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Abstract. Input selection in the nonlinear function approximation is
important and difficult problem. Neural networks provide good general-
ization in many cases, but their interpretability is usually limited. How-
ever, the contributions of input variables in the prediction of output
would be valuable information in many real world applications. In this
work, an input selection algorithm for Radial basis function networks is
proposed. The selection of input variables is achieved using a constrained
cost function, in which each input dimension is weighted. The constraints
are imposed on the values of weights. The proposed algorithm solves a
log-barrier reformulation of the original optimization problem. The input
selection algorithm was applied to both simulated and benchmark data
and obtained results were compelling.

1 Introduction

Radial basis function (RBF) networks have been widely utilized in regression
problems. The advantages of RBF networks are that the training of networks
is relatively fast and they are capable on universal approximation with non-
restrictive assumptions [1]. Fastness of the training is a consequence of simple
structure of the RBF networks. They have only one hidden layer, in which each
node corresponds to a basis function and a mapping from the hidden layer to the
output layer is linear. The activation of hidden node is evaluated by the distance
between an input vector and a center of the basis function. The usual choice for
the basis function is the radially symmetric Gaussian function.

Many approaches are proposed to optimize the number of basis functions
and widths of the Gaussian functions. In [2], the widths are fixed to be same
and centers of the basis functions are selected from the input vectors using
a regularized forward selection. Unsupervised clustering techniques, such as k-
means and Gaussian mixture models trained with the EM algorithm, are another
alternative to determine the centers of basis functions [3,4]. After the centers are
selected, the widths of the Gaussian functions are found, for example, using the
p-nearest neighbor rule [3] or weighting the standard deviation of the data in
each cluster [5]. Nevertheless, these studies do not consider the input selection
at all.



The disadvantage of RBF networks is their black-box characteristics. Basi-
cally, the network includes all the input variables and, in addition, importances
of the inputs are not clear at all. However, interpretation or understanding of
the underlying process can be increased by selecting the input variables. In addi-
tion to interpretability, the rejection of non-informative inputs can improve the
generalization capability of the network [6].

Several approaches exist to perform input selection [6]. In the filter approach,
the input selection procedure is independent from the final non-linear model. The
inputs can be selected, for example, based on mutual information [7] or linear
models [8,9], and the final non-linear model is trained using the selected subset
of inputs. The wrapper methodology takes into account the nonlinear model in
the input selection [10]. Time consuming strategy is to fix the number of input
variables and search through all the possible combinations. Computationally
more efficient search strategies are presented in [10]. In the embedded methods,
the input selection and training of the model are carried out simultaneously
[6]. For instance, in the case of classification and support vector machines, a
radius margin bound is used as a cost function and weights of the inputs are
optimized by gradient descent algorithm [11]. Another alternative is to built the
model using all the available inputs and use the backward elimination of the
least significant inputs. In [12], several different criteria for the ranking of inputs
are suggested.

In this work, an input selection algorithm for RBF networks is proposed. The
algorithm is based on the weighted Euclidean distance, thus each input dimension
has its own weight. The sum of weights are constrained such that some of the
weights tend to be zero and corresponding inputs are rejected from the final
model. The optimal weights are calculated by solving a constrained optimization
problem, which takes into account the non-linear dependency between the inputs
and the output. The proposed algorithm belongs to the class of embedded input
selection methods.

The article is organized as follows. The ordinary RBF networks are briefly
presented in Sect. 2 followed by the input selection algorithm for RBF networks
in Sect. 3. The results of experiments on a simulated data set and Boston Housing
benchmark data set are shown in Sect. 4. Finally, conclusions are given in Sect. 5.

