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1 Introduction

1.1 Motivation and background

Technological changes originating both from the development of the process
automation environment itself and from business requirements are altering the way in
which process industry-related systems should operate in the future. New technical
solutions have been utilised to stay competitive in this change situation. This research
also falls into this category; it studies how agent technology, as a new software
engineering paradigm, could be used to build better monitoring systems in the future.

Digitalisation and advances in embedded electronics are currently contributing
strongly to the evolutionary and continuous development of automation environments.
Sophisticated field devices provide diagnostic services and wireless communication
may be used to distribute additional but beneficial information everywhere in the
system, and this may be realised even without interfering with the control operations.
General information technology-based (IT) solutions developed initially for office
environments have become so versatile and mature that many of the utilities provided
have also been adopted for process automation. This has added applications such as
electronic manuals and reporting systems to the daily life of process operators. In
addition, tighter integration into enterprise-level systems is presently under
development, e.g. with Manufacturing Execution Systems.

The maturity of process automation has provided a chance to increase the size and
complexity of the systems, and, for example, only a few operators are needed to be
able to run a chemical production site with thousands of 1/Os. Normally, when there
are no abnormalities or changes and practically nothing happens this minimal setup is
realistic. But when there is something out of the ordinary, e.g. a device breaks down
or there is a blockage in the pipes, then a few persons watching over changing values
from hundreds of displays is not enough. Models describing the relations of quantities
and limits of process operations have offered a solution to overcome this problem, and
with unit processes this approach has been demonstrated to work relatively well.
However, when a larger part of the system, with numerous changing interconnections,
has to be monitored, the model-based approach becomes unmanageable.

Operator work in process sites has become more and more like regular knowledge-
intensive work. Information is searched for and processed extensively with various 1T
systems. However, IT solutions originally developed for office environments are not,
as such, suitable for all the tasks in process environments, especially not for
monitoring. Contrary to office environments, where the modifications to stored
information are mostly made by humans, the significant changes to information in
process environments are a result of unknown phenomena and uncontrollable
variables. In processes the changes are a consequence of e.g. device malfunction,
variations in raw material, and the unknown cross-effects of different process
sections. These changes may not be a priori controlled by set practices, e.g. the ISO
9001 quality management standard, as may be done with business-related systems in
office environments.



The demands of economic competitiveness and environmental issues require an
increase in production effectiveness, which is typically responded to with more
integrated production systems. As the amount of buffer storage has decreased and the
time from order to production has been minimised at the same time, the whole
production system has become more vulnerable to malfunctions. Furthermore, the
demand for increased overall flexibility and the ability to change a production setup
relatively fast and without material losses has increased. All these changes alter the
controlling setup that process automation realises. Changes in control systems also
reflect how monitoring is conducted.

Highly developed IT has provided the possibility of offering new types of services to
people in their everyday lives and, especially, the monitoring of information sources
is starting to be commonly available. Nowadays a notification request may be left
with an online bookshop if a certain book is not currently ready to be ordered. Similar
services are also available in banking, for example an alert about your balance going
below a user-specified limit. With these services the user may delegate the monitoring
activity by defining triggering values and then wait to be informed by the service
provider. A variety of monitoring services about interesting information is also
becoming available, for example everywhere on the internet (e.g. google.com/alerts)
or via various online news services. The availability of these services is making
people familiar with this type of operation and, furthermore, makes it easier to require
similar functions to be available within process automation environments.

The development of general network technology and, especially, the internet has
highlighted the importance of software engineering tools for decentralised and
distributed systems. On the one hand, a growing user community is continuously
developing new applications utilising the possibilities that the network provides. The
results are visible, for example in peer-to-peer networks that operate without central
control, thus offering the potential for enormous adaptation in terms of scale and
availability. Social computing, where the users provide and develop the content, is the
new buzzword in the software area. On the other hand, industry has been keen to
utilise the network-related possibilities for its own purposes. Web services have been
developed for organising commercial tasks between players in the production chain,
and Service-Oriented Architecture is currently making a strong forward push in global
organisations.

In the academic world, agent technology originating from the artificial intelligence
community has a long research tradition of organising operations in distributed
settings. Furthermore, agent technology has been proposed as a suitable realisation
tool for reducing work and the information overload on humans via delegation. The
Semantic Web has been demonstrated to ease the solving of interoperability problems
in applications that integrate multiple individual actors and link pieces of information
together dynamically. The Semantic Web is still under heavy development but even
now solutions for systematically organising knowledge representation issues are
relatively mature, both in terms of actual tools and also standards.



The results presented in this thesis are the outcome of multiple projects studying the
possibilities of agent technology within process automation. The projects were open-
minded from the very beginning and were based on an experimental approach. The
first of these projects was Agent-based automation systems, conducted in 2000-2003.
It was focused on finding new ways to structure the operation of an automation
system utilising agent technology. The ideas at the beginning were radical, including
e.g. 3D temperature profiles measured by mobile sensors (Appelgvist et al. 2002) and
fault recovery with emergent behaviour. However, the ideas were found not to be
feasible by the research group when they were studying the properties of a process
automation environment and its functions. The author joined the research group in the
year 2001 to do his master’s thesis, which was finalised in 2002 with the title “Agent
augmented process automation system” (Pirttioja 2002). By that time, the research
group was mainly studying the structural aspects of agent systems and their
applicability to the controlling of operations. Additionally, the project highlighted the
possibility of utilising agents in information-processing functionalities.

The second project, Adaptive automation (MUKAUTUVA) in the years 2003-2004,
turned the research focus more towards information processing and demonstrated
simple information-accessing tasks within process automation setups. The third and
the last project so far was Agent-based information services for process automation
(PROAGE), carried out during the years 2005-2007. This was totally focused on
information processing and by then the Semantic Web had been included into the
architecture because of the general developments originating from the World Wide
Web Consortium (W3C). The results in this thesis are mainly derived from the final
project, although the previous two projects provided important background
information about both the problem domain and the agent technology itself.

Although this thesis reports the results on the information-processing functions, it is
strongly influenced by the previous research done by the research group on applying
agent-based approaches to the supervisory control operations of process automation.
That research presented a specification of how an agent system could be used as an
extension to an existing automation system and thus make possible the use of agent
technology to provide enhanced reconfigurability, responsiveness, and flexibility to
process automation control operations. The main results from these issues can be
found in Seilonen’s thesis (2006). Although the general background of these two
research subjects is somewhat similar, especially using agent-based systems as a
skeleton to gain flexibility and reconfigurability, there are still major differences. In
control functions the overall goal is always to make some kind of modifications to the
system setup, more or less automatically. In monitoring, which is a specific type of
information processing performed in a process automation environment, the purpose
of the designed system is to provide the user with flexible, integrated, and easier
access to available information. These types of functions (e.g. monitoring and
diagnostic) seemed to be more suitable for agent orientation than the controlling
functions, and similar statements have also been introduced by other researchers
(Bunch et al. 2004; Marik and McFarlane 2005; Wagner 2002).



1.2 Research problem and goals for the study

The research problem in this thesis is to draw conclusions on usefulness of agent
technology when used to build a monitoring system for operators working in a
process automation environment. To be able to answer this, the requirements of such
a system have to be determined and then the properties of an agent system designed
and built for the purpose should be analysed.

As the size and complexity of production sites is increasing, it will become generally
problematic to find out if and when certain information is available, and, further, to
decide if it is relevant in the current situation. Reducing the mental load of an operator
is crucial and the demands for technical solutions assisting people in their work are
high. The technical background for developing advanced services is relatively mature
but it is rather unclear what properties and functions are required from the resulting
technical construction. Applications meeting individual requirements and building on
top of present structures have been presented, but the current risk-minimising research
culture seems to fail in providing the badly-needed ground-breaking results. Open-
minded research demonstrating the possibilities of structurally new solutions has only
been presented to a very modest degree, and this also justifies the study of the
potential of agent technology.

The research problem of the thesis can be defined with a general research goal as
follows:

Develop a system design and provide a methodology that, with the help of novel
information technologies, answers the current and future monitoring needs in process
automation. Release the human user from the need to perform regular checking of the
current process state and provide controllable and configurable timely access to
filtered, processed, abstracted, and adapted information available from
heterogeneous data sources based on user-defined conditions referring to the values
themselves and their relations. This system should provide the means for easy and
comprehensive monitoring of process operations and related information, even when
it is incomplete and its availability is possibly partly unknown.

Further, this general research goal can be divided into the following more concrete
objectives:

e Study agent technology opportunities and their suitability for monitoring
functions: changes are visible in process automation environments, originating
both from technological development and business trends. How these are
altering the everyday work of personnel working with processes are unclear,
but, on the basis of the literature, some predictions may be made. Because of
its proposed general properties, agent technology seems to be suitable but
various alternative operating principles need to be compared and the most
suitable ones need to be selected. Furthermore, other state-of-the-art
technological alternatives need to be studied.

e Specify agent architecture for monitoring applications: a list of the properties
that the system should have needs to be gathered on the basis of a background
study. The system architecture should be usable in a real automation
environment, utilise the latest technological opportunities, and further support
the realisation of new functionalities. Utilising agent technology, a number of
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concrete design issues need to be decided before the whole system structure is
ready for realisation. The system should be specified in enough detail for it to
be implementable.

e Construct industrially motivated monitoring functionalities with agents: use
the agent philosophy and the developed architectural design to construct
selected monitoring functionalities. The realisation of the functionalities of
experiments enables the agent methodology and, further, how the desired
system properties are met to be assessed. Furthermore, the experiment
provides the possibility of suggesting future improvements in the design.

e Critical evaluation of the research: Provide a concluding discussion about the
whole area of agent technology-based monitoring system design. Discuss the
presented monitoring system requirements and their relevance. Summarise
how the architecture that was designed and system that was constructed
performed and consider whether the arguments presented are well justified.
The performance of the experiment provides the possibility of making a
critical assessment about the properties that the agent technology and the
designed system do and do not provide. Discuss also the potential limitations
of the technology.

Although the thesis is about designing a system for process automation environments,
hard real-time issues were decided not to be considered. The reason for this is that it is
seen that higher-level monitoring information is useful, even if it takes some seconds
to have it available.

The research work in this thesis is done on a holistic level; it aims to facilitate an
increase in knowledge about the whole technological construction and thus does not
focus on any individual part of the system. The research is divided into two distinct
areas of theoretical and experimental work which are tightly connected in an
interactive and iterative fashion. The related research was studied in order to get an
understanding of the challenges, requirements, and available technical opportunities
in the application area. The experimental work, using a constructive research
methodology, was carried out in order to test the properties and benefits that selected
approaches were suggested by the literature as having. In addition, experiments were
done to demonstrate the applicability of the chosen technologies and to gain an
understanding of the approaches used and design choices selected. The Prometheus
agent design methodology (Padgham and Winikoff 2004) was used in the experiments
because at the time of the research it offered the best support for practical usage.

1.3 Contributions
The contributions of the thesis include the following:

e Agent technology opportunities compared to process monitoring
requirements: previous research has indicated that agent technology is suitable
for similar operations to those requested in monitoring tasks. However, this
research compares the presented agent technology properties to new
monitoring requirements originating from business changes within process
industry. In particular, the flexibility requirement is naturally supported by
agent-oriented design.



e Specification of agent architecture for monitoring in process automation,
including the BDI model and the Semantic Web: the desired properties for a
monitoring system situated in process industry are gathered. On the basis of
these an agent system architecture is designed, covering the general system
structure and the roles of the agents. The architectural design utilises the latest
available solutions for goal-oriented operation (with the Belief-Desire-
Intention model) and knowledge presentation technologies, originating from
Semantic Web research. Further, a layered and modular internal structure of an
agent supporting the hierarchical organisation of data-processing in the
process automation context is specified. In addition, an actual example of
software realisation is presented.

e Application of systematic AOSE method to design industrial monitoring cases:
the design of four industrially motivated experiments is documented. These
experiments illustrate the use of systematic AOSE in the construction of
monitoring functions in a process automation environment. The specified
agent system architecture is used to implement the experiments.

e Evaluation: the applicability of an agent approach is critically evaluated on the
basis of a literature review, synthesis, design, and experiments. This provides
insights into what the suitable monitoring functionalities are for a system that
has been built with an agent approach. It also discusses what other information
technologies should be used when developing this kind of monitoring system.

1.4 Author’s contribution within the research group

The research work documented and presented in this thesis was carried out from 2002
until 2007 in a group that had three key members. The author’s main scientific
contribution to the group has been the architectural design. The desired properties for
the agent system presented in the thesis and the specification of information related
roles (client, information, and wrapper) of agents were done by the author.
Furthermore, the internal layered structure of an agent was specified by the author.
The use of constraint satisfaction problems formalism to monitoring purposes was
proposed and implemented by lIlkka Seilonen. In addition, the presented process
industry data model and ontology based information processing were mainly
developed by Antti Pakonen.

Experiments 1 and 2 were defined, designed and implemented by Pakonen and
Seilonen in co-operation with the author, but the agent design presented in the thesis
with Prometheus formalism was done solely by the author. Furthermore,
specifications and design for Experiments 3 and 4 were made exclusively by the
author. Furthermore, the author is alone responsible for the idea of applying statistical
mathematical tools to find linear episodes from process time series data. The
implementation was done by Eemeli Aro, based on author’s definitions.



1.5 Outline of the thesis
This thesis is organised as follows:

Chapter 1: Introduction.

Chapter 2: State of the art of monitoring systems in process automation. The chapter
presents the current status of industrial process automation and its monitoring. It
describes the general motivation for the research and presents the user needs.

Chapter 3: Agent, semantic web technologies, and their application to monitoring task
in process automation. The research depends heavily on information technology, so
the available system-level solutions are reviewed. In addition, a synthesis discussing
the challenges and technical opportunities of process automation monitoring is
presented.

Chapter 4: The new agent system architecture for process monitoring. First, the
desired system properties are listed, and these properties direct the development of the
architecture. Then the architectural design is presented, with a summarisation of its
properties.

Chapter 5: Layered agent design and its functionalities. The layered and modularised
design of an agent used further in the study is presented. The design is used to
implement and realise the system for experiments.

Chapter 6: Experiments illustrating the usefulness of agent design methods and
developed architecture. Four different real life-motivated experiments are designed
and described in detail. Each experiment is introduced with its use case and then the
agent definitions and interactions are designed. Furthermore, the implementation of
the experiment and the concluded tests are illustrated.

Chapter 7: Discussion and conclusions. The results of the thesis as a whole are
summarised on the basis of the previous chapters. This contains discussion about how
the properties offered by the literature match the results from the architectural design
and experiments. Future work is also pointed out.






2 State of the art of monitoring systems in process
automation

2.1 Introduction

Process automation is a special branch of automation that is used to realise the
automation of continuous industrial production processes, such as paper production or
the chemical industry. This chapter presents the characteristics of process automation
and its current state. It presents the visible future in terms of technical development
trends and business requirements, and discusses how these are reflected in process
monitoring. It also describes the current status of industrial automation, because the
industrial practice and current technical setup are important as they represent the
environment in which the developed monitoring system will be situated. The chapter
will first present the automation environment from three distinct perspectives of time,
technology, and users, in their own subchapters. Then, finally, it illustrates the overall
development trends that are currently visible in process automation. These will all be
used as background information when designing the system for monitoring purposes
in later chapters.

Generally, the technical motivation for automation is that some systems are too fast or
complicated to let humans control them directly, or machines handling the repetitive
tasks let people focus on higher-level aspects of work, e.g. optimisation and quality
control. The level of automation varies depending on a number of issues, such as
safety requirements and business interests (Olsson 1992; Sheridan 1992). Because of
partly distinct properties and functionalities, process automation in continuous
processes has differences in its technical requirements compared to other domains,
e.g. manufacturing.

Automation that controls processes varies in type and in its place in the life cycle,
which in process automation may be as long as 20 to 30 years. Typically, the systems
controlling the operation of production plants are based on mixed technologies and
product life cycle statuses vary. As most plant systems work properly in their
operational life cycle, some parts of the system are at the end of their life cycle. For
some parts requirements are gathered for the next system upgrade, and possibly some
previously updated part is starting to meet the designed production state. As the
system goes through continuous evolution the whole life cycle of systems is important
and this should be remembered when developing new functions. This evolution makes
the construction of the automatic monitoring of processes especially difficult, as rules
expressing acceptable process values and operational states may become out of date in
a relatively short time, e.g. because of the wearing out of equipment or changes in the
outside temperature.

Although the whole evolutionary path, including design and commissioning, is
important, this thesis focuses on studying issues related to the normal operational
phase. This phase is nominal for the process system and its correct operation is the
responsibility of the operator. According to Paunonen (1997), working with process
automation in this operational phase may be divided into the following modes:



e Monitoring of the normal operation of the process when it is steady and it is
working as planned. This could be seen as the target state of the production
plant.

e Performing preplanned tasks is a mode that is activated once in a while and it
may also be seen as the target state of production. This consists of situations
such as process start-up sequences and grade changes.

e Controlling disturbances is a situation in which things are not going as
planned, e.g. when some equipment has broken down and the production
capabilities of the site are reduced. Before this phase is activated, the deviation
from normal operation (the previous two phases) needs to be observed.

e Development mode is activated when the on-going evolution of the production
system requires modifications to the system setup.

Each of these modes requires a different perspective on the underlying system and its
operation, and therefore the tools that are designed to support user activities in
different modes should take this issue into account.

2.2 Evolution of process automation

The development path of process automation and its technologies has been rather
isolated in the past, and although this isolation is effectively in a state of breaking up,
the history still affects the trends and development directions. Therefore, a brief
overview of the evolution of the technological background and the growth of the
general size and complexity of applications gives a perspective that may be exploited
when new systems and functionalities are being developed.

The first control systems were based on mechanical operation principles. In general,
mechanical control systems work quite well when done properly, but they wear out
with use, need extensive maintenance, and are hard to reconfigure. Although
mechanical systems are not thought to be a feasible implementation of modern control
functions, their monitoring was relatively easy because of their simple and intuitive
operation. From purely mechanically constructed control setups the development went
through electronic relays and hydraulic and pneumatic systems in the 1950s to digital
control systems somewhere round the 1970s. With these the control systems were
constructed mainly from multiple single-variable loops that handled their own share
of the whole system. Operations were easy to validate and monitor directly with
human perceptions.

