a
minimization of (11) is outlined by modifying the Shadow Targets algorithm [10].

Make an initial guess Y 0 and set the learning rate parameter η0 to a small
positive value. The estimated targets at each of the following iterations are

T `+1 = Y ` − η` ∂E(Y `)
∂Y

. (12)

Calculate W `+1 by feeding T `+1 and X to the MRSR algorithm and update
Y `+1 = XW `+1. As suggested in [10], set η`+1 = 0.1η` if error (11) has in-
creased from the previous iteration, and otherwise set η`+1 = 1.2η`.

The only difference between the original Shadow Targets algorithm is the
way in which the weights W `+1 are calculated. MRSR replaces the calculation
of OLS parameters (X TX )−1X TT `+1. This allows us to control the sparsity of
the solution. The number of nonzero rows in W `+1 depends on the number of
steps we perform in the MRSR algorithm.

4 Experiments

To illustrate the MRSR algorithm, we generated artificial data from the setting
T = XW + E , where the elements of a 200 × 6 matrix X are independently
distributed according to the Gaussian distribution N(0, 1), the elements of a
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Fig. 2. Results for the digits data: (left) Training and validation errors as a function
of the number of regressors in the model. (middle) Projection of the test set. (right)
Example images from the test set and images illustrating the weights wji

200× 2 matrix E according to N(0, 0.352), and the weights are set to

W T =
[

1 0 −1/3 1/2 0 0
−1 0 1/3 0 0 −2/5

]
.

Fig. 1 shows results of MRSR analysis of the artificial data. The regressors
are added to the model in the order 1, 3, 4, 6, 5, 2 and each addition decreases
the maximum cumulative correlation between the regressors and residuals. The
apparently most important regressor x 1 is added first and the two useless re-
gressors x 2 and x 5 last. Importantly, x 3 enters the model before x 4 and x 6,
because it is overall more relevant. However, x 4 (x 6) would enter before x 3 if
the first (second) target was estimated individually using the LARS algorithm.

The second experiment studies images of handwritten digits 1, 2, 3 with
28 × 28 resolution from the MNIST database. An image is represented as a
row of X , which consists of grayscale values of 784 pixels between zero and
one. We constructed randomly three distinct data sets: a training set with 100,
validation set with 200, and test set with 200 samples per digit. The aim is
to form a model that produces a discriminative projection of the images onto
two dimensions by a linear combination of relevant pixels. Pairwise dissimi-
larities are calculated using a discriminative kernel [11]. A within digit dis-
similarity is δij = 1− exp(−||x̂ i − x̂ j ||2/β) and a between digit dissimilarity is
δij = 2− exp(−||x̂ i − x̂ j ||2/β), where x̂ i denotes the ith image. The parameter
β controls discrimination and we found a visually suitable value β = 150.

Fig. 2 displays results for the digits data. The left panel shows the best
training set error of MDS starting from 100 random initializations Y 0 and the
corresponding validation error as a function of the number of effective pixels
in the model. The validation error is at the minimum when the model uses 85
pixels. The middle panel shows a projection of test images obtained by this model
and the right panel illustrates sparsity of the estimated weights wji. The selected
group of about 11% of the pixels is apparently enough to form a successful linear
projection of novel images.



5 Conclusions

We have presented the MRSR algorithm for forward selection of regressors in the
estimation of a multivariate target using a linearly parameterized model. The
algorithm is based on the LARS algorithm, which is designed for a univariate
target. MRSR adds regressors one by one to the model such that the added
regressor always correlates most of all with the current residuals. The order in
which the regressors enter the model reflects their importance. Sparsity places
focus on relevant regressors and makes the results more interpretable. Moreover,
sparsity coupled with shrinkage helps to avoid overfitting.

We used the proposed algorithm in an illustrative experiment with artificially
generated data. In another experiment we studied images of handwritten digits.
The algorithm fitted a MDS model that allows a discriminative projection of the
images onto two dimensions. The experiment combines the two major categories
of dimensionality reduction methods: input selection and input transformation.

LARS is closely connected to the Lasso estimator [6, 7]. As such, MRSR
does not implement a multiresponse Lasso, which constraints the `1-norm of the
weight matrix. MRSR updates whole rows of the matrix instead of its individual
elements. However, the connection might emerge by modifying the constraint
structure of Lasso. Another subject of future research could be basis function
selection for linear neural networks.
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