2 Radial Basis Function Networks

Let us assume that there are N measurements available from an output vari-
able yj and input variables xj = [xj,1, . . . , xj,d], j = 1, . . . , N . In a regression
problem, the task is to estimate the values of output yj as accurately as possible
using the inputs xj . If the dependency is presumed to be non-linear, an unknown
function can be estimated using artificial neural networks. In the case of RBF
networks with Gaussian basis functions the model can be written as

ŷj =
N∑

n=1

αnK(cn,xj) + α0, where K(cn,xj) = exp
(
−‖cn − xj‖2

σ2
n

)
. (1)



Usually, the training of RBF networks consists of three stages. First, the cen-
ters of Gaussian basis functions cn are placed using some unsupervised learning
algorithm. Second, the widths of basis functions σn are computed. Third, the pa-
rameters α0 and αn, n = 1, . . . , N are estimated by minimizing the mean squared
error (MSE). However, in this work the basis function is placed on each training
data point xn, n = 1, . . . , N and the widths of Gaussian basis functions have
common value σn = σ. The parameters α0 and αn, n = 1, . . . , N are estimated
by minimizing the regularized cost function

J =
1
N

N∑
j=1

(yj − ŷj)2 + γ

N∑
n=1

α2
n , (2)

where the second term controls the smoothness of nonlinear mapping. For the
given values of σ and γ the parameters α0 and αn are found by solving the
system of linear equations.

3 Input selection for RBF Networks

The disadvantage of model (1) is that it includes all the available input variables.
In addition, it is nearly impossible to distinguish irrelevant and relevant inputs
from each other. In [13], the problem is circumvented by using a Mahalanobis-
like distance in place of the Euclidean distance. The distance is evaluated using
a genetic algorithm in order to minimize the error criterion of the network.
Nevertheless, the approach does not necessarily select inputs.

In this work, a weighted Euclidean distance is used

dw(cn,xj) =

√√√√ d∑
i=1

wi(cn,i − xj,i)2, wi ≥ 0, i = 1, . . . , d . (3)

The constraints wi ≥ 0 guarantee that the distance dw(cn,xj) is real-valued and
nonnegative. The output of RBF network with distance (3) is

ŷj(w) =
N∑

n=1

αnKw(cn,xj) + α0 and Kw(cn,xj) = exp
(−dw(cn,xj)2

)
. (4)

Same weights wi are used in all the basis functions. The basis functions are
ellipsoidal, whose principal axes are parallel to the coordinate axes. The basis
function is located to each training data point as in (1).

The goal is to estimate the weights wi by minimizing the MSE between
the observations yj and the outputs of network ŷj(w). However, if w → 0 the
output of network is constant α0, which equals to the mean of the observations
yj . On the other hand, if w → ∞ the output of network interpolates exactly
the observations yj . In order to achieve a smooth mapping there has to be



a constraint on the values of weights wi. This leads to consider the following
optimization problem

minimize
w

E(w) =
1
N

N∑
j=1

(yj − ŷj(w))2 + γ

N∑
n=1

α2
n

such that
d∑

i=1

wi ≤ t and wi ≥ 0, i = 1, . . . , d .

(5)

The regularization term for the parameters αn is also needed in this case, since
the basis function is located to each data point. The constraint

∑d
i=1 wi < t

shrinks the values of weights toward zero. It is known that the constraint of
this type tends to set some of the coefficients wi exactly to zero with appropri-
ate choice of the parameter t [14,15]. This means that the corresponding input
variables xi are dropped from the model.

Problem (5) can be transformed into an unconstrained problem using the
barrier function method [15]. With a logarithmic barrier function, it can be
written as

minimize
w

J(w) = E(w) + µB(w), where µ > 0 and

B(w) = − log

(
t−

d∑
i=1

wi

)
− 1

d

d∑
i=1

log(wi) ,
(6)

where µ is a predefined small constant. The objective function J(w) is differ-
entiable with respect to all the parameters α0, αn, n = 1, . . . , N , and wi, i =
1, . . . , d.

