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Abstract
In the electrical impedance tomography inverse problem, an unknown
conductivity distribution in a given object is to be reconstructed from a set
of noisy voltage measurements made on the boundary. This paper focuses
on the development of effective reconstruction techniques for detection of
a circular anomaly from an otherwise constant background. The goal is
to investigate applicability of a two-stage reconstruction process in which a
region of interest (ROI) containing the anomaly (e.g. a tumour) is determined
in the first stage, and the actual reconstruction is found in the second stage by
exploring the ROI. Bayesian inversion methods are applied. The conductivity
distribution is modelled as a random variable that follows a posterior probability
density proportional to the product of a prior density and a likelihood function.
The investigated two-stage reconstruction strategy is, however, not fully
Bayesian. In the first stage, the ROI is determined using a quasi-Newton
optimization algorithm and a smoothness prior, and in the second stage, the
reconstruction is found using Markov chain Monte Carlo sampling and an
anomaly prior. Performances of white noise and enhanced noise models as well
as performances of standard and linearized finite element forward simulations
are compared.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In electrical impedance tomography (EIT), an unknown conductivity distribution σ in an object
� is reconstructed from noisy voltage measurement data given on the boundary ∂�. This is
a nonlinear and an ill-conditioned inverse problem: small errors in voltage measurements or
in forward modelling can lead to very large fluctuations in the reconstructions. The problem
was first introduced in a rigorous mathematical form in 1980 by Calderón [4]. At present,
applications of EIT are numerous. These include detection and classification of tumours in
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breast tissue [8, 13, 19, 21, 33], measuring brain function [9, 23], imaging of fluid flows in
process pipelines [10, 14, 27, 29], and non-destructive testing of materials [18, 32]. EIT has
been reviewed by Cheney et al [7].

This paper focuses on the development of effective reconstruction techniques for detection
of a circular anomaly from an otherwise constant background. The goal is to investigate a
two-stage reconstruction process in which a region of interest (ROI) potentially containing the
anomaly is determined in the first stage, and the final reconstruction is found in the second
stage by exploring the ROI. This approach is investigated regarding clinical applications, such
as detection of a tumour in breast tissue, in which the ROI can be decided based on a diagnosis
by an expert. Anomalous conductivities in EIT have been considered in many studies [1–3].

Bayesian inversion methods are applied. The unknown conductivity distribution is
modelled as a random variable that follows a posterior probability density proportional to
the product of a likelihood function and a prior density, which contains a priori knowledge of
conductivity distribution. The investigated two-stage reconstruction strategy is, however, not
fully Bayesian. In the first stage, the ROI is determined using a quasi-Newton optimization
algorithm and a smoothness prior, and in the second stage, the reconstruction is found using
Markov chain Monte Carlo (MCMC) sampling and an anomaly prior based on the ROI. Quasi-
Newton algorithms are traditional reconstruction methods in EIT. MCMC sampling, proposed
by Fox and Nicholls [11], is commonly used at present. For a review of these methods, see
Kaipio et al [16].

This paper is organized as follows. The reconstruction problem is briefly reviewed in
section 2. The two-stage reconstruction process, forward simulation methods, constructions
of the priors and reconstruction algorithms are described in section 3. Section 4 reports
the numerical experiments. Finally, section 5 summarizes the results and discusses possible
directions for the future work.

2. EIT inverse problem

In the present version of electrical impedance tomography, a number of current patterns of
the form I = (I1, I2, . . . , IL) are injected into a two- or three-dimensional domain � through
a set of contact electrodes e1, e2, . . . , eL attached to the boundary ∂�. An injected current
pattern induces a potential field u in the domain and voltages U1, U2, . . . , UL on the electrodes.
A vector that contains all the induced electrode voltages stacked together is denoted by U.
Voltage data are gathered by measuring these voltages. The measurements are contaminated
by noise. A vector containing the noisy voltage data is denoted by V.