More advanced control systems became available round the 1980s as computational
systems developed further. At first, automation-related hardware and software were
specially designed for control applications but more recently the hardware used has
become more and more similar to that found in office computers. With totally all-
digital platforms a number of new functions became possible, such as plant-wide
optimisation. Additionally, the alarm functionality provided the possibility of
requesting the system to give notification about individual values going over specified
limits. Digitalisation made it possible easily to move a larger part of the process so
that it could be supervised from one central control room. This made possible the use
of fewer persons to watch over the larger part of the process.
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In the 1990s a wide range of digital field buses were introduced to process industry.
Field buses provided error-free communication between controllers and field devices,
and made it possible to deliver additional information between devices. Along with
the development of microcontrollers, this made room for embedded diagnostics, and
maintenance tools started to emerge. In addition, around the 1990s control rooms got
bigger displays and navigation between different process layout displays became
easier. At the same time, the division between control systems and information
systems ceased to be so obvious any more and these started to merge (Paunonen
1997). As the fusion of information and control systems became technically feasible,
the responsibilities of process operators again increased.

Around the year 2000 the development focus in process industry moved more and
more towards the utilisation of the potential that the software discipline offered. The
development of network technologies, e.g., the internet and Ethernet, adapted from
offices also made new levels of integration possible within factories, and the
integration of the whole production enterprise became more important. Despite the
integration possibilities and intelligent machines, which, together, offer great
possibilities, especially in terms of flexibility, systematic development methods for
interoperable components were found to be largely lacking (Tommila et al. 2001).
However, technically easier integration made various device maintenance, diagnostic,
and monitoring tools really useful. But even today, a need for more effective system-
wide integration, allowing systems developed in isolation to communicate, is still
seen (Laukkanen 2008; Ventd 2005). For monitoring operators this development has
offered easier navigation to external applications, for example links to device manuals
and access to work orders. Lately, using single solution providers’ integrated process
automation systems has enabled the raw measurement data from the plant floor to be
available at the right time, in the right form (ABB 2007; Metso 2007; Rockwell 2005,
2006, 2007). All these improvements have made it possible to increase the area that a
single operator is responsible for.

Lately, the development drive has been towards the more tightly organised integration
of information systems to support managers in their need for more accurate and
timely information about the production situation in the whole environment (Jamsa-
Jounela 2007; Laukkanen 2008; Venta 2005). Business measurements, such as
Overall Equipment Effectiveness (OEE) and other Key Performance Indicators (KPI),
are also gaining interest in process industries. These integrate physical operational
information with economic measures and require correct and timely data from all
around the production site in order to be applicable (Tuomaala 2007). Because of the
level of integration and effectiveness required, production systems as a whole are
growing in size, complexity, and “accuracy”, and the amount of data generated and
stored is also growing vastly. For example, Laukkanen (2008) states that in paper
production processes this trend has resulted in the integration of the problems and
disturbances.

Lately, the importance of information issues in industry has gained notice, and as a
result of this the IEEE Transactions on Industrial Informatics (TIl 2008) journal was
established in 2005. In addition, the IEEE International Conference on Industrial
Informatics conference series has received growing attention since it began in the year
2003.
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2.3 Current technological solutions

Present-day automation infrastructure is based on multi-level and hierarchical
networks of diverse devices that communicate with each other using various methods.
Although analogue communication is still widely used to connect field-level devices,
it can be said that the majority of communication among enterprises is digital (Sauter
2005; Ventd 2005). This has provided a lot of integration possibilities among plant
and enterprise networks. The exact number of individual hierarchical levels varies
between different solutions but the general situation is illustrated in Figure 1.

On the lowest level of the whole automation infrastructure are field devices or
instrumentation, which have benefited significantly from general electronic
developments. Novel all-digital field devices have numerous added functionalities
along with their basic operation, e.g. self-diagnosis (Jamsé-Jounela 2007). In addition,
wireless and ubiquitous technologies are introducing new possibilities for distributed
information generation, which are useful at least for diagnostic purposes (Elmusrati et
al. 2007). However, there are no clear ideas or methodologies as to how all the
information available could be fully utilised on other levels of production enterprises.
The present practice is mainly based on manual operation, where maintenance
personnel use standalone software products provided by each device vendor. The
development of information models and communication standardisation for device
interoperability is ongoing, e.g. EDDL (2008) and FDT (2008), but the requirement
for more open-minded research has already been noted (FDI-future 2007).

Hardware has developed considerably since the first process stations and controllers
were introduced. Earlier, much of the complex data processing, such as the heavy
computational work of optimisation, was done in separate systems for practical
reasons. Nowadays there is plenty of computational power available, and the
statistical calculation used in the paper industry for quality assurance and process
optimisation may be performed within process stations. Furthermore, process stations
have become capable of supplying all the measured data from field devices to
everywhere within the enterprise, if needed. The methodologies used to programme
process stations have essentially stayed the same, focusing on supporting the
configuring of control functions. Supporting functionalities, such as optimisation,
diagnosis, monitoring, reporting, and so on are usually programmed and carried out
separately. This makes maintaining these functionalities cumbersome and laborious,
and the future research should address this weak point and develop more flexible
structures.

12



Maintenance Information Office

External and LIMS services systems
business |
systems >
ed. ERP | \\\,
Q
% S
Operation Office network and internet 0)

(SCADA) Reportlng

& %@

Redundant factory network

§-

&
(Y
Measurement
database

-

Control appllcatlon running in process control system
(DCS, PLC, etc.)

Wireless Network adapters | Field buses Analog I/O
device devices
- B =~ 3
N B T T = S Py M
R o g 2 5
4 9 350 sk e
o 5 O T L = n
rn =0 = £ ‘a'j © <C - ol
L = E - o) en g g
22 ES8% =]
N g 3 Network adapters = E 23 o
~ 2E Distributed 1/0, essa s
= 8 A/D and D/A ~— Z
~~ el Field devices
Wireless Analog JlTr connected directly
. . L ~
device signals to field bus

Field instrumentation (measurements and actuators)

Process equipment and physical process

Figure 1 — Multiple layers of modern automation infrastructure.

Practically every automation system, platform, and solution has its own variant of
how the control application is programmed. Unit controllers measuring and
controlling one pair of values are only configured, e.g. a PID controller with its
respective parameters. PLCs are programmed with rather simple languages, such as
ladder logic. The control application in process stations is usually performed with
function blocks, and a number of programming standards have been created for this.
Actual implementations more or less follow these standards.

Function blocks are configurable blocks that implement some process control-related
functionality, e.g. a PID controller. The whole process control functionality is set up
by defining a network of these functionalities and configuring the parameters of each
function block. Function blocks are like objects in Object-Oriented programming,
with their own internal operating principles, protected variables, and well-defined
connection interface to the outer world. The standard IEC 61804 Function Blocks for
Process Control is one example of a language that implements this principle. In

13



addition to function blocks, logic languages are widely used in industry for control
purposes. The most commonly used set of these languages is described by the
standard IEC 61131-3 (Programmable controllers, part 3, Programming languages)
developed for PLCs. For further information about this standard see Lewis (1998).
These languages are heavily based on legacy ideas of how to construct control setups,
e.g. the language named Ladder logic emulates the physical wiring of relays and
switches.

Although the technical progress within automation devices and systems has been
tremendous in the past couple of decades, control application programming with
function blocks or logic languages has remained rather untouched. The present-day
industry standard languages for control software development have been designed for
realising rather simple control structures. A justifiable reason for this is that
reliability, with compact and verifiable operation, was the main goal when developing
these languages. Furthermore, with these languages the user was able to design those
control functionalities that most effectively use the computing power that was
limitedly available in the controlling hardware. This has resulted in languages that do
not effectively support the handling of complex structures and functionalities. In
particular, the available languages do not support the construction of flexible
diagnostic or monitoring functionalities, and organising the advanced functionalities
is practically left to the user.

Maybe the most important novel solution within automation programming is the IEC
61499 Function Block standard, originating from holonic manufacturing systems
research. The standard aims to provide more open architecture in order to gain
portability, interoperability, and configurability to industrial measurement and control
applications (Deen 2003). This standard is more flexible than the previous ones and it
allows the development and building of more advanced functionalities. But as the
standard allows more complex structures to be built it makes the basic design and
application development more vulnerable to errors and requires a complex platform
which itself is also a challenge to reliability. The IEC 61499 standard is still under
heavy development and no large-scale industrial reference cases have occurred yet, so
no true comparison can be made. However, the event-based operating principle in IEC
61499 might generate new possibilities in the development of monitoring, diagnostics,
and abnormal operation functionalities in general.

In the process automation environment more information will be gathered and the
need for integration with other information sources will rise. However, because of the
programming principles currently used on the control level the connection between
these is rather laborious and cumbersome to organise. Currently, information
integration is typically realised with a list of shared variables between systems and
this requires time-consuming agreement between players to build a shared
understanding of the rationales behind the variables and their values. Technically,
integration between systems has been realised with the OPC Data Access interface,
designed for exchanging real-time process information (OPC 2008). In OPC Data
Access the interface specification is organised as hierarchical groups of quantities, the
values of which the client may ask for. In the future a more intelligent solution for this
integration procedure will definitely be needed (Venta 2005).
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When physical production, with its control system, is connected to a global enterprise
the setup gets even more challenging. Technically, this integration between factory
floor instrumentation, control systems, and office automation was demonstrated years
ago, so this vertical integration is no longer a technical problem (Jdmsa-Jounela 2007;
Sauter 2005). The Manufacturing Execution System (MES) is a solution used for
vertical integration in discrete manufacturing, and it has lately also gained interest in
process industry. MES is used as an active data-processing link between control-level
information and office systems, and its purpose is mainly to relay timely information
between systems operating on different levels of abstraction (McCellan 1997). The
forthcoming OPC Unified Architecture, which has a more service-oriented approach,
offers interesting possibilities for the realisation of integration between all levels of
automation (OPC UA 2008), but the standard does not yet specify the data models
needed to realise this.

Currently, the integration of functionalities is typically based on static configuration,
which is done at the time of design by the design engineer. Methodologies supporting
dynamic integration in horizontal and vertical directions in changing situations are
largely lacking and future research should address this (Ventd 2005). From the
business perspective flexibility is becoming a more important property, also in the
process industry (Jamsé-Jounela 2007; Keller and Bryan 2000) and new technical
approaches are being researched, e.g. agent technology has been proposed (Chokshi
and McFarlane 2008). Additionally, the need for temporal integration covering the
whole life cycle of the system has been pointed out in research (Sauter 2005). Similar
information integration issues, where entities from different application areas are
logically related, are resolved with semantics in the electric power market (Huang and
Lei 2007).

2.4 User perspective of process monitoring

In the future, more functions and operations will be able to be automated with more
capable systems, but still at the same time the importance of the human supervisory
role seems to stay (Gentil 2006; Sheridan 1992). Although controlling systems are
generally developed for fully automatic operation, Paunonen (1997) has proposed that
showing the information to the user is also one of the primary tasks of control systems
within industry. Part of this information is exploited within monitoring purposes on
multiple levels of production sites. As part of their daily business, operators are
watching over real-time controllers and verifying that the process is working safely,
correctly, and as efficiently as needed. This is called on-line monitoring. Their task is
to be aware of the present process state and minimise possible production losses with
detection of device malfunctions and other abnormal situations as early as possible.
Maintenance personnel, on the other hand, are looking at things from a longer-term
perspective, focused more on device malfunctions, and their work is to try to estimate
the correct timing for maintenance. Furthermore, management personnel focus on
much higher-level data that concern elements of the physical process less directly.

In the future operators will be more responsible for productivity from the business
perspective, e.g. decisions at management level will cascade down to the automation
system in real time (Laukkanen 2008). Simultaneously, as the work of the operator is
broadening in terms of what aspects of the production are required to be monitored,
the volume of monitored items will also increase. For example, it has been reported
that the 1/0 number that one operator is responsible for has grown from approx. 400
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in the year 1990 to 1200 in the year 2005 and will be as high as 2600 1/Os in the year
2006 (Laiho 2005).

In control rooms the interface development has so far been going mostly where
technological developments have been taking it (Farbrot et al. 2000), and
revolutionary new ideas have largely been lacking (Venta 2005). To perform well in
dynamic situations an operator needs timely information from the process itself and
also from the all-around enterprise in order to be able to make good decisions
(Laukkanen 2008; Ollson 1992; Paunonen 1997; Sauter 2005; Sheridan 1992; Venta
2005). One of the most important monitoring tools for operators is alarms, but, at least
currently, they are designed with a single process component in mind and typically
using static limits (Farbrot et al. 2000), which makes them practically useless in
situations where the process setup changes dynamically. Although the process
operators are responsible mainly for the on-line monitoring, Paunonen suggested as
early as in the year 1997 that some parts of the off-line monitoring tasks, e.g.
searching for malfunctions from historical information, will also be added to
operators’ tasks (Paunonen 1997).

As sites get bigger and there is more to keep an eye on for every process operator,
there is a need to develop technology that helps detect various abnormal events faster
(Laukkanen 2008) and at the same time keeps the mental load of the user on an
acceptable level (Paunonen 1997). These functions should also depend on the current
situation and status of the process (Ventd 2005). Intelligently extracted and abstracted
information is stated to be useful when depicting relevant issues to users (Seppéld and
Salmenperd 2005). When the process is running steadily the tools should support
monitoring on a high and abstract level, e.g. enable energy efficiency to be analysed,
but also enable lower-level information to be accessed for detailed examination. Then,
on the contrary, when the process is in a highly changing state, the monitoring tools
should enable the user to access more detailed aspects of the process. This may be
seen as an information system-related requirement of flexibility, which is opposite to
the automation system effectiveness requirement, as noted also by Paunonen (1997).

Maintenance is an important supporting activity of the whole production process. Its
aim is to keep the system in a production state, and so to increase the total efficiency
of the industrial production process. In general this is achieved with information
processing, which humans and computers use together to control the reliability of
machines in the process environment. The maintenance itself may be of either a
proactive or reactive type. In proactive maintenance, typically, a model describing the
reliability of the process and the related gear is built. In reactive maintenance models
are not required. However, in both types of maintenance successful failure
identification is required (Honkanen 2004).

In model-based approaches the processes have to be modelled to some extent and, as
systems grow in size and general complexity, this model also gets more complex. If
more autonomous operation is required, then a more descriptive model of the system
is needed. These models may contain information about the physical connections of
quantities, process-related physics, optimisation principles, and process control
philosophies. In general, rather extensive and descriptive models are needed to get
something intelligent to happen automatically, but this is seen as problematic because
the modelling fast becomes laborious. For example, the operator support system for
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the mineral filtration process presented by Jamsé-Jounela (2005) contains a complex
mathematical model which has numerous assumptions, at least three ifs, multiple
parameters that can be calculated, at least four empirical constant parameters, and a
couple of parameters that are to be identified online. This model-based approach has
proved to be useful in the particular case of the filtration process for optimisation and
fault diagnostic purposes. Although the developed computational system is modular
in structure, it could be argued that the presented concept is hardly highly usable in a
totally different process setup or when the current process changes substantially.

2.5 Future trends for process automation development

Available technical achievements have been the driving force in the selection of what
new possibilities have been offered to users and developers in process automation.
With digital communication and almost fully software-based operation there are no
big barriers any more to what functionalities may be developed and thus offered to
users. This will result in a whole new set of functionalities and services for users
working with process automation; e.g. Ventd (2005) has gathered the generally
recognised new possibilities (Figure 2). However, from now on the selection of what
will be developed will be guided by other limiting issues, such as economic
preferences, quality and safety requirements, and, of course, the selection made by
users.

I
Knowledge
management (product,
design, unformal)
| 1

Abnormal situation Fault navigation
management | Mobile terminals

Operational state
identification &
management

Operators Ecological human- Life-cycle l:l Asset .
USER INTERFACE system interaction management |- managemen
P&l Proper and context Knowledge
diagrams Performance sensitive information | | management (product,
indicators (technical for operators design, unformal)
— & ical
dataRJase ] economical) Fault navigation
tools Reliability &
CONTROL SYSTEM Predicted 5 y———— availability
ryr perational state models
Monitoring | | Anticipated erformance | | entification & Bl
& controi disturbgn(:;as Aids for management Standardisation | Modeling and
simulation

generation architectures,

I
|
|
I
1
I
|
|
I unexpected - - -
Alarms I situation mgmt ;o;él\?:nlézg Modularity, flexible
]
I
I
|
|
|
|
l
1

algorithms design tools
FIELD DEVICE

Sensor-

- Measurement | | Sensor Integrated

Direct Steady- | validation fusion actL:jato_r smart automation

variables state control evices functions

Calculated —
variables Diagnostics, Distributed
condition/health measurements Wireless
Fieldbuses monitoring communication
EXISTING, CURRENT ADVANCED MODERN,
PRACTICE FUTURE

Figure 2 - Intelligent automation technology roadmap (adopted from Vent& (2005)).

The realisation of the possibilities visible in Figure 2 requires different know-how
than previous developments in process automation, limited mainly by hardware
capabilities. Mastering a variety of software methodologies and knowledge tools is
becoming an important property for developers in process automation (Ventd 2005).
Furthermore, wireless communication is becoming reliable enough for other than real-
time control operations, and it may be used for supporting operations in information
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processing. Especially for monitoring this provides interesting new possibilities, as
cheap embedded electronic modules that communicate in a wireless manner could be
added to field devices to gain information for diagnostics and monitoring
functionalities. In addition, increasing the number of measurements could be used to
compare different measurement sensor outputs (Elmusrati et al. 2007; Venta 2005).

New opportunities do not just affect the normal operation of systems, but changes are
also reflected in development phases. Although these phases in process automation
are comparable to ordinary software and hardware development projects, the
development and programming in automation was rather isolated in the past. The
requirements of real-time responsiveness, reliability, and the need to be able to realise
control philosophy have kept design methods isolated. This isolation was criticised by
Olsson as early as in the year 1992, but at least the recent maturity of general
electronic hardware and software engineering tools has made it necessary to check if
this separation is still appropriate (Heck et al. 2003; Rockwell 2007; Sierla et al. 2007,
Venté 2005;Wagner 2002).

Business trends have also changed in process automation, resulting in growth in the
responsibilities of individual humans working in industrial sites. As production
systems have become more integrated, because of efficiency demands, there are more
individual items to watch over and users are working more often with issues that they
are unfamiliar with (Jdmsa-Jounela 2007). Maintenance is more extensively
outsourced, resulting in users diagnosing systems that are working in unknown
environments more often (Py6tsia 2005; Theiss et al. 2007). The rise in the amount of
information available is also the result of technical development, as there are no
limitations on what data may be stored and transferred from the measurement to the
system level. But more unprocessed data actually make the operators’ situation worse
and, to battle this trend, the user should have tools that help them to find relevant
information faster and get help when making decisions in more complex situations.

