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1 Introduction

While analytical models can be very good in describing general properties of phys-

ical systems, purely theoretical analysis is often impossible when the complexity of

the studied phenomena increases. However, many times the most interesting prop-

erties of systems are caused by deviations from the ideal, such as defects, dopants,

active groups or impurities. Computational methods are often well suited for

studying such phenomena, although, such complex systems usually remain very

challenging to analyze. First of all, in order to understand the basic rules by

which a system operates, one must know the properties of individual defects as

well as how they interact. Furthermore, in order to understand the phenomena

they induce, one must analyze how the microscopic properties translate to the

macroscopic scale. In this thesis, the effects of impurities in two different kinds

of physical systems are studied both on the atomistic and the macroscopic level

using multiscale modeling methods.

Firstly, the dependence of magnetic properties of the (Ga,Mn)N and (Ga,Mn)As

materials on the structures formed by substitutional MnGa atoms is analyzed.

These compounds belong to a novel group of materials called diluted magnetic

semiconductors (DMS’s) in which magnetic and semiconducting properties are

combined by doping ordinary semiconductor materials with magnetic impurities

[4]. Since these materials combine electronic and magnetic degrees of freedom,

they have great potential in spin electronics, or spintronics, applications. The

goals in spintronics include integrating magnetism based memory applications with

electronics-based processing into single devices, improving the efficiency of elec-

tronics by using spin in addition to (or instead of) charge to process information,

and even creating completely new devices [5–7]. DMS’s are especially interesting

spintronics materials because, being based on common semiconductor materials

such as GaAs and GaN, they could in principle be easily integrated with existing

semiconductor technology. So far, one of the main difficulties concerning the use

of DMS’s in real devices has been the issue of the known DMS materials exhibiting

magnetic properties usually only at very low temperatures [8]. To help understand

the mechanisms behind the magnetic properties in DMS’s, a spin model incorpo-

rating clusters of magnetic elements is introduced in this thesis and a connection

between the microscopic structures of the magnetic impurities and the magnetic

phase transition temperatures of the macroscopic materials is demonstrated.



2 Background

Secondly, the effect of metal impurities, especially that of Cu and Pb, and im-

purity clusters on the morphology of Si surfaces during anisotropic wet chemical

etching is studied. Silicon is still the most important semiconductor material used

in both integrated circuits (IC) and microelectromechanical systems (MEMS), and

anisotropic wet chemical etching alone or combined with other fabrication tech-

niques is widely used in IC and MEMS manufacturing [9–12]. The devices made

by etching include cantilevers [13], microfluidic systems [14], microneedles [15],

inertial sensors [16] and membranes [17], to name a few. The size of the struc-

tures fabricated by etching is approaching the nanoscale and this must be matched

by the precision of the applied micromachining methods. However, various rough

surface morphologies can be observed on etched surfaces, depending on the crystal-

lographic surface orientation and etching conditions [18], which may be detrimental

to device performance. The development of rough surfaces is due to a complicated

interplay between the silicon surface, the etchant solution and possibly also impu-

rities, making their theoretical and computational analysis challenging. To address

the issue of rough surfaces, a kinetic etching simulation method incorporating also

etchant impurities has been developed in this thesis. A picture of the role of metal

impurities in the surface roughening processes on Si (110) and (100) surfaces is ob-

tained, showing how the formation of impurity clusters can lead to the appearance

of etch hillocks.

This overview is organized as follows. The studied physical systems and the cen-

tral physical phenomena are introduced in Section 2. In Section 3, the quantum

mechanical first principles calculations methods used for studying the systems at

the atomistic level are presented. Similarly, Section 4 discusses the Monte Carlo

techniques applied for simulating the macroscopic behavior of the systems. The

results are summarized in Sections 5 and 6 for the first principles calculations of

microscopic interactions and the macroscopic simulations, respectively. Finally,

Section 7 summarizes and concludes the thesis.



2 Studied physical systems

2.1 Diluted magnetic semiconductors

Along with charge and mass, electrons have a third fundamental property called

spin. The spin is a quantum mechanical entity which roughly speaking makes

the electron act like a small bar magnet. Modern electronics are mostly based

on observing and manipulating electrons using their charge, but the electronic

operations could also be based on the spins of electrons. Since electronics are built

on semiconductors, a natural raw material for realizing such spintronics would be

a semiconductor where the spins can be controlled — a magnetic semiconductor.

Magnetic semiconductors such as Eu chalcogenides were studied already in the

1960’s, but these materials are extremely difficult to grow [19]. However, just as

common semiconductors can be doped with donor or acceptor impurities to be

n- or p-type, they can also be doped with magnetic atoms to produce so-called

diluted magnetic semiconductors, as schematically shown in Figure 2.1. These

materials can exhibit half-metallic properties, where electrons with spins pointing

in one direction partially fill the conduction band and can conduct electricity, like

in a metal, while for the electrons with oppositely oriented spins there is a band

gap at the Fermi level and the electrons behave as in a semiconductor [20]. Such

a property would be ideal for, e.g., creating spin-polarized currents in spintronics

applications. While spin-polarization can be achieved with normal magnetic metals

as well, it is not easy to integrate them to semiconductor devices. [4]

(b) (c)(a)

Figure 2.1: (a) A magnetic semiconductor with a regular array of magnetic el-
ements. (b) A diluted magnetic semiconductor where some of the atoms in the
host semiconductor have been replaced by magnetic elements. (c) An ordinary
non-magnetic semiconductor. The arrows represent magnetic moments, spins.

Having magnetic elements in a material is not enough to make it a magnet. The

local magnetic moments, or spins, of the impurities are directed (shown as arrows
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in Figure 2.1) and if the spins point in opposite directions, the magnetic moments

cancel. The material has a macroscopic magnetic moment only when there is spin-

polarization, i.e., a majority of the spins orient themselves in the same direction.

If all of the spins point in the same direction, the material is called a ferromagnet.

This kind of macroscopic orientation is possible if the spins interact in a way which

makes them face the same direction. Even in this case, raising the temperature will

introduce randomness in the orientation of the spins and at some specific point,

the Curie temperature (TC), the macroscopic order is lost and the ferromagnetic

properties disappear.

After the discovery of ferromagnetic (In,Mn)As [21], other DMS materials based on

III-V semiconductors were soon realized and DMS research focused on this group

of materials. However, despite the vast theoretical effort to understand these ma-

terials, open questions still remain. The types of magnetic interactions between

the magnetic elements can be different for different materials and no universally

accepted model of DMS magnetism exists [6, 8, 22–24]. The most severe obstacle

preventing the use of DMS’s in applications has been their generally low Curie tem-

peratures. Due to this, much of the research has been devoted to finding a diluted

magnetic semiconductor where ferromagnetism remains at room temperature.

(Ga,Mn)As has been one of the most extensively studied DMS’s [25–27] due to its

relatively high Curie temperature, and it is often regarded as the prototype DMS

material where the magnetic interactions are mediated by delocalized holes [28].

Typically the Curie temperatures of the epitaxially grown (Ga,Mn)As samples are

about 110 K [29, 30] and a brief annealing can increase TC to as high as 170 K

due to outflow of Mn interstitials [31, 32]. However, long-time annealing reduces

the Curie temperature once again [33,34]. This phenomenon is explained as a Mn

cluster formation process in Publication IV.

(Ga,Mn)N has also received much attention [6, 35–38] after it was theoretically

predicted to have a Curie temperature above 300 K [8]. However, the growth of

this material is not as well controlled as that of (Ga,Mn)As. The experimental TC

values range from zero to hundreds of Kelvins [39–41] and the variations have been

speculated to be due to formation of second phases or Mn clusters [42–51]. Due

to these difficulties, the mechanisms of magnetic interactions and the microscopic

structure of the material have been poorly understood. These issues are addressed

in Publications I–III where the influence of Mn cluster formation on the Curie

temperature is investigated.
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2.2 Anisotropic wet chemical etching of silicon

Anisotropic wet chemical etching of Si is a fabrication method where a sample

of crystalline Si is exposed to an etchant solution (usually an alkali) that chem-

ically removes (etches) the material. As the etch rate depends on the direction

(anisotropy), the process can sculpt complex structures. Currently, the most com-

monly used anisotropic etchants are KOH and TMAH [tetramethylammonium-

hydroxide, (CH3)4NOH]. On the microscopic level, etching is a process where the

Si atoms on the H-terminated [52–54] Si surface are removed due to being attacked

by the molecules in the etchant. According to the generally accepted model of wet

chemical etching, the removal process of a Si atom is divided to oxidation and etch-

ing steps [55, 56]. In the chemical oxidation step, a hydrogen atom terminating a

dangling bond on the Si surface is replaced by a hydroxide

≡Si−H + H2O
OH−

→ ≡Si−OH + H2. (1)

Here ≡ Si denotes a surface Si sharing three bonds with bulk Si atoms. This

weakens the silicon back bonds and allows additional water molecules to remove

the Si atom in the etching step

≡Si−OH + 3H2O → 3(≡Si−H) + Si(OH)4. (2)

(Similar reaction equations hold for the cases where some of the surface silicons only

bond with one or two other Si atoms.) Since the rate of oxidation depends strongly

on the local bond structure of the Si atom, the process is highly anisotropic.