2.1. Complete electrode model

In the complete electrode model (CEM), the contact impedance between the electrode e� and
the boundary is characterized by z� > 0. The electrode voltages U induced by the current
pattern I can be found by solving the forward problem described by the equation

∇ · (σ∇u) = 0 in �,

under the boundary conditions

σ
∂u

∂n

∣∣∣∣
∂�\∪�e�

= 0,

∫
e�

σ
∂u

∂n
ds = I�,

(
u + z�σ

∂u

∂n

) ∣∣∣∣
e�

= U�, (1)

with � = 1, 2, . . . , L, and by Kirchoff’s current and voltage laws
∑L

�=1 I� = 0,
∑L

�=1 U� = 0.
According to Somersalo et al [28], under certain assumptions made on the domain and on
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the conductivity distribution, the weak form of the forward problem has an existing unique
solution (u,U) ∈ H 1(�) ⊕ R

L. Consequently, the CEM equations describe a nonlinear
forward map σ → U(σ ) from the set of all admissible conductivities A to the set of all
possible noiseless electrode voltage vectors [16].

2.2. Bayesian inversion

The reconstruction problem can be formulated through the classical Bayes formula

p(σ |V) = p(σ)p(V|σ)

p(V)
.

The probability density p(σ), supported on the set of admissible conductivitiesA, is the prior
density that contains a priori information about the conductivity distribution, and p(V|σ) is
the likelihood that is the conditional density of measuring V. For given measurement data,
the product of the prior and the likelihood constitutes the posterior density p(σ |V) up to a
constant.

2.2.1. Posterior estimation. A reconstruction can be found by exploring the posterior
distribution. Typically, the maximum a posteriori (MAP) estimate or the conditional mean
(CM) estimate is computed. The corresponding estimation problems are defined as

σMAP = arg max
σ∈A

p(σ |V) and σCM =
∫
A

σp(σ |V) dσ. (2)

Obtaining either of these can be a computationally challenging problem that requires the use
of advanced optimization and numerical integration algorithms. Difficulties arise whenever
the shape of the posterior distribution is such that the algorithms tend to proceed in wrong
directions or get stuck around local maxima. In EIT reconstruction, these difficulties are
caused by the nonlinearity and complexity of the forward map as well as by the ill-conditioned
nature of the inverse problem.

2.3. Additive Gaussian noise model

In the model of additive Gaussian measurement noise, the noisy measurements V and the
actual voltages on the electrodes U(σ ) are assumed to be linked through the formula

V = U(σ ) + N, (3)

where the noise term N is an independent Gaussian random variable with mean µ and
covariance matrix �. This model specifies a likelihood of the form

p(V|σ) = pnoise(V − U(σ )). (4)

2.3.1. White noise model. This work uses what is here called the white noise model, where
the measurement errors are assumed to be independent of each other, to have zero mean and
a common a priori given variance, i.e. µ = 0 and � = γ 2

NI , where γ 2
N > 0 is given. These

are not fully realistic assumptions since in real life both µ and � involve some uncertainty.
However, this model is used since it is typical that the covariance matrix is diagonal and the
scale differences of the individual variances are not great [16].
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2.3.2. Enhanced noise model. Suppose that the map σ → Ũ(σ ) is a simulation of the
actual forward map σ → U(σ ) and that the forward simulation error U(σ ) − Ũ(σ ) is not
zero. In the enhanced noise model [17], a priori information about the forward simulation
error is incorporated into the measurement error model. Formula (3) can be written as
V = Ũ(σ ) + [U(σ ) − Ũ(σ )] + N. Due to the forward simulation error, substituting Ũ(σ )

directly into (3) can lead to errors in the reconstruction. In the enhanced noise model,
the simulation and the actual measurements are assumed to be linked through the formula
V = Ũ(σ ) + Ñ. The noise term Ñ is an independent Gaussian random variable with mean µ̃

and covariance matrix �̃ of the form

µ̃ =
∫
A

[U(σ ) − Ũ(σ )]p(σ) dσ + µ, (5a)

�̃ =
∫
A

[U(σ ) − Ũ(σ ) − µ][U(σ ) − Ũ(σ ) − µ]�p(σ) dσ + �, (5b)

where µ and � are the mean and covariance matrix of the actual measurement noise term in
(3) respectively, and the integral terms are the conditional mean and the conditional covariance
of the forward simulation error with respect to the prior density p(σ).

