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Abstract

Input selection is advantageous in regression problems. For example, it might de-
crease the training time of models, reduce measurement costs, and circumvent prob-
lems of high dimensionality. Inclusion of useless inputs into the model increases also
the likelihood of overfitting. Neural networks provide good generalization in many
cases, but their interpretability is usually limited. However, selecting a subset of
variables and estimating their relative importances would be valuable in many real
world applications. In the present work, a simultaneous input and basis function
selection method for the radial basis function (RBF) network is proposed. The se-
lection is performed by minimizing a constrained cost function, in which sparsity
of the network is controlled by two continuous valued shrinkage parameters. Each
input dimension is weighted and the constraints are imposed on these weights and
the output layer coefficients. Direct and alternating optimization procedures are
presented to solve the problem. The proposed method is applied to simulated and
benchmark data. In the comparison with existing methods, the resulting RBF net-
works have similar prediction accuracies with the smaller numbers of inputs and
basis functions.

Key words: Regression, Function approximation, Feedforward neural network,
Radial basis function network, RBF, Input selection, Basis function selection,
Feature selection

1 Introduction

Nowadays, amount of collected data increases rapidly. This means that lots
of input variables are available for the model construction in many cases. For
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instance, in the analysis of microarray data the number of input variables may
be several thousands. It is impossible to evaluate all the possible combinations
of input variables in any reasonable time, even with the simplest models.
Thus, effective and automatic input selection methods are required in many
applications.

Relevance of an input variable depends on the problem to be solved. In the
present work, the purpose is to construct as accurate regression models as
possible. An input is considered to be useful or informative if its inclusion
decreases the approximation error considerably. It is thereby useless or nonin-
formative if its rejection has a minor effect on the approximation error. Several
other definitions of relevance of the input variables are given in [9,24,18].

There are at least three advantages in input selection [18]. First, general-
ization capability or prediction performance of the model may be increased.
Second, the cost-effective models are obtained. It is faster to train the models
and economic savings are achieved if measuring of the variables is expensive.
Third, understanding of the underlying process that has generated the data
is improved since the irrelevant variables are dropped from the model. In-
put selection methods are typically divided into three classes, which are filter
approaches [9], wrapper approaches [24], and embedded methods [18].

In the filter approach, the input selection procedure is independent from the
final prediction model that is used to estimate the output values [9]. In the
first phase, input selection is carried out using a simple model, for example,
linear models [7,48] or linear-in-the-parameter models, e.g. polynomials [26].
A computationally more demanding choice is to evaluate mutual information
between the inputs and the output [16]. In the second phase, a nonlinear
model based on the selected inputs is trained. Filter approaches are usually
computationally fast, since the final prediction model is constructed only once.
On the other hand, the obtained subset of inputs may not be optimal for the
nonlinear model.

In the wrapper approach, the prediction model of interest is used to rank the
selected subsets of inputs [24]. The ranking is based on generalization error
estimation techniques, e.g. the cross validation. The optimal but computa-
tionally infeasible wrapper method, or the input selection method in general,
is the exhaustive search, in which prediction performances of all the possible
input combinations are evaluated. The common strategies to search a feasi-
ble number of candidate subsets are forward selection and backward elimina-
tion [49,50]. Naturally, they can also be used in the input selection phase of the
filter approaches, especially in the case of a large number of input variables.
The wrapper approach is typically computationally more demanding than the
filter approach, since the training of the prediction model is carried out several
times.
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In the embedded methods, the input selection procedure is incorporated into
the training of the model [18]. The basic principle is to formalize an objective
function consisting of two terms, which compete with each other. The first
term measures the goodness-of-fit and it should be maximized. The second
term penalizes for the number of inputs and it should be minimized. The
lack of algorithms to directly minimize the number of variables for nonlinear
predictors is stated by the authors of [18]. However, the second term can be
replaced by a regularization term, which shrinks the values of parameters to-
ward zero or set them exactly to zero. Algorithms, that minimize regularized
or constrained cost functions, have been proposed for the multilayer percep-
tron [12] and the radial basis function (RBF) networks [47]. Computational
complexities of embedded methods are typically between complexities of the
filter and wrapper approaches.

In the present article, an embedded method for input variable and basis func-
tion selection for the RBF network is proposed. The novelty of the present work
can be summarized as follows. The problem is formulated as a constrained
optimization problem. The objective is to minimize the errors between the
network outputs and the observed values with subject to sparsity constraints.
The first constraint is imposed on the weights of input dimensions and the
second constraint restricts the values of parameters of the output layer. Both
constraints are implemented by bounding the sum of absolute values of the
parameters. The problem is furthermore written as an unconstrained prob-
lem using a logarithmic barrier function. A Quasi-Newton type optimization
algorithm is proposed to solve the unconstrained formulation.

The rest of the article is organized as follows. In Section 2, a regression problem
is defined and the RBF networks are shortly introduced. After that, the closely
related least squares support vector machine and reduced rank kernel ridge
regression methods are reviewed. Section 3 contains relevant issues on the
model selection. The constrained cost function for the simultaneous input and
basis function selection and its optimization is proposed in Section 4. The
results of experiments on two illustrative examples and three benchmark data
sets are shown in Section 5. Finally, summary and conclusions are given in
Section 6.

2 Regression problem

In a regression problem, the purpose is to learn an input-output relationship
based on data. The underlying functional form is typically unknown. How-
ever, dependencies between the inputs and the output are usually nonlinear.
An additional objective is to find the most informative combination of input
variables.
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The neural networks are an appropriate choice to model data, since they are
capable to approximate a wide class of functions very well [33]. No restrictive
assumptions about the actual underlying dependency structure have to be
made. The quality of estimation depends on the complexity of the network,
which can be controlled by varying the number of neurons and using different
subsets of the input variables [1].