New business requirements also affect the way in which processes are to be controlled
in the future, thus requiring new functions from the control systems. Table 1 lists the
new requirements that have been reported lately (Chokshi 2005; Chokshi and
McFarlane 2002; Chokshi and McFarlane 2008; Jamsa-Jounela 2007; Keller and
Bryan 2000). As these requirements affect the way processes are controlled, these also
affect the requirements for monitoring systems. The following table includes a
column done by the author that specifies properties that seem to be required from
monitoring systems as a result of changed control requirements.
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Table 1 — New requirements from business trends setting up requirements for control and

monitoring systems.

Business-driven
requirement

Requirements and effects
towards control systems

Requirements towards
monitoring systems

Flexibility and volume
variation

Being able to use process
instrumentation in multiple
ways

Rule adaptation that is able to
adjust itself to changed process
settings and values

Responsiveness and
process safety

Faster change management
(e.g. campaign mode) and
response to disturbances

Methods and system structures
able to respond to frequent
changes and distinguish between
controlled changes and
disturbances.

Better and extended coverage of
algorithms is needed so as to have
timely response to disturbances

Material cost reduction

Using less materials in
addition to being able to use
cheaper raw materials (that
are not of such good quality)

Responsiveness in monitoring as
increased variation in materials
increases the risk of blockages in
the piping which need to be
observed in time.

Energy efficiency

The energy efficiency is
typically raised, utilising
complex interconnections in
the process (e.g. using Heat-
Exchange Network)

Handling the complexity;
interconnections are problematic,
especially in change situations.

Capital cost reduction

Use the instrumentation more
efficiently (e.g. by increasing
speed or reaction
temperature) and reduce
inventory sizes. For example,
utilisation of Vendor-
Managed Inventory requires
accurate estimates of future
consumption of materials.

Using instrumentation functioning
at its operational limits is more
likely to cause all kinds of
disturbances.

Reduced inventory requires better
tools to calculate the timing of
changes in the production chain.

Increased product
quality

Better and typically more
interconnected control
algorithms lead to less
variation in production.

More complex control is more
sensible to disturbances and
sudden changes.

Tracing problems in the process
stream is needed.

Similar requirements have been motivating holonic research related to manufacturing
control (Bussmann and McFarlane 1999; McFarlane and Bussman 2003). However,
recent studies reported by Schild and Bussmann (2007) have argued that an enormous
amount of flexibility is not really required in real industrial settings. In addition to
requirements set by business considerations, the general monitoring system
requirements should be taken into account as far as they affect system-level
development; for example, Venkatasubramanian et al. (2003c) list these as including
responsiveness, adaptability, and parallelism.
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Limitations and problems of the current development trends and approaches:

With respect to supporting process automation functionalities, systems have been
suffering from decisions that were made in the past, e.g. alarm handling and
processing is based on a rather simple approach developed when the first digital
control systems were introduced. Devices and control systems, as well as their
monitoring, have been built for continuous and steady usage, and, further, their
operation has been optimised for a steady state. In terms of monitoring, enough
attention has not been focused on operations in change situations, ensuring their
correct operation and further optimisation. These situations have been typically
treated as special cases handled with special attention (e.g. by using enough
personnel). However, this is not the case any more, as systems have become larger
and more complex, and there are not enough personnel available on-site to handle
more common change situations with special attention.

The currently probable and possible future trend related to monitoring goes towards
specialised individual software systems that are each built for a certain task. Variation
exists between the branches of process industry about how much diversity in solutions
there will be. Nevertheless, the base techniques used have become more coherent
between solutions, thus making integration in theory an easier task. Furthermore,
typically each individual software solution supplier built their system by just
configuring an already available commercial base system. A characteristic example is
industrial reporting systems that currently are typically built with a web-based user
interface accessing data stored in a standard SQL database. Customisation for
customers’ needs is done by the implementation of case-specific terminology and the
selection of appropriate application modules. Typically, the integration of numerous
solutions is realised as an application portal that enables different solutions to be
accessed relatively easily. The result with this is that the user is restricted to the links
provided by the system engineer, and flexible customisation based on dynamically
changing process values is not supported.

On the technical side today’s systems rely heavily on centralised and specialised
database approaches, e.g. every solution has its own server running proprietary data
schema. The operational principle is user-driven, via a web browser or Windows
client. One part of the software is responsible for fetching data from an external
system, (e.g. with a field bus from devices, OPCs, or people inputting values with
reporting forms) and then another part is used to fetch information relevant to the
current needs of the user. If the active functions are monitoring value changes, these
are typically organised as separate client applications, because databases are not, in
principle, designed for running periodic value checks. However, stored procedures in
databases may be used to realise this, but they have performance limitations and may
not be responsible enough to monitor applications in process automation.
Furthermore, algorithms in monitoring are typically structurally static and their
operational logic is developed in the system design phase. In addition, control
algorithms and even monitoring algorithms usually fail if some part of the data is
missing. This may happen easily if some device is temporarily out of order,
unavailable (e.g. with wireless devices), or the system setup has been updated.
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The conclusions of current trends and approaches may be characterised as follows: the
technical limitations of the past have resulted in static structures and operating
principles. Applications have become multi-functional, but the functionalities are
specified at the time of design by the engineers. Users are able to modify parameters
but not the operational principles, which hardly results in sufficiently flexible
operation. The structurally static operation is also visible in the algorithms where,
typically, only the numerical values change and not the way things are checked. The
strong emphasis on reliability requirements has resulted in systems that, especially in
monitoring operations, are not sufficient any more as the size and complexity of
processes have grown substantially.

2.6 Conclusions about monitoring

In this thesis the objective is to research and develop flexible system solutions for
human users to perform monitoring tasks in the process automation environment. On
the basis of the discussion in this chapter about development trends in technical and
business perspectives, a new monitoring system should have the following general
properties:

e P1: Flexibility — system should be usable for a variety of tasks, and adaptation
to process changes needs to be supported (Jamsé-Jounela 2007; Keller and
Bryan 2000). Furthermore, flexible personalisation of capabilities is required
in order to support human decision-making (Venkatasubramanian et al.
2003b).

e P2: Delegation — because of the size and complexity of current and future
production environments, the users’ work tasks should be supported with
automation as much as possible, e.g. with delegation (Maes 1994).

e P3: System integration — no one system or method is alone sufficient to
provide all the information that is needed for success in monitoring tasks. In
addition, relevant information for monitoring will be available in a multitude
of distributed legacy data sources. Thus, integrating multiple systems are
required to overcome the limitations of individual systems, e.g. by utilising
hybrid systems (Venkatasubramanian et al. 2003b).

e P4: Knowledge handling — information is stored and available in various data
formats and the monitoring system should support the unification of these.
Further, users should be able to describe the meaning of things and their
relations.

e P5: Data processing — the system should be capable of performing data
processing to extract and abstract relevant information from vast amounts of
data, which in processes are available in a time series format. In addition,
systems should assist the user to find useful relations in the data (Gentil 2006).

The technological tools that may be used to develop systems to support these
properties are discussed in the next chapter.
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3 Agents, semantic web technologies, and their
application to monitoring task in process
automation

3.1 Introduction

In process industries the traditional barriers to adapting solutions from Information
Technology (IT) to automation technology are gradually disappearing. In this changed
situation a new type of know-how will be required to succeed in the development
work and mastering software-related methodologies and tools will be important, in
addition to traditional hardware- and electronic-oriented skills. In monitoring tasks the
state-of-the-art technologies will have great potential to help bypass the limitations of
the current approaches, e.g. the structurally static operation discussed at the end of
Chapter 2 is not able to adopt the full potential of distributed processing and wireless
communication. Monitoring functionalities are not restricted by the reliability
limitations of control operations directly modifying physical quantities, and thus offer
suitable ground for realising the benefits of new technology. The objective of this
chapter is to study the properties of agent technology so as to be able to select feasible
structures and operational principles in the following chapters. In addition, some
selected state-of-the-art technologies that currently have the strongest industrial drive
within the integration and information-handling area are introduced.

Agent technology has been proposed as being suitable for dynamically changing
distributed environments by researchers in computer science (Ferber 1999; Jennings
2000; Russel and Norvig 2003; Weiss 1999). The application of agent technology to
process automation has been motivated by the wish to match the properties of the
domain and the technology (Chokshi 2005; Parunak 1997; Parunak 1999; Seilonen
2006). Its application to real industrial settings has been at least demonstrated in
numerous functions, and it has been suggested that it is especially suitable in resource
allocation functions with planning and simulation (Pechoucek and Marik 2008).
Although monitoring in process automation seems to be a potential agent application
area (Gentil 2006; Wagner 2002), relatively few industrial studies have been reported
(Bunch et al. 2004; Buse and Wu 2007; Gentil 2006).

From the software engineering viewpoint, agent technology may be seen as a
promising new and advanced version of object orientation (Luck et al. 2005).
Developments in software engineering methods have made it possible to handle more
complex structures and the level of abstraction in programming languages has been
rising (Soukup and Soukup 2007), and agent technology is one result of this
development. Within the industrial sector the Service-Oriented Architecture (SOA)
has gained a lot of interest and it offers properties (loosely coupled, modularised, and
service-based operation) comparable to agent technology. In addition to comparing
tools for organising system-level development, knowledge representation and data-
processing issues are discussed. Strong interest in semantic technologies has appeared
lately, because the internet suffers from incompatibility problems arising from the
miscellaneous knowledge representations used by different services. Semantic
research is trying to overcome this by developing machine-processable information
formats.
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3.2 Agent technology

Agent technology, or orientation as you could also call it, is a branch of computer
science in which a system is thought of as containing pieces of software that act on
behalf of the user or other software programs. Although having similarities with
object orientation, the key difference of agents is that they act autonomously on the
basis of their internal operating logic and have some level of control over their
operation (Jennings 2000; Parunak 1997; Russell and Norvig 2003; Weiss 1999).
Furthermore, agents are in general thought to operate in some environment,
perceiving it with sensors and making modifications through actuators. This setup
may be seen in Figure 3, and it should be noted that it bears many similarities to the
system setup in which process automation monitoring systems operate.
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Figure 3 — Agent interacting with the environment. Modified from Russell and Norvig (2003).

To be able to benefit from using agent technology as a software engineering
paradigm, it is important to understand its characteristics and properties. Although the
exact definition of the concept of agents is work in progress, most of the researchers
agree that agents are rational software entities having properties such as autonomy
and flexibility, and that their operation is typically goal-oriented. The list of properties
varies, depending of what kinds of agents are being discussed (intelligent agents,
autonomous agents, distributed agents, mobile agents, etc.) (Ferber 1999; Russell and
Norvig 2003; Weiss 1999). In addition, a typical agent-based system has a number of
these active entities and is thus called a multi-agent system in which these entities
communicate with each other.

Typical properties of agents are:

e Autonomous — agents have control over their operation; they can decide when

and how to take actions.

e Situated — agents operate in some environment; they are possibly capable of
perception and taking actions that modify the environment. The environment
may be physical or computational.

Reactive — agents respond to changes in the environment
Proactive — as intentional entities agents act to achieve goals
Flexible — agents have multiple possible ways of achieving goals
Robust — agents recover from failure

Social — agents interact with other agents
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Having these properties, a system constructed with agents is said to significantly
enhance our ability to model, design, and build complex, distributed software systems
(Jennings 2000). This is stated to be mostly the result of the higher level of abstraction
that the software engineer is utilising when working with agents (Padgham and
Winikoff 2004; Viroli et al. 2007), and also with the help of the agent approach
supporting flexible decomposition and organisation techniques (Jennings 2000).
Because agents are by definition autonomous, they may be set to deal with smaller
parts of a whole problem separately, yielding natural support for decomposition.
However, agent technology has its roots and also limitations in Artificial Intelligence
(Al), and it is mainly designed to operate with symbolic data (Kaplan 1984). This
symbolic processing background should be taken into account, especially when
adapting an agent technology to the process automation environment, where a major
part of the data is numerical. Because of this agents should be used only for those
functionalities to which they are best suited (Wooldridge and Jennings 1999).

3.2.1 Multi-agent systems

When adopting agent technology for real-world problems, it soon becomes apparent
that an approach with multiple agents is needed (Ferber 1999; Jennings 2000; Weiss
1999). Much of the promised flexibility of agent technology is based on the dynamic
organisation of agents and versatile communication that is operable despite changing
structures. Figure 4 illustrates with an example how agents in a multi-agent system
(MAS) may be set to be responsible for areas of the environment, and how an agent
society has multiple layers in its structure. The agents in the society exchange
information either directly via messages or indirectly via changes in the environment.
As messages are more controllable, they are typically used.

Hierarchical structure
of agents

S~ {\ ~ 4 Key: )
— @ Agent

<«— Agent messages

<> Environment

D Organisation

> Area of influence

Figure 4 - Agent organisation on multiple levels, each having an area of responsibility.

Sophisticated negotiations are an important benefit of using agents to construct
software systems. Negotiations are constructed from series of messages that agents
send to each other. Typically, agents try to coordinate their actions with negotiations,
but a competitive approach is also possible. The Foundation for Intelligent Physical
Agents (FIPA 2008) has standardised agent negotiations based on speech act theory,
originally introduced by John Earle in the year 1969 to imitate communication
between humans. FIPA defines various types of messages or communicative acts,
each having a specified role in communication. Furthermore, these communicative
acts are combined together to form a whole negotiation, called an interaction protocol.

25



Figure 5 illustrates a standardised fipa-subscribe interaction protocol, which is used to
delegate change detection (FIPA 2002). The standardised communicative acts and
interaction protocols are general in agent technology and their usage is not restricted
to any specific application area.

FIPA-Subscribe-Protocol )

Initiator Participant
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subscribe :

refuse

[refused]
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| , agree
[agreed and
notification necessary]
Inform-result : inform 0-n
[agreed]
failure
T [failed] T~

|
Figure 5 — Standardised fipa-subscribe interaction protocol (adopted from FIPA (2002)).

Although negotiations have been standardised, the selection of an appropriate level of
interaction and selecting the correct type of structure for the agent society is left to the
user. A lack of structure and control may result in a system with unwanted emergent
behaviour (Wooldridge and Jennings 1999). Currently, a lack of effective tools for
debugging agent society interactions has been noted (Poutakidis et al. 2002). Bordini
et al. (2007) have suggested that instead of defining agent negotiations on a message
level, agents in a system should be defined with roles defining responsibilities and the
interactions should be executed on an intentional level to support the validation of
correct operation.

3.2.2 Agent operating principles

In their operation, agents may be divided into reactive, deliberative, and hybrid types.
The operation of a reactive agent is based purely on current percepts. Their simple
operating principle makes this type especially responsive and suitable for real-time
functions. However, constructing complex operations with purely reflexive operation
without memory easily becomes problematic because the number of rules easily
becomes unmanageable (Russel and Norvig 2003; Wooldridge 1999). Alarms in
process automation may be seen as being closely related to this type. Reactive agents
are reliable but active adaptation to changing situations is hard to build into them.

Deliberative agents are capable of pursuing long-term goals with a set of actions
(Dickinson 2006; Jennings 1999; Padgham and Winikoff 2004). Deliberative
operation has been stated to be suitable for complex operations in dynamically
changing environments (Jennings 2000; Dickinson 2006; Russell and Norvig 2003;
Weiss 1999). A currently popular (Bordini et al. 2007; Dickinson 2006; Helin 2003;
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Jennings 1999; Jennings et al. 1998; Padgham and Winikoff 2004) way of realising
this is making agent operation intentional with the Belief-Desire-Intention (BDI)
agent model (Rao and Georgeff 1995). Figure 6 illustrates layout and data flow in a
generic BDI agent architecture.
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Figure 6 - Generic Belief-Desire-Intention (BDI) architecture. Modified from Wooldridge (1999).

Generic BDI operation has the following phases (also visible in Figure 6):

e Delief revisions function - take the input from the physical or software
environment and process information for further usage. The processing is
typically influenced by the current understanding of the state of the world
(beliefs).

e Delief - database storing the agents’ current understanding of the world.

e gQenerate options — on the basis of the current state of the world and
operational situation, select the desires that it is possible to achieve with the
available tools. This provides context sensitivity in the operation.

e desires - expresses the end results that the agent is currently pursuing. These
are the tasks and respective objectives that the agent should achieve in the
long run.

o filter - select from multiple end result candidates the ones that are currently
most worthwhile to pursue.

e intentions - a set of more or less concrete sub-objectives that the agent has
decided to try to achieve with a set of concrete actions.

e actions - these are the actual doings that somehow modify the environment
and are going to shift the agent closer to the desired end state.
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In actual software realisations this BDI model is typically transformed into beliefs,
goals and plans (for example, in Bordini et al. 2006; Huber 2000; Jack 2008; Jadex
2008; Jason 2008). In these realisations, the plans are concrete procedural descriptions
of sets of actions that are to be performed in order to reach a certain goal (desire in the
general model). Agents utilising a BDI model to process diagnosis functions have
been proposed by Ingrand et al. already in year 1992. Furthermore, the BDI model has
been stated to be especially suitable for constructing agents that process information
available on the Semantic Web on behalf of a human user (Dickinson 2006). Lately,
BDI model-based agents have been suggested for information processing and
condition monitoring in power systems (Buse and Wu 2007).

In real-life applications the actual agent architecture is most often a mixed
combination of reactive and deliberative types. Typically, this is realised with either a
vertically or horizontally organised layered architecture in which decision-making is
performed in several layers, each operating on a different level of abstraction. In
horizontal layering each layer is directly connected to input and output and operation
is performed in parallel. Figure 7 illustrates a two-pass version of a vertical
architecture, where the lowest-level layers are directly connected to the environment
and information to the upper layers is flowing through the lower layers (Wooldridge
1999).
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Figure 7 - Vertically layered two-pass architecture.

The wvertically layered two-pass architecture operation has similarities to
organisations; the lower levels provide abstracted information to the upper layers and,
after decisions are made in the upper layers, the control flows down through the layers
(Wooldridge 1999).

3.2.3 Information processing with agents

It has been stated that if data and resources are distributed, or if a number of legacy
systems must be made to work together, then agents are an appropriate technology for
building such a system (Wooldridge and Jennings 1999). On the one hand, proactive
agent operation provides the possibility of delegating the information retrieval and
processing tasks (Dickinson and Wooldridge 2005; Maes 1994; Tennenhouse 2000),
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and agents could be used as secretaries or butlers performing information-related
tasks (Negroponte 1995). On the other hand, the rationality of agents and flexible
organisation of multiple agents are beneficial when accessing and retrieving
information in dynamic and distributed environments (Decker et al. 1995; Huhns et al.
2005). Because agents seem to have potential in information-related operations, the
concept of an information agent has been introduced. Klusch (2001), for example,
defines an information agent as an agent that has access to one or multiple,
heterogeneous and geographically distributed information source(s), and it proactively
acquires, mediates, and maintains relevant information for the user.

