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Common Subset Selection of Inputs in Multiresponse Regression

Timo Similä and Jarkko Tikka

Abstract— We propose the Multiresponse Sparse Regression
algorithm, an input selection method for the purpose of esti-
mating several response variables. It is a forward selection pro-
cedure for linearly parameterized models, which updates with
carefully chosen step lengths. The step length rule extends the
correlation criterion of the Least Angle Regression algorithm
for many responses. We present a general concept and explicit
formulas for three different variants of the algorithm. Based
on experiments with simulated data, the proposed method
competes favorably with other methods when many correlated
inputs are available for model construction. We also study the
performance with several real data sets.

I. INTRODUCTION

Many practical regression tasks have several input vari-

ables available for model construction. However, the data

analyst may not know how the inputs are related to the

response variables. Our focus is on linear models (linear

basis expansions) that have many response variables with the

single response problem as a special case. A small number

of observations compared to the number of inputs causes the

problem of overfitting: the model fits well on training data

but poorly on all other ones [1]. Highly correlated inputs

cause the problem of collinearity: model interpretation is

misleading as variation in an input can be compensated by

variation in another one [2]. We offer techniques to help the

data analyst to solve these problems.

A popular approach is to build a separate model for each

response variable when various procedures are available, see

for instance [3]. The three main techniques are pure input

selection [1], regularization or shrinking [4], and subspace

methods [5]. Shrinking means constraining the regression

coefficients such that the unimportant inputs tend to have

small coefficient values. In the subspace approach the data

are projected onto a smaller subspace in which the model is

fitted. Input selection differs from the two other techniques

as some of the inputs are completely left out of the model.

Combinations of shrinkage and input selection have at-

tracted attention recently [6], [7]. These methods enjoy

practical benefits of input selection including aid in model

interpretation, economic efficiency if measured inputs have

costs, and computational efficiency due to simplicity of the

model. Input selection alone may not solve the problem

of overfitting if an unconstrained model is used. Shrinkage

helps in this and also makes the solution easier to obtain.

Stepwise subset selection without shrinkage may fail to
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recognize important combinations of inputs, especially when

collinearities are present [2]. Subset selection is a hard

combinatorial problem in general. On the contrary, subset

selection coupled with shrinkage can be formulated as a

convex optimization problem [6], or the whole solution path

may be computed as a function of the shrinking parameter

by an efficient forward selection algorithm with varying step

lengths [7], [8], [9].

Regression models using the same set of inputs to estimate

several responses are popular for instance in chemistry [10].

Multiresponse models have advantages over separate models

when the responses are correlated [11], [12]. Common subset

selection of inputs can be motivated by the computational

burden of repeating input selection for each response vari-

able separately [13]. Moreover, sometimes the individual

responses are not relevant and the aim is to assess the

importance of inputs in the estimation of all the responses

together. Commonly used criteria for input selection are tests

of statistical significance [14], information criteria [15], and

prediction error [13]. However, they only rank combinations

of inputs, and some stepwise method is usually applied to

find promising combinations. In [16], a stochastic Bayesian

input selection method is proposed, but it involves several

tuning parameters and requires a strategy for monitoring

convergence to a stationary distribution. A more explicit

approach is Simultaneous Variable Selection (SVS) [17]. It

does shrinking and input selection, and it is formulated as

a convex optimization problem. A drawback of SVS is that

it is more like an exploratory tool as it is suggested in [17]

to use the method only to select inputs. A separate model is

constructed using the selected subset.

We proposed the Multiresponse Sparse Regression

(MRSR) algorithm in [18] for input selection and shrinkage.

It equals to the Least Angle Regression (LARS) algorithm

[8] when a single response is estimated, but unlike LARS,

it is applicable with several responses as well. MRSR uses

the same inputs in the estimation of all the responses like

SVS does, but it differs from SVS in the sense that the

model is useful from the start. The formulation of MRSR

using a 1-norm correlation criterion, as presented in [18],

scales badly with the number of responses. In this article,

we introduce variants of MRSR for the 1-norm, 2-norm, and

∞-norm criteria, which are all fast to compute even when

both input and response data are high-dimensional.

The rest of the article is organized as follows. In Section II,

we present the general MRSR algorithm and give formulas

for the step length in three special cases corresponding to

different choices of the norm. In Section III, we consider

related methods, which we compare with MRSR later in Sec-

tion IV. The comparisons are structured as follows. Firstly,
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simulation experiments are carried out to explore the effect

of collinearity among the input variables. Secondly, three real

world data sets are analyzed. Thirdly, image reconstruction

is presented as an example of a high-dimensional problem.