2.1 RBF networks

A radial basis function (RBF) network consists of input, hidden, and output
nodes [32]. Each node in the single hidden layer corresponds to a basis function,
whose activation is evaluated by the distance between an input vector and the
center of the basis function. The output of the network is a linear combination
of the basis functions.

Let us consider a set of N measurements from d inputs xn = [xn1, . . . , xnd]
and an output yn, n = 1, . . . , N . The objective is to estimate the output yn as
accurately as possible using the inputs xn. The output of RBF network with
the Gaussian basis functions is

ŷn = f(xn) =
M
∑

m=1

αmK(cm, xn) + α0 ,

where K(cm, xn) = exp

(

−
‖cm − xn‖

2

σ2
m

)

,

(1)

and M , cm, and σm are the number, the centers, and the widths of the basis
functions, respectively. The model can be written in the matrix form as

ŷ = Kα, (2)

where the elements of matrix K are defined as Knm = {K(cm, xn)}, m =
1, . . . , M , n = 1, . . . , N and the (M + 1)th column is the vector of ones corre-
sponding to the bias term.

Usually, the training of the RBF network includes three steps. First, the cen-
ters of the basis functions cm are placed using some unsupervised clustering
algorithm, such as k-means [28] or the Gaussian mixture models trained with
the Expectation-Maximization algorithm [8]. Second, the widths of the basis
functions are evaluated, for instance, by weighting the standard deviation of
the data in each cluster [6] or determining the Euclidean distance from each
center to its pth nearest neighbor [28]. These heuristics vary the widths such
that there are adequate overlap between the basis functions. Third, the out-
put layer parameters α are estimated by minimizing the mean squared error
(MSE) between the network outputs ŷn and the observations yn.
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The observed values yn are not taken into account in the placement of centers
in [28] and [8]. The approximation accuracy may be increased if the samples
yn are considered as it is done in [31]. The centers of the basis functions
are selected from a large set of possible locations, i.e from all the samples
in the training set, using the forward selection by minimizing the estimate
of the generalization error. The widths of the basis functions have the same
predefined value in [31].

2.2 LS-SVM and RRKRR

Support vector machine (SVM) is the widely used and well known kernel
machine, which is also applicable in the regression problems [43]. SVM uses
inequality constraints, which results in a quadratic programming problem. If
the inequalities are replaced by the equality constraints the solution is obtained
by solving a system of linear equations, and that formulation is known as
kernel ridge regression (KRR) [40] or least squares support vector machine
(LS-SVM) [44]. If particular choices are made in the construction of the RBF
network, it is also closely related to KRR and LS-SVM.

The derivation of LS-SVM starts from the model

ŷ = zT φ(x) + b , (3)

where φ(·) is a mapping from the input space x to a high dimensional feature
space. Given a data set {xn, yn}

N
n=1, the optimization problem in the primal

weight space is

minimize
z,b,e

Jp =
1

2
zT z +

γ

2

N
∑

n=1

e2
n

such that yn = zT φ(xn) + b + en, n = 1, . . . , N ,

(4)

where γ is the regularization parameter and eT = [e1, . . . , eN ]. The cost func-
tion in Eq. (4) is the usual ridge regression [20] formulation in the feature
space. However, the primal problem cannot be solved in the case of an infi-
nite dimensional feature space. The optimum is therefore calculated via the
Lagrange function. The resulting model is

ŷ(x) =
N
∑

n=1

βnK(xn, x) + b , (5)

where the kernel trick K(xk, xl) = Kkl = φ(xk)
T φ(xl) is applied and the

parameters βn, n = 1, . . . , N and b are obtained by solving a system of
linear equations. The kernel function K(xk, xl) must satisfy Mercer’s condi-
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tion [44]. The most typical choice is perhaps the Gaussian kernel K(xn, x) =
exp(−‖xn − x‖2/σ2), when the feature space is infinite dimensional.

The LS-SVM model in Eq.(5) is generally fully dense, i.e βn 6= 0, n = 1, . . . , N .
Sparse approximation strategies of LS-SVM, in which the pruning is based on
the sorted absolute values of the parameters βn, are presented in [45]. Reduced
rank kernel ridge regression (RRKRR) is an alternative approach to built a
sparse model [10]. The aim is to identify a subset of the training samples,
{xj}j∈S ⊂ {xn}

N
n=1, such that the mappings of all the training samples are

approximated by a linear combination of the mappings of the samples in S.

The training of the RRKRR model consists of two parts. First, the mean
reconstruction error

MRE(S) =
N
∑

n=1

(

1−
KT

SnK
−1

SSKSn

Knn

)

, (6)

where KSS is a square matrix and KSn is a column vector such that KSS =
{Kj1j2}j1,j2∈S and KSn = {Kjn}j∈S , is used to identify a subset of feature
vectors [2]. The selection is a forward iterative process. Starting from the
empty set S = ∅, a training sample that minimize MRE is found at each
iteration.

Second, the following problem

minimize
β̃,b

JRRKRR =
1

2

∑

j1,j2∈S

β̃j1β̃j2Kj1,j2 +
γ

2

N
∑

n=1

(yn −
∑

j∈S

β̃jKjn − b)2 (7)

is solved [10]. The parameters β̃j, j ∈ S and b are found by solving a system
of linear equations and the resulting model is

ŷ(x) =
∑

j∈S

β̃jK(xj, x) + b . (8)

A computationally fast strategy to estimate the generalization error of the
RRKRR model in Eq. (8) is presented in [11].