Typically, information agents use match-making and brokering techniques in
information task performance (Klusch 2001; Klusch et al. 2003; Sycara et al. 2003)
and the utilisation of semantic information in these processes has been demonstrated
(Nodine et al. 2003). In addition, a concept close to that of information agents is that
of a wrapper agent that wraps some data store that has a possibly unknown internal
representation format, and thus this wrapping enables e.g. information agents to
access data stored in a legacy data store.

Information agents have been demonstrated in industrial applications. The ARCHON
system (Cockburn and Jennings 1995) wrapped pre-existing industrial systems with
information agents to gain fused diagnosis information, and similar ideas have also
been proposed for power systems by other researchers (Bann et al. 1997; Buse el al.
2003; Mangina et al. 2001). Related to monitoring in process automation, information
agents have been proposed as being suitable for communicating alarms to operators
(Bunch et al. 2004), the flexible definition of alarm conditions (Koskinen et al. 2003),
and the analysis of measurement data for diagnosis (Gentil 2006; McArthur et al.
2005).

3.2.4 Agent-oriented software engineering

To be able to exploit the benefits of agent orientation, the engineering methodologies
used must be suitable for agent development, and Agent-Oriented Software
Engineering (AOSE) methodologies are designed for this, similarly to the way that
the Unified Modelling Language (UML) and Rational Unified Process (RUP) method
are for Object Orientation. The selection of AOSE should be related to the selection
of the operational principle of the agent. For rational and goal-based agents the
currently relatively mature AOSE methodologies are Gaia (Zambonelli et al. 2003),
MaSE (Wood and DelLoach 2000), Tropos (Castro et al. 2001), and Prometheus
(Padgham and Winikoff 2004), according to a listing provided by Bordini et al.
(2007). From a broad perspective these methodologies are similar, as they all define at
least a loose step-by-step procedure that may be used by the software designer and all
cover agent role definition and interaction design in a similar way, but the levels of
maturity and practical examples differ.

Prometheus methodology:

By the time the research behind this thesis had been carried out the Prometheus
methodology seemed to be the most mature and to offer the best support for practical
usage. While most of the other methodologies had more or less disunited
documentation, a quality book covering the Prometheus development process in
enough detail and with practical examples was available (Padgham and Winikoff
2004). Prometheus is designed for BDI-type agents and supports the architectural
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design phase of the whole process especially well. Prometheus is rather new, and thus
utilises the latest knowledge in software design issues, and was developed together
with one of the most advanced companies utilising agent-related software in
commercial applications (http://www.agent-software.com.au/). In addition, the use of
the Prometheus methodology has had a significant impact on how well students have
been able to utilise agent systems in their projects (Bergenti et al. 2004) and there is
also tool support currently available for the methodology
(http://www.cs.rmit.edu.au/agents/pdt/).

The Prometheus methodology provides a systematic step-by-step procedure and
specifies the issues that are to be covered in each design step. Figure 8 gives a general
overview of the methodology and illustrates the development phases and design
artefacts of Prometheus. The Prometheus methodology categorises the development
into three major design phases, aligned vertically in Figure 8.
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Figure 8 - The phases of the Prometheus. Adopted from (Padgham and Winikoff 2004).

The practical guide for Prometheus from Padgham and Winikoff (2004) lists the
design phases and their major deliverables as the following:

System specification is the initial phase of the development, and it focuses on
identifying the basic functionality and requirements of the system with the following
deliverables:

e System goals — identifying goals describes the operation of the system on a
high level, listing what individual results the system provides to the user.

e Scenarios — The system operation is concretised by defining process-oriented
descriptions of it, similar to UML use cases.

e Functionalities — identifying the basic functionalities of the system with short
descriptions. Functionalities group one or more goals together and specify
related activities that are needed to form certain behaviour.

e Action and percepts — An overview of agents’ percepts (inputs) and actions
(outputs) in the form of a list describing how the system interacts with the
environment and what artefacts are to be used.
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The architectural design phase is used to define the general agent system
architecture, which is used to meet the defined requirements. This phase has the
following deliverables:

e Agent types — listing the agent types in short form. A descriptive name for
each agent type is a good starting point on the overview level.

e Protocols — define a suitable interaction protocol for each agent functionality.
The dynamic behaviour of the system is heavily based on these protocols. For
protocol diagrams Prometheus uses AUML (2008).

e System overview — defines the general static system structure.

e Agent descriptions — defines agents’ responsibilities, similar to UML class
definitions.

The detailed design phase focuses on individual agents and their capabilities, e.g.
plans describe how the agent is supposed to achieve its goals with processing events
and data. This phase is specified to result in the following deliverables:
e Agent overview diagram — describing in further details what functionalities
each agent has and how these may be combined into clusters (capabilities).
e Process specifications — defines the interfaces of individual agents and how
the agent processes these external requests to create functionalities.
e Capability descriptors — clusters of functionalities and their descriptions.
e Capability overview diagrams — figures of capabilities and their relations.
e Plan, data, and event descriptors — the final phase of the design, resulting in
detailed descriptions for the implementation of each design artefact.

The Prometheus methodology specifies the whole development process, but it has
been stated that it may be adapted for specific uses by exploiting only selected parts
of it and using the methodology more like a set of guidelines (Padgham and Winikoff
2004). The experiments that were conducted (Chapter 6) provide a further
demonstration of the use of the Prometheus methodology and its design phases and
the use of artefacts.

Although Prometheus supports the use of agent concepts in design, it does not
facilitate integrated and automatic development or the construction and validation of
the actual system. Bordini et al. (2007) have stated this major drawback to be
common to all of the currently available agent methodologies. Furthermore, it is noted
that currently the design is manually implemented, and further that there is a need for
practical tools that support the verification and validation of the realised agent system.
It is likely that actual agent systems will be implemented, at least partly, with object-
oriented techniques (Wooldridge and Jennings 1999), and that agents and objects as
methodologies will be seen to complement each other (Odell 2002). It has also been
stated that augmenting traditional techniques with agent technology could be a useful
approach in the adoption of the benefits of agents (Luck et al. 2005).

3.3 Service-oriented architecture

Service-Oriented Architecture (SOA) is a paradigm that is agreed world-wide,
promoting interoperability when organising and utilising distributed business
capabilities under different ownership. In SOA the idea is that business offerings are
described as services and then participants use discovery methods to find these
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services. Furthermore, guidelines as to how the service provider and consumer
interact are provided (Erl 2005). An ideal SOA provides modularised and loosely
coupled interoperability between services running on mixed operating systems and
implemented with various programming languages distributed over business
networks. Currently, the most prominent concrete implementation of SOA seems to
be the XML-based SOAP (W3C SOAP 2007) realising Web Services (W3C WS
2002), but others too, like the more traditional RPC, DCOM, and CORBA techniques
may be used. However, actual specifications and operational principles are needed to
make services interoperable in practice. The W3C-originated Web Services (W3C
WS 2002) are probably the most commonly used implementation of SOA, and the
competing reference model OASIS SOA (2006) is also available.

Although the service profiling and interoperability are rather mature in SOA
implementations, there is no clear concept of how to automate the composition of the
service. The current practice for this is that the use of services is predefined by
humans. Orchestration describes how the coordination of services takes place from a
single consumer’s viewpoint and the current industry standard is BPEL (OASIS WS-
BPEL 2007). Choreography, on the other hand, defines rules for how different peer-
to-peer parties operate together, e.g. to form more complex services. Choreography is
a more complicated research issue, and there the standardisation work is currently in
progress (W3C WS-CDL 2005). Furthermore, it has been stated that the development
of service-oriented systems could utilise advances available in multi-agent research,
especially those related to autonomy and flexible collaboration (Huhns et al. 2005). In
addition, it has been stated that agents are actually suitable and thus should be used
for the higher-level control of services (Dickinson and Wooldridge 2005; Lassila
2007).

3.3.1 Web services

Web Services are currently a commonly used strategy to implement the ideas that
SOA provides. Web Services is a set of specifications originating in W3C that
concretely describe issues related to service provision and access (W3C WS-ARCH
2004). There the service provider first describes services with Web Services
Description Language (W3C WSDL 2007) and requests Universal Description,
Discovery and Integration (OASIS UDDI 2004) to store and publish this information.
Then the services may interact in a stateless manner with each other using SOAP
(W3C SOAP 2007). These three specifications enable services to interact on a basic
level, but it does not describe how individual services are carried out to form
integrated complete business process cases. Therefore, Web Services Business
Process Execution Language (OASIS WS-BPEL 2007) has been developed.

Although Web Services are becoming the industry standard, it is argued that they fall
short in providing improved automation and interoperability, as the user always needs
to configure the operation (Lassila 2007). Furthermore, as Web Services are gaining
strong industrial acceptance, there has been interest in how to integrate agents and
Web Services. Actually, this integration has been seen to be possible in both ways;
agents have been utilising Web Services and also Web Services have been using the
functions that agents provide (Greenwood et al. 2007).
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3.4 Semantic technologies

Semantic technologies provide tools and mechanisms that may be used to describe the
data in such a way that software programs can utilise it in multiple ways. This is
useful in software engineering, e.g. separating decision-making rules and declarative
data definitions facilitates the easier development and maintaining of systems (Lassila
2007). The opportunities provided by semantic technologies are great when
integrating a multitude of systems together (Ciocoiu and Nau 2000), which is the aim
of the developers of the Semantic Web (W3C SW 2008), currently the most
prominent realisation of semantic technologies.

In addition to the above, the possibilities of semantic technologies go beyond defining
the meanings of the actual data. As Umberto Eco wrote in his famous book Foucault's
Pendulum; “No piece of information is superior to any other. Power lies in having
them all on file and then finding the connections. There are always connections; you
have only to want to find them.” (Eco 1989; 225). Defining the relations and
connections in semantic data models supports the use of these models for combining
and reasoning purposes. If this modelling is done on many different levels of
abstraction it may also be used to access, process, and find information, even in a case
where only partial information is available. In addition, as semantic technologies aim
to separate the actual data processing and the use of descriptive models, it is a concept
that supports end-user and do-it-yourself life-cycle development methodologies.

Although the actual technical realisation of semantic technologies is nowadays often
based on the Semantic Web, the issue itself is much wider. The actual languages and
tools used for semantics need to be defined before semantic technologies can be used
with a software-based system. This definition includes the languages used and
providing concrete syntax, but the terminology describing things in the domain is also
needed. Although this chapter introduces Semantic Web-related techniques, the
benefits of using declarative data definitions are also usable with other tools.

3.4.1 Methods and tools for ontology engineering

Looking up a definition for the word ontology in the dictionary does not help the
ordinary software developer but the definition used in computer science is
“specification of conceptualisation”, which is actually a little more understandable.
And the term ontology is even easier to understand if one thinks of it as data
modelling, albeit executed in a new format and with a new set of software tools.
However, data modelling may be seen as having a tighter connection to the purpose of
the model and to the tools and techniques used, as an ontology could be stated to be
more objective by definition. And if data modelling is hard, ontology engineering is
even more problematic (Gavrilova and Laird 2005).

Ontology engineering may be performed in a variety of ways, and ad hoc might be the
most typical. In this “approach” the respective group of developers and users just
document the domain knowledge with suitable ontology tools. One such editor for
realising ontology engineering is Protégé, which supports numerous actual ontology
languages (Protégé 2008). To be more controlled, the actual ontology engineering
may be organised. For example, when developing ontology for some specified
purpose controlled discussions with the interest group initiated by the moderator
realising the specified procedure might be used (Tempich et al. 2007). Another
possible way to develop ontologies is to first develop a base ontology with a huge
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amount of terms. Then the ontology engineering is supported with a suitable
infrastructure that facilitates the use of that base terminology (Hyvonen et al. 2008).
These are just examples of how ontology engineering might be arranged, and a good
level of domain knowledge is needed, regardless, to be able to produce usable and
good-quality ontologies.

3.4.2 Semantic web architecture

The Semantic Web is about concretising semantic technologies in a World Wide Web
environment to support data sharing and reuse (Berners-Lee et al. 2001). To enable
this to happen, two things are needed: common formats for information interchange
and languages for ontologies that describe data in a way that is understandable to both
humans and machines. W3C (W3C 2008), the collaborative organisation promoting
the Semantic Web, is developing a set of specifications that in combination may be
used to respond to these demands. The developing process in the continuous and
current set of standards and specification are visible in the W3C “layer cake”,
illustrated in Figure 9.

User Interface & Applications l
Trust '

Proof
Unifying Logic |
Ontology: I
Query: OWL Rule: e
SPARQL RIF o
RDFS | 2
Data interchange:
RDF
XML |
URI/IRI |

Figure 9 - Semantic Web “layer cake” (adopted from W3C SW (2008)).

The Semantic Web “layer cake” describes two things simultaneously. On the one
hand, it shows how the whole system is made up of individual specifications, each
responsible for some particular part of the overall functionality. On the other hand, the
stack illustrates the current status of the standardisation work. If there is a name
specified in a certain box then this part of the stack is standardised and is thus more
mature than the boxes that do not have names specified yet. On the lowest level are
URI (Uniform Resource Identifier) and XML (Extensible Markup Language),
specifications for defining the syntax of the exchanged data. Then there are concrete
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specifications for meta-data and semantics definition, for example OWL (Web
Ontology Language), and further languages for rules and queries. Then further up in
the stack there are more abstract issues of trust and proof which are built on top of
concrete languages, and at the very top there are the user interface and applications.

In relation to knowledge representation issues, the most advanced standards provided
by the Semantic Web are currently OWL (2008) and SPARQL (2008). OWL is a
language for defining machine-processable ontologies storing declarative data,
explicitly describing the meanings of terms and the relationships between terms. As
terms in XML may have a tree structure, OWL may be used to define relations freely
(graphs) and the vocabulary for describing relations has more variety. Basically,
OWL enables classes and their relations to be defined in such a way that machine-
performed reasoning is possible. SPARQL looks similar to the SQL language used to
query data from databases, and it can be used to query graphs from an ontology
defined in the OWL language (although originally developed for RDF). SPARQL can
be used to query graphs matching a variety of pattern definitions and value
constraints. Furthermore, it supports naturally diverse data sources and the use of
mixed formats, as it can be used to make data uniform.

3.4.3 Semantic web services

Current specifications of the Semantic Web aim towards a situation in which
individual services can exchange semantically understandable information with each
other. However, it does not solve the problems of how to automatically discover,
perform, and compose these individual services, leaving much of the service
utilisation up to the responsibility of the user (Mcllraith et al. 2001). Adding
semantics to service descriptions is said to make it easier to take advantage of a
service that only partially matches a request (Lassila 2007). Therefore, Semantic Web
Services (SWS) aim to bring two different research areas together; namely Web
Services and the Semantic Web (Martin and Domingue 2007a; Martin and Domingue
2007b). Both of these have already been discussed in this thesis (see Chapters 3.3.1
and 3.4.2).

The purpose of SWS research is to develop standards and methodologies to
semantically describe services and enable the service composition to be automated
further. The development of SWS is largely work in progress, and numerous
standards are under development. The reader should refer to the work of Martin and
Domingue (2007a; 2007b) and also the related W3C recommendations, e.g. W3C
WSDL (2007) and W3C OWL-S (2004) standardisation work, for further information.
However, it is interesting that the SWS-related W3C interest group was closed at the
end of February 2008 (W3C SWSIG 2008). Furthermore, agent technology has been
proposed as being suitable for performing service composition (Dickinson and
Wooldridge 2005; Gibbins et al. 2003; Greenwood et al. 2007; Huhns et al. 2005),
especially when building applications that are designed for human users (Dickinson
2006).

As a concrete W3C proposal the OWL-S service ontology definition covers the
following three parts. The service profile (1) is mainly used to describe to humans
what the service does. The process model part (2) describes how a client can interact
with the service, which is crucial when enabling a machine to automatically deliberate
on service selection and execution. This description includes the set of Input, Output,
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Pre-condition and Effect (IOPE) of the service defined in machine processable way.
The service grounding part (3) specifies practical technical issues related to
communication, protocols and message formats. (W3C OWL-S 2004) However, the
OWL-S defined IOPE model seems to have much similarities with agent based BDI-
model, and forthcoming research will show how these two approaches are linked
together.

3.5 Trend analysis in process automation

The previously discussed advanced information technologies are mainly designed to
process information in symbolic form. However, process automation is an application
area in which much of the interesting information describing continuous processes is
in time series format. A time series is a set of records containing values with time
stamps, and the order of these records is also of interest, as is the value itself. For
example, the trend of temperature measurement is a typical type of time series data
used in process automation. For the human user time series data may be visualised
directly with trend graphs (Paunonen 1997). However, before the advances in agent
and semantic technology can be fully utilised, significant features of the data in time
series format should be extracted to symbolic form. Interesting features presented
compactly in symbolic form would also be beneficial to humans monitoring processes
as their responsibilities grow and supervising all the data in time series format
becomes unrealistic (Seppéla and Salmenperé 2005).

There are numerous ways to create symbolic data from sensed inputs, e.g. using data
mining, classification, and rule discovery techniques (Daw et al. 2003). An interesting
phenomenon in time series data is change points, where the characteristics of the
values change significantly, and these may be found with mathematical methods
(Chopin 2007; Kundzewicz et al. 2000; Last et al. 2001; Takeuchi and Yamanishi
2006) Knowledge discovery performed by time series databases contains stages such
as data preprocessing, feature extraction, transformation, dimensionality reduction,
prediction, and rule extraction (Last et al. 2001). Much of the previous research has
focused on analysing time series data, aiming to provide relevant results directly to
human users, possibly in symbolic form. Although the analysis and modelling of time
series for forecasting purposes has been widely studied theoretically, there is a lack of
robust enough algorithms for real-life usage and a lack of easy-to-use software tools
(Gooijera and Hyndmanb 2006). It has been stated that no single method provides
results that alone are enough when diagnosing process operation
(Venkatasubramanian et al. 2003a). The major reason for this is that data processed
by a single method do not contain all the relevant information and unknown issues
influence the end result too much.

One useful way of abstracting time series data to symbolic form is to find episodes
from them. These are time intervals and periods that are delimited from each other by
significant change points or value outliers in the trends. Numerous methods have been
successfully demonstrated to realise this; for example, the Monte Carlo strategy and
particle filtering are reported to be suitable methods for the detection of change points
in long time series (Chopin 2007) and several other methods have also been reported
(Lavielle and Lebarbier 2001; Lowe et al. 1999; Takeuchi and Yamanishi 2006). A
concrete utilisation example of detecting change points from time series utilisation
has been demonstrated in a case where it was used to detect the influence of human
activities on water levels in rivers (Wong et al. 2006).
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Gentil (2006) reports the application of trend analysis and the use of symbolic
information related to process monitoring. They see that time series of individual
process quantities may be classified to form linear segments, which may be further
categorised into seven different types [Increasing, Decreasing, Steady, Positive Step,
Negative Step, Increasing/Decreasing Transient, Decreasing/Increasing Transient].
The use of a simplified version containing only [Steady, Increasing, Decreasing]
classification is also reported to be useful. The symbolisation is stated to be directly
useful for the human operator but also usable for forecasting purposes. Predicting that
a current linear segment continues, it is possible to forecast that a certain parameter
will exceed the alarm limit in a certain time span. Seppélda and Salmenpera (2005)
have also proposed similar usefulness for linearisation.

