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ARTICLE INFO ABSTRACT

Available online 29 April 2008 In time series prediction, making accurate predictions is often the primary goal. At the same time,
interpretability of the models would be desirable. For the latter goal, we have devised a sequential input
selection algorithm (SISAL) to choose a parsimonious, or sparse, set of input variables. Our proposed
algorithm is a sequential backward selection type algorithm based on a cross-validation resampling
procedure. Our strategy is to use a filter approach in the prediction: first we select a sparse set of inputs
using linear models and then the selected inputs are used in the nonlinear prediction conducted with
multilayer-perceptron networks. Furthermore, we perform a sensitivity analysis by quantifying the
importance of the individual input variables in the nonlinear models using a method based on partial
derivatives. Experiments are done with the Santa Fe laser data set that exhibits very nonlinear behavior
and a data set in a problem of electricity load prediction. The results in the prediction problems of
varying difficulty highlight the range of applicability of our proposed algorithm. In summary, our SISAL
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yields accurate and parsimonious prediction models giving insight to the original problem.
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1. Introduction

Time series analysis [3,11,24] is an important problem in
natural and engineering sciences, both from the viewpoint of
prediction and for understanding the behavior of the system
under study. There are numerous applications of time series
analysis scattered in the literature of econometrics, system
identification, chemistry, statistics, pattern recognition, and
neural networks [25]. Interesting applications of time series
prediction can also be found, for instance, in climatology [5],
ecology [19], electricity production [17], and economics [10].
Most of the research is concentrated on finding an accurate
predictor of future values based on the available past data.
However, it would be very appealing to be able to predict behavior
of the time series accurately, and at the same time to provide
insight into the system itself. Our target is to estimate time series
prediction models that are both accurate and interpretable. By
interpretability we mean that the models contain only a relatively
small subset of input variables for the prediction. In our
applications, approximately only one-third of the available input
variables were included in the final prediction models. This puts
emphasis on what is important in the prediction of system
behavior. These kinds of parsimonious, or sparse, time series
models are the focus of this work. Inputs of the sparse models are
selected from a large set of autoregressive input variables for a
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given past horizon. This approach tries to circumvent the
problems of a high-dimensional input space, i.e. the curse of
dimensionality [23].

Approaches to input selection are reviewed in [7,9]. Two main
approaches used in the input selection are the wrapper approach
[16] and the filter approach [1]. In the wrapper approach, inputs
are selected according to their suitability in the prediction using
the final model itself. In the filter approach, an input selection
procedure is independent from the final model, which is built
after a fixed set of inputs is determined. While the wrapper
approach is expected to yield better input variables for the
particular model class, the computational costs can be high or
prohibitive in the presence of a large number of inputs. The filter
approach makes the compromise of using a simple model in the
selection phase, which saves a lot of computational burden, but it
possibly introduces some inaccuracies. Our contribution builds on
the filter approach to input selection.

In this article, we present our sequential input selection
algorithm (SISAL) for a long-term time series prediction problem
building on our previous work [21,22]. Long-term prediction is
difficult and time-consuming, since it extends the horizon of
prediction further into the future, adding significant uncertainty
in the prediction task. Technically, our algorithm works in the
spirit of the backward selection algorithm [12], in which input
variables are progressively removed from the autoregressive
prediction model. In SISAL, the removal of inputs is based on a
median and an empirically estimated width of parameter
distributions sampled with a cross-validation resampling proce-
dure [6]. These statistics reflect the importance of an input in the
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prediction task. In the second phase, the nonlinear prediction
model is constructed using a fixed subset of inputs. In this work,
we used the multilayer-perceptron (MLP) networks [2], although
any kind of nonlinear predictors could be used (as for instance in
[20]). We also investigate experimentally applicability of the filter
approach to problems with different degree of nonlinearities. This
is done comparing the result of the proposed filter approach to the
traditional forward selection (FS) algorithm, which belongs to
the class of wrapper input selection methods. The results give
impressions of behavior in general situations, but exact rules
cannot be given.

The rest of the article is organized as follows: Section 2
introduces relevant background in time series prediction. Section
3 reviews our SISAL in the context of linear time series prediction
models. Section 4 focuses on nonlinear prediction models, i.e. MLP
networks, in which the selected input variables are finally used.
Also, the FS algorithm is described followed by the presentation of
sensitivity analysis of the MLP networks based on partial
derivatives (PADs). Section 5 presents the empirical experiments
in an electricity load prediction problem and in a problem of
predicting the Santa Fe laser data set. Summary and conclusions
are presented in Section 6.