Section V concludes the article.

II. MULTIRESPONSE SPARSE REGRESSION ALGORITHM

Suppose that we have n observations of both q response

variables and m input variables. To fix notation, denote the

response data by an n×q matrix T = [t1 · · · tq] and the input

data by an n×m matrix X = [x1 · · ·xm]. We assume that

all variables have zero mean and their scales are comparable.

A linear model

Y k = XW k (1)

is used in the estimation of the responses T , where the

m × q matrix W k denotes the regression coefficients. The

MRSR algorithm adds inputs sequentially to the model. In

the beginning, all entries of W 0 are zero. Each step of the

algorithm k = 0, 1, . . . introduces a new nonzero row to

W k and thus a new active input. If we proceed to the end

of the algorithm with the step k = m−1, we finally have all

m inputs in the model and Y k equals to the ordinary least

squares (OLS) estimate for T .

Denote the correlation between the residuals and the jth

input in the beginning of the step k by

ck,j = ‖(T − Y k)T xj‖p, (2)

where p ≥ 1 fixes a norm1. A high value of ck,j suggests

including xj in the model, since it correlates with the

part of T , which is currently unexplained. A variational

interpretation for ck,j can be given in terms of the gradient

of the error sum of squares with respect to the regression

coefficients associated with the jth input2

gj(W ) = ∂
∂w(j)

1
2‖T −XW ‖2F,

where the jth row of W is wT
(j). Now the criterion (2)

measures sensitivity of the error to changes in w(j) in the

p-norm sense, ck,j = ‖gj(W k)‖p. The higher the value of

ck,j is, the more efficient xj is in the reduction of the current

error.

Let the maximum correlation be denoted by ĉk and the

group of inputs that satisfy the maximum by Ak+1, i.e.

ĉk = max
1≤j≤m

ck,j , Ak+1 = {j : ck,j = ĉk}. (3)

Collect the inputs that belong to the active set Ak+1 as an

n × |Ak+1| matrix Xk+1 = [· · ·xj · · · ]j∈Ak+1
. By using

only the active inputs, the least squares estimate Ŷ k+1 for

the responses and the least squares estimate Ŵ k+1 for the

regression coefficients can be computed

Ŷ k+1 = Xk+1Ŵ k+1 (4)

Ŵ k+1 = argmin 1
2‖T −Xk+1W ‖2F

= (XT
k+1Xk+1)

−1XT
k+1T . (5)

1The p-norm of a vector x is ‖x‖p = (
P

j |xj |
p)

1
p and in the limit, as

p →∞, the norm is ‖x‖∞ = maxj |xj |.
2The Frobenius norm of a matrix X is ‖X‖F = (

P

ij x2

ij)
1
2 .

The MRSR estimate Y k+1 for the responses and the MRSR

estimate W k+1 for the regression coefficients are updated

Y k+1 = (1− γk)Y k + γkŶ k+1 (6)

W k+1 = (1− γk)W k + γkŴ ∗
k+1, (7)

where Ŵ ∗
k+1 is an m× q row sparse matrix whose nonzero

rows, indexed by Ak+1, are filled with the corresponding

rows of Ŵ k+1.

If we would always choose the step length γk = 1, we

had a greedy forward selection algorithm that moves from

a least squares solution to another. On the other hand, the

step length should be positive in order to improve the model

fitting. Thus, γk ∈ (0, 1] acts as a shrinking parameter for

the regression coefficients of the active inputs, while the

coefficients of the nonactive inputs are constrained to zero.

A very intuitive way to choose γk is proposed in [8], and is

further generalized for multiresponse regression (with p = 1)

in [18]: Move the current estimate Y k toward the least

squares estimate Ŷ k+1 until any of the nonactive inputs has

the same correlation as the active inputs according to (2).

This makes γk the smallest positive value such that some new

index joins the active set. If the active set already contains

all the indices, we simply take a full step γk = 1 to the OLS

solution.