In conclusion, it can be stated about available methods, on the basis of the reported
research and related demonstrations, that with mathematical methods it is possible to
find linear periods from time series data. The accuracy is related to the predefined
description of the analysed data and parameterisation of the methods used. On the
basis of the literature it is relatively safe to state that if less than 100% accuracy in
detection is enough then it is possible to gain symbolic information using statistical
methods, even with a feasible amount of configuration work. Furthermore, it was
found that finding episodes from offline data is easier and more accurate than finding
episodes in real time; however, in process-related monitoring applications online
operation is required for the timely detection of changes. Nevertheless, every method
has its operational restrictions and these should be considered when applying them in
order to be able to get feasible results.

3.6 Challenges and technical opportunities in process
automation monitoring

The background and general motivation for this research is that functionalities in
process automation monitoring should be looked at from a new perspective. On the
one hand, there are new challenges related to monitoring in process automation,
especially the need for flexibility and delegation, because the complexity is rising and
sites are growing in size. These challenges were discussed in Chapter 2. On the other
hand, the technological opportunities presented above in this chapter are interesting in
the context of monitoring. Synthesising these two research areas together is not a
unique idea, and therefore related research activity has been reported. The following
part of the text focuses especially on properties such as flexibility, delegation, systems
integration, and knowledge handling which are seen as important in process
automation monitoring systems.

Flexibility and control over operations is stated to be the main user need related to
process automation information processing in this thesis. This means that the system
structure should support the flexible organisation of functionalities. In addition, the
user should be able to decide how, when, and what information-processing functions
are to be used during monitoring. Current automation environments offer numerous
tools for specific tasks, but in general the user is not able to integrate and fine-tune
their simultaneous operation (Koskinen et al. 2003; Paunonen 1997; Seppalda and
Salmenperd 2005; Tommila et al. 2001; Ventd 2005). Techniques for gaining
flexibility are available in software engineering, and these have been at least
demonstrated in the area of automation. Agent technology has been used to achieve
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flexibility when integrating industrial systems (Buse and Wu 2007; Cockburn and
Jennings 1995; Mangina et al. 2001; Shen and Norrie 1998; Shen et al. 2006; Wagner
2002) and executing batch process operations (Kuikka 1999). Agents have been used
as a technique in flexible process control (Chokshi and McFarlane 2002) and, for
example, in realising fault tolerance (Maturana et al. 2005; Seilonen 2006).

It has been proposed that agent-based principles could be used to perform totally
distributed process control, in which individual product elements find the necessary
processing facilities and materials for each phase to form a complete end product
(Chokshi and McFarlane 2008). Demonstration experiments have shown how agents
may be used to handle dynamics in electricity production (Buse et al. 2003; Buse and
Wu 2007; Kok et al. 2005). In manufacturing the potential of agent systems for
gaining flexibility has been researched more extensively and for a longer time period
(Barata et al. 2005; Beckstein et al. 1994; Chokshi and McFarlane 2002, Jennings and
Bussmann 2003; Marik et al. 2002a; Shen et al. 2006) or structuring has had
similarities to agents (Brennan et al. 2002; Vyatkin 2005). However, other base
technologies have also been proposed when reaching for flexibility in automation.
Lately, especially Service-Oriented Architecture (SOA), designed primarily for
business processes, has also been applied to more practical and floor-level industrial
applications (Jammes and Smit 2005; SIRENA 2008), and also Web Services (Lastra
and Delamer 2006).

Delegation is needed because the amount of data to be processed and monitored when
making decisions has grown with the rise in the general complexity of automation
systems and the technical aspects of IT development, and as a result a need for more
flexible ways to delegate monitoring functions is clearly visible (Koskinen et al. 2003;
Seppald and Salmenpera 2005; Venté 2005). Technically, there are numerous tools to
construct delegation, and agent technology implementing proactive computing
principles has been stated to be probably the most interesting one (Maes 1994;
Tennenhouse 2000).

General monitoring tasks, which are structured, repetitive, and relatively simple, have
been proposed to be well-suited functionalities for Al technologies (Kaplan 1984;
Laplante et al. 2007). Agents and Al technologies were already being used for
cooperative information gathering over ten years ago (Bayardo et al. 1997; Decker et
al. 1995) and also for monitoring supporting activities in industrial settings (Cockburn
and Jennings 1995; Ingrand et al. 1992). Lately, industrial activity has gained more
interest (Bunch et al. 2004; Georgoudakis et al. 2005; McArthur et al. 2005; Theiss et
al. 2007; Wang et al. 2004; Worn et al. 2002). Furthermore, when the monitoring of
equipment is being outsourced and performed physically further away from the
production site, then agents may be used to delegate the monitoring task (Pyotsia
2005; Theiss et al. 2007; Terziyan and Zharko 2004).

Systems integration is important, because not all the information that is needed to
make correct decisions on a production site comes from the process automation
system (Ventéd 2005). Integrating existing industrial systems together utilising agent
technology and languages adopted from the Semantic Web has been suggested as a
viable approach (Terziyan and Zharko 2004; Yi-chuan et al. 2006), and it has been
stated that another promising way to use agents is to integrate them into existing
systems in manufacturing environments (Shen et al. 2006). In power generation it has
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been demonstrated that agent technology offers flexibility when integrating various
distributed condition monitoring modules and thus creating an easy migration path for
new applications (McArthur et al. 2005). In addition, agents have been reported to be
a suitable technology for the integration of information management, condition
monitoring, and control in power systems (Buse and Wu 2007). The integration of
existing systems with agents to support monitoring and diagnostic purposes in
continuous processes has also been proposed in the ARCHON system (Cockburn and
Jennings 1995), by the COMMAS project (Mangina et al. 2001), by the KARMEN
project (Bunch et al. 2004), by the MAGIC project (Gentil 2006; Worn et al. 2002),
and in other efforts (Gao and Kokossis 2005; Sayda and Taylor 2007; Vasyutynskyy
and Kabitzsh 2004).

As research has proposed agents for integration purposes, SOA is already becoming a
popular solution for the integration of industry applications (Jammes and Smit 2005;
SIRENA 2008), also in a vertical direction as a tool to normalise and thus integrate
factory machinery to a company’s business models (Gilart-lglesias et al. 2006). SOA
has also been proposed for monitoring purposes (Seppéld and Salmenperd 2005). As
an industrial practice the OPC specifications have been a widely adopted cornerstone
within automation and the forthcoming version will utilise both the SOA and Web
Services (OPC 2008). Lately, adding semantics to SOA-based infrastructure has been
proposed for power market information integration (Huang and Lei 2007), and
successful industrial systems integration has also been demonstrated with Web
Services (Kalogeras et al. 2006; Lastra and Delamer 2006).

Production environments are information-intensive environments and successfully
organising the knowledge handling is therefore crucial, and to support efficient
operation user interfaces should offer the right information at the right time in the
right form (Ventd 2005). Technically, information exchange in automation
environments has been largely solved by the available IT solutions (Sauter 2005), but
this does not solve the knowledge issues. Challenges in knowledge handling are being
dealt with in the software research community, and especially the W3C (2008) is
developing technologies in the form of specifications, guidelines, software, and tools
supporting interoperability. Within automation, the new OPC Unified Architecture
specification will support the use of formal and descriptive data models (OPC 2008),
and these may be used to add knowledge handling and process modelling
functionalities to services. The use of semantic knowledge has been demonstrated
within industrial settings (Georgoudakis et al. 2005; Huang and Lei 2007; Lastra and
Delamer 2006; Vyatkin et al. 2005).

Research activities have already been reported that explore new possibilities for
knowledge handling and process modelling purposes in automation. Obitko and
Marik (2003) have stated that OWL (2008), the latest ontology language proposed by
W3C, would be suitable for information exchange in manufacturing enterprises.
Semantic models have recently been used in maintenance information processing by
Viinikkala et al. (2006) and also for flexible power market information integration by
Huang and Lei (2007). However, the latter note that an agreed and shared vocabulary
(ontology) for integration is lacking and should be publicly available in the future.
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Process models are often used in the monitoring of industrial systems for fault
detection and diagnosis purposes, because they offer benefits such as accuracy,
reaction speed, and identification (Honkanen 2004; Isermann 2004). In the future the
modelling of the whole production environment and its efficiency will become more
important, because of requirements originating from business and environmental
perspectives (Tuomaala 2007). Nevertheless, models and rules describing the
operation of the system need an estimation of parameters if they are to be useful and
this is stated to be problematic in environments where change is present and therefore
control over decision-making should be left to the users (Laplante et al. 2007).

Table 2 shows a collection of challenges originating from users trying to cope with
monitoring tasks in the process automation area and the opportunities that the above
mentioned new technical solutions are reported to offer. The table also shows selected
references that discuss these aspects and provide further information about the
subject.

Table 2 — Collection of how different technical solutions have been used to respond to challenges.

Challenges for the | Suggested technical Important references
system originating | solutions
from business

change
Flexibility Agents, SOA, Web | Buse and Wu 2007; Chokshi and
Services, Semantic Web | McFarlane 2002; Wagner 2002;
tools Jennings and Bussmann  2003;
Jammes and Smit 2005; Shen et al.
2006
Delegation Agents Maes 1994; Tennenhouse 2000;

Georgoudakis et al. 2005; McArthur et
al. 2005; Wagner 2002

System integration Agents, SOA, Web | Bunch et al. 2004; Buse and Wu 2007;
Services, Semantic Web | Cockburn and Jennings 1995; Huang

tools and Lei 2007; Kalogeras et al. 2006;
Mangina et al. 2001; Woérn et al. 2002
Knowledge handling | Semantic Web tools Georgoudakis et al. 2005; Huang and

Lei 2007; Lastra and Delamer 2006;
Obitko and Marik 2003; Viinikkala et al.
2006; Vyatkin et al. 2005

On the basis of the reviewed literature it is possible to conclude that agent technology
seems to offer most of the properties that are needed to construct a monitoring system.
Compared to SOA and Web Services, which have already been significantly adopted
within industry practice, agents seem to offer better support for delegation. Although
applying agent technology to practical industrial applications is still rather rare, it has
been seen as an important research direction. A steady development trend is visible in
the series of HOloMAS conferences (see Marik et al. 2003, 2005, 2007) that were first
initiated as a workshop (HoloMAS 2000, 2001, 2002; Marik et al. 2002b) but have
had growing attention since.

Previous research has studied monitoring systems realised with agent technology,
possibly utilising the Semantic Web, in environments bearing similarities to process
automation. One of the earliest was the ARCHON system (Cockburn and Jennings
1995), which used agents to modularise and integrate pre-existing expert systems in
an electric distribution network. The aim with ARCHON was to use agents to
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organise the sharing of partial results together for combined fault diagnosis. In
addition to well-documented experiments, the ARCHON project generated guidelines
for the systematic development of monitoring systems within industrial applications,
and demonstrated the use of Al planning. ARCHON-like structures have also been
suggested for the monitoring of automation systems in general (Vasyutynskyy and
Kabitzsh 2004) and for enabling the G2 expert system to be used in the petroleum
industry (Sayda and Taylor 2007).

The COMMAS project, which has a similar background to ARCHON, uses agents to
flexibly organise condition monitoring operations in power plants (Mangina et al.
2001). The agents have different roles (data abstraction, data processing, analysis, and
administrator) and are organised hierarchically in multiple layers. Communication in
COMMAS is based on the FIPA standard, although XML is used as the message
content language for practical reasons (McArthur el al. 2005). Defining agent roles on
the basis of their diagnostic tasks is also used in the MAGIC project (Worn et al.
2002), which also uses FIPA standard interaction protocols in communication. In both
COMMAS (McArthur et al. 2005) and MAGIC (Gentil 2006) the data analysis agents
extract features from time series data and forward this abstracted information for
further usage.

The studies introduced in Buse et al. (2003) take the ideas introduced in ARCHON
further. Their system has multiple layers and agents are thought to have various roles,
motivated by functional task division (database, document, ontology, device, plant,
and user interface agents). In addition, the idea of planning is concretised in the
design by defining agents to use a BDI model for deliberation. However, BDI was not
used in the implementation, because of the amount of time required to implement it
and because the functionality did not require it. Furthermore, the FIPA standard is
used in communication, and even an FIPA-specified content language is used. In
addition, the system uses an ontology defined with UML, e.g. to describe different
items found in the system (Buse and Wu 2007).

The KARMEN project (Bunch et al. 2004; Bunch et al. 2005) utilises agents to
distribute monitoring tasks for physical processes in a similar way to the MAGIC
project. However, the focus in KARMEN is on notification issues, e.g. being able to
relay each notification to the appropriate person. The Semantic Web ontology
language OWL (OWL 2008) is used to model aspects related to notifications, such as
the criticality of the notification or the person responsible, and this same model is
used to control the notification process. Other researchers (Georgoudakis et al. 2005)
have also used ontologies and agents to organise monitoring-related activities, and
suggest the use of languages originating from the Semantic Web in inter-agent
communication. Furthermore, Mathieson et al. (2004) have successfully experimented
with BDI-based agents in relation to a meteorological alerting system.

As a conclusion to the consideration of the use of agents for monitoring functions
within industrial settings, the following may be stated: agents can be used to distribute
the monitoring activities and construct hierarchical structures that are suitable for the
task. A BDI model and Semantic Web tools have both been proposed as being useful
in monitoring. However, demonstrations utilising both at the same time seem to be
missing.
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3.7 Conclusions about the available agent and semantic web
technologies

Computing power has been increasing remarkably and provides many possibilities in
system development. Although it is not clear what the best choice for utilising the
extra capabilities will be, raising the level of abstraction in system development seems
to be appealing. Previously the focus was very much on constructing effective
algorithms and structures that optimise the exploitation of the capabilities of the
hardware. However, if the system is complex and applications must function in a
dynamically changing environment, then the capabilities of the approach used should
ease the work of system engineers. Agent technology is proposed as one possibility
capable of answering this general requirement (Jennings 1999; Odell 2002).

Agent technology itself is a rather general software engineering methodology suitable
for system-level design. It promotes the system to be constructed from abstract
entities that are autonomous and communicate by passing messages. There is an IEEE
standard available (FIPA 2008) that defines agent communication and defines
negotiation principles on a general level. Numerous software frameworks for
constructing agents are available and the quality of these is on such a level that these
could be used for selected industrial applications. Systematic methodologies and tools
for developing BDI model-based rational agents are available (Padgham and Winikoff
2004). However, agents have the limitations of general Al (Wooldridge and Jennings
1999), and although Al seemed promising in the past, adaptive systems with
intelligent and highly autonomous features remain something of a fantasy (Fischer
and Merritt 2003; Hendler 2006). It has been proposed that decisions on what features
to include should be made in the context of the motivating problem domain and that
unrealistic assumptions should be replaced with practically justifiable ones (Fischer
and Merritt 2003).

In a technological sense, semantic technologies are gaining a lot of interest because
they offer potential to access the vast amount of information provided by the internet.
Standards for representation issues on a syntax level and metadata definition
languages for defining semantics are already available. However, the methods for
ontology engineering are still under development and no widely adopted use of
semantic information has been seen in industrial applications. Service-based system
structures are gaining strong interest within business applications and frameworks for
this are starting to become mature. Nevertheless, current approaches require the user
to define the procedure that describes how services are utilised, and do not promote
automatic service composition (Lassila 2007).

Interest in combining service-based operation and semantic information approaches is
already visible, and the idea of Semantic Web Services has been introduced.
Numerous tools, systems, frameworks, and methodologies are available in the
research community, but none of them are usable as such for process automation
monitoring purposes. One specific example combining Semantic Web tools and agent
principles together is the Nuin agent platform (NUIN 2008). Although Nuin could
have been useful in the scope of this thesis, the development project of Nuin was
stopped before the platform reached sufficient maturity. Therefore, as there are no off-
the-shelf systems available, the system has to be constructed from selected, suitable,
and individual parts that are available.
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In general it has been stated that intelligent systems aiming to support humans should
be easily configurable because in many situations the end user knows the situation
and meaningful changes the best. Furthermore, systems aiding humans should
perform laborious filtering, searches, and monitoring, but not too much else (Laplante
et al. 2007). Systems should offer flexibility in configuration so that the user may
personalise the system and select the level of automation that suits each task best
(Schiaffino 2004). Related to the monitoring of automation systems, an appropriate
solution seems to be a flexible user-configurable system that has models for relatively
static aspects (process ontologies covering structural aspects of the process
environment and base vocabulary) to facilitate communication and enable agents and
other active players to perform the functions that have potential for automation (e.g.
with user-defined rules for inference and filtering, etc.).
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4 The new agent system architecture for process
monitoring

4.1 Introduction

The aim of this chapter is to present an agent architecture design that facilitates the
technological opportunities presented in the previous two chapters and responds to
process automation business challenges. On the architectural level the design choices
focus on selecting the most suitable overall structure, including the selection of an
appropriate agentifying level and the enabling of connections to other industrial
systems.

Categorising the currently visible development trend in process automation from the
structural perspective can be done by looking it from two distinct directions; bottom-
up, describing the rise of information-processing capabilities, and top-down,
describing the advances in the management capabilities of the system structures.

Bottom-up development trends include: in the future, nearly every device
connected to process automation will diagnose itself and possibly monitor the health
of nearby process areas. Device vendors will implement more utilities into their
devices as developments offer more memory and processing power, e.g. device-
specific data mining may be introduced. Furthermore, vendors are already supporting
external programs to be run on their devices, e.g. simple logic controls are
implemented within electrical drives.

Top-down development trends include: the complexity of processes will grow
because of increased integration and more measured information becoming available.
Models describing a variety of more or less general issues about processes will
become available, e.g. tighter integration between process design and implementation
will make descriptive models available. In addition, methodologies for distributed
software development will evolve and provide more sophisticated approaches to the
handling of modularised design, e.g. agent technology. The tools and techniques for
handling integration issues and interpretation models are also maturing, e.g. Semantic
Web tools may be used to integrate and query data available in heterogeneous data
sources.