2. Long-term prediction of time series

In a time series prediction problem, future values of time series
are predicted using the previous values [3,11,24]. The previous and
future values of time series are referred to inputs and outputs of
the prediction model, respectively. One-step-ahead prediction is
needed in general and it is called short-term prediction. If
multistep-ahead predictions are needed, it is known as long-term
prediction.

Unlike short-term prediction, long-term prediction faces
typically growing amount of uncertainties arising from various
sources. For instance, an accumulation of errors and lack of
information make the prediction more difficult. In the case of
long-term prediction, there are several strategies to build
prediction models [25]. In Sections 2.1 and 2.2, the common
strategies of recursive and direct prediction are described briefly.

2.1. Recursive prediction strategy

In the case of multistep-ahead prediction, the recursive
strategy uses the predicted values as known data to predict the
next ones. First, a one-step-ahead prediction is done

Ve =101 Yeas - Ve,

where y,_;, i=1,...,1 are the inputs. It is also possible to use
exogenous variables as inputs, but they are not considered here in
order to simplify the notation. After that, the same model is used
to make a two-step-ahead prediction

Vet =F100Yee1: Y25 Veera)s

where the predicted value of y, is used instead of the true value,
which is unknown. Then, the k-step-ahead predictions y,,_;,k>3
are obtained iteratively. In the prediction of kth step, I—k
observed values and k predicted values are used as the inputs in
the case of k<I. When k=1, all the inputs are predicted values. The
use of the predicted values as inputs may deteriorate the accuracy
of the prediction.

2.2. Direct prediction strategy

In the direct strategy, the model

Veske1 =FeVe1:Yeeas -5 Yeod)

is used for k-step-ahead prediction. The predicted values are not
used as inputs at all in this approach, thus the errors in the
predicted values do not get accumulated in subsequent predic-
tions. When all the values from y, to y,,,_; need to be predicted, k
different models must be constructed. This increases the compu-
tational complexity, but more accurate results are achieved, as it is
shown in [15,21]. We only apply the direct strategy in this work.

3. Sequential input selection algorithm (SISAL)

Let us assume that there are N measurements available from a
time series y,, t =1,...,N. Future values of time series y, are
predicted using the previous values y,; i=1,...,L If the
dependency between the output y, and the inputs y,_; is assumed
to be linear it can be written as

1
Yo=Y B¥ei+en (1)
i=1

which is a linear autoregressive process of order I, or AR(l). The
errors ¢ are assumed to be independently normally distributed
with zero mean and common finite variance &~N(0,0?2). In
addition, all the variables are assumed to have zero mean and
unit variance, thus the constant term is dropped from the model
(1). The ordinary least squares (OLS) estimates of the regression
coefficients ; are obtained by minimizing the mean squared error

1 .
MSE = 5> (e = 9o, (2)
t=1

where y, is the estimated output.

The usual goal is to define the order I in the model (1) and use
all the inputs y,_;, i=1,...,l in the prediction of y,. This kind of
solution is not typically satisfactory [12]. Firstly, the general-
ization ability of the model may be improved by shrinking some
coefficients toward zero or setting them exactly to zero [4].
Secondly, if the number of inputs [ is large, interpretation of the
model might be difficult. The understanding of the underlying
process can be improved by selecting the subset of inputs which
have the strongest effect in the prediction. Many approaches to
input selection are presented in [12,18].

We have proposed and analyzed an algorithm to efficiently
select a subset of inputs that have the strongest explanatory
power in the autoregressive (AR) process in our previous
publications [21,22]. The algorithm is based on the resampling
procedures, such as bootstrapping or cross-validation [6].
The advantage of resampling procedures is that the input
selection can be carried out using measured data without
restrictive assumptions.

First, the maximum number of inputs [ have to be set, which
defines the order of the AR process. It is selected to be relatively
large to ensure that all the important inputs in the prediction are
included in the final model. The algorithm continues by estimat-
ing the AR process using all the input variables y, ;, i=1,...,1
and calculating the OLS estimates of the parameters B;. The
sampling distributions of the OLS estimates f; and the standard
deviation s of the training MSEs are estimated using M times
k-fold cross-validation. We have Mk different training and
validation sets. Mk estimates of the each regression coefficients
fi, j=1,...,Mk formulate the sampling distribution of the
corresponding parameter f;. In addition, we have Mk estimates
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for both training and validation MSE. The validation error is the
MSE for the validation set, i.e. for the data that are not used in the
evaluation of the regression coefficients j;. )

The median my, is calculated from Mk estimates of . The
median is used as the location parameter for the distribution,
since it is a reasonable estimate for skewed distributions and
distributions with outliers and it coincides with the mean in the
case of symmetric distributions. The width of the distributions
can be estimated using the standard deviation oy, of replications /5‘{
or a deviation based on the median

Mk

> _(my —
Jj=1

where ﬁ{ is the jth replication in the cross-validation repetitions.
Another alternative to estimate the width is to evaluate the
difference

A = B - B )

where 3" and pl°" are the Mk(1 — g)th and Mkqth values in the
ordered list of the Mk estimates of p;, respectively [6]. The
constant q is predefined and an appropriate value is q = 0.165.
With this choice of g, the difference 4y is twice as large as
the standard deviation in the case of the normal distribution.
The standard deviation o4 and deviation based on the median dj,
are reasonable measures for symmetric distributions, whereas the
difference 4y, describes well the width of both asymmetric and
symmetric distributions.