According to (4)–(5) we have XT
k+1Ŷ k+1 = XT

k+1T . By

using this and by substituting (6) into (2), the correlations

can be written as a function of γ in the next step

ck+1,j(γ) = |1− γ|ĉk for j ∈ Ak+1 (8)

ck+1,j(γ) = ‖uk,j − γvk,j‖p for j /∈ Ak+1, (9)

where uk,j = (T−Y k)T xj and vk,j = (Ŷ k+1−Y k)T xj . A

new input with index j /∈ Ak+1 enters the model when (8)

and (9) are equal. The correct γk is the one that has the

smallest positive value of such step lengths. The following

theorem says that we always find a step length candidate for

all j /∈ Ak+1. Proof is given in the appendix.

Theorem 1: The common correlation curve of active in-

puts (8) and the correlation curve of a single nonactive

input (9) intersect at a unique point on interval (0, 1].

A. Step Length for the 1-Norm Algorithm

Consider the case p = 1. The point γk,j in which (8) and

(9) intersect on interval (0, 1] can be computed

γk,j = max
γ
{γ : ‖uk,j − γvk,j‖1 ≤ (1− γ)ĉk}

= max
γ

{
γ :

q∑

i=1

si(uk,ji − γvk,ji) ≤ (1− γ)ĉk

}

= min+

{
ĉk −

∑q
i=1 siuk,ji

ĉk −
∑q

i=1 sivk,ji

}
, (10)

where each si = ±1, so there are total 2q terms and “min+”

indicates that the minimum is taken only over positive terms.

In order to explain the last equality, we note that

ĉk −
∑

i siuk,ji ≥ ĉk − ‖uk,j‖1 = ĉk − ck,j > 0
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holds according to (2)–(3). So whenever ĉk −
∑

i sivk,ji < 0
holds, we have a negative lower bound for γ. On the other

hand, ĉk −
∑

i sivk,ji > 0 implies a positive upper bound

for γ. The solution γk,j equals to the smallest of these upper

bounds. This is the step length needed for a nonactive input

xj to enter the model. The correct input is the one that enters

with the smallest step length

γk = min
j /∈Ak+1

γk,j . (11)

The step length calculation (10) is used in [18]. However,

this approach is practicable only when there are a few

responses, because the computation of (10) scales as O(2q)
given uk,j , vk,j , and ĉk. Another way is to define an

auxiliary function as (8) subtracted from (9), and γk,j is

the sole zero of this function on interval (0, 1] according to

Theorem 1. Any line search method can be used in finding

the zero efficiently.

B. Step Length for the 2-Norm Algorithm

In the case p = 2, the correlations (8) and (9) are equal

on interval (0, 1] at point

γk,j = min
γ>0
{γ : ‖uk,j − γvk,j‖22 = (1− γ)2ĉ2

k}

= min+





b±
√

b2 − ac

a
:

a = ĉ2
k − ‖vk,j‖22

b = ĉ2
k − uT

k,jvk,j

c = ĉ2
k − ‖uk,j‖22




 (12)

and the computation of (12) scales linearly with the number

of outputs O(q) given uk,j , vk,j , and ĉk. The 2-norm MRSR

algorithm takes the smallest step according to (11).

C. Step Length for the ∞-Norm Algorithm

Finally, consider the p = ∞-norm and observe that the

correlation curves (8) and (9) intersect on interval (0, 1] at

γk,j = max
γ
{γ : ‖uk,j − γvk,j‖∞ ≤ (1− γ)ĉk}

= max
γ
{γ : ±(uk,ji − γvk,ji) ≤ (1− γ)ĉk, 1 ≤ i ≤ q}

= min
1≤i≤q

+

{
ĉk + uk,ji

ĉk + vk,ji
,

ĉk − uk,ji

ĉk − vk,ji

}
. (13)

The last equality follows from the fact that

ĉk ± uk,ji ≥ ĉk − ‖uk,j‖∞ = ĉk − ck,j > 0

holds according to (2)–(3). Thus, if we have ĉk ± vk,ji < 0,

then γ has a negative lower bound. On the other hand, γ has a

positive upper bound in the case ĉk±vk,ji > 0. The solution

γk,j is the most stringent upper bound. The computation of

(13) scales as O(q) given uk,j , vk,j , and ĉk. Again, Eq. (11)

gives the step length for the ∞-norm MRSR algorithm.

III. RELATED METHODS

We consider two related methods, which we compare with

the MRSR algorithm in the experiments section: the greedy

forward selection (FS) algorithm and Simultaneous Variable

Selection (SVS) [17]. The FS algorithm proceeds in a quite

similar way as MRSR. New nonzero rows are added to W k

in the model (1) according to the criterion (2). The difference

is that the step length is always γk = 1, so W k equals to

the row sparse OLS solution Ŵ ∗
k. This changes potentially

the order in which the inputs enter the model.