Although process automation is likely to adopt many of the new technologies, process
control will probably be organised in a hierarchical structure in the near future
(JAmsa-Jounela 2007). The hierarchical organisation of process control offers
unbeatable reliability, even though distributed approaches have also been
demonstrated to be possible in process control (Chokshi 2005; Seilonen 2006).
Regardless of whether or not process control becomes more distributed, the
monitoring functionalities may be organised in a distributed manner. Distribution
approaches should also be preferred that are able to exploit all the possibilities that
new embedded computing offers, e.g. to overcome the limitations of the current
approaches (discussed in Chapter 2.5).
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This chapter presents an architectural design that illustrates how to organise the whole
system utilising agent technology to support flexible monitoring in process
automation setups. The architecture illustrates a structure which aims to help
developers to integrate various isolated functionalities together and further facilitates
the combination and summing up of partial results. In addition, the overall structure
aims to be understandable and feasible to implement in process automation
environments. Furthermore, the structure should promote cumulative development
and make future additions possible.

The first part of the design is the setting of the requirements for a flexible process
monitoring system. The requirements are represented in the form of desired system
properties in Section 4.2. Then the rest of this chapter presents the design of an agent
system architecture for process automation monitoring point by point, and in every
section the design choices are explained. Furthermore, as the design of the system and
its functions is a continuous and evolutionary process it should be noted that this
thesis documents the current status of this work.

4.2 Desired system properties

The target is a system that would provide user-controllable, flexible, and easy enough
access to all-available information related to process monitoring tasks within an
industrial production site. Although it is end user-configurable to a large extent, at the
same time it should exploit the technological benefits coming from novel software
engineering research.

The discussion in previous chapters has yielded properties that an architecture for
flexible user-controllable and configurable process monitoring that produces
operationally integrated information services should have. Below these properties are
clustered into six groups. The first five were introduced at the end of Chapter 2, and
here these are discussed from the system development viewpoint. The final property,
general properties, promotes design issues for a maintainable system structure.

P1 - Flexibility: the system should support context sensitivity and adaptive operation,
to enable the user to control how the system behaves in different situations. The level
of information also needs to be controllable; in a steady situation abstract reports are
enough, unlike in an abnormal situation, where specific details are needed.
Furthermore, the monitoring functionality requires adaptive, asynchronous, and
frequent checking of things that in their own way show that everything is as it should
be. The system should support the active operation principle, to enable the user to
automate as much of the monitoring operation as possible.

P2 - Delegation: the system should enable the user to use delegation for most of the
routine work and thus release the user to concentrate on higher-level decision-making.
This requires the system to be somewhat intentional and rational and should also
enable short procedures to be configured for it. The system should be able to process
multiple tasks simultaneously and in parallel with distribution. Distributed operation
is required to be able to utilise promised future improvements in the device-level
diagnosis functionalities.
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P3 - Integration: the system should provide integrated information access to make
possible one-point access to all the process-related information that is needed when
validating the correct operation of the process and devices. Furthermore, merging to
current systems with an architecture connecting to current structures is required
because the life cycles of industrial control systems are long in process automation.
Support connections to pre-existing information and control-level systems in process
automation are required.

P4 - Knowledge handling: the system should enable unification of terms used for the
essential data model items and thus facilitate linking of (partial) results provided by a
variety of tools, e.g. being able to combine monitoring results together. In addition,
the use of both the functional and physical decomposition of underlying processes
should be supported by the system. The system should be able to operate with
incomplete information and still provide results, although partial, even when all the
requested information is not available. Support for the all-you-can-find principle is
preferred.

P5 - Data processing: the system should be capable of performing data processing
suitable for process automation, especially extracting and abstracting relevant
information from time series format data.

In addition to process automation-motivated properties (P1-P5), the system should
have the following general properties: the system should be modularly structured for
easier maintainability, e.g. to support flexible updating in the future. Separating the
control of operation and decision-making is preferred. Modularity aspects and
operating principles should be intuitive and use structures from the application area
and its functions as much as possible. Intuitive operation is also preferred, because the
end user should be able to perform limited system operation configuration, as in the
process automation environment the end user has the most timely information about
the current situation.

Although the system will be situated in a process environment, where stringent real-
time constraints are typically important, real-time issues are not included in the
properties. This is because the monitoring system mainly provides supportive
information, where the time constraints are thought to be soft. Information that has
been asked for should be returned as fast as possible but reasonable delays are not
seen as problematic and processing can also be performed in the background. This is
different compared to systems that automatically make corrective actions, as
discussed, for example, by Ingrand et al. (1992) and Laffey et al. (1988). In addition,
what is missing as a stand-alone property is interaction with the end user. This thesis
treats system design as a structural and technical problem, and the design of the exact
user interface and interaction for monitoring tasks are seen as the subject of other
research.

4.3 Agent augmentation

To be able to use agents in a process automation environment, a suitable overall
structure needs to be defined. As automation setups have long lifetimes (e.g. 20-30
years) and the monitoring tasks are supportive functionalities, the most important
structural requirement for an agent system is to be able to add it to current industrial
setups without requiring modifications to the systems’ current structure. Figure 10
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illustrates the specified agent-augmented approach in which the agent system is
situated in the middle of various interconnected systems that already exist in the
process automation environments. With this structural setup the agents have the
potential to provide additional functionalities to users, while at the same time the pre-
existing systems and their connections are left untouched. The system is primarily
thought of as being suitable for use by humans but the monitoring functions and their
results might be used by other systems and applications as well.
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Figure 10 - Overall architectural structure illustrating agent augmentation.

Keeping the agents as a clearly separate system eases the adoption of the agents, as
the system may be installed as a stand-alone module. This enables available agent
software frameworks to be used and makes the realisation relatively straightforward.
This augmentation approach was selected instead of trying to incorporate the agent
functionalities into current process automation setups, leaving the reliable real-time
control structures and functions intact. However, if in the future the automation
environment enables various tasks and applications to be performed in a distributed
manner, then the agent-based monitoring functions can also be distributed. The
overall system structure, illustrated in Figure 10, is designed to be static and it is not
thought to be changing at the time of performance. Furthermore, the augmentation
approach keeps the monitoring system compatible with the previous research of
applying agent technology to enhance process automation system properties in control
operations (Seilonen 2006).

4.4 Members of the agent society

Inside the agent system the number of agents and their setup changes dynamically,
according to the currently active monitoring tasks. The agent hierarchy is intended to
be suitable for process automation monitoring tasks. The responsibilities of each agent
operating in the system are defined beforehand and in this architecture these
responsibilities are specified as roles in which each agent operates. We propose that
this role setting eases the design process as there are guidelines for selecting the place
for every function. Furthermore, guidelines also help when defining an organisational
hierarchy for agents and roles are seen as a way to cluster functionalities into
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meaningful combinations, as the role of an agent outlines its area of responsibility,
objectives, and behaviour. Figure 11 illustrates a general example of agent
organisation showing all five different roles in which the agents may be set to operate.

Client
Agents \ .
/

Special Task
Agents

( Process setup-related
decomposition and
hierarchy of
Process Agents

CA = Client Agent
= Information Agent
Area of WA = Wrapper Agent
responsibility DF = Directory Facilitator
. PA = Process Agent

> Agent messages Y,

Figure 11 - The agent society consists of agents in five different roles.

From the user’s point of view, the Client Agent is probably the most important agent
type because it provides a gateway to access and control the monitoring services. The
task of the Client Agent is: 1) to support the tasks of the user by providing information
retrieval and monitoring services; 2) to translate agent communication into forms that
are user-understandable, and 3) to maintain a conversation with the users in
accordance with the current agent task. Although the system is mainly thought to be
suitable for use by human users, external software systems might also use these
monitoring services via the Client Agent. Existing user interfaces may be used if the
agent functionalities can be embedded into those, but, when needed, specialised user
interfaces should be produced. Normally, these Client agents persist for as long as
each user is using this system.

Information agents are service providers that have a less permanent lifespan in the
system, as they are typically instantiated for the performance of a specific information
task. Their task is to carry out information retrieval and processing tasks that require
the migration of data from a number of service providers. The responsibilities of this
agent role are to: 1) decompose information retrieval and monitoring tasks into
queries and subtasks for appropriate agents; 2) filter, combine, and format the
collected data using various methods, and 3) monitor for phenomena dependent on the
distributed initial data. Information agents may be seen as specialised consultants that
are invited to perform some particular function and they may be dedicated to these
functions, e.g. in the same way as an individual service engineer may specialise in a
certain device type at a production site. These agents are capable of decomposing the
process environment and its operations from multiple different viewpoints, e.g.
functional and physical, at the same time and thus providing users with a view of
information that is not readily available in any pre-existing system.
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A Process Agent represents a section of the physical plant equipment, and they are
thus more permanent than the previous agent roles. Process Agents are structured
hierarchically, with low-level agents representing single devices such as pumps or
valves. On a higher level, process agents account for plant (sub)processes, and on the
highest level for entire processes or plants. These agents maintain a direct connection
to the hardware and employ various sets of methods in order to: 1) collect and refine
information about the operational state of the equipment; 2) attempt to discover
deficiencies in the performance of the equipment, and 3) monitor for changes in the
desired information (e.g. measurements) both by default and on request. The idea of
decomposing the physical process into hierarchical subprocesses and setting Process
Agents to be responsible for these originates from previous research exploring the
possibilities of an agent approach to process control functionalities (Seilonen 2006).

The role of Wrapper Agents is to be responsible for information sources that are
already available in the process automation environment. Their tasks include: 1)
maintaining a data connection to the information source; 2) translating data from
different formats to the ontology-based representation understood by the agent
society, and 3) filtering and monitoring for changes or updates in the information
stored in the data source on request. The use of wrappers supports the evolutionary
development of the whole system as only a new wrapper is needed when a new
information source is added. Typically, there is thought to be one permanent Wrapper
Agent for each external data source, but this is not a limit that is intrinsic to the
design.

The final agent role in the system is that of the Directory Facilitator, which provides
a yellow pages service, advertising and seeking services. This role is defined in the
FIPA standard, which requires an agent system to provide a directory service so as to
be compliant with the standard (FIPA 2008). The directory service facilitates dynamic
task (re)configuration and plug-and-play interaction among agents, and it is typically
a built-in feature in the actual implementation of agent systems.

The presented role division supports general intuitiveness in the design process, as
these roles are related to the roles in which humans work in industrial contexts.
Thinking of the presented role definitions from the software engineering perspective
helps in keeping the agents relatively small in terms of their functionalities and thus
helps in achieving low coupling and high cohesion, which are typically stated to be
important design objectives in modularised software systems. The presented roles
may also be preserved if the whole system is to be physically distributed all around
the process environment. In addition, the described roles are a realisation of the future
vision presented in Pirttioja (2002) about different types of agents operating all
around the process automation environment.

A practically identical type of agent structuring is proposed by Buse and Wu (2007)
for information management and the condition monitoring of power systems, but they
name their agent roles differently and they have included mobile and document agents
in their system. Similar ideas of composing physical processes into separate elements
have been proposed by others too (Buse et al. 2003; Buse and Wu 2007; Chokshi and
McFarlane 2002; Wagner 2002). The concept of an information agent providing
services in relation to automation functionalities has been suggested by Wagner
(2002). In addition, the wrapping idea has been utilised in information-related
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applications in power systems (Buse et al. 2003; Cockburn and Jennings 1995;
McArthur et al. 2005).

4.5 Agent interactions and service directory

Flexibility and adaptation in agent systems are the result of both the autonomous
operation of individual agents and also the correctly organised loose coupling of
agents. This coupling is based on various communication methods, called interaction
protocols within agent technology, and they are standardised by the FIPA organisation
(FIPA 2008). Although other technologies also offer flexible ways to communicate in
a multi-entity environment, the FIPA standard offers strictly defined and stable
guidelines for realising adaptive communication in distributed environments.

Analysing the task communication requirements and selecting the most suitable
interaction protocol for each task is important because correctly selected
communication principles support the functionality. For monitoring and information
access purposes, the most interesting protocols that agent standardisation offers are
the subscribe and request-when interaction protocols. With these interaction protocols
the actual monitoring activity may be delegated and the requester is released from the
resource-consuming polling of data and testing if something has been changed. For
example, in the subscribe interaction protocol the client is notified every time the
referenced object changes until the subscription is cancelled. The request-when
protocol may also be used for delegation but with it the requested action is performed
once. For information access purposes, the query interaction protocol can be used.

Although the FIPA standardised interaction protocols were seen as being valuable, it
was decided not to use the FIPA-specified content languages in the communication.
This was partly because insufficient support is offered by the available software tools.
The primary reason not to use the FIPA standardised agent content languages was the
unclear situation related to other technologies under heavy development, e.g. Web
Services (Chapter 3.3.1) and the Semantic Web (Chapter 3.4), and this has also been
noted by the FIPA organisation (Greenwood et al. 2007).

Furthermore, an important source of flexibility and adaptation is the service directory,
provided by the Directory Facilitator agent introduced in the previous chapter. With
the service directory information sources are searched through when they are needed,
not at the time of design, which results in the adaptive and dynamic binding of
resources. In addition to guaranteed up-to-date information, this ensures that new
information sources are immediately available when they are connected to the system.

4.6 Goal-based operation and shared ontology

To succeed in monitoring tasks both reactive and deliberative operation is needed.
From the basic agent types, discussed in Chapter 3.2.2, the deliberative and goal-
based operation realised with the BDI model seemed to be most suitable for
monitoring purposes. The BDI model suits the adaptive and repetitive (goal-pursuing)
type of operation that is needed for controlling monitoring tasks. However, reactivity
is needed so as to be able to respond in a timely manner to changes occurring in the
process automation environment. It was decided to support both types with a
construction in which the deliberative part is responsible for configuring and thus
controlling the operation of the reactive parts.
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In the BDI model the goals (desires in the general model) are used to describe
information-processing and process monitoring task objectives. The general idea is to
imitate how humans give instructions to each other and provide a more intuitive
operating principle for the monitoring system. Furthermore, passing goals between
agents enables receiver agents to decide locally how and when to operate, e.g. how to
acquire the requested information. This results in a more flexible setup than the
remote procedure calls that many distribution frameworks are based on, e.g. Java. The
BDI model supports flexibility in the form of context adaptation. With it it is possible
to describe the preconditions for each individual information-processing functionality
that defines in which situations it is capable of producing the outcomes that it is
designed to produce. The use of goals promotes distribution and task delegation as
agents may request other agents to reach goals, e.g. in a case where the agent itself
does not have the abilities to fulfil the task itself.

In addition to a principle that controls agent operation, agents need a common and
shared terminology for communication purposes. In general, these are defined as
ontologies, which are explicit conceptualisations of a certain domain of knowledge.
Common agreement on this knowledge is needed for agents to be able to exchange
meaningful information between them. In this agent system this is realised with an
ontology that is shared knowledge available to every agent in the system. In order to
avoid the n translation problem, every agent is required to supply its information
using this vocabulary. For example, the Wrapper Agents are responsible for
translating their responses so that the requester understands the presentation format
and is able to utilise the information.

In addition to shared terminology, the ontology is used to define the relationships
between the concepts used. This can also be used for reasoning purposes inside an
agent. For example, the possibilities and readiness of the Semantic Web-related tools
and standards (see Chapter 3.4.2) are attractive. Unfortunately, currently there are no
standardised or otherwise publicly available ontologies for process automation, and
especially not for monitoring functionalities. Nevertheless, in this research the
decision was taken to develop a demonstrative ontology for the experiments so as to
be able to test the idea. The utilisation of ontologies for representing the structure,
events, and behaviour of industrial processes is described in more detail in Pakonen et
al. (2007).
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4.7 Summary of architecture decisions

The agent system architecture presented here aims to provide a basis for building
flexible and configurable monitoring services for users in process automation. The
architecture is a collection of design decisions made to adapt agent technology to
monitoring tasks. Table 3 summarises how, it is argued, the design decisions relate to
the desired system properties, which were set for the architecture in Chapter 4.2.

Table 3 — Summary of architectural elements and their relation to desired system properties (the

mark X indicating that the architectural decision supports the property at least partly).
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Agent augmentation X X

Agent roles X X X X
Agent interactions X X X

Goal-based operation X X
Shared ontology X X X

Realising agents with augmentation was selected primarily because of the technical
limitations of the current automation environment. As the augmentation enables the
system to be used with current structures, it supports integration and flexibility. The
use of agent roles gives guidelines to the system designer and helps in structuring the
operation of the system, thus supporting flexibility and delegation. Wrapper agents in
particular may be seen to support integration and data processing aspects. However,
the author expects that the exact role division presented will be subject to change if
new functionalities are developed. The use of FIPA (2008) standardised agent
interactions is one of the key features offered by agent technology and it naturally
supports flexibility and delegation. Furthermore, negotiations and directory services
facilitate the integration of systems.

The goal-based operating principle was selected mainly for delegation and flexibility
purposes, but also because it has been stated to be suitable for building applications
that are used by humans (Dickinson 2006). Additionally, a systematic design
methodology is available for BDI model-type agents (Padgham and Winikoff 2004).
However, although the BDI model seems to match the requirements set by monitoring
tasks in automation, no specific examples reporting its use were found. This results in
a risk as there are no good guidelines showing how to apply BDI model-based
operations to monitoring in process automation. Shared ontology-based
communication is considered to ease the integration of data sources using
heterogeneous data formats. Furthermore, ontology-based data models naturally
support knowledge-handling issues, and the possibility of describing object relations
in ontologies is seen as potentially beneficial to data-processing functions.
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5 Layered agent design and its functionalities

5.1 Introduction

The system architecture specified in the previous chapter makes design decisions on
an overall level and these choices need refinement and more details to be specified
before they can be implemented as an actual software system. In addition, the system
architecture design mostly explains the multi-entity aspects of the system, e.g. what
kinds of players there are in the system, and does not explain how the individual agent
has been constructed or how the operation of the agent is to be realised.

The aim with the internal design specification is to support both deliberative and
reactive agent operating principles in a suitable way for monitoring tasks in process
automation. Furthermore, the specification should give guidelines to the designer as to
how to divide the monitoring operation and related data processing into different
software modules. Related to data processing, a vertically layered architecture seemed
to describe most naturally the abstraction used inside an agent. The layered design
illustrated in this chapter is propositional.

5.2 Internal operation of agents

The developed internal architecture specification, illustrated in Figure 12, is a
modified and mixed version of a vertically layered architecture and the generally
known BDI model. Both of these were discussed in Chapter 3.2.2. The Task
management, Belief, and Plans modules originate from the BDI model, and these
modules are used to control the monitoring operation performed by the underlying
layers. The Data access and composition, Creation of symbolic data, and Making
inferences modules together realise the vertically layered architecture organising the
data processing for monitoring tasks.