3. Numerical methods

A finite dimensional representation of the reconstruction problem is obtained by applying the
finite element method (FEM) [30]. The domain � is partitioned into a regular shape of a set
of triangles Th = {T1, T2, . . . , TM}. The conductivity distribution is assumed to be spanned
by characteristic functions of the triangles T ∈ Th, and the potential field in the domain is
assumed to be spanned by n piecewise linear shape functions ϕ1, ϕ2, . . . , ϕn such that ϕk

differs from zero precisely at the kth node of Th. The mesh parameter h is equal to half of the
length of the longest edge in the triangulation.

3.1. Forward simulations

3.1.1. Standard FEM forward simulation. The map σ → Uh(σ ) denotes the standard FEM
simulation of the actual forward map. Numerical evaluation of this map requires finding the
FEM solution of the CEM equations with respect to each injected current pattern. Given a
current pattern I, the FEM solution is

uFE =
N∑

i=1

αiϕi and UFE =
L−1∑
i=1

βi(e1 − ei+1),

where ϕ1, ϕ2, . . . , ϕN are the shape functions of the finite element space and e1, e2, . . . , eL

are the standard basis vectors of R
L. The coefficients α1, α2, . . . , αN and β1, β2, . . . , βN can

be found by solving an (n + L − 1)-dimensional symmetric and positive definite of the linear
system of equations [31]

Ax = b, (6)

where the entries of the vectors x and b are given by xi = αi and bi = 0 respectively if i � N ,
otherwise xi = βi−N and bi = (e1 − ei+1−N)T I . The system matrix entries are given by

Ai,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Bi,j + Ci,j if i � N and j � N,

−Gi,1 + Gi,j+1−N if i � N and j > N,

|e1|
z1

+ δi,j

|ej+1−N |
zj+1−N

if i > N and j > N,
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where Bi,j = ∫
�
σ∇ϕi · ∇ϕj dx dy, Ci,j = ∑L

�=1
1
z�

∫
e�

ϕiϕj ds,Gi,j = 1
zj

∫
ej

ϕi ds, |ei | =
1
zi

∫
ei

ds, and δi,j is the Kronecker delta.
Since in this study only a relatively small anomaly is sought, the linear system (6) can

be solved using the Sherman–Morrison–Woodbury formula [12, 16]. This provides a way to
make low-rank updates to a matrix inverse with a low computational cost.

3.1.2. Linearized FEM forward simulation. For some purposes, the FEM solution can be
computationally too expensive to be used in the reconstruction procedure. In such a case, one
can use e.g. a linearization of the form:

Uln(σ ) = Uh(σ0) + DUh(σ0)(σ − σ0), (7)

where the linearization point σ0 is some properly chosen initial conductivity distribution and
DUh(σ0) is the Jacobian matrix [16] of Uh(σ ) evaluated at σ0. It is often computationally
cheaper to numerically evaluate Uln(σ ) than Uh(σ ). It is, however, also possible that the
accuracy of (7) is inadequate for EIT reconstruction since it is not always possible to choose
a good enough initial conductivity distribution.

3.2. Prior densities

3.2.1. Anomaly prior. In the implemented anomaly prior, it is assumed that the conductivity
distribution is of the form

σ = σbg + σan, (8)

where σbg is a background conductivity and σan is an anomalous conductivity that obtains
the value t in a disc of radius r centred at (c1, c2) and is zero everywhere else. With this
assumption, there is a bijective correspondence between σ and

σ̂ = (c1, c2, r, t). (9)

It is assumed that σ̂ is uniformly distributed over the four-dimensional rectangular set in which

σ̂min � σ̂ � σ̂max.

Here, the symbol � denotes that all the components on the left-hand side are less than or equal
to the components on the right-hand side. If this set is small enough, this prior can be regarded
as informative.