The next step is to delete the least significant input variable
from the model. The ratio |my|/4p is used as a measure of
significance of the corresponding input variable. The ratio can be
considered as a signal-to-noise ratio. Firstly, if the median my, is
close to zero then the corresponding input is not significant in the
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prediction. Secondly, if the difference 4y, is large the effect of the
corresponding input in the prediction is unclear. The sampling
distributions of parameter p for different combinations of the
median my and the width 4, are exemplified in Fig. 1. The input
corresponding to the distribution in the upper left corner would
be the most non-informative and the input corresponding to the
distribution in the lower right corner would be the most
informative. On the other hand, the ratio |my|/4p can be seen
as a Z-score test statistic to test the hypothesis that a value of a
parameter is f; = 0 [12]. The statistic is estimated using cross-
validation replications, so no assumptions are made about the
forms of the probability distributions of the parameters. This
applies especially when the median my, and the difference 4; are
used. Thus, the input y, ; with the smallest ratio |[my|/4 is
dropped from the set of inputs. After that, the cross-validation
procedure and pruning are repeated using the remaining inputs,
as long as there are variables left in the set of input variables.

The previous procedure removes inputs sequentially from the
set of possible inputs. In the end, we have [ different models. Our
purpose is to select a model which is as sparse as possible in
the sense that it includes only a few input variables. However, the
sparse model should still have comparable prediction accuracy.
An obvious choice is to select the set of inputs .#,, which produces
the minimum validation error E™™. Another option is to include
our uncertainty of the prediction accuracy in the training phase
into the selection of the set of input variables. This is done by
selecting the inputs based on the minimum validation error ES““
and the corresponding standard deviation of the training error
smin_ The final set of inputs % corresponds to the least complex
model whose validation error is under the threshold EM" 4 smin,
which means that % € &,. The set of inputs ¥; makes a
compromise between sparsity and prediction accuracy. The whole
SISAL is described step by step in Algorithm 1.

-2 -1 0 1 2 3 4 -2 -1 0 1 2 3 4
small my, large Ay large myg, large Ag
|
|
|
|
|
|
|
|
|
|
|
-2 -1 0 1 2 3 4 -2 -1 0 1 2 3 4

small my, small Ag

large myg, small Ay

Fig. 1. The sampling distributions of  for different combinations of the median m; and the width 4. The vertical dashed line marks the point g = 0.
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Algorithm 1. Sequential input selection algorithm (SISAL)

1. Let % be the set of indices of the inputs. In the beginning, % includes all the
indices i, y, ;, i=1,...,L

2. Fori e & estimate Mk replications [:‘{ j=1,..., Mk of the parameters f; using k-
fold cross-validation repeated M times. For i¢ & set ; = 0.

3. Compute the mean E and the standard deviation s of the cross-validation
replications of the training MSEs.

4. Compute the mean E/ of the cross-validation replications of the validation
MSEs.

5. Evaluate the median my, and the width of the sampling distribution 4, for all
the inputs y, ;, i € # from the cross-validation replications f.

6. Evaluate the ratio [my,|/4p,, Vi € & and delete the input with the smallest ratio
from the set 2.

7. 1f Z+#9 go to step 2, otherwise go to step 8.

8. Select the set of inputs %, based on the minimum validation error Ev"‘i"or select
the inputs % corresponding to the least complex model whose validation error is
under the threshold EM"™ + smin,

The idea of the proposed algorithm is similar to the traditional
backward stepwise selection, which sequentially deletes inputs
based on the F-statistics [12]. The computational complexity of
the backward stepwise selection algorithm is quadratic (”‘(lz) with
respect to the number of available inputs, whereas the computa-
tional complexity of the proposed algorithm is linear ¢(l). It is also
clearly faster than an exhaustive search of all possible variable
configurations whose complexity is exponential ¢(2'). Therefore,
the SISAL (Algorithm 1) is computationally feasible in the case of a
large number of inputs. Another advantage of the described
algorithm is the ranking of inputs according to their explanatory
power. The pruning starts from the least significant inputs and the
resulting model includes only a few of the most significant ones.
This may give useful information for interpretation of the
underlying process which has generated the data. In addition,
the application of SISAL to a long-term prediction or any
regression problem is straightforwarded.