User interaction Plans
. / Task management layer _ ||
v SN BDI plan processing -
c
S
® Making inferences layer N~ ||
M h 4 _S Data processing, logic, reasoning, and maths -
essages Agent g a
) - =
communication 5 g,,
'y ¢ I Creation of symbolic data layer [ |
Perception, feature extraction, ...
Data .
> s Data access and composition layer [ |
< > Data from I/O and other agents
Data from external systems

Figure 12 - Internal structure of agents, illustrating connections between different layers. The
figure also shows how user interaction accesses information and data through all the layers.

The User interaction module operates as a link between the user and the agent

system, and the Agent communication module presents the connection to the message
transport mechanism used for inter-agent communication.
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The data processing is divided into three distinct modules. The Data access and
composition modules are used to access and combine data fetched from several
sources with appropriate 10 drivers. The Creation of symbolic data modules are
responsible for processing raw data (usually numerical) into forms (typically
symbolic) that are more usable when drawing conclusions in the Making inferences
module. All these modules contributing to data processing are of a reactive type.

The whole monitoring operation is controlled by the Task management layer and its
operation is based on the configured Plans. The Belief module is a common data
store, which is also available to the data-processing modules. These three modules
together are the source of rationality in terms of what monitoring functions and
modules are to be selected for each task.

5.2.1 Data access and combination

By Data access and combination data is collected from separate external data sources
and transformed into a suitable form for the rest of the information-processing layers
in the architecture. This module is used as an adapter or a driver to connect to the data
storages available in the automation environment, e.g. pre-existing data bases or
external systems. When connected to data sources offering data in mixed format and
syntax this layer’s task is to convert data into a united and understandable form. This
type of operation is especially useful with Wrapper agents when accessing
information that is stored in legacy databases; see the discussion in Chapter 4.4.

The data-accessing modules are in close connection with the creation of symbolic data
modules. In data storages that provide symbolic and event-based information
naturally, the data symbolisation process may be bypassed, and the Data access and
combination layer is used directly by the upper layers. However, in cases where
feature extraction or other data pre-processing is needed the two lowest layers work in
close connection.

5.2.2 Creation of symbolic process data

The purpose of Creation of symbolic data is to transform the selected part of the
numerical data into symbolic form so that it is usable in the upper layers of the
architecture. Its purpose is to generate information expressing significant and
meaningful details, events, and changes in the data and mediate it for further
processing, e.g. for modules in the Making inferences layer. In our system the sources
for numerical data are mainly various types of perceptions from the physical world,
e.g. values of direct physical measurements such as temperature or values that more
complex instruments such as chemical analysers provide. As these real physical
measurements always have more or less noise attached, one important purpose of this
layer is to filter the noise so that the information is more easily exploitable in the other
modules.

The symbolisation is needed to provide meaningful information for inference-making.
Within process automation-related cases this is typically event-type information
extracted from continuous time series data. In this research the symbolisation is
specified as a separate module inside an agent, but in the future this feature extraction
may be part of the basic features that lower-level devices provide, e.g. as discussed in
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Kalogeras et al. (2006), Seppéla and Salmenperd (2005), and Venta (2005). See the
discussion in Chapter 3.5 for examples of trend analyses providing symbolic results.

5.2.3 Making inferences

In the Making inferences layer observations are made based on data fetched from
multiple sources and offered for use by the underlying layers of the architecture. The
idea is to combine and process data so that new deductions are generated. Basically,
the human operator configuring the system is the source of the rules and mechanisms
used for inference-making. With these modules the idea is to provide controllable and
flexible information processing that operates on the basis of user configuration and
outputs the conclusions for further exploration.

Normally, the modules in this layer use data in symbolic form, but when needed the
symbolisation layer is bypassed and they can access unprocessed numerical data
directly from the Data access and combination layer. Inference-making generates
new information in numerous ways when data available from the monitored process
are processed utilising various types of rules. Potential sources of rules are user-
defined relations between process values, device type definitions, and data-mining
tools.

Several concrete examples of inference-making are given below and are illustrated in
the experiment part of this thesis:

e Constraints for checking the validity of process values of numerical data type
are used in Experiment 1 - Temporal monitoring (Chapter 6.3 and especially
6.3.3). In this experiment the symbolisation process is bypassed and the
inference-making is based on unprocessed data fetched from the process. In
this experiment the user defines rules that define acceptable value ranges and
the relations of multiple process quantities. In this case Making inferences
automates the checking of the validity of the user-set constraints.

e In Experiment 2 - Search of process events inference-making is based on rules
that refer to items in formal process models. Utilising rules defining item
relations to instance data fetched from data sources, the connections between
process events and particular time series data may be provided to the user. See
Chapter 6.4.3 for detailed information about the use of data models. In this
case Making inferences automates the linking of partial information.

e Detection of process “fever” is performed by monitoring the timely rate of
process change events in Experiment 3 — Change point occurrence monitoring
(Chapter 6.5.3). Here the inference-making is responsible for checking if the
event rate exceeds the user-set limit in a specified time span. In this case the
Making inferences layer automates the monitoring functionality.

e Observation of user-defined event sequences is realised in Experiment 4 —
Change point pattern monitoring (Chapter 6.6.3). In this case the inference
engine is responsible for detecting user-specified sequences of process change
events. In this case the Making inferences layer automates the pattern
monitoring on behalf of a human user.

As can be seen above, in all of these experiments the human user is the source of the
deduction rules that are used when making inferences. This approach is promoted in
this thesis, as the objective is to delegate repeated and relatively easy checking tasks
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to a machine but still leaving full control in the hands of the user. This is currently
seen as the development direction with the most potential. However, in the future it
might be useful to study other possibilities for producing the deduction rules; for
example, it might be useful to explore the potential of utilising various machine
learning capabilities.

5.2.4 Task management and plans

The purpose of the Task management modules, together with Plans and Beliefs, is to
control the operation of underlying data-processing modules. These controlling
modules realise the flexible and rational operation of an agent on the basis of user
configuration. In our approach the task management is operated according to the BDI
agent model (Rao and Georgeff 1995), in which the interpreter performs the
monitoring operations described in Plans. These modules control agent operation and
take into account the current situation in the process and available data. Task
management can run other modules in parallel.

In Plans the user has configured the way in which the operations provided by the
underlying modules (Data access and combination, Creation of symbolic data, and
Making inferences) are used in combination to reach the set objective. Within every
plan the restrictions of this plan should also be defined, and possibly some description
of the quality of the actions it takes and outcomes it produces. If there are multiple
plans that may be used to reach the same objectives, the system should have a means
for selecting the most appropriate one, e.g. in terms of the time used and the accuracy
of the processing. More comprehensive discussion about using goals for information-
processing in process automation environments may be found in Pirttioja et al. (2004)
and Pirttioja et al. (2005).

5.2.5 User interaction

The User interaction layer aims to provide the user with a means to control and
supervise the operation of the whole agent system. The user interacts mainly with the
most abstract information-processing layers, setting the overall goals in the Task
management layer and clarifying issues available in the Making inferences layer. But
if and when it is necessary, there is no restriction in the agent design on also accessing
data from the lower-level layers. In practice, the user interaction is built with task-
oriented (graphical) user interfaces that are each built especially for the function at
hand. The conducted experiments 1 and 2 (Chapter 6) give examples of how the user
interaction might be realised in practice with the agent system.

In the first experiment, Temporal monitoring with constraints, the user interaction is
dialogue-based. There the user first configures the monitoring task with a window
designed for that purpose. Then the system performs the monitoring task silently from
the user point of view, but the user is able to cancel the monitoring if needed, just by
referring to the name of the monitoring task that was given to it when it started.
When the monitoring functionality detects something that needs to be notified to the
user, then a pop-up message appears showing the monitoring task name, the
monitoring definition, and the actual values of the measurements that broke the
conditions. In this case the user is provided with data directly from the lowest level of
the architecture, because the information is relevant for the user when making
decisions. But the data are shown to the user only when they contain the values that
are of interest to the user.
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In the second experiment, Search of process events, the system tries to offer a similar
look-and-feel to the user to that provided by an ordinary web search engine. First, the
user is provided with an interface used to set the search parameters, and the
information shown to the user is based on the general, and practically static,
knowledge about the current setup at the production site, such as process areas, device
types, and available data types. During the actual search process the user is not able to
control the operation. When the information being searched for is found the resulting
data structure content is shown to the user with a graphical interface built for this
specific case. In this case the user interface represents data that are stored in external
databases without modifying them but the search process has filtered the items so that
the user sees only the items that have interesting relations (user-specified) with other
data items.

5.3 Summary of the functionalities

The objective of the presented modularised and layered internal design of agents is to
give guidelines for the designer and thus ease the realisation and implementation of
the desired functions. Table 4 summarises how the functional layers support the
desired system properties that were set in Chapter 4.2. The table does not show User
interaction as an individual layer, because it is seen as an external function regarding
the actual information processing.

Table 4 — Summary of functional layers and their relation to desired system properties (the mark
X indicating that the layer supports the property at least partly).
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Task management X X X
Making inferences X X X X
Creation of symbolic data X X
Data access and combination X X

Task management and plans contribute to the desired properties in terms of providing
flexibility and delegation, because with goal-based operation it is possible to construct
both of these. Furthermore, knowledge handling is supported by the task management
module as it controls what data-processing modules are used for each task. Making
inferences naturally supports the knowledge-handling and data-processing properties.
Furthermore, the inference modules provide aid in gaining flexibility and help in
system integration because it can be used as an adapter, resulting in unified results
from various inputs. The creation of a symbolic data module mainly contributes to the
knowledge-handling and data-processing properties. As the data access and
combination modules operate as drivers used to connect external systems, these
modules are seen as supporting the integration property and also contributing to the
data-processing properties.
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5.4 Realised system for experiments

For the demonstration experiments discussed in the next chapter, an implementation
capable of realising the specified architectural and layered agent designs was made.
The system was constructed as a combination of multiple purpose-selected Java-based
software components. The programs were mainly open source and free for research
purposes. The connection of the software components was made with Java. Figure 13
illustrates the software tools used and their relations. The implementation was not
suitable as such for use in industrial settings, at least not 24/7/365, but enabled us to
perform experiments with real industrial data.

‘ User Java ODBC ¥LS Files
‘ WWW client :
JENA
HTTP !
communication ot
Jadex ARQ
ApaChE TCII'I"ICEt AJ-:]EI'll aganls [SFARCH)
mMessages
Jadex Web-Bridge e — — 2o g OWL-S AP
[ONVL-S)

Figure 13 — Software tools used and demonstration system structure for experiments.

All the functionalities were built round the agent platform, which was selected to be
Jadex in our experiments. Jadex is a general-purpose Java-based agent framework that
naturally supports the use of the BDI model, and at the time of this research it seemed
to be the most advanced BDI agent platform available as open source. The framework
offers a relatively easy XML-based declarative configuration of agent functionality,
and of course direct support for agent message sending and negotiations. More
information about the Jadex agent framework can be found in Jadex (2008).

In addition to the agent framework, the system had multiple software modules with
more focused purposes. The Jena (2008) Semantic Web framework was used to
handle ontology-based world models, which were used as a basis for agent knowledge
(especially in Experiment 2). Jena supports the novel ontology language OWL (OWL
2008) as an information format. The ARQ query engine for Jena was used for the
searching and processing of ontology-based information (ARQ 2008). The ARQ
engine supported the SPARQL language (SPARQL 2008) directly; this is similar to
the SQL query language used with relational databases, and it was used in the
experiments.

Furthermore, a number of additional software tools were used, but these did not have
such an important role as those mentioned earlier. As the OWL-S standard (OWL-S
2008) was used for service description, the OWL-S API tool (OWL-S API 2008) was
used in implementation. For the Experiment 2 web client interface, a Jadex Web-
bridge Add-on (Jadex Web-bridge 2008) was used for the easy development of web-
based access. Figure 13 also shows the Java ODBC bridge that was used to access the
XLS files that contained the real data originating from industry that were used in the
experiments.
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6 Experiments illustrating the usefulness of agent
design methods and developed architecture

6.1 Introduction

This chapter presents concrete examples of how flexible process monitoring
functionalities may be designed with the Prometheus agent design methodology and
using the specified agent architecture. The selection of the functionalities is based on
the process automation user needs discussed in Chapters 2, 3, and 4. With these
demonstration experiments the applicability of an agent-based design methodology
and the architecture that was developed for constructing novel monitoring
functionalities is evaluated and validated. The aim is to gain understanding about the
feasibility of the methodology and architecture, not to specify exact blueprints about
how the demonstrated functionalities should be realised. The experiments are related
to the monitoring of measurement data, searching for process-related data, and the
creation of symbolic data from measurements. The experiments are presented on a
level of detail that shows relevant aspects related to the use of an agent-based design
methodology and to provide a basis for discussion about architectural design.

In this thesis the experiments presented are:

e Experiment 1: Temporal monitoring with constraints — user-configurable
monitoring of process automation measurements and their relations.

e Experiment 2: Process event search — searching for event-type data entries
and combining these with related time series data.

e Experiment 3: Change point occurrence monitoring — monitoring change
point activity on a user-defined group of measurements.

e Experiment 4: Change point pattern monitoring — observing user-specified
change point patterns on-line from measurements.

With each experiment the design of the agents and the functionality itself is presented
with a discussion of how well the methodology used suits this particular problem.
With the first two experiments (1 and 2) a concrete implementation was made and the
functionality of the experiments was tested with data gathered from real industrial
processes. The latter two experiments (3 and 4) were designed and the discussion is
based on this design phase, as there were no suitable data available for testing
purposes.
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Table 5 collates the descriptions, objectives, and properties of the experiments. As can
be seen from the table, the four experiments cover the handling of information-
processing tasks from different perspectives, and therefore provide a basis for a
broader assessment of the agent-based approach. Furthermore, at the end of this
chapter a concluding discussion is presented and the general applicability of the
approach is summarised.

6.2 Design of experiments

With each experiment the agent design is presented. This provides a basis for the
operational activity of the experiments and it also gives guidelines for partitioning
functionalities into distinct elements. This part provides definitions and the
responsibilities of agents, sequences of actions, and a description of the agent
interaction protocols that were designed. The agent design is based on the Prometheus
methodology, introduced in Chapter 3.2.4. However, the author has exploited the
freedom of using only those parts of the methodology that are most suitable for
designing the structural aspects of the monitoring system. With Prometheus these are
the System specification phase, covering the initial development issues, and the
Architectural design phase, used to define the general agent system architecture. The
Detailed design phase was not used in the design of the experiments, because it does
not cover structural issues and it is more closely related to implementation techniques.
Furthermore, the developed agent architecture discussed in Chapter 4 and Chapter 5 is
used as a basis for the design and implementation, and it provides a skeleton on the
basis of which the operations of experiments are implemented.

In addition to the agent design part, every experiment provides discussion about
issues related to decision-making. This part of the design varies between the
experiments, depending on what functionalities the system aims to provide for the
user. Furthermore, each of the experiments was developed, designed, and constructed
for an individual and specific purpose and they have their motivation in industrial
settings. In Table 5 below, the properties of each experiment are collected together.
The mode support column refers to the work “modes” classification proposed by
Paunonen (1997), discussed in Chapter 2.1. The column also shows if the
functionality of the experiments supports on-line or off-line monitoring.
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Table 5 - Collection of descriptions, objectives, and properties of the experiments.

Experiment name
and description

Objectives and
problems

Solution and properties

Mode* support and
monitoring type

Experiment 1
Temporal
monitoring

User-defined timely
restricted
monitoring of
process values
representing good
process state

Operators’ interest is in
the relative values of
process quantities. Value
changes may occur all
around the system.
Maintenance effort is
minimised, as the
functionality needs only a
list of quantities and
constraints related to
them to be configured.

Distribute the monitoring,
use agent negotiations to
make monitoring
agreements, monitor on
the lowest possible level,
and use the directory
service to find monitoring
service providers.

Functionality does not
need maintenance, and
is possibly scalable?

The functionality is
motivated by the
performing predefined
tasks (M2) mode, but is
also usable for
monitoring (M1)
purposes. Usability in
controlling disturbance
(M3) mode is open.

The experiment realises
on-line monitoring.

Experiment 2
Process event
search

Search of related
process events

User is interested in data
that are available in
separate data sources
and in mixed syntaxes
and formats. The
viewpoint on the data
stored in these sources
also varies. Supervising
user is interested in
connections/links.

Use common base
vocabulary and process
model. Searching agent
has description of data
sources, and local data
source adapts the data to
a common format.

Extendable, as user
defines the search.

The functionality is
motivated by the
controlling disturbances
(M3) mode and is
usable when performing
predefined tasks (M2).
Usability for normal
monitoring purposes
(M1) is open.

The experiment realises
off-line monitoring.

Experiment 3
Change point**
occurrence
monitoring

Process activity
monitoring based
on amount of
changes visible in a
user-defined group
of measurements

User needs to be notified
about amount of changes
in a defined set of
process measurements.

Observe change point
events from raw
measurements.

User specifies the list of
monitored
measurements, and
system should monitor
occurrence of change
point events in this group.

Symbolic change point
events are generated
from measured numerical
data on the lowest
possible level, event
notifications are
subscripted, and
monitoring manager
monitors the occurrence.

User defines the group of
measurements and
notification level; no
maintenance is needed
as operation is based on
user configuration.

The functionality is
motivated by normal
monitoring (M1) mode.
Usability in performing
predefined tasks (M2)
and controlling
disturbances (M3)
modes are open.

The experiment realises
on-line monitoring.

Experiment 4
Change point**
pattern monitoring

Process event
monitoring based
on user-defined
activity pattern
monitoring

User is interested in
change point pattern
monitoring, and the
system should notify if
the defined pattern has
occurred in the system.

Observe change point
events on the basis of
raw measurements.

User specifies the
monitored measurements
and interest in event
patterns related to these.

Symbolic change point
events are generated
from numerical
measurement data on the
lowest possible level,
event notifications are
subscribed, and manager
monitors the pattern
formation.

User defines monitored
patterns and
measurement so no
maintenance is needed.

The functionality is
motivated by normal
monitoring (M1) and is
also usable when
performing predefined
tasks (M2). Usability for
controlling disturbances
(M3) mode is open.

The experiment realises
on-line monitoring.

*The modes are the following and the classification is based on Paunonen (1997):
M1: monitoring, M2: performing predefined tasks, and
M3: controlling disturbances (e.g. abnormal situations).