Atomistically, this means that Si atoms at kink sites are removed more rapidly than

those on steps, which are likewise more reactive than the atoms forming terraces.

On the macroscopic level this results in some crystallographic orientations etching

rapidly while others, such as (111), are fairly inert [57].

(b)(a) H2O

2SiO
OH −

Si

Figure 2.2: In (a) anisotropic etching, nearly perfect geometrical shapes are ob-
tained while (b) isotropic etching results in round shapes.
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During anisotropic etching, the rapidly etched surface orientations are quickly

consumed by the etchant and the resulting structures are in general bound by the

stable, slowly etching surfaces. In a device manufacturing process, specific parts of

the surface are protected from the etchant by oxide or nitride masks. This way the

anisotropy can be used as an advantage to create nearly ideal three-dimensional

geometric shapes, as shown in Figure 2.2. Also, any protrusions extending from

smooth surfaces usually contain active kink and step sites and are also removed in

the etching process. So ideally, anisotropic etching should produce surfaces that

are smooth even on the atomic level, making it a powerful tool in micromachining

[54]. However, non-idealisms like etchant inhomogeneities [2,58], hydrogen bubbles

[3, 59–61] and impurities [61–63] can locally disturb the etching process and lead

to rough features such as pits [63], zig-zags (long straight ridges separated by V-

shaped valleys) [2, 64, 65], step bunches (surface steps of more than one atomic

layer) [2, 66] or hillocks [67–69].

4

2

3

1

apex

floor

fa
ce

t

ed
ge

Figure 2.3: Etch hillocks have the shape of a square or a trapezoidal pyramid. The
hillock structure can form if the floor (1) is etched rapidly while the hillock itself
is stable at the facets (2), the facet edges (3) and the apex (4). [VI]

Hillock formation on the Si(110) surface is one of the most complex of the rough-

ness inducing processes during etching and its theoretical understanding has been

incomplete. It is understood that in general, etch hillocks can form if the sur-

face itself is etched rapidly while the apex, facets and facet edges of the hillock

are stable (see Figure 2.3) [18, 68]. On the other hand, it is also experimentally

known that the presence of Cu impurities in the etchant, even in parts per bil-

lion (ppb) concentrations, can lead to the appearance of these hillocks [62]. (In

industrial etching, such contamination can be present in the etchants used or get

deposited on the Si wafers during surface cleaning.) This suggests that the Cu

atoms stabilize the otherwise unstable hillock apices, and this is most likely due
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to pinning, or micromasking, by impurities adsorbed on the Si surface. However,

the exact structure of the hillocks, the relative stability of their various parts and

the role of Cu or other impurities in their stabilization have not been previously

addressed via direct simulations. In addition to the effect of Cu, experiments have

also demonstrated that the presence of Pb lowers the etch rate without changing

the morphology, while other metal impurities have no effect on the etching pro-

cess [62]. The mechanisms causing the various impurities to act differently are also

unknown.

In order to explain the formation of the hillocks and the role of Cu impurities in

this process, the adsorption energetics of Cu on the H-terminated Si surface are

studied in Publication V and the hillock formation process under the influence of

impurities is analyzed in Publication VI. A more complete picture of the role of

metal impurities is presented in Publication VII, where Pb, Mg and Ag impurities

are studied in addition to Cu.



3 Calculations at the atomic scale

Physical properties of materials and molecules are due to the atomic nuclei and

electrons they consist of, and the goal in first principles calculations is to deduce

these properties by solving the fundamental quantum mechanical equations gov-

erning the behavior of these particles. Unfortunately, quantum mechanical prob-

lems are computationally very demanding. There are many approximate schemes

for calculating the energy and electronic structure of systems at the atomic scale

and the method must be chosen according to the required accuracy and avail-

able computational resources. Some of the most commonly used first principles

computation techniques are based on the density-functional theory (DFT), as the

theory leads to a formulation which is reasonably accurate in practical calculations

while being efficient enough to be able to handle systems of some hundreds or even

thousands of atoms [70,71]. In this thesis, DFT was used for calculating magnetic

interactions of Mn impurities as well as the energies and structures of Mn clusters

in the DMS material (Ga,Mn)N. It was also applied to the calculation of adsorp-

tion energies of Cu, Pb, Ag and Mg as well as the cluster formation energies of Cu

and Pb on H-terminated Si surfaces.

3.1 Density-functional theory

The energy eigenstates of a system of electrons1 are given by the Schrödinger

equation

ĤΨ(r1, σ1; . . . ; rN , σN ) = EΨ(r1, σ1; . . . ; rN , σN), (3)

where Ψ is an N -body wave function and σi are the electron spin z-components

(±~/2, or ↑, ↓) and ri are the positions of the electrons. Ĥ is the Hamiltonian

operator which can be written (in Hartree atomic units) as

Ĥ = T̂ + V̂ext + V̂ee

= −

1

2

N
∑

i

∇
2
i +

N
∑

i

Vext(ri) +
1

2

∑

i6=j

1

|ri − rj|
, (4)

where T̂ , V̂ext and V̂ee are the kinetic energy, external potential energy and electron-

electron interaction operators, respectively.

1Since the atomic nuclei are massive when compared to electrons, they are often treated as
fixed particles that create an external potential. This is the Born-Oppenheimer approximation.
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The central premise of DFT is to ignore the full wave function Ψ and work on the

three dimensional spin densities

nσ(r) = N
∑

σ2,...,σN

∫

d3r2 . . .d3rN |Ψ(r, σ; r2, σ2; . . . ; rN , σN)|2 (5)

instead. This is justified for calculation of ground state (gs) properties by the

Hohenberg-Kohn theorems [72] which state that the variational principle holds for

the density n = [n↑, n↓] — i.e. there exists an energy functional E[n] which gives

the correct ground state energy for ngs and a higher energy for other densities —

and that the ground state wave function is a functional of the ground state density,

Ψgs = Ψ[ngs].

In practice, the spin densities are calculated using the Kohn-Sham scheme [73,74].

The idea is to map the many-electron problem to a group of non-interacting one

electron equations in an effective external potential V σ
KS:

[

−

1

2
∇

2 + V σ
KS[n](r)

]

ψσ
i (r) = εσ

i ψ
σ
i (r) (6)

nσ(r) =
∑

i

|ψσ
i (r)|2. (7)

Here ψσ
i = ψσ

i [n](r) are effective Kohn-Sham orbitals used for determining the

spin densities, not real wave functions. On the one hand, we know that the ground

state density minimizes the total energy with the constraint of fixed number of

electrons with up and down spins. Using Lagrange multipliers this can be written

in the variational form δ
[

E[n] −
∑

σ µσ

∫

d3r nσ(r)
]

= 0 and it leads to the Euler

equations δE/δnσ = µσ. On the other hand, if we consider the system of non-

interacting electrons, the energy is simply given by the non-interacting kinetic

energy

T0 =
∑

i,σ

∫

d3r ψσ∗
i (r)

(

−

1

2
∇

2

)

ψσ
i (r) (8)

and the effective potential, leading to Euler equations δT0/δnσ + V σ
KS = µσ. If we

define the exchange-correlation energy via

E[n] = T0[n] +

∫

d3r n(r)Vext(r) +
1

2

∫

d3r d3r′
n(r)n(r′)

|r − r′|
+ Exc[n], (9)

where n(r) = n↑(r) + n↓(r), comparing the Euler equations and (9) fixes the
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effective Kohn-Sham potential as

V σ
KS[n](r) = Vext(r) +

∫

d3r′
n(r′)

|r − r′|
+
δExc

δnσ
, (10)

where δExc/δnσ = V σ
xc[n](r) is the exchange-correlation potential.

The formulation of DFT is in principle exact and all the difficulties of many-body

interactions have been hidden in the exchange-correlation potential. However, so-

phisticated approximations for the exchange-correlation are computationally heavy

and one must find a balance between the necessary accuracy and affordable com-

putation time when choosing the proper treatment.

3.2 Implementations of the theory

In addition to the exchange-correlation functional, one must also choose how to

describe the Kohn-Sham orbitals and decide on how to handle the electron–nucleus

interactions when doing numerical calculations. Since DFT is a widely used tech-

nique, several different implementations exist. In this thesis, the vasp (Vienna

Ab-initio Simulation Package) [75] and siesta (Spanish Initiative for Electronic

Simulations with Thousands of Atoms) [76,77] codes have been used for the study

of DMS materials and Si surfaces, respectively. Of these two codes, vasp is consid-

ered to be more accurate while siesta is more efficient especially for large systems.

Exchange-correlation functionals

In the original formulation of the Kohn-Sham theory, the exchange-correlation was

handled using the local density approximation (LDA)

ELDA
xc [n] =

∫

d3r n(r)exc(n(r)), (11)

where exc is the exchange-correlation energy density of the uniform electron gas.

The approximation is valid for systems where the electron density is slowly chang-

ing, but in practice it gives reasonable results even for single atoms where the

density is not homogeneous.