In this work, the unconstrained problem (6) is solved in two phases. First,
the values of weights wi are fixed and the parameters α0 and αn are optimized
by solving the system of linear equations. Second, the obtained values of α0 and
αn are fixed and the weights wi are optimized. These two steps are repeated
until the convergence is achieved.

The objective function J(w) cannot be solved in the closed from with re-
spect to the weights wi. The solution is determined using Levenberg-Marquardt
optimization algorithm [4,16]. The derivative of J(w) with respect to wk is

∇J(w)k = − 2
N

N∑
j=1

ej
∂ŷj(w)

∂wk
+ µ

∂B(w)
∂wk

, (7)

where ej = yj − ŷj(w). The second partial derivative of the MSE part E(w)
with respect wk and wl is

∂2E(w)
∂wl∂wk

= − 2
N

N∑
j=1

∂ej

∂wl

∂ŷj(w)
∂wk

+ ej
∂2ŷj(w)
∂wl∂wk

. (8)



Algorithm 1
1: Set k = 0, λk = 1, µ = 10−6, and initialize wk

2: Evaluate the search direction pk by solvingh
H̃(wk) + λkI

i
pk = −∇J(wk)

3: Determine the step length

δ = max
n

0 ≤ δ ≤ 1 :
Pd

i=1 wk
i + δpk

i < t, wk
i + δpk

i > 0, i = 1, . . . , d
o

4: Calculate the ratio

rk =
J(wk)− J(wk + δpk)

J(wk)− J̃(wk + δpk)

5: If rk > 0.75, set λk = λk/2

6: If rk < 0.25, set λk = 2λk

7: If J(wk + δpk) < J(wk), set wk+1 = wk + δpk, λk+1 = λk, and k = k + 1

8: Go to step 2 or terminate if the stopping criterion is fulfilled

Following [4,16], the second term is neglected and the element (l, k) of the ap-
proximated Hessian matrix is

H̃(w)l,k =
2
N

N∑
j=1

∂ŷj(w)
∂wl

∂ŷj(w)
∂wk

+ µ
∂2B(w)
∂wl∂wk

. (9)

Only the first partial derivatives of model (4) are required in the evaluation of
(7) and (9), which reduces the computational complexity.

The algorithm to optimize weights w for the given values of γ and t and the
fixed values of parameters α0 and αn is summarized in Algorithm 1. It starts by
initializing the trust region parameter λ0 and weights w0

i such that the starting
point is strictly feasible, i.e.

∑
w0

i < t, and w0
i > 0. The algorithm continues by

evaluating the search direction pk and determining the step length δ such that
the next iterate wk +δpk stays strictly in the feasible region (steps 2 and 3). The
trust region parameter λ is adjusted according to the ratio rk, which is the ratio
between the actual and the predicted decrease in the value of objective function
J(w). In step 7, the new iterate is accepted if it leads to reduction in the value
of objective function. Steps 2-7 are repeated as long as a stopping criterion is
fulfilled, which can be the maximum number of iterations or a relative change
in the value of objective function.

3.1 Input Selection Algorithm for RBF Network

The two phase algorithm for solving the optimization problem is summarized
in Algorithm 2. Let us assume that the regularization parameter γ and the
shrinking parameter t are given. The algorithm starts by initializing the values
of weights wm

i ,m = 0 and evaluating the kernel matrix Kwm . The initialization
wm

i = 0.9t/d corresponds to model (1) with the width σ2 = d/0.9t. The next



Algorithm 2 Input selection algorithm for RBF network
1: Set m = 0, initialize the weights wm

i = 0.9t/d, i = 1, . . . , d, and evaluate the
values of kernel matrix Kwm(xn, xj), n = 1, . . . , N and j = 1, . . . , N

2: Use the weights wm
i to determine the values of αm+1

0 and αm+1
n , n = 1, . . . , N by

minimizing

E(w) =
1

N

NX
j=1

(yj − ŷj(w))2 + γ
NX

n=1

α2
n

3: Use the obtained values αm+1
0 and αm+1

n , n = 1, . . . , N to determine the weights
wm+1

i by Algorithm 1

4: Update the values of kernel matrix Kwm+1(xn, xj) and evaluate the value of cost
function (6) using the the parameters αm+1