4. Nonlinear modeling using MLP networks

Although the linear models are easy to interpret and fast to
calculate, they are unfortunately not accurate enough in some
problems. The dependencies between the variables are better
described using a nonlinear model. However, many nonlinear
models are black-box models and thus the interpretation of the
underlying process that generated the data is nearly impossible.
Our proposal is to use the selected set of inputs #; in the
nonlinear prediction model as well. The goals of this approach are
to avoid the curse of dimensionality, over-parameterization, and
over-fitting in the nonlinear modeling phase. In addition, inter-
pretability of the nonlinear model is improved since only a subset
of inputs is included in the final model, i.e the significant
dependencies between the variables are highlighted.

MLP networks [2] with one hidden layer are used in the
nonlinear modeling phase

P
Ve = xm—Zajtanh(Z vmyt,i+wjo>, (5)
=

= ic%;

where p is the number of neurons in the hidden layer, j, is the
estimate of the output y, and oy, o;, and wj are the weights of the
network. The weights are optimized by minimizing the MSE, see
Eq. (2). It is known that only one hidden layer is required to
approximate any continuous function if the number of connection
weights is sufficient [14].

The number of connection weights is controlled by the number
of neurons in the hidden layer. Another option is to set the
number of neurons to be large enough and to apply weight decay

(WD) to reduce the effective number of connection weights [2]. In
the case of WD, the cost function is

N
E= % <Z(y[ -9+ wTo>, (6)
t=1

where 2 is the regularization parameter and 0 is the vector
containing all the weights of the network w; and o;. In WD, the
values of the weights are shrunk toward zero, but they are not set
exactly to zero. So, it is very likely that WD does not perform input
selection. In the context of the linear regression, WD is known as
ridge regression [13].

4.1. FS algorithm

A well known but computationally unattractive algorithm to
select input variables is the FS algorithm [12]. It is used as a
baseline method to compare the prediction accuracy of the
proposed two-phase modeling strategy. In the FS algorithm, the
idea is to start from the empty set of input variables and add
sequentially inputs to the model. In this work, the FS algorithm is
started by finding the single input variable which gives the
minimum validation error. After that, an input is found, which
minimize the validation error with the already added input
variable. This procedure is continued as long as all the inputs are
added to the model. If [ is the number of available inputs, (I + 1)I/2
MLP networks need to be trained. In addition, in each case the
number of neurons in the hidden layer have to validated, which
increases significantly the computational burden. Obviously, the
final subset of inputs has the smallest validation error of all the
subsets. The FS algorithm belongs to the class of wrapper input
selection methods with previous formulation.

4.2. Sensitivity analysis

It may not be enough that the most relevant inputs are found.
In many applications, it is important to evaluate how the inputs
contribute in the prediction of the output.

The contribution of each input to the output can be evaluated
using PADs of the MLP network [8]. The PADs method gives
two results. Firstly, a set of graphs of the PADs versus each
corresponding input can be plotted. The graphs profile the effect
of small changes in each input on the output variable. Secondly,
the sensitivity of the output variable for the data set with respect
to each input can be evaluated. This gives a ranking of the inputs
according to their relative importance in the prediction of output.
Several methods that describe the relative importances of the
inputs in the MLP networks are compared in [8], and the PAD
method is found to give stable results.

The PAD of the MLP network (5) with respect to the input y,_; is

5 )
dy; :%:;%(1 —Pwy, ey, ™)
where [; = tanh(>", ,, Wjiy,_i + Wjo). The graphs are plotted using
the values (y,_;.d;j), i=1,...,N.

The sensitivity of the MLP output for the data set with respect
to an input is calculated as

N .
SSD =S %, SSD; - o

, e Y. 8
2 5=, SSD; £ (8)

Sum of squared derivatives (SSD) value is obtained for each input.
SSD; is the sum over all the observations. In the end, the SSD;
values are normalized such that }7,_,, SSD; = 1. The input having
the highest SSD; value has the most influence on the output. The
ranking of inputs based on SSD values can be compared to the
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ranking given by SISAL. The comparison tells how well the input
selection based on the linear model performs in the nonlinear
problem.

5. Experiments

The two-phase modeling strategy described in the previous
sections is applied to time series prediction. Firstly, the input
selection is performed using SISAL (see Algorithm 1). Secondly,
MLP networks are trained using the selected set of inputs.