The so-called generalized gradient approximation (GGA) is the most common class

of improved exchange-correlation functionals. In GGA, also the density gradients
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are used for calculating the exchange-correlation energy

EGGA
xc [n] =

∫

d3r fGGA(n,∇n) (12)

and several different parametrizations fGGA exist, such as PW91 [78], PBE [79] and

BLYP [80, 81]. Although LDA and GGA are usually adequate, they have short-

comings. For instance, semiconductor band gaps calculated using these functionals

tend to be too narrow [70]. More advanced functionals have been designed to fur-

ther correct LDA and GGA, such as meta-GGA [82], on-site Coulomb corrected

LDA + U [83, 84] and self-interaction corrected SIC [85]. Also so-called hybrid

functionals have become increasingly popular. These functionals work by combin-

ing parts of various exchange-correlation functionals and the Hartree-Fock (exact)

exchange in order to balance the shortcomings of any single functional [86,87]. In

this work, the functionals PW91, LDA + U [I–III] and PBE [V–VII] have been

used.

Basis functions and k-points

The vasp code uses a plane wave basis where the Kohn-Sham orbitals are expressed

using an expansion

ψσ(r) = eik·r
∑

G

cσk,Ge
iG·r, (13)

where k is a wave vector from the first Brillouin zone and G are reciprocal lattice

vectors. The sum is truncated for some |G + k| > Gcut and adjusting this cut-off

allows one to easily control the accuracy of the expansion.

A linear combination of atomic orbitals (LCAO) approach is adopted in siesta.

This means that the orbitals are expanded in a spherical harmonic type basis con-

nected to each atom. These basis functions are also strictly cut at some specified

distance. This increases the locality, which enables the calculation of individual

molecules, wires or slabs without unwanted interactions with periodic images. Cal-

culating large systems also becomes faster when basis functions corresponding to

atoms far from each other do not overlap. However, controlling convergence in

LCAO is not as simple as tuning the energy cut-off in a plane wave basis and

several parameters must usually be fine-tuned to ensure accuracy. In addition,

removing or adding atoms changes the basis and this may lead to basis set super-

position errors (BSSE) requiring additional corrections [88].
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Regardless of the used basis, evaluation of physical quantities in crystals and other

periodic systems often requires calculation of integrals over the Brillouin zone.

This is done by numerical integration using sets of k-points in the reciprocal space,

chosen according to the Monkhorst-Pack scheme [89].

Nuclear potentials

The Coulomb potential between a nucleus and an electron is of the form 1/r and it

diverges when the separation r gets short. This results in rapidly oscillating elec-

tronic wave functions near the nuclei which are difficult to describe using truncated

basis set expansions. In order to circumvent this problem, siesta uses pseudopo-

tentials [90] while vasp allows the use of the projector augmented wave (PAW)

method [91–93].

Pseudopotentials equal the real potentials when viewed far away from the nuclei,

but at short distances the diverging potential is replaced by a smooth function.

This also smooths out the wave function oscillations near the nuclei making these

pseudo wave functions numerically easier to handle. Usually the electrons of an

atom are divided into core and valence electrons. The core electrons are thought

to be inert and so they are ignored in the Kohn-Sham scheme while their screening

effect is incorporated into the pseudopotentials. The valence electrons are treated

fully in the calculations. Since the chemical properties of atoms depend on the

behavior of the electronic wave functions in the interstitial region, the pseudopo-

tential approach is justified e.g. in bond calculations. In the siesta calculations

presented in this work, the norm-conserving Troullier-Martins parametrization of

pseudopotentials was used [94].

PAW shares the core and valence region philosophy of pseudopotentials but imple-

ments it in a more sophisticated manner. The idea is to construct a linear transfor-

mation T̂ between smooth auxiliary functions |ψ̃〉, for which a plane wave expansion

converges rapidly also near the nuclei, and real physical states |ψ〉 = T̂ |ψ̃〉. Phys-

ical operators can also be transformed accordingly, 〈ψi|Q̂|ψj〉 = 〈ψ̃i|T̂
†Q̂T̂ |ψ̃j〉 =

〈ψ̃i|Q̃|ψ̃j〉, allowing the calculation of matrix elements using the easy-to-handle

auxiliary functions, leading to modified Kohn-Sham equations. In essence, PAW

provides a direct correspondence between the auxiliary functions and the exact

Kohn-Sham equations — something that does not exist for the pseudo wave func-

tions of the pseudopotential method.
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The PAW transformation is constructed as follows. Near the nuclei positioned at

R, in areas denoted by ΩR, the wave functions are expanded in atomic partial

waves (spherical harmonics) |φα,R〉. Since the wave functions need to be smoothed

only near the nuclei, the transformation is of the type

T̂ = Î +
∑

R

T̂R, (14)

where T̂R have an effect only inside ΩR. Now, smooth auxiliary partial waves

|φ̃α,R〉 are chosen so that

T̂R|φ̃α,R〉 = |φα,R〉 − |φ̃α,R〉 (15)

φα,R(r) = φ̃α,R(r), r /∈ ΩR (16)

and projectors 〈p̃α,R| are defined allowing the expansion of auxiliary wave functions

using the auxiliary basis

|ψ̃〉 =
∑

α

〈p̃α,R|ψ̃〉|φ̃α,R〉. (17)

Combining (14), (15) and (17) yields the transformation

T̂ = Î +
∑

α,R

(

|φα,R〉 − |φ̃α,R〉

)

〈p̃α,R|. (18)

Once the auxiliary expansion and the projectors have been defined, applying the

transformation operator is straightforward.

Self-consistency iteration

Calculating the effective potential from (10) requires knowledge of the density n.

However, in order to solve the spin densities from (6) and (7) one needs the effective

potential. In practice, this problem is overcome using a self-consistency iteration.

Some initial guess is made for the density, the effective potential is determined

based on it, and a new density is solved from the potential. This is repeated with

the new density — or some mixture of the new and old densities — until the change

in the total energy between iteration steps becomes small enough, indicating that

all of the equations (6), (7) and (10) are satisfied simultaneously.
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Setup of the calculated systems

Both the DMS and Si systems studied in this work were calculated in periodic

supercells. The (Ga,Mn)N material was treated as bulk wurtzite [I–III]. The

data used for modeling (Ga,Mn)As [IV] came from similar calculations in the

bulk zinc-blende structure [1, 95, 96]. The Mn atoms were always placed on Ga

interstitial sites and remained relatively immobile in geometric optimization. The

H-terminated Si surfaces were modeled as (111), (112) and (221) oriented slabs

of three to four Si layers, with periodicity in only two dimensions [V–VII]. The

metal impurities in these calculations were placed on various surface sites from

where they were allowed to find local energy minima.
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At the macroscopic scale, the behavior of physical systems is normally governed

by classical mechanics2 and statistical physics. The so-called Monte Carlo (MC)

methods, which rely on the use of random numbers, are naturally suitable for

statistical analysis [97]. However, Monte Carlo techniques may in some cases also

be used for simulating the kinetics of non-equilibrium processes. In this thesis,

the equilibrium MC technique was used for calculating the Curie temperatures of

the diluted magnetic semiconductor materials, and also to estimate the Mn cluster

size distributions in (Ga,Mn)N. Kinetic MC (KMC) was mostly used for etching

simulations. Lattice KMC results of Mn diffusion in (Ga,Mn)As [98] were also used

as a starting point for TC calculations in Publication IV. This Section introduces

the used MC methods and presents the physical models to which these simulation

schemes are applied.

4.1 Equilibrium Monte Carlo

Phase space sampling

The macroscopic properties of a system in equilibrium can be described using

statistical physics and ensemble theory. Let us denote the phase space of possible

system states by Ω and the normalized probability of the system to be in state

x ∈ Ω by ρ(x). For a system described by the Hamiltonian H , the canonical

probability density is then given by the Boltzmann distribution

ρ(x) =
1

Z
e−H(x)/kBT , (19)

with Z = Tr e−H/kBT being the canonical partition function. Now in principle, the

macroscopic averages for such a system are obtained by integrating over the phase

space

〈A〉 = Tr ρA =
1

Z
TrAe−H/kBT . (20)

However, such integrals can be incredibly complex and straightforward numerical

integration methods are unable to handle them. The integration can be carried

2Classical theory is valid when the relevant length scales are longer than the de Broglie
wavelength, which is microscopic.
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out by using Monte Carlo methods to sample points in the phase space, {xi} ⊂ Ω,

according to the distribution ρ(x). By doing so, the ensemble average is simply

approximated by an arithmetic average [97]

1

Z
TrAe−H/kBT

≈

∑N
i e

−H(xi)/kBTA(xi)/ρ(xi)
∑N

i e
−H(xi)/kBT/ρ(xi)

(21)

=
1

N

N
∑

i

A(xi). (22)

This procedure is called importance sampling since it emphasizes the statistically

important regions of Ω. The A(xi) values typically fluctuate only moderately

making the average (22) converge rapidly as N increases.

Markov chains

In order to formulate algorithms that realize the importance sampling of points in

the phase space, we introduce stochastic processes known as Markov chains [97].