3 Model complexity determination

It is easy to train a RBF network or a LS-SVM model, which interpolates
exactly the training data. However, they would produce very poor generaliza-
tion errors. In order to achieve accurate predictions for novel data, the effective
complexity of the model has to be controlled. The generalization error is com-
monly estimated using resampling techniques [14].
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The complexity of the model can be controlled by the number of basis functions
and the regularization parameter in the cases of the RBF network and LS-
SVM, respectively. Alternatively, as in [47], the RBF network can be trained
by solving a regularized cost function

minimize
α

JRBF =
1

N

N
∑

n=1

(yn − ŷn)2 + C
M
∑

m=1

α2
m . (9)

The regularization by the squared values of the parameters is known as weight
decay [8] or ridge regression [20]. If the basis function is placed on each training
data point in the RBF network (M = N) and the widths of the basis functions
have a common value σm = σ, the difference between the RBF network in
Eq. (1) and the LS-SVM model with the Gaussian kernel in Eq. (5) is the
evaluation of the parameters αm and βn. It is unlikely that the solution of
the problem in Eq. (9) is sparse in terms of the basis functions, i.e. αm 6= 0,
m = 1, . . . , M . The values of the parameters are only shrunk toward zero and
the effective number of parameters is decreased.

Several sequential learning algorithms to select the basis functions for the
RBF network exist. Resource allocating (RA) networks add new hidden units
based on the novelty of observations and optimize the output layer weights
using the least mean squares algorithm [34] or the extended Kalman filter [23].
The drawback of the RA networks is that they cannot remove the already
added basis functions from the network. The minimal RA network [52] and
the general growing and pruning algorithm [21] allow also the pruning of units
which are found to be useless in later stages of the sequential process. A totally
opposite approach is an extreme learning machine (ELM) [22]. The input
layer parameters, such as the centers and the widths of the basis functions,
are randomly selected and only the output layer parameters are optimized.
Although ELM produces competitive prediction accuracies with extremely fast
training, sometimes a practical interpretation of the input-output mapping
may be difficult to give due to the random input layer parameters. ELM
might potentially need a large number of basis functions, whereas the interest
of the present paper is in sparse networks. Furthermore, any of the previous
approaches do not consider the input selection at all.

However, the rejection of uninformative input variables from the model may
also improve the generalization capability [18]. It is furthermore mentioned
in [8], that the number of basis functions that is required to produce a smooth
mapping is significantly decreased by discarding the irrelevant inputs. Forward
selection (FS) is a well known strategy to select input variables and it is used as
a baseline method in the experiments, since it is robust against overfitting [36].

In the FS algorithm [27], the input variables are added one at a time into the
initially empty set of inputs. If d is the number of available inputs, (d + 1)d/2
models have to be trained. In addition, at each step of the FS procedure the
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complexity of the model should be validated using the cross validation or
another generalization error estimation technique, which increases the com-
putational burden. Finally, the selected subset of inputs has obviously the
smallest generalization error of all the evaluated combinations.

In the next section, a novel learning strategy for the RBF network is proposed.
It produces the networks that are sparse in terms of both input variables and
basis functions. The training is carried out by minimizing a constrained cost
function, that is, the fitting of the model and selection of the most useful
inputs and basis functions are done simultaneously.

4 Simultaneous input and basis function selection for RBF network

A disadvantage of neural networks, including the model in Eq. (1), is that
networks contain all the available input variables. Moreover, it is practically
almost impossible to distinguish informative inputs from noninformative ones.
After the training of the model, partial derivatives of the model output with
respect to the inputs can be applied to determine relevance of the inputs
in the MLP and RBF networks [39,13,38]. A derivative criterion measures
the local sensitivity of the network output ŷ to the input xi while the other
inputs are kept fixed. Several criteria to measure importance of the inputs are
reviewed in [25]. A relevance criterion gives typically a ranking of the inputs
according to their importance and a proper subset is selected, for instance,
using a statistical test [37]. A backward input selection algorithm for the RBF
network, that is based on the partial derivatives and an efficient evaluation of
the leave-one-out cross validation error, is presented in [49].

Alternatively, the learning of relative importances of the inputs can be incorpo-
rated into the training of the model. Several metric adaptation and relevance
learning approaches are applied to various classification tasks in [51], whereas
the function approximation problem is discussed in [35,50,47]. Results of ex-
periments in [51,35,50,47] show that the usage of adaptive metrics improves
prediction accuracy of the model and enables input variable selection. Fol-
lowing [35,50,47], the relevance learning is adopted by applying the weighted
Euclidean distance

dw(cm, xn) =

√

√

√

√

d
∑

i=1

wi(cm,i − xn,i)2 ,

wi ≥ 0 , i = 1, . . . , d

(10)

in the Gaussian basis functions. The constraints wi ≥ 0 guarantee that the
distance dw(cm, xn) is real-valued and nonnegative. The adaptive weights wi
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Fig. 1. The level curves of the Gaussian basis function with the Euclidean distance
(left) and the weighted Euclidean distance (right).

reflect the relevance of the input variables, such that the most relevant input
variable has the largest weight.

The output of the RBF network with the adaptively weighted distance in
Eq. (10) is

ŷn(α, w) =
M
∑

m=1

αmKw(cm, xn) + α0

where Kw(cm, xn) = exp
(

−dw(cm, xn)2
)

.