Possible real-life applications in which this prior may be used are the detection of a
tumour in breast tissue as a medical application and the detection of a particle in a fluid-filled
tank as an industrial one. Note that in numerical implementation of this prior, anomalous
conductivities (8) have to be interpolated into the mesh in which the inverse problem is solved.
This work uses a piecewise constant interpolation in which the interpolant is constant on each
triangle in Th and the circumcentres of the triangles are the interpolation points.

3.2.2. Smoothness prior. The smoothness prior applied in this work is a Gaussian prior of the
form p(σ) ∝ exp(−σT �−1σ), where �−1 is a system matrix of a FEM discretized Laplace’s
equation with zero boundary conditions. A Delaunay triangulation, i.e. a triangulation such
that no data points are contained in any triangle’s circumcircle, is used in the construction of
the covariance matrix. Nodes of the Delaunay triangulation are the set of circumcentres of Th,
and the corresponding piecewise linear shape functions are denoted by φ1, φ2, . . . , φM . If the
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minimum distance from the support of φi + φj to the boundary ∂� is greater than or equal to
the mesh parameter h, then

�−1
i,j =

∫
�

∇φi · ∇φj dx dy,

otherwise �−1
i,j = δi,j , i.e. the submatrix corresponding to the triangles near the boundary is

an identity matrix.
As a Gaussian prior this smoothness prior is differentiable. Differentiability of the prior is

necessary in quasi-Newton optimization. In contrast, priors that allow moderate discontinuities
in conductivities, e.g. the above-described anomaly prior, are non-differentiable [16].

3.3. Reconstruction methods

3.3.1. Quasi-Newton optimization. In the following quasi-Newton (Gauss–Newton)
algorithm, a MAP estimate is found by approximately minimizing the posterior density
proportional to the negative exponent of

�(σ |V) = 1
2 [V − U(σ )]��−1[V − U(σ )] + α(σ). (10)

Here, the negative exponent of 1
2 [V − U(σ )]��−1[V − U(σ )] is proportional to the likelihood

and the negative exponent of α(σ) defines a regularizing prior (here the smoothness prior), up
to a constant factor. Connection to classical regularization is obvious; the global minimizer of
the function �(σ |V) is also known as a regularized least-squares solution of the reconstruction
problem.

Algorithm 3.1. The quasi-Newton algorithm

• Choose an initial guess σ (0), a relaxation parameter 0 < λ � 1, and N � 1. For
i = 0, 1, . . . , N − 1, repeat the following two steps:

• calculate the gradient of �(·|V) and its Jacobian matrix at σ (i):

∇�(σ (i)|V) = DU(σ (i))��−1[V − U(σ (i))] + αD(σ (i)),

D∇�(σ (i)|V) = DU(σ (i))��−1DU(σ (i)) + αD2(σ (i)).

• Calculate the next state as

σ (i+1) = σ (i) − λ[D∇�(σ (i)|V)]−1∇�(σ (i)|V).

This algorithm relies on the assumption that (σ) is differentiable as well as on the
assumption that the initial guess is good enough.

It is typical that only one step of this algorithm is applied [16]. In such a case, a linearized
solution of the MAP estimation problem, given in (2), is obtained.

3.3.2. Markov chain Monte Carlo sampling. The so-called Monte Carlo estimate [20] of the
conditional mean σCM, given in (2), is the left-hand side of

σCM ≈ 1

m

m∑
i=1

σ (i),

where {σ (i)}∞i=1 is an ergodic Markov chain with invariant density p(σ |V). Convergence
of the estimate follows from the law of large numbers and the central limit theorem for
ergodic Markov chains [22]. According to the central limit theorem, the estimation error is
asymptotically Gaussian with zero mean and covariance matrix that tends to zero at the rate
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O(1/m). The goal in Markov chain Monte Carlo sampling is to produce an ergodic Markov
chain such that a reasonable convergence rate is achieved in practice. The rate of convergence
in terms of CPU time is affected by several factors, such as complexity of the applied sampling
strategy.

Since in EIT reconstruction the dependence of the noiseless voltage data on the
conductivity distribution is highly nonlinear, it is difficult to determine a decent approximation
for the posterior. The following simple random-walk Metropolis algorithm is adopted in this
study since it is a common choice when the shape of the posterior is not known [20].