SVS is in turn characterized by an optimization problem

min 1
2‖T −XW ‖2F s.t.

m∑

j=1

‖w(j)‖∞ ≤ τ, (14)

where wT
(j) denotes the jth row of W . The constraint

imposes row sparsity, which is controlled by the parameter

τ ≥ 0. The SVS problem (14) can be rewritten as a linearly

constrained quadratic optimization problem and thereby it

can be solved by standard techniques. However, this for-

mulation is practicable only for relatively low-dimensional

problems. A recent work [19] focuses in the design of an

efficient algorithm that follows the solution path as a function

of τ . It is suggested in [17] to apply the solution of (14) only

to identify a suitable subset of inputs. In the experiments, we

compute the OLS estimates using the inputs selected by SVS.

Interestingly, the MRSR algorithm is also related to single

response regression techniques that select groups of regres-

sion coefficients. Suppose that we stack the columns of T

into a qn × 1 vector and the columns of W into a qm × 1
vector, and copy X into the diagonal blocks of a new qn×qm
input data matrix. If we use this parameterization and form m
groups, each of which contains the q regression coefficients

associated with one of the inputs, we observe that the Group

LARS algorithm [20] is exactly the 2-norm MRSR algorithm.

Given this connection and assuming XT X = I , the 2-norm

MRSR algorithm follows the solution path of the problem

min 1
2‖T −XW ‖2F s.t.

m∑

j=1

‖w(j)‖2 ≤ τ. (15)

For a general X and q ≥ 2 the path is piecewise nonlinear

and the 2-norm MRSR algorithm is only an approximation.

IV. EXPERIMENTS

A. Experiments with Simulated Data

MRSR, FS, and SVS are compared to each other according

to prediction accuracy and correctness of input selection

using simulated data. The collinearity of input variables has a

strong effect on linear models and this experiment illustrates

the effect. Data are generated from the setting T = XB+E,

where E denotes the error term. The number of observations,

responses, and inputs are n = 50, q = 5, and m = 100,

respectively.

The input data are generated according to an m-

dimensional normal distribution with zero mean and covari-

ance Σx,

x(i) ∼ N(0,Σx), where [Σx]ij = σ|i−j|
x .

The parameter σx controls the covariance and we consider

the values σx = 0, σx = 0.5, and σx = 0.9. The correlation

between all the inputs is zero with σx = 0. A few inputs

have medium correlation with σx = 0.5 and the average is
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0.02. The average correlation is 0.16 with σx = 0.9, but

then there are some strong correlations among the inputs.

Errors are distributed according to a q-dimensional normal

distribution with zero mean and covariance Σe,

e(i) ∼ N(0,Σe), where [Σe]ij = 0.22 · 0.6|i−j|.

The errors have an equal standard deviation 0.2 and there are

correlations between the errors of different responses.

The actual matrix of regression coefficients B is set to

have a row sparse structure by selecting 20 rows out of

the total number of 100 rows randomly. The values of the

coefficients in the selected rows are independently normally

distributed with zero mean and unit variance. The other 80

rows are filled with zeros. The columns bi of the matrix B

are scaled after sampling as follows

bi ← bi

/√
bT

i Σxbi for i = 1, . . . , q.

This scaling ensures that the responses ti are comparable, so

we can use the mean of the individual mean squared errors

MSE =
1

q

q∑

i=1

(bi −wi)
T
Σx(bi −wi).

as an accuracy measure for different methods [11].

For each value of σx the generation of data is replicated

500 times. The maximum number of active inputs is 50 in

the MRSR and FS algorithms, because we have only 50

observations. SVS is evaluated at 150 linearly equally spaced

points of τ in the range [0, 6.5]. For those values of τ , where

SVS has selected at most 50 inputs, we also compute the

subset OLS solutions. This range of τ varies slightly in the

replicated data sets, but it is roughly [0, 3].
The two leftmost columns in Fig. 1 show the average

results obtained using MRSR and FS. In the MRSR models,

the minimum MSE is achieved using approximately 40 inputs

and the minimum is roughly the same with each value of σx.