(11)

The same weights wi are used in all the basis functions, which are initially
placed on each training data point. The basis functions are ellipsoidal, whose
principal axes are parallel to the coordinate axes. In Fig. 1, the level curves
of the Gaussian basis function with the Euclidean distance (left) and with the
weighted Euclidean distance (right) are illustrated. It is observed, that the
activation of the basis function gets more and more localized in the direction
xi with increasing value of the weight wi. In the case of wi = 0, the activations
of basis functions are constant with respect to the corresponding input xi,
which makes the input xi useless in the network.

The goal is to estimate the weights wi by minimizing the MSE between the
observations yn and the outputs of the network ŷn(α, w). Let us consider the
assumption, that the basis function is placed on each training data point, i.e
M = N . If wi > 0, i = 1, . . . , d and the values of the parameters αm, m =
1, . . . , M are not regularized, the network interpolates exactly the observations
yn provided that the resulting design matrix is invertible. Particularly, the
design matrix approaches the identity matrix with increasing values of the
weights wi. On the other hand, if wi = 0, i = 1, . . . , d the output of the
network is constant, which equals to the mean of the observations yn.

In order to achieve a smooth practical mapping and sparsity in terms of the
inputs and the basis functions, there has to be constraints on the values of
weights w and the output layer parameters α. This leads to consider the
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following optimization problem

minimize
w,α

E(α, w) =
1

N

N
∑

n=1

(yn − ŷn(α, w))2

such that
M
∑

m=0

|αm| ≤ r ,

d
∑

i=1

wi ≤ t, and wi ≥ 0, i = 1, . . . , d .

(12)

It is known, that the absolute values in the constraints are effective in the
model selection [46]. With an appropriate choice of the shrinkage parameters
r and t, some of the coefficients αm and wi will be shrunk toward zero and some
of them will be set exactly to zero. The basis functions and input variables
having zero coefficients do not contribute to the model output at all. The num-
ber of zero coefficients can be increased by decreasing the values of shrinkage
parameters, whereas large values produce more flexible models. Generalization
capability of the model depends strongly on the shrinkage parameters, that
can be selected by training the model with fixed predefined monotonically
increasing values and estimating the generalization error in each case. The
parameters that produce the smallest estimate for the generalization error are
selected and utilized in the training of the final model. For example, a grid
of shrinkage parameters is evaluated using the 10-fold cross validation in the
experiments of the present work.

Following [41], the first constraint
∑

|αm| ≤ r can be written equivalently as

M
∑

m=0

sm ≤ r and |αm| ≤ sm, m = 0, . . . , M , (13)

where sm are slack variables. Nondifferentiability of absolute values makes the
optimization difficult. Fortunately, the constraints including absolute values
can be further written as |αm|

2 ≤ s2
m, which eases the problem computation-

ally. However, the above transformation increases the number of parameters
to be optimized by M + 1 parameters.

4.1 Algorithm 1 (Direct optimization)

The constrained problem in Eq. (12) can be approximated using a barrier
penalty function method [3]. The idea is to construct the barrier term from
the constraints and add it to the objective function. Using the logarithmic
barrier function and the reformulation of the first constraint in Eq. (13), the
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Algorithm 1 Direct optimization of the cost function in Eq. (14)

1: Initialization: k = 1, choose a strictly feasible point ΘT
k = [αT

k sT
k wT

k ],
set µk = µmax, and select µmin and a factor c ∈ (0, 1)

2: Use Θk as the starting point and apply Algorithm 3 (App. A) to

minimize
Θk

J(αk, sk, wk) = E(αk, wk) + µk (B1(αk, sk) + B2(wk)),

such that the logarithms in Eq. (14) are defined.

3: Let Θk+1 be an optimal solution in the previous step,
set µk+1 = max{cµk, µmin}, and k = k + 1

4: Go to step 2 or terminate if the stopping criteria are fulfilled

problem in Eq. (12) can be written as

minimize
α,s,w

J(α, s, w) = E(α, w) + µ (B1(α, s) + B2(w)) ,

B1 = − log

(

r −
M
∑

m=0

sm

)

−
1

M

M
∑

m=0

log(s2
m − α2

m) ,

B2 = − log

(

t−
d
∑

i=1

wi

)

−
1

d

d
∑

i=1

log(wi) ,

(14)

where the optimization parameter µ > 0 controls the accuracy of the approxi-
mation. The objective function J(α, s, w) is unconstrained and differentiable
with respect to all its arguments. Several methods to solve problems with the
absolute value constraints are compared in [42]. Methods using a barrier func-
tion are found to be competitive in terms of convergence and the number of
iterations.

In practice, the solution of the problem in Eq. (14) is evaluated using a se-
quence of decreasing values of the parameter µ. The gradual decrement of µ
eases the convergence [3]. An algorithm to solve the problem in Eq. (14) for the
fixed values of the shrinkage parameters r and t is presented in Algorithm 1.