The first data set is the Poland electricity load time series [15].
It contains daily measurements from the electricity load in
Poland in the 1990s. The data set includes N = 1400 observa-
tions in the training set and Niest = 201 observations in the
test set. The training and test sets are not consecutive.
The objective is to predict the electricity load one-day-ahead
(y¢), two-day-ahead (y.,;), and seven-day-ahead (y,,s). The
maximum number of inputs is set to be [ = 15, i.e. the available
inputs are y,; (£ =1{i}), i=1,...,15 in each of the three
prediction cases.

The second data set is the Santa Fe laser time series described
in [25]. The training set size is N, = 1000, which is the same as in
the Santa Fe time series prediction competition [25]. The size of
the test set is Nist = 9093. The large test set should ensure
reliable estimates for the prediction accuracies. In this case the
initial set of inputs is y,_; (¥ ={i}), i=1,...,20. The results
are shown for the one-step-ahead (y,), 10-step-ahead (y,,q), and
20-step-ahead (y,, 1) predictions.

We use the direct prediction approach in the long-term
prediction, i.e. we have to construct own model for each case.
All the variables are scaled to have zero mean and unit variance
before the analysis. Both training data sets are illustrated in Fig. 2.

5.1. Phase I: input selection

In SISAL, 10-fold cross-validation repeated M = 100 times is
used. This choice produces Mk = 1000 estimates for the coeffi-
cients B;, which is considered to be large enough for reliably

estimating the sampling distributions of the parameters in the
linear model.

Fig. 3 illustrates the input selection procedure. In all the
prediction cases, it is notable that the validation error does not
start to increase significantly until near the end. Almost all the
inputs are pruned from the model by that point. It indicates that
most of the inputs are irrelevant, at least in the linear model. In
the case of the electricity load time series, the minimum
validation errors are achieved using 11, 7, and 5 inputs in one-,
two-, and seven-day-ahead prediction, respectively. In the case of
the Santa Fe time series 13, 11, and 10 inputs produce the
minimum validation error in the prediction of y;, y,,9, and y;, o,
respectively. More parsimonious sets of inputs are obtained if
thresholding is used. The least complex models whose validation
errors are inside the threshold (see Algorithm 1) include five (y,),
five (y,,1), and two (y.,¢) inputs (electricity load), and eight (y,),
seven (¥;,9), and seven (y,,9) inputs (Santa Fe). It would also be
possible to use the standard deviation of the validation error
instead of the standard deviation of the training error as the
threshold. This choice would result in even more parsimonious
sets of inputs, but probably the prediction accuracy would
decrease.

In Fig. 4, the inputs selected by SISAL for all the k-step ahead
prediction models are visualized. The smaller the white number in
the selected inputs (in black and gray rectangles), the more
important the corresponding input is in the prediction. That is, the
number 1 indicates that the input was the last to be pruned from
the linear model. For instance, the first row of the upper figure
shows the selected inputs for the one-day-ahead prediction in the
electricity load time series. The minimum validation error model
includes the following inputs: %y = {y;_7,¥:_1,Yt_8>Yi_14>Ye_15
YeossYic12:Yi-2:Yic10-Yioe-Yi13) (black and  gray rectangles).
The least complex model whose validation error is under the
threshold E™" 4+ s™in includes only the following inputs:
Lt = ¥t_7,Yt-1-Yi_8>Yi_14:Ye_15}- The inputs are listed in decreas-
ing order of importance in ., and ;. The model with the inputs
#¢ can be nicely interpreted, since the inputs correspond to values
from 7, 1, 8, 14, and 15 days before the predicted value. It is
plausible that the two most important inputs are the values of one
week and one day before the predicted value. In the case of Santa
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Fig. 2. The training data sets of the Poland electricity load (above) and the Santa Fe laser (below) time series.
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error (black line with dots) as a function of the number of inputs in the linear model. The vertical line marks the minimum validation error and the horizontal dash-dotted
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Fig. 4. The selected inputs for the electricity (above) and the Santa Fe (below) time series using SISAL. The outputs are in the vertical axis and the possible inputs in the
horizontal axis. The selected inputs are denoted by black and gray rectangles on each row and the white numbers indicate the ranking of the inputs according to the

importance in the prediction. The inputs marked by the gray rectangles are left out after thresholding (ETi“ + smin)
test sets. The following prediction models are built for each k-

Fe laser time series it is hard to give a physical interpretation of
step-ahead prediction case

the inputs. However, in all three prediction models the most
important inputs (black rectangles) are at the beginning of the
input horizon. (1) Linear model using the inputs .

(2) MLP network with the inputs ¥y (%-MLP), number of

neurons varied, no WD.
5.2. Phase II: nonlinear modeling (3) MLP network with the inputs %, (%,-MLP), number of
neurons varied, no WD.
Based on the results of the input selection, the final models are (4) MLP network with all the available inputs (.#-MLP), number
of neurons varied, no WD.

trained and their prediction performance is evaluated using the
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(5) MLP network with all the available inputs (.#-MLP with WD),
20 neurons in the hidden layer, complexity controlled by WD.