This indicates that MRSR is not sensitive to the degree of

collinearity among the inputs. The number of selected inputs

is larger than the correct number of 20 inputs, but overfitting

is avoided due to shrinking of the regression coefficients. The

minimum MSEs of the FS methods are similar to the ones

of the MRSR methods in the cases of σx = 0 and σx = 0.5.

They are achieved using only 20 inputs, which are nearly

all correctly selected. On the other hand, the advantage of

MRSR over FS can be evidently seen when σx = 0.9. The

minimum MSE of MRSR is smaller than the minimum MSE

of FS. In addition, MRSR does better in input selection. The

both algorithms choose inputs equally correctly up to the

models with 20 inputs. After that, MRSR performs better.

The two rightmost columns in Fig. 1 encapsulate the

average results for SVS. The MSE of the SVS model de-

creases slowly as a function of τ with each value of σx. The

minimum MSEs are achieved using approximately 80 inputs.

The correct inputs are included, but there are clearly too

many false ones. The calculation of the OLS estimates using

the inputs selected by SVS (SVS+OLS) decreases the MSEs

in the cases of σx = 0 and σx = 0.5. However, the minimum

MSEs are still larger than in the MRSR models. With each

value of σx, the most accurate SVS+OLS model includes

about 30 inputs. The proportion of correctly selected inputs

decreases when the degree of collinearity increases. Since

shrinkage is not applied in the final model, false inputs are

more harmful, and SVS+OLS is less accurate than MRSR.

The first and third columns in Fig. 2 show the standard

deviations (STD) of MSEs. The minimum MSE MRSR

models are more stable than the most accurate FS and

SVS+OLS models. These MRSR models have also smaller

deviations than the minimum MSE SVS models, excluding

the case σx = 0.9. In the MRSR models, the deviations of

MSEs are roughly the same regardless of the value of σx.

Interestingly, the deviations of the other methods decrease as

the value of σx increases.

The second and fourth columns in Fig. 2 show the STD

of the number of correct inputs. There is no major difference

between MRSR and FS when σx = 0, but otherwise MRSR

performs better. In addition, the minimum MSE SVS+OLS

models have higher deviations than the most accurate MRSR

models. The minimum MSE SVS models have the smallest

deviations. It is however quite natural that the deviation is

small when the number of selected inputs is large.

B. Experiments with Real Data

In this experiment MRSR, FS, and SVS are applied to

three real data sets. The first data set is Chemometrics data,

taken from [21]. The data are from a simulation of a low

density tubular polyethylene reactor. The set includes n = 56
observations of m = 22 inputs and q = 6 responses.

Following [11], we log-transformed the responses, because

they are skewed to the right.

The second data set is Macroeconomic data, which is taken

from [22]. It is a 10-dimensional time-series from the United

Kingdom with quarterly measurements. The data contain

n = 36 observations of q = 5 responses and five inputs.

A quadratic model with all the terms xj , x2
j , and xixj is

fitted, which increases the total number of inputs to m = 20.

The time-dependency of the observations is ignored.

The last data set is called Chemical reaction data, and it is

obtained from [14]. There are n = 19 observations of q = 3
responses and three inputs from a planned chemical reaction

experiment. The quadratic model is also used in this case,

which gives the total number of inputs m = 9.

All the responses and inputs were normalized to zero mean

and unit variance before the analysis to make the results more

comparable. The average absolute correlation between the

inputs is 0.44, 0.89, and 0.45 in Chemometrics, Macroeco-

nomic, and Chemical reaction data, respectively. The actual

models are not known, so accuracy is estimated using the

average squared leave-one-out cross-validation (LOO-CV)

error.

The MRSR and FS algorithms are evaluated at each

breakpoint, where a new input variable enters the model. SVS

is evaluated at 500 values of τ , which are logarithmically

equally spaced in the range [0.01, τOLS]. The value τOLS

1911
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Fig. 1. Averages calculated from 500 replicates of simulated data. In the two leftmost columns, the three dashed black lines and three solid gray lines
correspond to different norms, p = 1, 2, ∞, in MRSR and FS, respectively.

corresponds to the sum of norms in (14), evaluated at the

full OLS solution. The number of inputs in the SVS models

can vary during the cross-validation for a fixed value of τ .