First, the values of parameters ΘT
k = [α0, . . . , αM , s0, . . . , sM , w1, . . . , wd] are

initialized such that the constraints in Eqs. (12) and (13) are satisfied with the
inequalities, i.e. a strictly feasible starting point is used. The second step is to
find the parameters Θk+1, that minimize the objective function in Eq. (14).
The problem cannot be solved in the closed form, thus the solutions are eval-
uated using Algorithm 3, that is presented in detail in Appendix A. It is a
Quasi-Newton (QN) type optimization algorithm [3], that is particularly de-
signed to solve the proposed problem in Eq.(14). In the construction of the
Hessian matrix, approximations are used for the term E(α, w), whereas the
exact second partial derivatives are calculated for B1(α, s) and B2(w). In the
course of optimization, it is important to check explicitly that the logarithms
in Eq. (14) are defined. Otherwise, the problem is unconstrained. The value of
optimization parameter µk is decreased in the third step by a factor c ∈ (0, 1)
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Algorithm 2 Alternating optimization of the cost function in Eq. (14)

1: Set k = 1, µk = µmax, initialize the weights w, evaluate the basis functions
Kwk

(cm, xn), m = 1, . . . , M and n = 1, . . . , N , and select µmin and a factor
c ∈ (0, 1)

2: Keep the weights wk fixed and solve the problem

minimize
α,s

J1(α, s) = E(α, wk) + µkB1(α, s)

using Algorithm 3 (App. A). Let αk+1 and sk+1 be optimal solutions.

3: Keep the obtained values αk+1 fixed and solve the problem

minimize
w

J2(w) = E(αk+1, w) + µkB2(w)

using Algorithm 3. Let wk+1 be an optimal solution.

4: Update the basis functions Kwk+1
(cm, xn), evaluate the value of cost func-

tion in Eq. (14), set µk+1 = max{cµk, µmin} and k = k + 1

5: Go to step 2 or terminate if the stopping criteria are fulfilled

until it reaches the minimum value µmin. Steps 2 and 3 are repeated until
the stopping criteria are fulfilled, that is, µk = µmin and the sequence of val-
ues of the cost function is converged or the maximum number of iterations is
performed.

4.2 Algorithm 2 (Alternating optimization)

Instead of the direct optimization method, alternating optimization (AO) can
be used to solve the problem in Eq. (12). AO is an iterative procedure for
optimizing an objective function by alternating the restricted optimizations
over nonoverlapping subsets of variables [5]. In the present work, the obvious
subsets of variables are α and w. The motivation to use AO is two-fold.
First, the restricted minimizations of the problem in Eq. (12) with respect
to the variables α and w in turn are computationally easier than the direct
optimization of the problem. Second, the restricted optimization with respect
to α keeping w fixed is the convex optimization problem. Thus, the global
minimizer is found for this subproblem. The drawback of AO is, that it may
converge to a solution, which is a local optimizer or a saddle point for the
original problem [5].

In Algorithm 2, the AO strategy is proposed to solve the problem in Eq. (14).
Again, the values of shrinkage parameters r and t are assumed to be given and
the value of optimization parameter µ is gradually decreased. First, strictly
feasible initial values for the weights wk are selected and the activations of
basis functions Kwk

are evaluated.

The second step is to optimize the parameters α using the fixed values of
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wk. It is essentially an estimation of a linear model by minimizing the sum
of squares subject to the absolute value constraints, which is known as the
lasso problem [46]. Efficient algorithms to solve the lasso problem are pre-
sented in [30,15]. The computational complexity is reduced by restricting the
optimization on an active set of variables. The algorithms in [30,15] calcu-
late solutions for a range of values of shrinkage parameter. However, the QN
algorithm (Algorithm 3) that is also applied in Algorithm 1 is used for the
optimization in the present work, so that the results of Algorithms 1 and 2
are comparable with each other. Now, no approximations are needed in the
construction of the Hessian matrix, since the weights w are kept fixed and,
thus the second partial derivatives presented in Eq. (A.2) are not needed, see
Appendix A.

In step 3, the obtained values αk+1 are kept fixed and the optimization is car-
ried out with respect only to the weights w using Algorithm 3. The approxi-
mations are once again used in the evaluation of the second partial derivatives
∇2J2(w). The similar optimization is used in [47].

In step 4, the activations of basis functions Kwk+1
are updated and the value of

objective function in Eq. (14) is evaluated using the new values of parameters
αk+1, wk+1. Also, the value of optimization parameter µk is decreased. Steps
2-4 are repeated until the stopping criteria are achieved. The same criteria as
in Algorithm 1 are used.

The convergence properties of the AO technique are well known [4,19]. The
sequence of parameter values converge to a local or global solution if the
subproblems are solved exactly. In [19], it is shown that an inexact solution,
for example a single iteration of Newton method, with respect to one subset of
variables is enough to retain the convergence properties. This could be utilized
in Algorithm 2 if the computational cost is too high due to the large number
of basis functions or input variables.

5 Experiments

This section presents experiments on simulated and benchmark data sets. Sim-
ulated data sets are used to illustrate characteristics of the proposed method.
In the case of simulated data, the assessment of quality of results is straight-
forward, since the underlying phenomenon is completely known.

Furthermore, Algorithms 1 and 2 are compared with two LS-SVM and two
RRKRR models. The first LS-SVM is trained using all the available input
variables [44]. The second LS-SVM is trained with the FS algorithm [27], and
it is referred by LS-SVM with FS. The RRKRR models [10] are constructed
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using all the inputs (RRKRR) and the same subset of inputs (sparse RRKRR)
that is found by the FS algorithm in the training of the second LS-SVM model.
In both RRKRR models, the selection of basis functions is terminated, when
KSS in Eq. (6) is no longer invertible. All the models are built for three
publicly available benchmark data sets.

In all the experiments, the values of parameters αm, sm, m = 0, . . . , M and wi,
i = 1, . . . , d are initialized as follows wi = 0.9t/d and sm = 0.9r/(M + 1). The
output layer parameters are set such that |αm| = 0.99sm and the sign (positive
or negative) is selected randomly with equal probabilities. The basis function is
initially placed on each training data point, that is M = N . Equal initial values
for the weights wi are also used in [50]. The initialization of w corresponds to
the ordinary RBF network in Eq. (1) with the width σ2

m = d/0.9t. The previous
initializations guarantee that the logarithms in Eq. (14) are defined. All the
input and output variables are scaled to have zero mean and unit variance
before the training of the models. The reported errors are mean squared errors
for the normalized data if it is not mentioned otherwise.