(6) MLP network with inputs selected by the FS algorithm (.-
MLP), number of neurons varied, no WD.

The sets of inputs ¥; and ¥, were selected using SISAL (see
Algorithm 1), thus the cases (2) and (3) corresponds to the two-
phase modeling strategy. The other cases are used as baseline
models to compare the prediction accuracies.

The number of neurons in the #;-MLP, #,-MLP, #-MLP, and
Z1s-MLP, networks were varied from 1 to 15. .#-MLP with WD
was evaluated using 30 values of the regularization parameter 7,
which were equally spaced on a logarithmic scale in the range
7 €[1074,10%). The optimal number of neurons in -, #,-MLP,
and .#-MLP and the optimal value for regularization parameter 4
in #-MLP with WD were selected using 10-fold cross-validation
repeated five times to increase the reliability of the results. To
decrease the computational burden in the FS algorithm, 2-fold
cross-validation repeated five times was used to select the
number of neurons. All the networks were trained using the
Levenberg-Marquardt optimization algorithm [2]. Ten different
initializations were used in the training of the networks in order

0.3 )
02 4
=
£
=1
0.1 4
0 n
107 100 108
N
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to avoid local minima. The network having the smallest MSE was
used in the analysis.

The training errors were monotonically decreasing as a
function of increasing complexity in all the cases. In Fig. 5, the
validation errors are shown as a function of A for #-MLP in the
case of the electricity data (left panel) and the Santa Fe laser data
(right panel). It is notable that the validation error curves are
flatter in the prediction of y, than in the long-term prediction
cases. Thus, a sparser grid for 4 could be used in the one-step-
ahead prediction cases, especially with the Santa Fe time series.

In Fig. 6, the inputs selected by FS algorithm for all the k-step
ahead prediction models are presented. The white numbers
indicate the order, in which the inputs are selected. The smaller
the white number the more important the corresponding input is
in terms of the prediction. In the case of the electricity data, the FS
algorithm selects nearly the same sets of inputs as SISAL selects
into the sets %, see Figs. 4 and 6. Also, the same inputs are the
most relevant ones according to SISAL and the FS algorithm in the
prediction of the Santa Fe time series. Nearly the same sets of
inputs were selected based on both the linear and the nonlinear
selection method.

The prediction accuracy of the final models was evaluated
using the test set, which is not used at all in the input selection

MSE

0.5 1

0 n
107 100 108

X

Fig. 5. Validation errors as a function of the regularization parameter 4 in the prediction of y, (black), y,,, (dark gray), and y, ¢ (light gray) of the electricity load (left panel)
and in case of y, (black), y,,¢ (dark gray), and y, 9 (light gray) of the Santa Fe time series (right panel).
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Fig. 6. The selected inputs for the electricity (above) and the Santa Fe (below) time series using the FS algorithm and MLP networks. The selected inputs are denoted by
black rectangles on each row and the white numbers indicate the order, in which the inputs are added to the models.
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Table 1
MSEs and standard deviations of MSEs (presented in parentheses) for the test set
of the electricity data calculated using the bootstrap resampling procedure

Table 2
MSEs and standard deviations of MSEs (presented in parentheses) for the test set
of the Santa Fe data calculated using the bootstrap resampling procedure

Prediction model One-day-ahead Two-day-ahead Seven-day-ahead

Prediction model One-step-ahead 10-step-ahead 20-step-ahead

Sparse 0.055(0.012) 0.086(0.018) 0.116(0.023)
Linear n=>5 n=>5 n=2
Z-MLP 0.038(0.010) 0.072(0.017) 0.116(0.022)
No WD n=5p=6 n=5p=>5 n=2,p=7
Zy-MLP 0.047(0.013) 0.079(0.017) 0.113(0.023)
No WD n=11,p=4 n=7,p=4 n=5p=3
#-MLP 0.040(0.010) 0.104(0.021) 0.139(0.031)
No WD n=15p=4 n=15p=4 n=15p=3
Z-MLP 0.038(0.010) 0.079(0.016) 0.114(0.023)
With WD 4=0.73,p=20 4=127,p=20 /. =3.86,p=20
Z-MLP 0.037(0.009) 0.072(0.017) 0.138(0.028)
No WD n=4,p=6 n=5p=>5 n=3,p=3