A Markov chain is a collection of random variables {xi} so that the probability

distribution of a variable xi+1 depends on the value of the previous one, xi. For

simplicity, let us consider the case where variables can obtain values only from a

finite set of states {y
j
}. For such finite Markov chains we can define probability

vectors πi so that the element (πi)
j holds the probability that the variable xi is in

the state y
j . Since the probabilities for πi+1 only depend on their previous values,

πi, a transition matrix P links the vectors together

πi+1 = Pπi. (23)

If the process is aperiodic and if starting from one state it can reach any other

(i.e. it is ergodic), a unique limiting distribution exists

Π = lim
i→∞

πi = lim
n→∞

P nπ0 (24)

for any initial distribution π0.

The transition matrix elements Pkj can also be interpreted as transition rates from

state y
j to y

k, R(j → k), when jumping from one random variable to the next.

Since the limiting distribution is static, the in- and outflow of probabilities must
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balance out

∆Πj =
∑

k

[

R(k → j)Πk
− R(j → k)Πj

]

= 0. (25)

This is certainly satisfied if
R(j → k)

R(k → j)
=

Πk

Πj
(26)

for all j and k. Equation (26) is called the detailed balance condition and it

provides a connection between the transition probabilities and the limiting distri-

bution. More precisely, we only need to adjust the ratios of transition probabilities

between all pairs of states in order to fix the limiting distribution. Therefore, to

sample the Boltzmann distribution (19), we only need to generate a chain of states

{xi} so that the transition probabilities when jumping from xi to xi+1 obey

R(j → k)

R(k → j)
=
e−H(yk)/kBT

e−H(yj)/kBT
= e−∆Ej→k/kBT . (27)

Monte Carlo algorithms

Knowing the condition (27) that our Monte Carlo method should satisfy, we can

finally formulate actual algorithms for generating the chain of states {xi} in (22).

One of the simplest Monte Carlo algorithms is the Metropolis scheme [99], which in

essence works as follows. Being in the state xi = y
j, one picks a test state y

k and

calculates the energy difference ∆E = Ek
− Ej. The test state is then accepted,

xi+1 = y
k, with the probability P = min(1, e−∆E/kBT ) and rejected otherwise,

xi+1 = y
j . This procedure is then repeated.

The Metropolis algorithm has been widely used since it can be applied to a variety

of systems. For instance, in the case of spins, the test state is usually obtained by

randomly rotating one spin. However, the algorithm is not very efficient. If the

probabilities P are in general low, most of the time the algorithm does nothing.

Additionally, near a second order phase transition, like the Curie point, the cor-

relation length ξ, measuring the length scale of ordered structures, diverges. This

leads to so-called critical slowdown in the Metropolis scheme, since more and more

MC iterations are needed to produce uncorrelated states.

The Wolff method [100], an extension of the Swendsen-Wang technique [101], is

designed to overcome the critical slowdown in spin systems. As such, it is quite

efficient near the Curie point but it does not share the generality of the Metropolis
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scheme. The algorithm begins by randomly choosing a spin as a seed for a cluster.

It then proceeds by finding the spins that interact with the seed and joining them

to the cluster with specific probabilities. When a new spin joins, the process is

repeated so that all spins interacting with the cluster are given a chance to join.

Once all interacting spins have been tested, all the spins in the cluster are reflected

with respect to some randomly chosen plane, generating a new state.

Simulation of magnetic impurities

The model for magnetic impurities developed and implemented for this thesis is

based on the classical Heisenberg Hamiltonian [102], where the spins of the impu-

rities are approximated as classical unit vectors with pairwise exchange couplings.

Since the impurities do not sit in an ordered lattice, but form a more or less random

distribution of clusters, it is meaningful to separate the interactions of impurities

in the same and different clusters. Denoting the kth spin in the ith cluster by s
k
i

we may write

H = −

∑

(i,k;j,k′)

Jkk′

ij s
k
i · s

k′

j (28)

= −

∑

(i;j)

∑

k,k′

Jkk′

ij s
k
i · s

k′

j −

∑

i

∑

(k;k′)

Jkk′

ii s
k
i · s

k′

i , (29)

where (· ; ·) denotes a sum over pairs. The normalized spin of the ith cluster is

given by the sum

Si =
1

ni

ni
∑

k

s
k
i (30)

with ni being the number of impurities in the cluster. Approximating the inter-

cluster coupling coefficients by

Jkk′

ij = Jij = J(rij)n
−1
i n−1

j , i 6= j, (31)

where rij is the vector between cluster centers i and j, (29) can be rewritten for

the cluster spins as

H = −

∑

(i;j)

J(rij)Si · Sj −

∑

i

Ei, (32)

where the internal energy of the ith cluster is denoted Ei. This separation of inter-

and intracluster interactions is schematically demonstrated in Figure 4.1.
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Figure 4.1: Classical spin model used for simulating diluted magnetic semiconduc-
tors (the host semiconductor is not shown). The spins of magnetic impurities are
grouped in clusters (sizes shown with varying colors) and the inter- and intracluster
interactions are treated separately. [III]

The above derivation is merely a regrouping of the classical Heisenberg Hamilto-

nian. However, it turns out that pairwise interactions do not properly describe

the magnetic coupling of Mn atoms in the same cluster [103, II, III] and therefore

it is appropriate to treat Ei as a general function. For simplicity, this function is

assumed to only depend on the size of the cluster and the length of the classical

cluster spin, Ei = Eni
(Si).

The derived spin Hamiltonian is connected to atomistic calculations by a paramet-

rization of the exchange coupling functions Jij and the internal energy functions Ei

according to first principles spin-flip energies (see Section 5.1 and Publication III).

The Monte Carlo calculations for the model are carried out using an alternating

Wolff–Metropolis hybrid algorithm. The Wolff method is used for sampling the

cluster spins Si efficiently, keeping the internal degrees of freedom of the clusters

frozen. In order to avoid ignoring the internal structure of the clusters, the individ-

ual impurity spins s
k
i within the clusters are rotated using the Metropolis scheme.

The applied hybrid method constantly switches between these two modes. The

validity and efficiency of the implementation was tested by analyzing well-known

classical Ising and Heisenberg models [104].
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Phase transitions

The Curie temperature is a point of a second degree phase transition, where the

spontaneous magnetization M of a ferromagnet disappears as the temperature T

is increased. However, since simulations are necessarily done in finite systems, the

magnetization of a simulated system does not disappear in one well defined point

but instead it approaches the zero level smoothly. A rough estimate for TC can

be found by interpolating the magnetization vs. temperature curve. An accurate

determination of TC and distinction between a first and a second phase transition

requires the use of finite size scaling methods, though. One such technique is

the cumulant crossing scheme [105], where the fourth order cumulant UL(T ) =

1−〈M4
〉/3〈M2

〉
2
is measured for different simulated system sizes L. As L increases,

the value of UL approaches two different constants, U− and U+, for T < TC and

T > TC, respectively. At T = TC, the cumulant obtains an intermediate value

regardless of L. Thus, the Curie point can be found with good accuracy at the

intersection point of UL with different L [97].

4.2 Kinetic Monte Carlo

In the importance sampling of phase space done in equilibrium Monte Carlo, it

does not matter how the states are picked as long as the probabilities obey the

detailed balance condition (26). In kinetic Monte Carlo (KMC), however, time is

associated with the chain of generated states and each jump from a state, xi, to the

next, xi+1, should describe a meaningful physical process. Similarly, a transition

rate R(j → k) corresponds to the physical occurrence rate of the process leading

from the configuration of state y
j to that of state y

k. In short, KMC works by

stochastically advancing the development of the system according to predetermined

occurrence rates of processes. [106]

Stochastic dynamics

Consider some arbitrary state y
j. In principle, we should be able to reach any other

state y
k from this configuration, but in a complicated system almost all of these

transition processes are highly complex and can be physically divided into sim-

pler subtransitions occurring one after another: y
j
→ y

k becomes y
j
→ y

l
→ y

k
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etc. Continuing this line of thought, we are finally left with a group of indivisi-

ble transitions so that all other transitions can only occur as a sequence of these

simple ones. Now, assume that the simple processes are uncorrelated and of the

Poisson type with transition rates Rk = R(j → k). In that case, the waiting time

for a particular process is exponentially distributed τk ∼ exp(Rk) and the prob-

ability that the process does not occur in time t is given by Pk(t) = exp(−Rkt).

Then the probability that no processes occur in time t is Pσ(t) =
∏

k Pk(t) =

exp(−
∑

k Rkt) = exp(−Rσt), where Rσ =
∑

k Rk is the total rate of all simple

processes. That is, the waiting time for anything to happen is also exponentially

distributed, τσ ∼ exp(Rσ) with an average of 1/Rσ. Although KMC simulations

can be done with e.g. the Metropolis method, where one tries to advance the sys-

tem with constant time steps, this result allows a backwards approach: It can be

stochastically decided how long it takes for anything to happen, and the partic-

ular process that occurs after this period of time can be chosen separately [107].

This way each KMC step results in the realization of exactly one process and no

computational time is wasted in rejections.

The time advancement between processes is given by the waiting time for any

process τσ. Using uniform random numbers ζ ∈ (0, 1], this is realized by

∆t = τσ = −

ln ζ

Rσ
. (33)

Choosing the processes and updating the system are more complicated tasks. Yet,

they need to be fast since most of the computational time will be spent in these

activities. The KMC simulations in this thesis use optimized tree search algorithms

[108] for finding the processes. Basically, a random number ζ ∈ (0, 1] is chosen and

the process y
j
→ y

k for which
∑k−1

i Ri < ζRσ ≤

∑k
i Ri is picked. In order to find

the right index k quickly, a tree structure of partial sums is kept in memory at all

times. Having found the correct process, the system is advanced accordingly and

the process rates are updated where necessary before the next process is chosen.