In Algorithms 1 and 2, the optimization parameter is decreased from the initial
value µ1 = µmax = 10−3 by the factor c = 0.85 after each iteration. Algorithms
1 and 2 are terminated when µk = µmin = 10−6 and the relative decrement in
the value of cost function is less than 10−4 during the last five iterations or
the maximum number of iterations kmax = 400 is reached.

5.1 Illustrative examples on simulated data

The first task is to estimate a one-dimensional target function using five input
variables. Each input variable x = [x1, . . . , x5] is independently uniformly
distributed in the range xi ∈ [−2, 2] and the target function is

t = (1− x1 + 2x2
1) exp(−x4

1) . (15)

The noisy samples y = t+ε are obtained by adding normally distributed noise
ε ∼ N(0, 0.152) to the values of target function. Due to the construction, the
output y depends only on the first input x1 and the dependency is clearly
nonlinear.

Algorithm 1 is evaluated in twenty points of the parameters r and t, which
are logarithmically equally spaced in the ranges r ∈ [2, 20] and t ∈ [2, 15].
In all, four hundred RBF networks are trained using Ntr = 100 samples and
evaluated by separate validation data (Nv = 1000). The minimum validation
error is achieved by the parameter values r = 5.95 and t = 4.67. In the original
scale, the standard deviation of the validation errors en = yn − ŷn(α, w) is
0.17, which corresponds very well to the standard deviation of the noise.
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Fig. 2. (a) The first dimension of the training samples (black dots), the target
function (black line), and the estimated output (gray line). (b) The weights wi,
i = 1, . . . , 5. (c) The weighted basis functions αmK(cm,x), m = 1, . . . ,M . (d) The
absolute values of the output layer parameters |αm|.

The model producing the minimum validation error out of the 400 trials is
summarized in Fig. 2. The maximum values of the target function are slightly
overestimated and there are also slight underestimation in the beginning and in
the end of the range of x1. Otherwise, the estimated function approximates the
target function nearly perfectly. Only the weight w1 is clearly nonzero, which
means that Algorithm 1 detected the correct input and discarded useless ones
from the model. The activations of the most basis functions are zero through
the whole range of the input variable x1. Twenty one of the parameters αm are
nonzero, that is, solely the fifth of the available basis functions were selected
to the final network.

The second simulated example is similar as in [17]. The objective is to estimate
the following target function

t = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5. (16)

The available input variables xi, i = 1 . . . , 10 are sampled independently from
a uniform distribution U(0, 1). The target does not depend on the last five
input variables, which are thereby useless. The noisy output observations y
are generated by adding the Gaussian noise with zero mean and unit variance
to the target values.
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Algorithm 1 is again evaluated using twenty logarithmically equally spaced
points of the shrinkage parameters r ∈ [10, 103] and t ∈ [0.05, 5]. The sizes of
the training and validation sets are Ntr = 250 and Nv = 1000, respectively.
Out of the 400 possibilities, the combination r = 380 and t = 0.13 results in
the minimum validation error. The standard deviation of the errors en is 1.15
in the original scale, which nearly coincides with the known standard deviation
of the noise. The minimum validation error model is illustrated in Fig. 3. It
shows that the model estimates the output very well and Algorithm 1 selects
again the correct input variables. In the right panel of Fig. 3, the weights are
scaled such that

∑

i wi = 1 to make the comparison of the relative importances
of the inputs easier. The most relevant inputs are x1 and x2. The model uses
approximately 67% of the available basis functions.

For both simulated data sets, virtually identical results are obtained by Algo-
rithm 2.

5.1.1 Computational time

Theoretical complexities of the proposed algorithms are difficult to derive.
However, experimental running times of Algorithm 1 are reported to illustrate
the computational complexity. Several data sets are generated by varying the
number of input variables d and the number of samples N . The inputs are
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Table 1
Properties of the data sets, and the ranges of the hyperparameters (σ2 and γ) and
the shrinkage parameters (r and t).

Bank Boston housing Wine

Training (Nt) 250 400 94

Test (Ntest) 7942 106 30

Inputs (d) 32 13 256

σ2 [10, 105] [1, 104] [103, 109]

γ [1, 104] [0.1, 104] [100, 108]

r [1, 100] [20, 400] [20, 300]

t [0.01, 3] [0.05, 5] [10−3, 0.05]

always drawn from the uniform distribution U(0, 1) and a noisy output is
generated as in the experiment on the second simulated data, see Eq. (16).
Thus, the number of useful inputs is always the same and the number of useless
ones varies.

The average computational times are shown in Fig. 4. The reported values
are averages calculated from five replications. Each time the optimization is
carried out using the shrinkage parameter values r = 380 and t = 0.13. The
algorithms are implemented in MATLAB and all the experiments are carried
out using a 2.2 GHz AMD Opteron processor. It can be seen that the compu-
tational time is more sensitive to the number of samples than to the number
of input variables. However, all the cases including at most 50 inputs are fairly
fast to evaluate. Algorithm 2 had consistently slightly faster running times.