The results are summarized in Table I. All the methods

perform equally well according to the LOO-CV error with

all the three data sets. The minimum errors are approxi-

mately the same and they are clearly within the standard

deviations, which are notably large. The errors are adequate

for Chemometrics and Macroeconomic data but worse for

Chemical reaction data. Observe that all the subset models

are more accurate than the full OLS solution. However, it is

hard to evaluate the correctness of input selection with our

knowledge of the data sets. A couple of comments can still be

made. Firstly, the 2-norm FS algorithm selects fewer inputs

than the other methods for Chemometrics data. Secondly, the

SVS+OLS model has fewer inputs than the SVS model for

Macroeconomic data. Thirdly, the number of inputs selected

by MRSR is higher than by the other methods for Chemical

reaction data.

C. Reconstruction of Image Data

This experiment studies images of handwritten digits

0, . . . , 9 with 28× 28 pixel grid and the data are taken from
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Fig. 2. Standard deviations (STD) calculated from 500 replicates of simulated data. In the two leftmost columns, the three dashed black lines and three
solid gray lines correspond to different norms, p = 1, 2, ∞, in MRSR and FS, respectively.

TABLE I

RESULTS FOR REAL DATA SETS. (UPPER VALUE) THE LOO-CV ERROR WITH STANDARD DEVIATION. (LOWER VALUE) THE NUMBER OF SELECTED

INPUTS. AVERAGE NUMBERS WITH STANDARD DEVIATIONS ARE REPORTED FOR SVS AND SVS+OLS.

L1 MRSR L2 MRSR L∞ MRSR L1 FS L2 FS L∞ FS SVS SVS+OLS Full OLS

Chemo– 0.24 (0.47) 0.25 (0.55) 0.24 (0.52) 0.21 (0.40) 0.20 (0.31) 0.22 (0.46) 0.20 (0.35) 0.22 (0.46) 0.42 (1.02)
metrics 20 17 16 16 9 16 17.4(0.7) 17.0(0.2) 22
Macro– 0.21 (0.18) 0.20 (0.17) 0.22 (0.23) 0.23 (0.18) 0.22 (0.16) 0.20 (0.17) 0.22 (0.18) 0.19 (0.18) 0.36 (0.33)

economic 11 11 11 11 11 10 18.2(1.0) 7.0(0.3) 20
Chemical 0.38 (0.42) 0.40 (0.43) 0.41 (0.44) 0.40 (0.40) 0.39 (0.40) 0.33 (0.36) 0.35 (0.38) 0.33 (0.39) 0.70 (1.22)
reaction 8 8 8 6 6 4 6.3(0.6) 5.6(0.8) 9

1913



L
1
-M

R
S
R

L
2
-M

R
S
R

L
∞

-M
R

S
R

k=100

L
2
-F

S

k=200 k=300 k=400 k=500 k=600 k=700

(a)

L
1
-M

R
S
R

L
2
-M

R
S
R

L
∞

-M
R

S
R

k=100

L
2
-F

S

k=200 k=300 k=400 k=500 k=600 k=700

(b)

Fig. 3. Selected inputs, marked with black pixels, in the reconstruction.
Results for models fitted with (a) unscaled and (b) scaled training data using
the FS and MRSR algorithms. Lp denotes the p-norm correlation and k is
the number of selected inputs. L1-FS and L∞-FS look similar to L2-FS.

the MNIST database3. An image is represented as a vector

with m = 784 elements containing the grayscale values

of pixels in the image, scaled between zero and one. We

constructed two distinct data sets randomly: a training set

with 100 observations per digit (total n = 1000 images) and

a test set with 150 observations per digit (total n = 1500
images). Then we added independently normally distributed

noise with zero mean and standard deviation 0.0448 to the

data sets. The value 0.0448 amounts 10% of the maximum

standard deviation over all pixels in the unnoisy training data.

The aim is to reconstruct the original images from the noisy

ones by using the model (1), where both X and T contain

the same set of data. Since W k is row sparse, only some of

the pixels are used in the reconstruction Y k.

The first set of results corresponds using training data,

where the mean values of the variables are all zero, but the

scaling is left untouched. Fig. 3(a) shows that FS and MRSR

are both able to select reasonable inputs for all choices of

the norm p = 1, 2, ∞ in the criterion (2), because relevant

information is in the middle of the images. Fig. 4(a) shows

the mean squared error between Y k and the original unnoisy

images. All algorithms perform better as the number of active

3http://yann.lecun.com/exdb/mnist/
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Fig. 4. Mean squared errors for training and test sets in the reconstruction.
Results for models fitted with (a) unscaled and (b) scaled training data as
a function of the number of selected inputs k. L1-FS performs similar to
L2-FS and L∞-FS is worse than L2-FS.

inputs increases in terms of both training and testing errors.