Algorithm 3.2. The random-walk Metropolis

• Given are the current state σ (i) and the proposal variance γ 2 > 0.

• Pick a random perturbation ε from a Gaussian distribution with zero mean and covariance
matrix γ 2I , and propose a move ξ = σ (i) + ε.

• Pick a uniformly distributed random number t between 0 and 1 and set

σ (i+1) =
{
ξ if t � p(ξ |V)/p(σ (i)|V),

σ (i) otherwise.

The proposal variance should be chosen so that the acceptance rate, i.e. the ratio of
accepted and proposed moves, is relatively close to 0.234, which is according to Roberts et al
[26] the asymptotically optimal acceptance rate under quite general conditions.

3.3.3. Two-stage reconstruction. The two-stage reconstruction process investigated in this
paper is a combination of the above-described numerical methods. In the first stage, a MAP
estimate is produced by applying one step of algorithm 3.1 in which the smoothness prior is
used as the regularizing prior. Then, a region of interestR potentially containing the anomaly
is determined through

R = {x ∈ � : |σ(x) − σbg(x)| � κ std(σ )}, (11)

where σ is the MAP estimate, std(σ ) is its standard deviation and κ > 0 is a thresholding
parameter. In the second stage, an anomaly prior is chosen based on the set R, and
algorithm 3.2 is employed in exploration of the corresponding posterior.

The reconstruction process is split into two stages, since on one hand, MCMC sampling
speed can be substantially increased if the ROI is given, and on the other hand, quasi-Newton
optimization provides a computationally cheap way to determine the ROI. The resulting
reconstruction strategy is, however, not fully Bayesian since the ROI determined in the first
stage is used as a priori information in the second stage. Rather, it is a bootstrap approach to
Bayesian inversion. Construction of a bootstrap prior from a robust reconstruction has been
suggested by Calvetti and Somersalo [5].

4. Numerical experiments

This section reports numerical experiments in which a circular anomaly (e.g. a tumour in
breast tissue) was sought from a polygonal approximation of the unit disc using the two-stage
reconstruction. The computations were performed using MATLAB 6.5 software and 1.3 GHz
Celeron M 350 notebook with 512Mb RAM.
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Figure 1. The triangulation Th (left) and the refined mesh Th/2 (right). The former was used in the
reconstruction procedure and the latter was used in simulation of the measurement data V.

Figure 2. The anomaly sought (e.g. a tumour in breast tissue). The dashed red circle shows the
size and the location.

4.1. Setup

In the computations, the domain � was a polygonal approximation of the unit disc. Sixteen
electrodes (L = 16) were placed evenly on the boundary ∂�. Together they cover 50% of
the total boundary length. The contact impedances z1, z2, . . . , zL were assumed to be equal to
1. The triangulation Th consisted of 1476 nodes, 2659 triangles and 291 boundary edges
(figure 1). The triangulation was refined towards ∂� since the potential distribution is
not smooth on ∂�. Namely, the boundary conditions of the forward problem (1) imply
discontinuity of ∂u/∂n on ∂�.

The voltage data were gathered by applying trigonometric current patterns I
(k)
� , � =

1, 2, . . . , L − 1 given by

I
(k)
� =

{
cos(kθ�), k = 1, 2, . . . , L/2,

sin((k − L/2)θ�), k = L/2, L/2 + 1, . . . , L − 1,

where θ� = 2π�/L is the angular location of the midpoint of the electrode e�. According to
Cheney and Isaacson [6, 15], this is an optimal way to distinguish a centred rotation invariant
annulus from a homogenous disc.

The anomalous conductivity distribution (figure 2) to be reconstructed from the noisy
measurement data was a piecewise constant interpolant of

σ̂ex = (0.5, 0.2, 0.1, 0.1).

The interpolation points were the circumcentres of a refined triangulation Th/2 illustrated in
figure 1. The refined triangulation was constructed by dividing each triangle in Th into four
subtriangles.