5.2 Comparisons on benchmark data sets

The first data set is called Bank data 1 . It is synthetically generated and it
simulates queues in a series of banks. It is also known that the dependencies
are nonlinear and the amount of noise in the values of output is moderate. The
second set is Boston Housing data 1 , which is the extensively used benchmark
data set. The task is to predict the median value of house prices in the area of
Boston. The third set is Wine data 2 . In this case, the purpose is to estimate
the level of alcohol of a wine from its observed mean infrared spectrum. The
data sets are randomly divided into training and test sets. The sample sizes
and the numbers of input variables are shown in Table 1.

1 Available from: http://www.cs.toronto.edu/∼delve/data/datasets.html
2 Available from: http://www.dice.ucl.ac.be/mlg/index.php?page=DataBases
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Fig. 6. The scaled values of weights wi for the Bank data evaluated by Algorithm 1
(left) and Algorithm 2 (right).

The shrinkage parameters r and t of Algorithm 1 and 2 and the hyperpa-
rameters γ and σ2 of the LS-SVM and RRKRR models are selected using the
10-fold cross validation (CV). The models are evaluated using twenty values of
each parameter, which are logarithmically equally spaced in the ranges that
are presented in Table 1. For instance, Algorithm 1 is evaluated using 400
different combinations of the parameters r and t. The test errors are reported
for the models that produced the minimum validation errors.

The validation errors of the Bank data for different values of r and t in Algo-
rithm 1 are illustrated in the left panel of Fig. 5. In the right panel of the same
figure, the average numbers of selected inputs in CV repetitions are shown. It
can be seen, that the network is notably affected by both shrinkage param-
eters. With small values of r and t (lower left corner), the network is overly
restricted, since almost all the inputs are rejected from the model. The number
of selected inputs increases when the values of r and t increase. Eventually,
nearly all the inputs have nonzero weight wi, which causes an upward trend
in the validation error (upper right corner).
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Table 2
The minimum validation errors (the first value) and the corresponding test errors
(the second value) for the benchmark data sets.

Bank Boston housing Wine

LS-SVM 0.31 | 0.27 0.12 | 0.14 0.0023 | 0.0039

LS-SVM with FS 0.21 | 0.30 0.10 | 0.12 0.0006 | 0.0055

RRKRR 0.31 | 0.28 0.12 | 0.14 0.0024 | 0.0030

sparse RRKRR 0.21 | 0.30 0.10 | 0.12 0.0019 | 0.0020

Algorithm 1 0.26 | 0.29 0.13 | 0.15 0.0026 | 0.0047

Algorithm 2 0.25 | 0.28 0.12 | 0.18 0.0041 | 0.0039

Table 3
The numbers of inputs (the first value) and basis functions (the second value) in the
networks evaluated using the parameters, which produce the minimum validation
errors.

Bank Boston housing Wine

LS-SVM 32 | 250 13 | 400 256 | 94

LS-SVM with FS 11 | 250 11 | 400 74 | 94

RRKRR 32 | 149 13 | 343 256 | 41

sparse RRKRR 11 | 222 11 | 319 74 | 63

Algorithm 1 16 | 40 12 | 152 13 | 94

Algorithm 2 16 | 27 13 | 227 19 | 94

In Fig. 6, the values of weights w for the Bank data are presented. The weights
are scaled such that

∑

i wi = 1 to make the comparison of the relative impor-
tances of the inputs between the algorithms easier. Both algorithms selected
16 input variables. According to Algorithm 2, the most important input is x20,
i.e the weight w20 is the largest. Algorithm 1 dropped that input from the final
network. Otherwise, both algorithms rank nearly the same input variables to
be the most important in the prediction. In all, the algorithms selected 13
same input variables.

The minimum validation errors and the corresponding test errors are presented
in Table 2. In terms of the test MSEs, there are not considerable differences
between the methods in the cases of Bank and Wine data. LS-SVM with FS
and sparse RRKRR perform better than Algorithm 2 (33% smaller MSE in
the test set) in the Boston Housing data. The relative differences seem to be
large also in the Wine data, however, all the methods are able to predict the
output practically perfectly.

19



In Table 3, the numbers of selected inputs and basis functions are reported.
The number of support vectors or basis functions equals always to the number
of training samples in the LS-SVM models. In the cases of Bank and Boston
Housing data, Algorithms 1 and 2 decrease remarkably the initial number of
basis functions. They use also evidently smaller numbers of basis functions
than the RRKRR models. In the case of Wine data, all the parameters αm are
nonzero in the models trained by Algorithms 1 and 2. However, the absolute
values of three parameters are clearly larger than the rest are. Perhaps, the
basis functions with the small absolute values would be discarded if there were
more noise in the values of output. The RRKRR models manage to select basis
functions also from the Wine data, since the selection is solely based on the
input data.

The FS algorithm selects the smaller number of inputs than Algorithms 1 and
2 do in the case of Bank data. Nevertheless, most of the inputs selected by the
FS algorithm are the same which have the highest weights in Algorithms 1
and 2, see Fig. 6. In the prediction of Wine data, Algorithms 1 and 2 use
less than 10% of the available input variables. The model obtained by the FS
algorithm includes definitely more inputs.

6 Summary and conclusions

A novel method for the simultaneous input variable and basis function se-
lection for the RBF network is proposed. The problem is formulated as a
constrained optimization problem, in which the objective is to minimize the
mean squared error between the network outputs and the observed values. The
separate constraints are imposed on the sum of the weights of input dimen-
sions and on the sum of the absolute values of output layer parameters. Two
continuous valued shrinkage parameters control the numbers of inputs and ba-
sis functions. Thus, no sequential backward elimination or forward selection
strategies through the inputs and basis functions are needed.