The error of the full model is essentially the variance of the

noise added to the images. The message is that the training

error of FS decreases most rapidly. As an example, the error

of FS with 100 inputs is similar to the errors of all the MRSR

variants with more than 250 inputs.

The second set of results corresponds using training data

with the variables scaled to zero mean and unit variance. Now

the problem is a bit harder as the unimportant inputs are not

discarded simply by their low variance. Fig. 3(b) shows that

only MRSR with the 1-norm and 2-norm correlation criteria

are able to select reasonable inputs. Because the inputs and
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responses are equal and scaled, we have ‖T T xj‖∞ constant

for all xj . Thus, the∞-norm MRSR algorithm selects inputs

randomly, but it makes the first positive update only after all

of them have been selected and it goes straight to the least

squares solution, see Fig. 4(b). FS reduces the training error

very rapidly, but the testing error starts to rise after 100 active

inputs and then it falls again after 350 active inputs. Based

on Fig. 3(b), FS focuses mostly on modeling the noise after

it has selected 100 inputs.

V. CONCLUSIONS

We presented the MRSR algorithm for input selection in

multiresponse linear regression. It is a forward selection pro-

cedure that extends the LARS algorithm for several response

variables. The selection criterion is the p-norm of the vector

of correlations, measured between an input variable and

residuals corresponding to all the response variables. MRSR

adds inputs sequentially to the model such that the added

input correlates most with the current residuals. The order in

which the inputs enter the model reflects their importance.

The MRSR algorithm updates always toward the current least

squares solution but does not reach it until in the final step.

The method is thus less greedy than a pure forward selection.

We considered the 1-norm, 2-norm, and ∞-norm criteria

in detail. Based on experiments with simulated and real

data, all the three choices of the norm result a quite similar

performance. Computational simplicity and connections to

the problem (15) under an orthonormality assumption on

the inputs may favor the 2-norm algorithm. The simulation

experiments also showed that MRSR selects too many inputs,

but it is not prone to overfitting due to shrinking. The SVS

method suffers from the two-stage estimation approach. If the

inputs are not correctly selected in the first stage, overfitting

can happen in the second stage. In addition, MRSR is also

computationally more efficient. MRSR is better than the

greedy forward selection, in terms of prediction accuracy

and correctness of selection, when the input variables are

correlated. Similar conclusions were drawn from experiments

with highly correlated image data. These results are well

in line with the fact that collinearities may confuse greedy

stepwise methods [2]. All the subset methods were equally

accurate and better than the full OLS solution with the three

real world data sets that we analyzed.

APPENDIX

Proof of Theorem 1

(Existence) Define f1(γ) = (1 − γ)ĉk, which coincides

to (8) for γ ≤ 1, and denote (9) by f2(γ) for some fixed

j /∈ Ak+1. According to (2)–(3), we have f2(0) = ck,j <
ĉk = f1(0). We also know that f2(1) ≥ 0 = f1(1) due

to nonnegativity of a norm. If f2(1) = 0, the existence is

proved by γ̂ = 1. On the other hand, assume that f2(1) > 0
and denote f(γ) = f1(γ) − f2(γ), which is continuous

on a closed interval γ ∈ [0, 1] such that f(0) > 0 and

f(1) < 0. According to Bolzano Theorem there exists a

number γ̂ ∈ (0, 1) with f(γ̂) = 0, which proves the existence

of a solution.

(Uniqueness) Assume, to the contrary, that there exist two

points 0 < γ̂1 < γ̂2 ≤ 1 such that f1(γ̂1) = f2(γ̂1) and

f1(γ̂2) = f2(γ̂2). Observe that f2(γ) is a convex function,

which can be proved by triangle inequality. Thus, there exists

an affine function g(γ) = aγ + b such that g(γ̂1) = f2(γ̂1)
and g(γ) ≤ f2(γ) for γ ∈ R. Combining this to the

assumption gives g(γ̂1) = f1(γ̂1) and g(γ̂2) ≤ f1(γ̂2),
which means b ≥ ĉk. However, this leads to the contradiction

ck,j = f2(0) ≥ g(0) = b ≥ ĉk, which proves the uniqueness

of the solution.
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