0 , αm+1
n , and wm+1

i , set m = m + 1

5: Go to step 2 or terminate if the stopping criterion is fulfilled

step is to estimate the parameters αm+1
0 and αm+1

n by minimizing the regu-
larized error function E(w) for the fixed values of weights wm

i . New values for
the weights wm+1

i are computed using Algorithm 1 using in the previous step
obtained values of αm+1

0 and αm+1
n (step 3). Algorithm 1 is terminated if the

relative decrease in the value of objective function during the last five iterations
is less than 10−4. The maximum number of iterations is 10 in Algorithm 1. Al-
gorithm 2 continues by updating the kernel matrix Kwm+1 and evaluating the
value of objective function (6) using the new values of parameters αm+1

0 , αm+1
n

and the weights wm+1
i (step 4). Steps 2-4 are repeated until the stopping crite-

rion is achieved. The iteration is terminated if the relative decrement is less than
10−4 during the last five iterations or 200 iterations are performed. Algorithm 2
produces the sequence of decreasing values for the objective function.

4 Experiments

4.1 Simulated Data

In this experiment, the performance of Algorithm 2 is illustrated using a simu-
lated data set. In the case of simulated data, the assessment of quality of results
is straightforward, since the underlying phenomenon is completely known. The
values of each of five input variables x = [x1, . . . , x5] were independently drawn
from the uniform distribution in the range xi ∈ [−3, 3]. The target was one
dimensional sinc function and noisy samples from that model were generated as

yj = sinc(xj,1) + εj , j = 1, . . . , N , (10)

where εj were independent samples from the normal distribution εj ∼ N(0, 0.152).
Thus, only first input was relevant. The sizes of the training and the validation
sets were Nt = 200 and Nv = 2000, respectively.

Algorithm 2 is evaluated in twenty points of the regularization parameter γ
and the shrinking parameter t, which were logarithmically equally spaced in the
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Fig. 1. Development of weights wi as a function of iterations in Algorithm 2 for the
simulated data (left panel) using the values of parameters γ and t, which produce the
minimum validation error. On the right panel, the training samples x1 (gray dots), the
unnoisy sinc function (solid line), and the estimated sinc function (dashed line).

ranges γ ∈ [10−4, 1] and t ∈ [0.3, 4], respectively. In all, 400 RBF networks were
trained using Algorithm 2. The validation error was the MSE for the validation
set and the minimum was achieved using the parameter values γ = 0.013 and
t = 0.779. The standard deviation of the validation errors ej = yj − ŷj(w) was
0.133, which corresponds very well to the standard deviation of the noise.

On the left panel of Fig. 1, the evolution of the weights wi, i = 1, . . . , 5 during
the training are presented as a function of the iterations m in Algorithm 2. The
stopping criterion was fulfilled after 62 iterations. In the end, only the weight
w1 was nonzero, which corresponds to the input variable x1. This means that
Algorithm 2 detected the relevant input and discarded irrelevant ones from the
model. The right panel of Fig. 1 presents the samples of the first dimension of
input variables (gray dots), the target sinc function (solid line), and estimated
function (dashed line). The peak of the sinc function is slightly underestimated
and there is also visible overestimation with large values of x1. Otherwise the
approximation is nearly perfect.

4.2 Boston Housing Data

The purpose of this experiment is to illustrate the performance of Algorithm 2
and compare it to the ordinary RBF networks defined by (1) using a real data
set. The used data are called Boston Housing data set and it can be downloaded
from the UCI Machine Learning Repository1. The data contain 506 samples
from d = 13 input variables xi, i = 1, . . . , 13 and from a single output y. The
data set was randomly divided to the training set (Nt = 400) and to the test set
(Ntest = 106). All the inputs and the output were scaled to have zero mean and
unit variance to make the weights comparable.