The networks constructed by the proposed method have two major advan-
tages. First, sparsity in terms of the input variables and the basis functions
makes the networks less prone to overfitting. Second, the rejection of useless
inputs from the network highlights the dependencies in the data. In addition,
the weights of input dimensions describe relative importances of the inputs,
that is, the most relevant inputs have the largest weights.

Another constraint in the original problem formulation is nondifferentiable
due to the absolute values. The problem is reformulated using the logarithmic
barrier function. Two optional strategies to solve the barrier reformulation
are presented, namely the direct and alternating optimization. There are no
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remarkable differences between the two solutions. The computational burden
could be potentially diminished by restricting the calculations on active sets
of inputs and basis functions. In the alternating optimization approach, this
would be fairly straightforward for the optimization of the output layer pa-
rameters, since wide variety of the active set algorithms for the lasso problem
already exist.

In the experiments on simulated data, the correct input variable selection is
accomplished in conjuction with the accurate prediction of the target function.
The decent results are also achieved in the experiments on the benchmark
data sets. Algorithms 1 and 2 are competitive with the LS-SVM and RRKRR
models in terms of generalization capability and with the FS algorithm in
terms of the number of selected input variables.
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A Algorithm 3 (The Quasi-Newton optimization method)

A Quasi-Newton type optimization method to solve the problem in Eq. (14)
for the fixed values of r, t, µ, and the given initialization ΘT

l = [αT
l sT

l wT
l ] =

[αl
0, . . . , α

l
M , sl

0, . . . , s
l
M , wl

1, . . . , w
l
d] is summarized in Algorithm 3. The deriva-

tion of the algorithm is inspired by the Levenberg-Marquardt (LM) optimiza-
tion algorithm [8,29].

Algorithm 3 starts by initializing the trust region parameter λl = 1, which
is followed by the evaluation of the gradient and the Hessian matrix using
the current values of the parameters Θl (steps 1 and 2). The components of
gradient ∇J(Θ) of the objective function in Eq. (14) are

∇αm
J(Θ) = −

2

N

N
∑

n=1

en

∂ŷn(α, w)

∂αm

+ µ
∂B1(α, s)

∂αm

,

∇sm
J(Θ) = µ

∂B1(α, s)

∂sm

,

∇wi
J(Θ) = −

2

N

N
∑

n=1

en

∂ŷn(α, w)

∂wi

+ µ
∂B2(w)

∂wi

,

(A.1)

where en = yn−ŷn(α, w). The following second partial derivatives with respect
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Algorithm 3

1: Set l = 1, λl = 1, and use the initialization ΘT
l = [αT

l sT
l wT

l ]

2: Evaluate the exact gradient ∇J(Θl) and the approximation of Hessian
matrix H̃(Θl)

3: Compute the search direction pl by solving
[

H̃(Θl) + λlI
]

pl = −∇J(Θl)

4: Determine the step length

δ = max{ 0 ≤ δ ≤ 1 :
∑d

i=1 wl
i + δpl

wi
< t, wl

i + δpl
wi

> 0, i = 1, . . . , d
∑M

m=0 sl
m + δpl

sm
< r,

|αm + δpl
αm
| < sl

m + δpl
sm

, m = 0, . . . , M}

5: Calculate the ratio

rl =
J(Θl)− J(Θl + δpl)

J(Θl)− J̃(Θl + δpl)

6: If rl > 0.75, set λl = λl/2

7: If rl < 0.25, set λl = 2λl

8: Set λl+1 = λl, and if J(Θl + δpl) < J(Θl) set Θl+1 = Θl + δpl

9: Set l = l + 1, go to step 2 if the stopping criterion is not fulfilled

to the MSE part

∇2
αm,wi

E(α, w) =
2

N

N
∑

n=1

∂ŷn

∂αm

∂ŷn

∂wi

+ en

∂2ŷn

∂αm∂wi

,

∇2
wi,wj

E(α, w) =
2

N

N
∑

n=1

∂ŷn

∂wi

∂ŷn

∂wj

+ en

∂2ŷn

∂wi∂wj

,

(A.2)

are approximated by neglecting the second terms as is done in [8,29]. The
approximations are used to decrease the computational complexity of the al-
gorithm. Observe, that ∇2

αm1
,αm2

E(α, w) can be evaluated exactly using only

the partial derivatives ∂ŷn/∂αm, since the second partial derivatives of the
network output with respect to α are zero, i.e. ∂2ŷn/∂αm1

∂αm2
= 0. There-

fore, only the first derivatives of the model in Eq. (11) with respect to αm and
wi are needed in the evaluation of the approximated second partial deriva-
tives of E(α, w). The partial derivatives with respect to the barrier functions
B1(α, s) and B2(w) are evaluated exactly, and the approximated Hessian ma-
trix of J(Θ) is denoted as H̃(Θ) ≈ ∇2J(Θ).

Next, the search direction pl is determined (step 3). In the vector pl, the
elements corresponding to the parameters α, s, and w are denoted as pl

αm
,

pl
sm

, and pl
wi

, respectively. The step length δ is defined such that the next point
Θl + δpl stays strictly inside of the feasible region (step 4). The equalities are
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not allowed in step 4, which guarantees that the logarithms are defined in
Eq. (14).

The trust region parameter λ is adjusted according to a ratio rl (steps 5-7).
It is the ratio between the actual and the predicted decrease in the value of
objective function J(α, s, w). The obtained point is accepted if it decreases
the current value of objective function (step 8). Steps 2-8 are repeated until the
relative decrement in the value of objective function is less than 10−4 during
the last five iterations or l ≤ 50,
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