The tree-search algorithms are very efficient KMC-search methods and they are

especially useful when the set of values the process rates Rk can obtain is large [2].

Simulation of etching with impurity exposure

The etching simulator used in this this thesis is based on the Fortran 90 version

of the tapas (Three-dimensional Anisotropic Processing at All Scales) KMC code
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by M. A. Gosálvez [18, 109, 110], with considerable modifications and extensions

implemented by the author, most notable additions being algorithms for simulating

adsorption of metal impurities, a triangulation generator for the Si surface, and a

four-index classification scheme for Si atoms [111], as described below. The validity

of the implemented algorithms was tested by measuring impurity distributions on

simple test surfaces and by comparing etching results between different versions of

tapas. Since etching is a non-equilibrium process consisting of well-defined atomic

events, kinetic Monte Carlo is well suited for describing it.

The simulated systems consist of an atomic Si lattice and impurities which may

either be in the etchant (i.e. “free”) or adsorbed on the Si surface. The simple

KMC processes are chosen to be the removals of single Si atoms from the surface,

and the adsorptions and desorptions of single impurity atoms. The Si atoms on

the surface are classified according to their local neighborhoods by counting the

numbers of first and second nearest neighbor Si atoms. These neighbors are in

addition distinguished according to whether they are on the surface or in the bulk

[111]. So, each Si atom is categorized by four indices describing the type of terrace,

step or kink the atom is in [112] and the removal rates are decided accordingly.

The etchant solution is not simulated as such, but the etching conditions are taken

into account in the Si removal rates.

The etchant also acts as a limited reservoir of free impurities. That is, the impu-

rities in the etchant do not have a real location and they can adsorb anywhere on

the surface. The impurity-silicon interface is constructed as a triangulation of the

H-terminated Si surface. The positions of the hydrogen atoms covering the surface

are projected to a 2D point cloud from which a Delaunay triangulation is gener-

ated using the Bowyer-Watson method [113,114]. In the simulations, each triangle

is considered to be a potential adsorption site for the impurities. These sites are

classified according to the shapes of the triangles and the impurity adsorption

and desorption rates can be set site specifically. The construction is schematically

presented in Figure 4.2.

The adsorbed impurities are treated as pinning agents which block the etching

process at the nearby Si atoms. In the simulator, this is handled by decreasing

the removal rates of the Si atoms connected to an impurity. Once an impurity has

adsorbed, it may desorb either thermally or due to underetching, i.e., if a Si atom

to which it is connected is removed. Finally, the impurities may form clusters on

the surface. In the simulations this is realized by increasing the adsorption rates
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Si

H

Cu,Pb

Figure 4.2: The etching model consists of an atomistic Si lattice as well as free and
adsorbed impurity atoms. A triangulation of the Si surface acts as an interface
between the silicon and impurity subsystems. [VI]

at the sites next to those already occupied by impurities.3 Mechanisms such as

surface diffusion which can contribute to cluster formation [115] are not explicitly

included in the simulation model. However, the purpose of the applied method is

to create semirealistic clusters in order to investigate the development of the Si

surface in their presence, not to accurately simulate the behavior of the impurities.

Therefore, these omissions are justified.

The KMC simulations of etching are connected to the atomistic adsorption sim-

ulations by estimating the site specific impurity adsorption and desorption rates

from first principles activation energies, E, as ν exp(−E/kBT ) where ν is a pa-

rameter (see Section 5.2 and Publication VI). The method for simulating cluster

formation is a simplified one, and so in Publication VI morphologies are studied

as a function of a varying interaction strength. In Publication VII, the interaction

is set to semiquantitatively mimic the behavior seen in the atomistic calculations.

The Si removal rates have been adjusted according to experimental data [18, 57].

3This is called “interaction enhanced adsorption” in Publication VI, where other phenomeno-
logical schemes for simulating cluster formation are also tested.
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5.1 Structure and magnetism of Mn clusters

Structure and formation of clusters in (Ga,Mn)N
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Figure 5.1: Calculated structures of Mn complexes in (Ga,Mn)N. The energies
are given with respect to the most favored structure of equal size (the leftmost
clusters). Bond lengths are shown with colors. Numbering of the atoms shows
which Ga atoms in the structure shown in the inset are replaced by Mn. [III]

When only a few Mn atoms are considered, the energetically most favorable Mn

cluster configurations in (Ga,Mn)N are the ones where the substitutional Mn atoms

gather around a single N atom. Calculated cluster structures are shown in Fig-

ure 5.1 from monomers to tetramers. It is seen that once the Mn atoms share

a neighboring N atom, the Mn–Mn separations shorten and small, compact clus-

ters form. The relaxations in bond lengths are smaller in the cases where the Mn
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Figure 5.2: (a) The binding energies of Mn atoms in n-mers. [III] (b) Average
portions of clusters in (Ga,Mn)N for random (left columns) and 1000 K equilibrium
(right columns) Mn distributions. Here, clusters are defined as Mn atoms sharing
the same neighboring N atom. [II]

atoms are not situated around one and the same nitrogen, and the energies of these

structures are somewhat higher.

The tendency of the Mn atoms to form clusters is estimated in Figure 5.2 (a) by

comparing the energy of a cluster of n Mn atoms to those of a cluster of n − 1

atoms plus a monomer, Eb = E(Mnn−1 + Mn) −E(Mnn). These binding energies

grow as a function of cluster size n up to tetramer formation, for which Eb is

about 0.6 eV (depending on the calculation scheme) demonstrating an effective

attraction between the Mn atoms. For clusters larger than tetramers, the binding

energies decrease. This suggests that although joining individual Mn atoms in

these larger clusters is still energetically favored, it is best for the Mn atoms to

form small clusters. It is an indication that the cluster formation may be limited

to the small complexes of only a few atoms, at least if the Mn concentration is

low. Due to these considerations, we focus on clusters where the Mn atoms share

a single central N atom, naturally limiting the maximum cluster size to tetramers.

The distribution of the Mn cluster sizes at different Mn concentrations x (as in

Ga1−xMnxN) is shown in Figure 5.2 (b) for (Ga,Mn)N lattices with either com-

pletely random Mn substitution or in equilibrium at 1000 K (obtained using a

Metropolis MC calculation). Since even in the random distribution a considerable

portion of the Mn clusters hold two or three atoms, it is evident that these small

clusters are present (Ga,Mn)N. Furthermore, nearly all of the Mn atoms form

clusters in equilibrium due to the energy gain in cluster formation. The cluster

distribution in real (Ga,Mn)N is likely something between these extremes.
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The structures of Mn clusters in (Ga,Mn)As have been calculated in [1, 95] using

the same first principles code as used here, vasp, and the obtained binding en-

ergies behave qualitatively similarly to those in (Ga,Mn)N, showing a maximum

for tetramer formation. Furthermore, in [98] the kinetics of substitutional MnGa

atoms and Mn vacancies have been investigated using the casino lattice KMC

code [116] resulting in cluster distributions similar to those shown in Figure 5.2.

Magnetic coupling

We estimate the strength of magnetic coupling between individual or clustered Mn

atoms by calculating the spin-flip energies (∆E = E↑↓−E↑↑) between spin configu-

rations where one or more spins have been flipped (cf. [117]). The ground states of

isolated Mn clusters in (Ga,Mn)N are always found to be ferromagnetic, the spins

facing the same direction. The energy required for flipping the spin of one Mn

atom in a cluster decreases from 300 meV in dimers to 120 meV in tetramers as

the cluster size grows, but still, these are quite high energies indicating a relatively

strong coupling between the Mn atoms. The coupling between clusters is estimated

in a similar fashion, and like the Mn atoms, also all clusters show a ferromagnetic

coupling regardless of the cluster sizes and intercluster distances [I, II, III]. How-

ever, the analysis of the intercluster coupling is complicated since the interactions

are fairly long-ranged and periodic images are present in the calculations.