Sparse 0.191(0.008) 0.482(0.014) 0.696(0.018)
Linear n=38 n=7 n=7
Z¢-MLP 0.013(0.001) 0.136(0.008) 0.298(0.009)
No WD n=8p=2 n=7,p=4 n=7,p=5
Zy-MLP 0.007(0.001) 0.119(0.008) 0.221(0.010)
No WD n=13,p=2 n=11,p=2 n=10,p=4
Z-MLP 0.006(0.001) 0.189(0.012) 0.382(0.031)
No WD n=20,p=2 n=20,p=2 n=20,p=2
Z-MLP 0.012(0.001) 0.100(0.006) 0.150(0.008)
With WD 4=0.08,p=20 /. =3.86,p=20 4=212,p=20
Z-MLP 0.006(0.001) 0.137(0.009) 0.253(0.011)
No WD n=6p=4 n=8,p=3 n=5p=>5

n is the number of inputs, p is the number of neurons, and 7 is the regularization
parameter.

phase and in the training of the final nonlinear predictors. One
thousand bootstrap replications were drawn with replacement
from the test set and the MSE was calculated for each replicated
data set. The means and the standard deviations of replicated
MSEs for each model and k-step-ahead prediction case were
evaluated.

In Table 1, the results are shown for the Poland electricity time
series. The sparse linear model with the inputs 5 is as equally
accurate as the linear model with the inputs %, or with all the
inputs .. This indicates that the selected inputs ¥; are most
informative, at least in the linear model. In the cases of one- and
two-day-ahead prediction, #¢-MLP and .#¢-MLP trained without
WD are the most accurate models. They decreases the MSE by 30%
and 14% compared to the sparse linear model in the prediction of
¥ and y,, ,, respectively. For seven-day-ahead prediction, #,-MLP
without WD has the lowest prediction error, although the errors
of the #;-MLP and the #-MLP with WD are nearly the same.
Thus, the sets of inputs . and .#, selected by SISAL include the
most informative input variables for the nonlinear prediction
models.

The prediction accuracies of all the models for the Santa Fe
laser time series are collected in Table 2. Again the linear model
with the inputs % is as equally accurate as the linear models with
the inputs %, and .#. However, it should be noted that the linear
models clearly perform worse in this case than with the electricity
load time series. The nonlinear prediction models reduce the
MSEs significantly compared to the linear models. Therefore,
the problems can be considered to be more nonlinear than the
prediction of the electricity time series. In the prediction of y, and
Yeyo the sparse MLP networks (%¢-MLP, #y-MLP, and Z-MLP)
were approximately as accurate as the MLP network with all the
inputs (£-MLP with WD). Only in the most nonlinear case, i.e. in
the prediction of y, 9, an increase in the number of inputs
decreases the prediction error considerably. However, the selected
inputs based on SISAL and the FS algorithm performs equally well
in each case. This indicates that SISAL has succeeded to select the
inputs for highly nonlinear problems as well.

The relative importances of the inputs (see Eq. (8)) in the
prediction of the electricity load and the Santa Fe data are shown
in Figs. 7 and 8. The SSD values are shown for the models based on

n is the number of inputs, p is the number of neurons, and 7 is the regularization
parameter.

SISAL (#¢-MLP and #,-MLP) and for the most accurate model
(&-MLP with WD). Colors of the bars are the same as the colors of
the rectangles in Fig. 4. This makes the comparison between
the rankings of inputs based on SISAL and SSD values easier. The
inputs are equally relevant according to SISAL and the SSD values
if the black bars are the highest, the gray bars are the second
highest, and the white bars should be almost invisible. The
SSD values are averages over 1000 bootstrap replications of the
test set.

In general, the inputs .#; are also the most relevant according
to the SSD values in each prediction task of the electricity load
(Fig. 7). In other words, the black bars are the highest ones. For
instance, in the case of one-day-ahead prediction and .#¢-MLP, the
inputs are ranked by SSD values in the order of decreasing
importance as follows: ¥, 1, ¥;_7, ¥r_15, Yi_g» and y,_14. The ranking
is nearly the same as with the linear models, see Fig. 4. In #-MLP
with WD, the five most important inputs in the order of
decreasing importance are Y, i, Yi_7, Yi_2, Yi_g» Yi_15. Four of
them are the same as obtained with the linear models. Also, in the
cases of two-day-ahead and seven-day-ahead prediction,
the relative importances of inputs in the MLP networks are nearly
the same as with the linear model.