4.2. Simulated measurement data

The simulated noiseless electrode voltage vector U(σex) was obtained by finding the finite
element solution of the forward problem with respect to the piecewise linear nodal basis of
Th/2. The simulated measurement vector V was generated by adding Gaussian white noise N
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Figure 3. The circumcentres of the triangulation Th (left) which form the nodes of the Delaunay
triangulation (right).

Figure 4. Quasi-Newton reconstructions corresponding to α = 10−1 (first from the left) and
α = 10−5 (third). In both cases, the region of interest denoted by the red points is determined as
described in (11) with κ = 2.2 (second and fourth).

with zero mean and covariance matrix � = 10−6I to the noiseless electrode potential values.
This corresponds to a measurement error of the order

‖N‖2/‖U(σex) − U(σbg)‖2 ≈ 5%. (12)

The data were generated using a refined mesh, since otherwise the forward simulation error
would have been zero, which is not realistic. Using the same mesh in both generating the data
and solving the inverse problem is a so-called inverse crime. The forward simulation error
was

‖Uh(σbg) − U(σbg)‖2/‖U(σex) − U(σbg)‖2 ≈ 29%. (13)

4.3. First reconstruction stage (quasi-Newton optimization)

In the first stage of the two-stage reconstruction process, a MAP estimate was computed by
applying one step of algorithm 3.1. The background conductivity distribution σbg was used
as the initial guess. The parameter λ controlling the step size was chosen to be 1. The white
noise model and the smoothness prior were applied in the reconstruction process. In the white
noise model, the actual mean and covariance matrix of the measurement noise, µ = 0 and
� = 10−6I , were assumed to be given. The Delaunay triangulation applied in the construction
of the smoothness prior is illustrated in figure 3. The gradient and the Jacobian matrix of the
maximized function �(σ |V) were computed by using the standard FEM forward simulation.

4.3.1. Results. The obtained MAP estimates give information about the location of
the anomaly, but not about its radius or its value of conductivity. Two reconstructions
corresponding to two different regularization parameter values α = 10−1 and α = 10−5

are shown in figure 4. Decreasing the value of the regularization parameter led not only to
better localization of the anomaly but also to an increased level of the overall variation of the
reconstruction. The regions of interest illustrated in figure 4 were determined as described
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Table 1. Three different anomaly priors.

Lower bounds (σ̂min) Upper bounds (σ̂max)

Prior c1 c2 r t c1 c2 r t

(a) 0.35 0.05 0.05 0.01 0.65 0.25 0.25 1.00
(b) 0.35 0.05 0.10 0.01 0.65 0.25 0.10 1.00
(c) 0.35 0.05 0.05 0.10 0.65 0.25 0.25 0.10

Table 2. The applied prior, the noise model, the forward simulation method, the total number
of steps, the length of the burn-in sequence, the number of steps between retained samples, the
proposal standard deviation (PSD) and the acceptance rate (AR) in the five executed sampling runs.

Run Prior Noise FEM Steps Burn-in Ret.a PSDb ARc

(i) (a) White Standard 100 000 2000 9 0.034 0.24
(ii) (b) White Standard 100 000 2000 9 0.080 0.24
(iii) (c) White Standard 100 000 2000 9 0.025 0.24
(iv) (b) White Linearized 100 000 2000 9 0.020 0.23
(v) (b) Enhanced Linearized 100 000 2000 9 0.075 0.23

a Number of steps between retained samples.
b Proposal standard deviation.
c Acceptance rate.

in (11) with the choice κ = 2.2 for the thresholding parameter. Performing one step of the
algorithm took about 15 s of CPU time.

4.4. Second reconstruction stage (MCMC sampling)

In the second reconstruction stage, a conditional mean estimate was computed by employing
algorithm 3.2. The anomaly prior was applied based on three different a priori assumptions
(a), (b) and (c), as listed in table 1. In the prior (a), all the variables c1, c2, r and t are assumed
to be unknown. The true value of r is given in (b) and the true value of t is given in (c).
The first prior represents the general case. The two latter priors can be used e.g. in industrial
applications where the particle size or the particle conductivity can be given.