To get an estimate on the strength and spatial behavior of the cluster-cluster ex-

change coupling, we fit the Heisenberg Hamiltonian (29) to the calculated spin-flip

energies (via simulated annealing optimization [118]) by introducing phenomeno-

logical coupling functions of the form

J(r) =
A

rα
+B(r − r1)e

−β(r−r2)2 , (34)

where r is the distance between clusters.4 The first term describes the decaying tail

of the coupling while the latter oscillatory term accounts for the strong coupling

at intermediate cluster separations (cf. [37, 38, 96, 119]). The function is cut at

some distance rcut, so that clusters whose separation exceeds this limit do not

interact. Although the exchange coupling between Mn clusters is expected to

be anisotropic, i.e., its strength depends not only on the length, but also on the

4Out of several functions tested, this form yielded the best fit while being relatively simple.
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direction of the cluster separation vector r [120, 121], the fitting procedure turns

out to be reasonably successful even when the anisotropy is ignored.
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Figure 5.3: Exchange coupling Jninj
(r) between Mn clusters in (Ga,Mn)N. [II]

For (Ga,Mn)N, the intercluster exchange coupling depends explicitly on the sizes of

clusters as shown by the fitted Jninj
(r) functions in Figure 5.3 (rcut = 13 Å). Due to

the size dependence, all the functions have been fitted separately. However, since

carrying out extensive first principles calculations for each cluster pair at various

separations is not feasible, the shape of the oscillatory part is assumed to be similar

in all cases to reduce the number of free parameters in (34) [II, III]. The simplified

fitting procedure results in coupling functions with relatively high uncertainties in

their pointwise values. However, the important qualitative properties of the DFT

spin-flip energies are preserved: The coupling is clearly strongest for dimers and
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Figure 5.4: Exchange coupling Jx(r) between Mn clusters in (Ga,Mn)As. [IV]
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Figure 5.5: The most common types of possible adsorption sites on the H-
terminated Si-surface viewed from (a) top-down and (b) side perspectives: mono-
hydride steps (A, B), horizontal (E–H ) and vertical (K, J ) dihydride steps, (111)
terraces (C, D) and kinks (I, L). [VII]

trimers and weak for tetramers, indicating that the clustering state of the Mn

atoms directly affects the magnetism of the material.

A similar fit is done for (Ga,Mn)As based on the spin-flip calculations of [1, 95].

In this case, the coupling is expected to be independent of the size of the clus-

ters [96], but it depends on the local Mn concentration [38, 120,122,123].5 There-

fore the (Ga,Mn)As exchange function is multiplied by a linear scaling function,

Jx(r) = f(x)J(r), to account for the concentration dependence. The fitted cou-

pling function is plotted in Figure 5.4 (rcut = 23 Å). The most important differences

to (Ga,Mn)N, besides the lack of the cluster size dependence, are the longer range

and lower maximum of the interaction.

5.2 Metal impurities on the H-terminated Si surface

Adsorption of impurities

While the Mn atoms in (Ga,Mn)N and (Ga,Mn)As are in the bulk, substituting

Ga atoms, the metal impurities relevant for etching are on a Si surface. Further-

more, these impurities can adsorb and desorb. Therefore, one must examine the

5Also the coupling in (Ga,Mn)N may depend on the Mn concentration, but estimating the
effect for all cluster pairs would require much more data from first principles calculations.
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Table 5.1: Adsorption energies of metal impurities on various surface sites on the
H-terminated Si surface (in eV). Two adsorption states are found for Pb: (A)
denotes a weakly adsorbed state and (R) denotes a strongly bonded state where a
Si−H + Pb → Si−Pb−H reaction has occurred. [V, VII]

site Cu Pb (A) Pb (R) Mg Ag
A −0.55 −0.49 −1.22 - -
B −0.89 −0.48 −1.22 - -
C −0.77 −0.50 −1.26 −0.04 −0.12
D −1.17 −0.39 −1.26 - -
E −1.01 −0.49 −2.12 - -
F −1.43 - −1.56 +0.42 −0.31
G −0.63 −0.54 −1.64 - -
H −1.39 - −2.12 - -
I −1.34 - −1.43 - -
J −1.10 - −1.46 - -
K −0.50 - −1.46 - -

adsorption of single impurities before cluster formation can be studied. Since the

Si surface changes during etching, many different surface structures may appear.

Furthermore, many types of surface sites, where impurities may possibly adsorb,

exist on the various terraces, steps and kinks. The most common ones are shown

and labeled with letters in Figure 5.5.

Table 5.1 lists calculated adsorption energies for Cu and Pb (the active metals

according to experiments [62]) as well as Ag and Mg on the H-terminated Si

surface. The electronic densities of the adsorbed atoms on the step site F are

Cu

(a)

Pb

(b)

Ag

(c)

Mg

(d)

Figure 5.6: The valence electron densities of adsorbed (a) Cu, (b) Pb, (c) Ag and
(d) Mg atoms on the F site. The densities are drawn at an isosurface of 0.014 e/Å3

for Pb and 0.019 e/Å3 for the other impurities. [VII]
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Figure 5.7: Adsorption activation energy hierarchy for Cu on various surface sites
on H- and OH-terminated Si surfaces. Adsorption is most likely on the sites with
a low activation energy. [VI]

shown in Figure 5.6. For Cu, the adsorption energies are highly site specific, and

the energetically most favored adsorption sites for Cu are found on the dihydride

steps and kinks.6 The adsorption energy is roughly speaking proportional to the

number of bonds the Cu can form with the surface, making the adsorption site

shown in Figure 5.6 (a) especially favorable. Such strong site specificity is not seen

with Pb. However, Pb can adsorb in two ways: by bonding with the H atoms on the

surface or by replacing the H’s in a Si−H + Pb → Si−Pb−H reaction, denoted by

(A) and (R), respectively, in Table 5.1. Of these two, the (A) states have relatively

low adsorption energies while the (R) states are always quite strongly bonded to

the surface. Figure 5.6 (b) shows the (R) state. The other metals, Ag and Mg,

adsorb only weakly in agreement with experiments according to which only Cu

and Pb affect the etching process.

In order to estimate the kinetics of Cu and Pb adsorption, the activation energies

for adsorption and desorption are calculated for a few test sites (D and F for Cu

and D for Pb). For Cu, the peaks of the desorption barriers are about 1.5 eV

above the energy of the adsorption state. Assuming this for other sites as well

leads to the adsorption barrier hierarchy in Figure 5.7. In the case of Pb, no energy

barrier is found between the free atom state and the weakly adsorbed state. Also

6If OH-groups are present, Cu can bond with the oxygen and adsorb anywhere [V].
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Figure 5.8: Structures and electron densities of (a) a Pb2H dimer, (b) a Pb3H3

trimer, (c) a Pb3H3 trimer on a H-terminated surface, (d) a Pb4H2 tetramer, (e)
a Pb4 tetramer, and (f) a Cu4 tetramer. The densities are drawn at an isosurface
of 0.014 e/Å3 for Pb and 0.019 e/Å3 for Cu. [VII]

the activation energy of the H replacing reaction for a weakly adsorbed Pb is only

0.3 eV. Thus, it is very easy for the Pb atoms to adsorb and react, and the uniform

adsorption energies suggest that they can do this anywhere on the surface.

Structure and formation of Cu and Pb clusters

Since Pb can adsorb in two different ways, the number of structures that can form

increases rapidly as the number of available Pb atoms increases. Figures 5.8 (a)–

(e) show some of the energetically favored ones on a (111) terrace up to the size of

four Pb atoms. Since the adsorption energies of clusters on a fully H-terminated

surface are very low, about −0.1 eV [Figs. 5.8 (c) and (e)], in order to be strongly

attached to the surface, the Pb atoms in the cluster must bond directly with the

Si atoms on the surface [Figs. 5.8 (a), (b) and (d)]. The H atoms removed from

the surface become a part of the Pb clusters. However, as the cluster size grows

to four Pb atoms, the strongly bonded state [Fig. 5.8 (d)] cannot find a symmetric

ground state like trimers and dimers can [Figs. 5.8 (a) and (b)], and the weakly

adsorbed purely metallic cluster [Fig. 5.8 (e)] becomes energetically as favorable

as the strongly adsorbed state. For the smaller clusters, the energy of the metallic

state is much higher than that of the strongly bonded configurations. This suggests

that if the size of the Pb complex grows, ultimately the metallic cluster becomes

the favored state. For Cu, such behavior is not seen, since Cu bonds strongly with

the surface without disturbing the H atoms [Fig. 5.8 (f)].
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The binding energies of Cu and Pb atoms in clusters of n atoms are shown in

Figure 5.9, calculated by comparing the energies of systems with a Si slab and a

cluster of n, n−1, 1 or no impurity atoms, Eb = [E(Xn−1)+E(X)]−[E(Xn)+E(∅)]

(X = Cu or Pb). The graph is analogous to Figure 5.2 (a). For Pb, the symmetric

trimer [Fig. 5.8 (b)] is an especially favored structure with a high binding energy,

but in tetramers the binding is much weaker. As was argued in the case of the

Mn atoms in (Ga,Mn)N, this suggests that Pb should favor the formation of small

clusters more than that of large aggregates. (Or, as discussed above, the larger

Pb clusters adopt a metallic state which adsorbs only weakly and thus can mask

the Si surface only very briefly.) The binding energies of Cu, on the other hand,

increase greatly for n values 2 and 4 (compared to n−1) and decrease only slightly

for n = 3, indicating that Cu should be eager to form clusters. This is a clear

qualitative difference in the behavior of Cu and Pb and an indication why these

metals affect the etching process differently.



6 Macroscale effects of impurities and

clusters

6.1 Effect of Mn microstructure on Curie temperature

Using the cluster spin model (29) with the phenomenological exchange parameters

(34), determining the Curie temperature by MC calculations is straightforward.

The resulting TC’s are plotted in Figure 6.1 as a function of Mn concentration for

random and 1000 K equilibrium cluster distributions, as in Figure 5.2 (b). Also

TC values estimated by mean-field approximations (MFA’s) are shown for various

lattices.