1 http://www.ics.uci.edu/∼mlearn/MLRepository.html



Table 1. MSEs for Boston Housing data. Minimum CV error (2. column), the test error
of the minimum CV error model (3.column), and the optimal test error (4. colum).

Model CV error Test error Opt. test error

Ordinary RBF 0.127 0.143 0.126

Sparse RBF 0.130 0.149 0.112
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Fig. 2. The values of estimated output ŷj(w) plotted versus the actual values yj for
the training data (left) and the test data (right).

The training of RBF networks was carried out using a 10-fold cross valida-
tion (CV). The ordinary RBF was evaluated using 20 values of the regularization
parameter γo and the widths of Gaussian basis function σ2, which were loga-
rithmically equally spaced in the ranges γo ∈ [10−9, 5 · 10−5] and σ2 ∈ [4, 500].
Algorithm 2 was calculated using 20 logarithmically equally spaced points of the
regularization parameter γa and the shrinking parameter t (γa ∈ [2 · 10−6, 0.03]
and t ∈ [0.2, 7]).

The minimum CV errors and the corresponding test errors for the ordinary
RBF network and the sparse RBF network, i.e. Algorithm 2, are shown in the
second and in the third column of Table 1. The test errors were also calculated for
all the combinations of parameters and the results are shown in the last column
of Table 1. In practice, the both methods are equally accurate in the prediction.
However, it is notable that the most accurate CV model did not produce the
best possible test error in either model.

In Fig. 2, the estimated outputs versus the actual outputs are shown for the
minimum CV error model for the training data (left) and the test data (right).
The predictions are overall very good in the training data. In the test set, some
of the highest values of the output are evidently underestimated otherwise the
approximation is excellent.
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Fig. 3. The values of weights wi in the minimum CV error model (left) and in the
model producing the optimal test error (right).

On the left panel of Fig. 3, the weights wi of the minimum CV error model
are shown. All the weights are non-zero, but the values are not equal. Thus, the
model highlights differences in importances of the inputs in the prediction. In
[9] proposed method selects also all the input variables in the case of Boston
Housing data. On the right panel of Fig. 3, the weights wi of the optimal test
error model are illustrated. The inputs x2 and x3 are rejected from this model.
Also, the weights of the first and fourth inputs w1 and w4 are nearly zero. The
validation error of the optimal test error model (0.146) was just slightly worse
than the minimum CV error (0.130). Thus, it would probably be reasonable to
make compromise between the CV error and number of selected inputs in the
model selection as it is done in [8].

5 Summary and Conclusions

In this work, an input selection algorithm for the RBF networks was proposed.
The algorithm solves a constrained optimization problem. The weighted Eu-
clidean distance is used in the basis functions and the constraint structure on
weights favors sparsity in terms of the input variables. The proposed algorithm
solves the weights and the parameters of the output layer in two phases. Spar-
sity in terms of the inputs makes the models more interpretable compared to
the ordinary RBF networks. The method was applied to the simulated and real
world data set and the results were convincing in both cases.

In the case of large training data, it is not feasible to place the basis function
in each training data point. The centers of basis functions can then be selected
using some unsupervised technique. After that, the centers are kept fixed and
the proposed algorithm can be applied without any modifications. However,
the regularization parameter γ is not necessarily needed anymore. That would
decrease computational complexity in the model selection phase, since only the
value of shrinking parameter t would have to be validated. The disadvantage
of unsupervised approach is that the selection of centers are based only on the



input data. The resulting centers may be suboptimal solution with respect to
the prediction accuracy. Probably better results would be achieved if the centers
of the basis functions were optimized using the embedded approach. That is, the
selection of centers of basis functions would be incorporated into the training
process. Further work is also required that the weights and the parameters of
output layer would be optimized simultaneously.
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