The executed MCMC runs (i)–(v) are listed in table 2. The state space of the Markov
chain was four dimensional in the sampling run (i) and three dimensional in runs (ii)–(v). In
each run, the proposal variance, i.e. the variance of the random error ε, was chosen so that the
acceptance rate is close to the asymptotically optimal value 0.234 [26]. All the sampling runs
were of length 100 000 steps. The first 2000 steps were discarded as a burn-in sequence. A
simple blocking strategy was applied by retaining only every tenth step of the iteration as a
sample. Consequently, the total number of samples generated in one run was 9800. Based on
each individual sampling run, a conditional mean estimate (9) was computed.

The standard and linearized FEM forward simulations were applied to the reconstruction
process. In the numerical evaluation of Uh(σan), the electrode potential vector Uh(σbg) was
updated using the Sherman–Morrison–Woodbury formula [12, 16], which performs well
due to the relatively small size of the anomaly. Two noise models were used, namely, the
white noise model and the enhanced noise model. The actual mean and covariance matrix
of the measurement noise, µ = 0 and � = 10−6I , were assumed to be given. Estimates
of the integral terms in (5a) and (5b) were computed as Monte Carlo estimates from 1000
independent random draws from the prior (a). In the numerical evaluation of the integrands,
the standard FEM forward simulation was used.
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(i) (ii) (iii) (iv) (v)

Figure 5. Monte Carlo estimates of the conditional mean after 100 000 iterations in the sampling
runs (i)–(v). The (red) circle shows the exact size and shape of the anomaly. A correct location but a
clearly wrong size was found in the run (i). Runs (ii) and (iii) produced the best reconstructions. The
anomaly was located incorrectly in the run (iv) in which the linearized FEM forward simulation
and the white noise model were applied. A better location was found in the run (v), where in
contrast, the enhanced noise model was used together with the linearized FEM simulation.
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Figure 6. The first 500 iteration steps after the burn-in sequence in cases (i)–(v). Behaviour of
the variables c1 (1st column), c2 (2nd column), r (3rd column) and t (4th column) is illustrated
in separate figures. The dashed black line indicates the true value, the solid (red) line shows the
Monte Carlo approximation and the two dotted (red) lines show the 90% credible interval.

4.4.1. Results. The results of the executed sampling runs are reported in figures 5–7. These
show that in the case (i), the true values of t and r were not found due to the ill-conditioned nature
of the inverse problem and due to the high correlation between these variables. Correlation
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Figure 7. Marginal densities in cases (i)–(v). Marginal densities of the variables c1 (1st column),
c2 (2nd column), r (3rd column) and t (4th column) are illustrated in separate figures. The dashed
black stem indicates the true value. The solid (red) stem shows the conditional mean and the two
dotted (red) stems show the 90% credible interval.

Table 3. Correlation of the variables c1, c2, r and t in the sampling run (i).

Correlation coefficients

c1 c2 r t
c1 1.00 −0.01 −0.15 −0.01
c2 −0.01 1.00 −0.07 −0.02
r −0.15 −0.07 1.00 0.94
t −0.01 −0.02 0.94 1.00

coefficients between the variables c1, c2, r and t in the sampling run (i) are reported in table 3.
Fairly good reconstructions were obtained in cases (ii) and (iii) in which either r or t is fixed to
its true value. The anomaly was clearly dislocated in the case (iv) where the posterior density
was evaluated numerically using the linear FEM forward simulation. A better location was
found in the sampling run (v) which differs from (iv) only by the noise model. Execution time
was between 6 and 7 min in runs (i)–(iii) and between 13 and 14 min in runs (iv) and (v).
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Figure 8. A pseudocolour plot of the absolute value of the natural logarithm of the likelihood
function p(V|σ), evaluated numerically using the standard FEM forward simulation. Here, the
centre point of the anomaly (c1, c2) is fixed to its true value (0.5, 0.2), and the radius r (horizontal
axis) and the value of t (vertical axis) are varied. The darkened part of the image shows where the
absolute value of the natural logarithm of the likelihood is less than 50.