 0

 100

 200

 300

 400

 500

 600

 0  0.04  0.08  0.12  0.16

T
C

(K
)

∆EDFT
T
C

T
C

MFA

∆E
HT

C

x

(1,4)

(2,2)

(1,2)

(1,1)
(1,3)

(2,3)
(3,3)

(1,3)

(4,4)(3,4)(2,4)

Figure 6.1: Calculated Curie temperatures of (Ga,Mn)N as a function of Mn con-
centration. Values obtained from both MFA (points) and MC calculations (lines)
are shown. The numbers in parenthesis show the sizes of clusters in the lattices
(MFA). The solid and dashed lines correspond to random and 1000 K equilibrium
distributions (MC). [III]

The Curie temperatures of a random distribution are seen to increase nearly lin-

early and reach room temperature at around x = 0.14 — a high, but not a totally

unfeasible level. In the equilibrium configuration, though, TC is much lower, less

than 100 K for x = 0.10. As the only difference between these systems is the

stage of cluster formation, it is evident that the Mn microstructure plays a cru-

cial role in determining the magnetic properties of the material. Furthermore,

since growing (Ga,Mn)N and controlling the microscopic structure is difficult, the

lowering of TC caused by clustering may be a source of the wildly varying exper-

imentally measured TC values. The MFA values [I, III] calculated either from a
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sum of the fitted intercluster exchange parameters (TMFA
C =

∑

j J0j/3kB) or from

comparing the energies of ferromagnetic and antiferromagnetic spin configurations

(T∆E
C = 2∆E/3kBN , N being the number of magnetic centers) agree relatively

well with the more sophisticated MC calculations. In general, the MFA values are

too high because local magnetic fluctuations and the internal structure of the mag-

netic clusters are neglected, but nonetheless they capture the TC decreasing effect

of cluster formation. Some of the T∆E
C values grossly overestimate the Curie tem-

perature compared to the TMFA
C or MC results, though, due to overemphasis of the

strong short-ranged interactions (most notable for the monomer-dimer and dimer-

dimer systems). Still, the fact that the T∆EDFT

C values, calculated using the actual

first principles spin-flip energies, are so close to the T∆EH

C results, obtained by first

estimating the spin-flip energies using the model Hamiltonian (29), demonstrates

that the used model agrees with the first principles results quite well.

00

50
50

100

100

150

150

200

200

250

250

300

300

0

350

5

400

10

450

150 200.01 250.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

C

C

tanneal (h)

TT CC

(K
)

(K
)

300

250random
ordered

x

300 K

(a) (b)

Figure 6.2: Calculated Curie temperatures of (Ga,Mn)As as a function of (a) Mn
concentration and (b) anneal time. [IV]

Similarly, the Curie temperatures of (Ga,Mn)As with a random Mn distribution

are plotted as a function Mn concentration in Figure 6.2 (a). Such a random

distribution can be thought to mimic an as-grown sample after the outflow of Mn

interstitials in short annealing. In this case, a maximum is reached in the Curie

temperature at x = 0.06, somewhat below room temperature. The decrease in TC

beyond this point is due to both cluster formation and the decreasing exchange

functions Jx(r). The absolute value of the calculated maximum TC is too high

compared to experiments, since factors such as substitutional AsGa and possibly

remaining Mn interstitials are not considered here. However, the position of the

calculated maximum agrees quite well with experiments [29, 30, 32]. Disorder is
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seen to decrease the Curie point, since a high TC of over 400 K is obtained for an

ordered lattice on Mn monomers at this concentration.

To study the decrease in experimental Curie temperatures of (Ga,Mn)As during

prolonged annealing, we also calculate the Curie temperatures of realistic Mn dis-

tributions, at x = 0.06, obtained by simulating the microstructure development

using lattice KMC simulations [98]. The TC’s calculated for these structures as a

function of annealing time are shown in Figure 6.2 (b). At 250 ◦C, the formation

of Mn clusters is slow and so the Curie point drops by only a few Kelvins during

24 h of annealing. At a somewhat higher annealing temperature, 300 ◦C, cluster

formation is rapid and TC decreases tens of Kelvins in just two hours. After 24 h,

the Curie temperature has decreased by almost one half. At this point the rate

of decrease is slower than initially, since the microstructure does not evolve as

dramatically anymore. Again, the calculated TC values are much higher than the

experimental ones, but otherwise the relative changes agree with those observed in

experiments [33, 34]. Thus, the decreasing (Ga,Mn)As Curie temperature during

long-time annealing can be attributed to the formation of small Mn clusters.

Cluster formation affects the Curie temperatures by three mechanisms. Firstly,

the number of magnetic centers (i.e., clusters or single atoms) decreases as several

magnetic elements are joined to form a single cluster, and the average distance be-

tween two magnetic centers increases when the density of these centers is reduced.

Secondly, the magnetic clusters have internal degrees of freedom which individual

magnetic elements lack. Thirdly, the interactions between the magnetic centers

may be different for clusters of different sizes. If the ferromagnetic coupling de-

cays as a function of separation, the first mechanism reduces TC as clusters form.

The second mechanism always decreases TC, since it allows the total magnetic

moments of the clusters to decrease due to fluctuations in their internal magnetic

ordering. The third mechanism may either increase or decrease TC. In (Ga,Mn)As,

all clusters interact with the same strength and thus the third mechanism is in fact

completely missing. In (Ga,Mn)N, the formation of dimers increases the interac-

tion strength and the formation of tetramers kills it nearly entirely. Combining

these effects, we see that cluster formation always decreases TC in (Ga,Mn)As. In

(Ga,Mn)N, the effects more or less cancel out in dimer formation, but the appear-

ance of larger clusters, especially tetramers, is detrimental to the ferromagnetism

of the material.
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6.2 Influence of impurities on surface morphology

Etching simulations where no impurities are present do not lead to the appearance

of trapezoidal hillocks on Si(110) surfaces. This is because even if a small hillock

would appear due to a random fluctuation, its apex would be very reactive and

the etchant would consume the structure from above. No hillocks develop even

if non-interacting, adsorbing impurities are included in the simulation as pinning

agents. An impurity atom adsorbed on the surface can prevent the removal of the

Si atoms beneath it and so a hillock could in principle start growing, the stabilized

Si atoms serving as the apex. However, the facets of the trapezoidal hillocks are

approximately {311} oriented, as shown in the experimental and theoretical images

of Figures 6.3 (a) and (b), and they have a low, yet noticeable etch rate compared

to the (110) floor. Therefore, any single impurity on the apex of such a hillock will

be removed due to underetching after a short while. At this point the stability of

the apex is lost and the hillock is quickly destroyed.
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Figure 6.3: Trapezoidal hillocks seen on (110) surfaces: (a) an experimental SEM
image [62], (b) the theoretical structure [18], and (c) the simulated structure. [VI]

If the impurities formed a cluster on the hillock apex, the removal of individual

pinning agents would not lead to the immediate collapse of the hillock since a part

of the cluster would remain as a micromask. Such behavior is actually expected

for Cu, since we know from first principles calculations that the formation of

Cu clusters on the H-terminated Si surface is energetically favorable. Indeed,

when the formation of clusters is included in the simulation, the hillocks appear.

The structure of the simulated hillocks, shown in Figure 6.3 (c), agrees with the

experimental and theoretically expected ones, although, the size of the simulated

hillock is much smaller than those seen in experiments. In Publication VI, different

phenomenological models for driving Cu clustering have been tested. Though the
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Figure 6.4: Morphologies of Si surfaces etched exposed to metal impurities: (110)
at high [KOH] with (a) Cu and (b) Pb, and (100) at low [KOH] with (c) Cu and
(d,e) Pb. In (d), the hillock edges are more stable than in (e). [VII]

applied methods result in quite different distributions of Cu atoms on the surface,

the hillocks grown underneath Cu clusters had a very similar structure in all cases.

Since trapezoidal hillocks appear to be stabilized by impurity clusters, rather than

individual impurities, the different cluster formation tendencies of Cu and Pb

should be a major factor behind the different effects these impurities have on the

etching process. This hypothesis is verified by KMC simulations of Cu and Pb.

The resulting morphologies are shown in Figure 6.4 and the measured surface

roughnesses and etch rates are plotted in Figure 6.5. Here, Cu is realized as an

impurity experiencing site specific adsorption and an attractive impurity–impurity

interaction, while Pb is treated as an impurity with uniform adsorption and no

attraction. The Cu adsorption rates obey the hierarchy estimated form DFT

results (Figure 5.7). However, the simulated morphologies are quite insensitive

with respect to small changes in the adsorption rates, and once the impurities

have a tendency to form clusters, it is sufficient that the few key sites Cu prefers

on the surface are open for adsorption [VI].