Fig. 8 illustrates the SSD values in the prediction of Santa Fe
laser data. Again in this case, the inputs #; are the most relevant
ones, except in the prediction of y,, ;¢ by the #-MLP with WD. In
the prediction of y, and y,, 4, the most informative input variables
are at the beginning of the input horizon. It is noteworthy that all
the MLP networks use effectively only the inputs y,_; and y,_, in
the one-step-ahead prediction case. Comparing the importances
of the inputs in .#¢-MLP and in .#,-MLP, it can be seen that inputs
pruned after the thresholding do not contribute significantly in
the nonlinear models. Only in the prediction of y, 9 using the
network #-MLP with WD do the inputs pruned by SISAL (white
bars) have clear contribution in the prediction. Nevertheless, the
two most informative inputs (y,_; and y,_,) are also found by
SISAL.

The influence of the inputs y, ; and y,_g in the prediction of y,
by #¢-MLP are shown in Fig. 9. The shown result is for the test set.
The values of dy,/dy,_; are positive, which means that y, tends to
increase when y,_; increases. Although the relative importance of
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Fig. 7. Relative importances (normalized SSD values) of the input variables in #;-MLP (first row), #-MLP (second row), and #-MLP with WD (third row) in the prediction

of the Poland electricity load time series.

Yi_g is notably smaller than y, ;, the PADs dy,/dy, g are still
clearly non-zero and negative. Thus, y,_g also has a contribution to
the prediction. When y, g increases the output y, tends to
decrease. The effect of the inputs can be considered to be nearly
constant, which indicates that the dependency between the
output y, and the inputs y,_; and y,_g is nearly linear.

The PAD plots of the inputs y, ; and y, 3 in the #¢-MLP
network in the prediction of 10-step-ahead in the Santa Fe data
are presented in Fig. 10. The dependency between the output y, o
and both the inputs y,_; and y, 5 is certainly nonlinear. These
inputs are the most and the third most important according to
SSD values. They are also the first (y,_3) and the second (y,_;) in
the ranking obtained by SISAL, which indicates, that perhaps
unexpectedly, nonlinearly dependent inputs can be identified
using the linear model. Based on these results and prediction

accuracies it seems to be possible to find the most relevant inputs
using SISAL in the nonlinear problem. It was shown in the
experiments that the inputs found by SISAL are also meaningful in
the nonlinear models and the inputs rejected by the SISAL do not
significantly improve the prediction accuracy.

6. Summary and conclusions

A sequential input selection algorithm (SISAL) for a long-term
time series prediction problem was presented. The prediction
strategy applies a filter approach. Firstly, linear models are used in
the time series prediction and a parsimonious set of input
variables is selected using SISAL in the style of backward selection
based on a cross-validation resampling procedure. Input variables
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Fig. 8. Relative importances (normalized SSD values) of the input variables in .#¢-MLP (first row), #,-MLP (second row), and .#-MLP with WD (third row) networks in the
prediction of the Santa Fe laser time series.
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Fig. 9. The profiles of the inputs y,_; (left) and y, g (right) in the #¢-MLP network in one-day-ahead prediction of the electricity time series.
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Fig. 10. The profiles of the inputs y,_; (left) and y,_; (right) in the #;-MLP network in 10-step-ahead prediction of the Santa Fe laser time series.

are successively dropped from the model one at a time according
to a measure, which is based on the empirical distribution of
model coefficients. The ranking measure is similar to the signal-
to-noise-ratio. Inputs whose regression coefficients are markedly
different from zero are retained. Secondly, the set of inputs
selected by SISAL is used as inputs in a training of nonlinear
predictor, such as a multilayer-perceptron network. SISAL pro-
duces sets of inputs that are much sparser than selecting a sparse
set of inputs based on the minimum validation error. For
nonlinear prediction, this reduces the number of weights in the
network, which allows faster training of the network and makes it
less prone to over-fitting. Sparsity of inputs also makes the
nonlinear models more interpretable.

Experiments in the electricity load prediction and the predic-
tion of the Santa Fe laser data set demonstrated that the two-
phase strategy using input selection in a linear prediction model
and subsequent nonlinear modeling using MLP yields accurate
prediction. Based on the experiments, it can be concluded that as
long as the linear model performs at least adequately, i.e. has a
normalized mean squared error less than 0.5, the proposed two-
phase modeling strategy gives competitive results. However, it is
hard to define exact rules for the degree of nonlinearity, that the
input selection based on the linear models works in general.
Nonetheless, this could be studied by extensive simulation
studies, since the correct models and phenomena would be
completely known and correctness of the results easily justified.
On the other hand, the findings should be tested using different
well-known real world data sets. In the experiments it was also
found that the importance of the inputs in the prediction obtained
using the linear models reflected very well the importance of the
inputs in the nonlinear models. When the prediction problem is
highly nonlinear, such as in the case of the Santa Fe data with a
long prediction horizon, training an appropriately regularized
MLP network with all the inputs and a large number of neurons
yields more accurate results than the proposed prediction
strategy. Nevertheless, SISAL also found the most relevant input
variables in this case.
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