5. Discussion

Numerical experiments, in which a circular anomaly was sought from a polygonal
approximation of the unit disc using the two-stage reconstruction, were reported in this paper.
The performances of two different additive Gaussian noise models were compared. The first
was the white noise model, where the measurement errors were assumed to be independent
of each other and to have zero mean. The second was the enhanced noise model proposed by
Kaipio and Somersalo [17], which incorporates a priori information about the errors in forward
modelling. The forward model considered in this study was the CEM by Somersalo et al [28].
In the numerical experiments, the CEM was simulated using the FEM [30]. Performances of
standard [31] and linearized FEM forward simulations were compared.

In the first reconstruction stage, the implemented quasi-Newton algorithm provided a
computationally cheap but robust MAP estimate. However, based on the present numerical
results concerning two-stage reconstruction, it is suggested that using a reconstruction
produced by the quasi-Newton algorithm one can construct an (bootstrap) anomaly prior
to be used in the second reconstruction stage.

In the second reconstruction stage, the implemented random-walk algorithm produced
very accurate reconstructions in the sampling runs (ii), (iii) and (v), but failed to find the
correct values of r and t in the sampling run (i) and the correct values of c1 and c2 in the
sampling run (iv).

The reason for the failure in the run (i) is that the posterior distribution does not have a
unique minimum because it is ‘banana-shaped’ in an rt-plane as illustrated in figure 8. This
also means that r and t are highly correlated variables. It is obvious that a better sampling
strategy should be developed. Firstly, it is a commonly observed problem that the random-
walk algorithm does not perform well in cases of correlated variables since the proposal tends
to waste effort exploring the distribution in wrong directions. Secondly, the random walk
gets easily stuck around the local maxima if the random-walk steps are not restricted to the
ROI. Consequently, the random walk is likely to find ghost anomalies if it is allowed to move
all around the domain. Monte Carlo methodology involves various sophisticated sampling
schemes [20, 25], e.g. the Metropolis-adjusted Langevin algorithm, that may perform better
than the random-walk Metropolis, especially in cases where the background conductivity
distribution is not constant.

It is also important to point out that the forward simulation error (13) is large compared to
the measurement error (12). Refining the triangulation would reduce the forward simulation
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error and lead to better reconstructions. However, each triangulation has its maximal
resolution. For any triangulation, there are anomalies for which the forward simulation error
is large. This study considered the case in which the anomaly is small in terms of resolution of
the triangulation. Another topic would be to examine the case where the measurement error
is the dominant one. This will require rigorous forward modelling. In such a study, accurate
numerical methods for elliptic boundary value problems and the high-order finite element
method (hp-FEM) [24, 30] can be applied.

The reason for the failure in sampling run (iv) is the combination of the linearized
FEM forward simulation and the white noise model. In this study, the standard FEM forward
simulation was applicable because the conductivity updates are small and restricted to the ROI.
Since computational cost in the numerical evaluation of the map σ → Uln(σ ) is independent
of the structure of the conductivity distribution, it is important to study whether it would
be advantageous to use the linearized FEM forward simulation in the sampling process. A
comparison of the sampling runs (ii) and (iv), however, shows that the use of the linearized
FEM forward simulation leads to less accurate reconstructions than the use of the standard
FEM forward simulation. In the sampling run (iv), the anomaly is dislocated even though its
size is given. A comparison of runs (iv) and (v) shows that the performance of the enhanced
noise model is superior to the white noise model when the linearized FEM forward simulation
is used.

6. Summary and conclusions

The findings and conclusions of this study supporting the applicability of two-stage
reconstruction of circular anomalies in EIT are as follows.

• The investigated two-stage reconstruction process can be applied in the detection of
circular anomalies.

• A smoothness prior can be constructed effectively using the finite element method as
described in section 3.2.2.

• An anomaly prior can be constructed using the c1, c2, r, t coordinates and the piecewise
constant interpolation scheme introduced in section 3.2.1.

• The standard FEM forward simulation performance is superior to the linearized FEM
forward simulation.

• The enhanced noise model performance is superior to that of the white noise model when
linearized FEM forward simulation is used.

• Future work could involve more sophisticated MCMC sampling as well as rigorous
forward simulation using the hp-FEM.
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