As mentioned previously, Cu clusters act as micromasks on the apices of the trape-

zoidal hillocks on (110) [Fig. 6.4 (a)], but the individual Pb impurities cannot
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stabilize the hillock structures [Fig. 6.4 (b)]. The formation of hillocks naturally

increases the surface roughness considerably, but it also decreases the etch rate

since the developing {311} facets etch slower than the (110) floor. Since Pb im-

purities do not induce hillock growth, their presence does not affect the surface

roughness either. They do decrease the etch rate though, since every adsorbed

Pb pins their neighboring Cu atoms. As the Pb atoms are constantly adsorbing

and desorbing, their local pinning effect leads to an overall decrease in the average

etch rate of the entire surface. All of these factors agree with the experimental

observations [62].
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Figure 6.5: The simulated etch rate (left bars) and roughness (right bars) of (110)
at high [KOH] and (100) at low [KOH] when exposed to different impurities, in
arbitrary units. For Pb on (100), the white and blue bars correspond to the
morphologies of Figs. 6.4 (e) and (d), respectively. [VII]

In addition to the trapezoidal hillocks seen on (110) at high etchant concentration,

pyramidal hillocks appear on the (100) surface at low concentration [18].7 Simula-

tions of the (100) surface show that, like the trapezoidal ones, also the pyramidal

hillocks can be stabilized by Cu clusters [Fig. 6.4 (c)]. Again, this leads to an

increased surface roughness and decreased etch rate. The effect of Pb depends

delicately on the etching conditions. The (111) facets of the pyramids are so sta-

ble that underetching is slow enough to allow individual impurities to stabilize the

hillock apices for a short time [Fig. 6.4 (d)]. However, if the facet edges are made

even slightly less stable, no hillocks are seen [Fig. 6.4 (e)]. In both cases the etch

rate is lower than when no adsorbing impurities are present. The surface roughness

is of course higher in the case where hillocks develop compared to when they do

not (white bar in Fig. 6.5).

7At high concentration, the (110) floor etches rapidly as does the (100) floor at low concen-
tration. Therefore, the hillocks appear on these surfaces in different etching conditions.
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The first principles calculations of (Ga,Mn)N in Publication I demonstrated how

the magnetic coupling between Mn clusters depends explicitly on the sizes of the

clusters. Simple mean-field estimates even predicted that the formation of dimers

could lead to Curie temperatures above room temperature. In Publication II, the

distributions of cluster sizes in random and equilibrium configurations were cal-

culated, showing that the formation of clusters is unavoidable and must therefore

be taken into account when analyzing the material. More sophisticated estimates

of the Curie temperature were calculated using Monte Carlo analysis of a cluster

spin Hamiltonian. However, the very high TC values obtained using the mean-

field approach were not reached. In Publication III, the structure of Mn clusters

was analyzed in more detail and the discrepancy between MFA and MC methods

was explained to be mostly due to an overemphasis of the strong short range in-

teractions in MFA. The cluster spin approach was also applied to (Ga,Mn)As in

Publication IV in order to study the development of the Curie temperature during

annealing.

In both (Ga,Mn)N and (Ga,Mn)As, the formation of Mn clusters is seen to con-

siderably decrease the Curie temperatures. In the case of (Ga,Mn)N, in which

controlling the microstructure is difficult, this may explain the wild variations in

the experimentally observed magnetic properties. In (Ga,Mn)As, on the other

hand, the observed decrease in Curie temperature during annealing can be di-

rectly attributed to the growth of Mn clusters. The calculated Curie temperatures

of (Ga,Mn)As remain below room temperature for disordered systems, but the

values for (Ga,Mn)N reach 300 K at a high Mn concentration. The semiquantita-

tive agreement between the calculated and experimental TC values of (Ga,Mn)As

suggests that the applied cluster model succeeds in capturing the main factors

affecting the Curie temperatures. Yet, as the predicted Curie points are still too

high, the role of, for instance, structural defects needs to be taken into account

in calculations, in addition to cluster formation [124–126]. Since e.g. vacancies

are expected to reduce the Curie temperature, obtaining such high TC’s in real

materials is difficult and better control over the microstructure of the materials

is needed. Of course, it is also possible that other DMS materials may turn out

to be better suited for applications than those examined in this thesis. In fact,

new DMS materials with different dopants, such as Cr [127, 128], and other host

semiconductors, for instance ZnO [129,130], are being constantly studied.
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The adsorption of Cu on the H- and OH-terminated Si surfaces was studied in

Publication V, and the Cu atoms were seen to prefer adsorption on specific sur-

face sites mostly found on dihydride steps and kinks, or near OH groups. Using the

obtained Cu adsorption energy hierarchy and additional activation energy calcula-

tions, the adsorption kinetics of Cu were estimated and used in a KMC simulation

of impurity contaminated Si etching in Publication VI. These simulations showed

that etch hillocks appear on the (110) surface if there are stable pinning agents

blocking the etching locally and protecting the hillock apices. In the case of Cu, the

formation of clusters was seen to lead to such stable structures. A more complete

picture of the influence of metal impurities was built in Publication VII, where

also Pb, Ag and Mg were studied on a H-terminated surface. It was verified by

first principles calculations that metals other than Cu and Pb do not adsorb on

the surface, in agreement with the experimental observation that only Cu and Pb

impurities affect the etching process. Furthermore, the results suggested that only

small Pb clusters can adsorb on the surface while Cu can form large particles. Sim-

ulated etching based on this picture demonstrated that this difference in behavior

between the two metals results in completely different macroscale development.

Namely, the Cu clusters with long lifetimes can lead to the appearance of hillocks

and slowly etching surfaces. The Pb impurities also lower the etch rate, but they

do not stay on the surface long enough to stabilize large hillocks.

Understanding the origin of the rough surfaces developed during etching allows

one to confront the problem and design better processes. In the cases where

roughness is due to impurities, better control of impurity contamination could

solve the problem. Other methods can also be found to prevent the adsorption of

impurities — for instance, the roughening effect from having Cu in the etchant can

be neutralized by a high concentration of Mg impurities [131]. As another example,

stirring or adding surfactants in the etchant can improve surface quality [3,61,132,

133], especially by aiding the release of hydrogen bubbles from the surface.

The methods applied in this thesis contain several levels of approximations. First

of all, unavoidable numerical inaccuracies result from the use of DFT and gradi-

ent corrected exchange-correction functionals. To handle these uncertainties, the

DFT methods used in this work have been validated by testing various calculation

schemes and functionals and by comparing with experiments [134, 135, I, III, V].

Secondly, the parametrization of the Monte Carlo methods using the limited first-

principles data has required substantial approximations. However, the severity of



7 Conclusions 41

the induced errors depends on the sensitivity of the MC simulations. In DMS’s,

the calculated Curie temperatures are proportional to the exchange parameters

J which in turn are proportional to the calculated spin-flip energies. So, even if

the absolute values of the parameters are inaccurate, the relative TC’s of different

configurations can be compared to study the effects of cluster formation as long as

the relative values of the various J ’s can be trusted. In etching, the KMC results

have been shown to be relatively stable against variations in the adsorption rates of

impurities demonstrating that moderate numerical uncertainties should not affect

the final conclusions [VI]. On the other hand, when the results are sensitive with

respect to the parameters — as in (100) etching with Pb impurities — no certain

conclusions can be made [VII].

Finally, there are simplifications in the Monte Carlo simulation models themselves.

The KMC etching model is limited by the set of permitted processes, and it can

be improved by including more details. Studying the processes themselves would

require molecular dynamics simulations, though. The most notable simplification

in the DMS simulations, is the use of the classical Heisenberg model. The model

ignores the quantum mechanic nature of spins (justified for large spins [136]),

ignores possible anisotropy, and only includes pairwise interactions even though

many-body effects may be present [103, 137]. Heisenberg MC is a step above

mean-field estimates, but these shortcomings should be addressed in order to fully

describe a magnetic system. Also, instead of using MC, magnetic dynamics could

be studied via spin dynamics simulations [138].

In conclusion, two physical systems, diluted magnetic semiconductors and etched

silicon surfaces, were simulated using multiscale methods. A major part of this

work has been the construction of the applied Monte Carlo models, linking the

atomistic calculations to the observed macroscopic phenomena. The developed

models are system specific and contain several phenomenological aspects, showing

the inherent difficulty in physical modeling: a simulation gives wrong results if

it omits important details, yet it is inefficient if too many unnecessary details

are incorporated. The models focus on describing effects caused by microscopic

impurities and impurity clusters, and subsequently demonstrate how the formation

of clusters has dramatic effects on the behavior of the studied systems on the

macroscopic level.
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Phys. Rev. B 69, 115208 (2004).

[121] P. Mahadevan, A. Zunger, and D. Das Sarma, Phys. Rev. Lett. 93, 177201

(2004).

[122] L. M. Sandratskii and P. Bruno, Phys. Rev. B 66, 134435 (2002).

[123] A. J. R. da Silva, A. Fazzio, R. R. dos Santos, and L. E. Oliveira, Phys. Rev.

B 72, 125208 (2005).

[124] P. Dev, Y. Xue, and P. Zhang, Phys. Rev. Lett. 100, 117204 (2008).

[125] F. Filippone, G. Mattioli, and A. A. Bonapasta, J. Phys.: Condensed Matt.

20, 125215 (2008).

[126] P. Larson and S. Satpathy, Phys. Rev. B 76, 245205 (2007).

[127] J. L. Xu, M. van Schilfgaarde, and G. D. Samolyuk, Phys. Rev. Lett. 94,

097201 (2005).



50 References

[128] N. Tandon, G. P. Das, and A. Kshirsagar, Phys. Rev. B 77, 205206 (2008).

[129] T. Dietl, Phys. Rev. B 77, 085208 (2008).
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