** The concept of Change Point (CP) is explained further in Chapter 6.5.3.
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The subsequent chapters present the design for each experiment in the following
overall and general structure. The Introduction represents the motivation and general
background for the illustrated experiment. It also presents an example use case
scenario describing how the functionality of the experiment could be used in a real
process-related situation. The agent design shows relevant design artefacts based on
the Prometheus methodology (discussed in Chapter 3.2.4). System specification: First,
Prometheus is used to define the agent system goals, functionalities, and actions.
Selections and naming in this phase are based on general background knowledge and
the definition of the experiment. Then the methodology is used to outline the example
given of a use case operation in a form of scenario, demonstrating the sequential
relations between functionalities. In addition, percepts, actions and data is specified.
Architectural design: In the next phase the generic agent roles, defined in the agent
system architecture phase (Chapter 4.4), are used as guidelines for the clustering of
functionalities to agents and to define agent descriptions. Finally, details of suitable
interaction protocols for the functionality of the experiment are specified. The system
overview diagram specified by Prometheus is not presented because issues related to
definition of agent system boundaries were discussed in the architectural design
(Chapters 4 and 5) and it does not present new aspects of agent design. Experiment 1
describes the use of Prometheus methodology more extensively, e.g. it shows how the
methodology guides making of design decisions. The represented agent designs in
experiments 2, 3 and 4 are more straightforward, concentrating on illustrating the final
deliverables of each design phase.

The content of the functionality design part varies between experiments and it
presents the methodologies used and tools that implement the decision-making. Then,
for the first two experiments, the implementation part represents key issues related to
implementation and shows the graphs and user interfaces that were designed for the
experiment. The actual implementation of the system was based on the Jadex agent
framework, as illustrated in Chapter 5.4. Then finally, at the end of every experiment
the discussion summarises the results of the experiment, gives feedback on the
architectural design, and also discusses the industrial potential of the functionality.

6.3 Experiment 1 - Temporal monitoring with constraints

6.3.1 Introduction

The main motivation for this experiment is a situation in which the process operator
needs assurance that certain process values stay relatively to each other within
specified limits. Typically, this kind of monitoring is needed temporally when
performing predefined tasks, for example in the process start-up phase or a grade
change situation. The temporal nature of these tasks is the reason for the name of this
experiment. The design here focuses on the use case of a predefined task because in
these situations the operator has much to do and monitoring help seems to be needed.
Typically, the monitoring for these situations is relatively easy to configure, for
example with describing the relations and limits for a couple of process quantities.
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Example use case for the functionality:

A rule of thumb in a certain process industry site tells us that the operator should
check that in a particular process area the current dose of chemical 1 is more than
that of chemical 2. This simple check shows that the process is relatively OK,
although there is no direct control loop connection between these two. Therefore, the
operator wants to be able to set up a check (possibly more than one) that results in a
notification if the specified relation is not valid.

In this experiment, it was decided to use formalism taken from constraint satisfaction
problems (CSP) in the monitoring task definition. In short, CSP consists of a set of
variables with restricted value domains and a set of specified constraints which the
values of these variables must satisfy. Then value ranges satisfying the constraints are
searched for with different types of search procedures. In this experiment, the
operation is the opposite. Here, the constraints are used by the user to describe the
normally-behaving process, as far as the selected and monitored variables are
concerned. A user-centric approach in parameter setting was selected for this
experiment, because a lot of knowledge about predefined tasks is said to be possessed
just by the operators (Paunonen 1997). When monitoring, the system checks that the
defined constraints are still valid every time a new measured value is available.
Inference-making based on the numerical values of process quantities using CSP is
discussed more thoroughly in Seilonen et al. (2006)

6.3.2 Agent design for temporal monitoring

The system specification design of the temporal monitoring experiment is started by
defining the system goals. On the basis of the background idea and the described
example use case it can be seen that the configuring, monitoring, and reporting
functionalities are the functionalities needed in this experiment. First, the system is
configured by the user with the defining constraints, and then the agent-based system
performs the monitoring task autonomously and finally, when needed, the broken
constraints are reported to the user. By naming and further refining these
functionalities we get the following system goals.

System goals:

e CSP configuring — User defines monitoring functionality with CSP formalism,
defining measurements, their values and relational constraints.

e CSP monitoring — Let peers always check constraint validity when new
measurement data are available. Use the CSP engine to distribute the
monitoring to peers on the lowest possible level where all the necessary data
are available.

e Reporting — Report broken constraints to user.

Next, these system goals are broken down into functionalities. Figure 14 shows the
actions and goals and how these relate to the functionalities in this experiment. In
CSP configuring the goal is to Define monitoring task with CSP and the related action
is Activate CSP monitoring. This functionality is triggered by the user. In the CSP
monitoring functionality the triggering event is the new measurement value that has
been detected and the related action occurs when one or more of the constraints have
been broken. The constraint consistency is related to the checking of one constraint
whose values are directly accessible, and CSP consistency refers to a set of individual
constraints, where values are queried from numerous agents.
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Furthermore, the Reporting functionality is responsible for notifying the user with a
report about a broken constraint. The selection of actions, goals, and their names is

based on the system goals presented above.
Define monitoring
CSP monitoring

Moni craint functionality
jonitor constrain .
) CSP confi
consistency Notify about broken constraints. R,

Monitor CSP consistency /

| Activate CSP monitoring

0

Reporting

Report broken constraint to

Figure 14 — Temporal monitoring functionalities with Prometheus notation.

The next step in the development is scenarios that describe how the goals and actions
are linked together as a sequence. These sequences show the normal operation of the
scenario, and they can reveal if an important part of the whole functionality is
missing. Below is the Temporal monitoring scenario, which presents the normal
operating sequence for this experiment, in which the user activates the monitoring
task, and the set constraint validity is monitored until broken constraints are reported
to the user. This sequence results in a functionality that is the one described in the use
case of this experiment.

Outline specification of Temporal monitoring scenario:
GOAL.: Define monitoring task with CSP
ACTION: Activate CSP monitoring

GOAL: Monitor constraint consistence

OTHER: Wait for measured values to change and break constraint
PERCEPT: new value in monitored measurement
OTHER: Check constraint validity

ACTION: Notify about broken constraints

GOAL.: Monitor CSP consistency

OTHER: Check CSP validity

10 ACTION: Notify about broken constraints

11. GOAL: Report broken constraints to user

12. ACTION: Notify user

CoNo~LWNE

For OTHER type steps, see discussion in Chapters 6.3.3 and 6.3.4.
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The next stage in the design of experiment is that the interaction of the system with
the environment is covered. Perception in this experiment interfaces with the system
in two sets of circumstances. First, when the user is defining the monitoring task and
thus requiring the system to start monitoring, this should start the above-defined
sequence. The user’s deactivation of the monitoring should also be handled. These
relate to the user activity percept, which is the triggering event for the whole
experiment. The processing of user actions is the responsibility of the user interaction
module, discussed in Chapter 5.2.5. Second, when processing the actual monitoring
task, the system is responsible for always making a new inference when a new value
is available in the monitored process measurements. In other words, the new value
percept activates constraint consistency checking in the CSP monitoring functionality.

Internally, the system uses a number of actions to partition the operation, as may be
seen in the scenario above. However, user notification is the only action that is seen
from the outside, and the other actions can be seen as services requests used internally
between the modules. The data produced by the functionalities, transferred between
them, and also used internally by the functionalities is an important part of the system.
In this experiment the following clusters of information can be identified:

e CSP — contains user-configured CSP constraints that define the monitoring
task. The CSP formalism used is discussed in the next subsection.

e Measurements — contains process measurement data in time series format.
These may be read from the underlying automation system with a special
interface (e.g. OPC) or may be fetched from some dedicated process database.

e Broken CSP reports — contains records of broken CSP constraints. These
reports are shown to the user with a suitable user interface.

After the system functionalities, sequences, and interfacing are defined the
architectural design is started with grouping these elements to form agents. In
Prometheus these groups are called agent types and they are a major part of
architectural design. The grouping is done in iterative fashion, considering
alternatives, and the final version of this design phase is shown in Figure 15. When
selecting how to group functionalities to agents there are no right or wrong answers,
but low cohesion and high coupling are objectives of clustering. Generally good
guidelines are that agents’ functionalities seem to relate, agent type “makes sense”,
and the defined agent can be described with a couple of sentences. Especially useful is
to try to find a suitable name for an agent that intuitively holds the respective
functionalities together. Also if two or more functionalities use same data extensively,
then it is practical to group these together so that less communication between agents
is required. (Padgham and Winikoff 2004). Generic agent roles presented in
architectural design (Chapter 4.4) are used to guide the clustering.
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Figure 15 - Grouping of functionalities in féFﬁﬁoTal monit_d;’i-ng experiment using notation from
Prometheus. The clusters are named the Configuring agent (1), Monitoring agent (2), and
Reporting agent (3).

In temporal monitoring the clusters of functionalities are defined as follows:

= Configuring agent: The first cluster (1) holds the CSP configuration
functionality used by the user to set up the monitoring task by defining it into
the CSP configuration data store. Typically, there is one agent of this type per
user. This agent is based on the Client agent architectural role.

= Monitoring agent: The second cluster (2) holds the CSP monitoring
functionality. This operation has to be active for the system to be able to
observe changes in data. This functionality gets its initialisation from the CSP
configuration data store. The number of these agents is not restricted, and it
depends on the number of observed measurements and the hierarchical
configuration of the monitored measurements within the physical process. The
clustering of these agents is based on the Information agent and Process agent
architectural role definitions.

= Reporting agent: The reporting cluster (3) involves the Reporting
functionality, which is responsible for reporting the broken CSP constraints to
the end user. Typically, there is one agent of this type per user. This agent
realises the Client Agent role from the architectural role definitions.

When looking at the clustering of elements more closely, the question of merging
Clusters 1 and 3 together may arise. These agents are kept separate in this design
because their operational activity levels differ and they use different data. The
configuring agent may provide a rather advanced user interface to help the user in the
task definition phase, e.g. possibly detailed data models of the whole process are used.
On the other hand, the reporting interface may be only a simple pop-up showing the
broken constraints. Leaving the reporting agent separate and as simple as possible
gives the opportunity to vary the reporting method, e.g. email and short message
notifications could easily be used. Integration to the current control room alarming
functionality may also be performed.
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Specifying interactions: Interaction protocols capture the dynamic aspects of the
system. First interaction diagrams are developed based on the described use case,
outlined scenarios and specified agent descriptions, by replacing each functionality in
the scenario with a responsible agent and further inserting communication between
agents where it is needed. Then these diagrams are generalised to interaction
protocols, e.g. as is shown in the following two figures below. In the temporal
monitoring scenario the interaction protocol is divided into two natural parts, and
Figure 16 illustrates the initialisation part, which is performed at the beginning of the
performance of every monitoring task. The initialisation protocol shows how the
initial values are first obtained from the responsible monitoring agents and then
reports on broken constraints are requested from these agents.

sd Temporal monitoring initialisation )

:Monitoring agent :Monitoring agent
(Information agent) (Process agent)
I |
[Monitoring agent has been requested for Temporal monitoring]
|
<Analyse and decompose CSP monitoring task>

Directory facilitator

|
[
| <Generate the CSP data structure>
|

]

List agents responsible of |

|  monitored measurements |
I

<Internal search>
L |ist of agents—!

[ |
Parallel J : :
|

[For every responsible agent]
| F——-Query current value—=]
:«1—Repor‘t current value: I

I

I

[ |

I <Initialise CSP data structure and its consistency>
I
|
|

Parallel J |

[For every responsible agent] |
I F—Report broken constraints-#|
[ je—Agree———
| | |
I I |

Figure 16 — Temporal monitoring initialisation interaction protocol using Prometheus notation.

Figure 17 shows the temporal monitoring interaction protocol. This illustrates the fact
that the initialisation phase is performed once, directly after the user has requested the
temporal monitoring of values. This is the part of the interaction that is responsible for
the actual monitoring functionality. There the monitoring agent receives broken
constraint reports every once in a while and then checks if the constraint situation is
still satisfactory. If not, then the user is reported. This operation is repeated until the
user deactivates the whole CSP monitoring task.
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sd Temporal monitoring )

:Configuring agent :Monitoring agent :Monitoring agent :Reporting agent
(Client agent) (Information agent) (Process agent) (Client agent)

I
[User has confjgured and activates temporal monitoring]

| I
I I
| Request temporal _ | | I
| I
| ]

monitoring

ref
Temporal monitoring initialisation

Parallel
[When constraint has broken]
Report broken !

| constraint |

| ] 1
<Update and check CSP data structure for broken constraints>

;

f f f
| I
[When CSP has been broken] | |
:—Report broken CSP observation——

|

I

| I

| *[Until user deactivates Temporal monitoring]
|
I
[}

L

|
|
|
|
|
|
|
|
[
Option II
|

|

I

|

|

|

Option I
! I

[User deactivates CSP monitoring] | |
I

|

|

I

I

I

Stop CSP monitorings!

| <Check CSP data structure>

Option | :

| Deactivate constraint

:_ reporting .1|
| [
| I

|

[For every responsible agent]

Figure 17 — Temporal monitoring interaction protocol using Prometheus notation.

The presented interaction protocols illustrate how agent communication is used to
produce the normal operation of the temporal monitoring experiment defined by the
example use case.

The illustrated agent design demonstrates the use of the Prometheus methodology to
define the structural skeleton for the temporal monitoring system. In temporal
monitoring the role of agent design is strong because the monitoring activity is mostly
handled by the agent system. The actual decision-making, based on checking the
consistency of constraints, is clearly visible in the interaction protocols and also in the
clustered agents. The benefit of using agent interactions is that it naturally delegates
and distributes the monitoring operation and thus contributes to the adaptation to
dynamically changing situations.
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6.3.3 Constraints for process condition monitoring

In this experiment constraints were used as a method to model user-originated
monitoring logic and express it to monitoring agents. The user describes the desired
behaviour of the process with constraints, and the fulfilment of the defined constraints
is monitored by the agent system, as was shown in the previous chapter. The principle
of using constraints in process monitoring described in this chapter was presented
originally, and in more generic form, by Seilonen et al. (2006).

The introduction for this experiment stated that the user is interested in finding out if
the current process situation and respective values are in conflict with the user’s
knowledge about what those values should be when everything in the process is OK.
To be able to use constraint satisfaction problem (CSP) formalism for monitoring
purposes, suitable constraint templates describing the relationships between
measurements needed to be selected. In this experiment the constraint templates used
were Binary and Unary constraints, and the whole monitoring task was configured by
defining a set of these constraints with a logical and-operator between them.

The Binary constraint is in the form <VAR1 (operator) VAR2 (comparison) value>. In
our model for binary constraint the operator may be one of the following (‘+’°, -, **’,
and ‘/’), and the comparison is either greater or less than. Here the VARSs refer to some
specific physical measurements and the value is some defined arbitrary numerical
value. The Unary constraint template is simpler and it is a form of <VAR
(comparison) value>. Table 6 and Table 7 show both constraint templates with
practical examples. The constraint model is known to be limited and extending it is a
possible part of future development.

Table 6 — Binary constraint template and respective examples.

Constraint Example usage

Template | VAR (operator) VAR (comparison)
VALUE

Examplel | PumplSpeed + Pump2speed > 10 | Two pumps are outputting to the
same tank and the total input value
should be at least something

Example2 | Consistency * Pump2Speed > 120 | Mass flow should be over the limit

Example3 | PumplSpeed / Pump2Speed > 1 The speed of Pumpl should be
more than the speed of Pump?2

The Binary constraint gives the user a flexible way of defining various process-related
constraints. The Unary constraint is practically identical to the alarm functionality
within present process automation systems, and does not as such offer any additional
functionalities to the user. However, offering both types of constraints gives the user
flexibility in defining the whole monitoring task.

Table 7 — Unary constraint template and an example.

Constraint Example usage
Template | VAR (comparison) VALUE
Examplel | Temperature < 70 The temperature should be less than 70

The CSP data structure referred to in the agent interaction protocols (Figure 16 and
Figure 17) contains a set of user-defined Binary and Unary constraint templates
explained above.
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6.3.4 Implementation and tests

The motivation for the Temporal monitoring functionality had its background in an
industrial need. The test scenario concerns the pH control in the bleaching of
mechanical pulp in a paper mill. This is one of the key process variables operating in
hostile conditions — exposure to vibrations, corrosive chemicals, and wide temperature
variations — which makes the measurements vulnerable and subject to malfunctions.
Therefore, the additional monitoring was to be developed to aid operators in being
notified about potential problems in pH measurements. To demonstrate the
functionality of the experiments to non-researchers an implementation of the system
was developed in the PROAGE project. The software tools used and the structure of
the system that was used in this experiment were presented in Chapter 5.4. The
demonstration itself was constructed as a standalone system that worked with offline
data. The data were samples from a real production plant imported to the system by
means of XLS files.

The user interface (see Figure 18) was designed to be an add-on to current control
room displays, and not to be a standalone and whole new application. The interaction
of the tool was based on the idea that the operator could drag and drop items from the
picture to the monitoring user interface. This setup was simulated with screenshots
taken from a real production environment and by realising operational hotspots to
these pictures the user could drag the items to be monitored by the tool. The
monitoring tool window was started from a separate pop-up menu. After the variables
had been dragged to their place in the monitoring configuration window, the operator
had to define the operator, comparison, and compared values to each constraint
template.

& Monitoring Task

Binary Constrain hd DosagelfSodiumibydrocdeteanmement . |+ DosageOfSuphinDinddeiieasurement > |+ |1

DasageSuphur DinxideMeasurement . DosageOrSodumhalnoxidetdeasuramen > 0.5
DasapeliSodiurmbbadroxideileasurement - DosagelrSulphurDiodderSeasurement > 1
DaosageNSuphur Dioxkletieasurenent > 5.0

Al Condition

Erase Condition
Marmi 507 dosage monitoring

Start | Slop | Closa

Figure 18 — Screenshots from the demonstration user interface for setting up the temporal
monitoring task with binary and unary constraints.

After finalising the monitoring setup definition, the user names the task and sends it.
In the demonstration system there was no direct method to see what was happening
when the monitoring was running, but the debugging tools offered by the Jadex
framework could be used if needed. With these tools the user was able to see what
messages agents were sending to each other and it also gave the opportunity to trace
how the constraint variables values changed over time. The demonstration user
interface for reporting was just a message box showing the broken constraints with
the values that broke them.
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6.3.5 Discussion

Using the Prometheus design formalism and specified agent architecture presented
above seems to support the construction of temporal monitoring functionalities with
CSP formalism. Distributing constraint checking to multiple agents using agent
negotiations was straightforward, as agent communication standards provide suitable
protocols for distribution. Agent negotiation provides a natural way to construct an
operation that adapts and responds to dynamically changing process situations and the
respective value changes. However, the Prometheus does not address the issue of how
to select a suitable FIPA standardised interaction protocol for the task, as it focuses on
describing suitable communication from functional perspectives. This more abstract
level of defining communication is appropriate for the application domain specialist
that does not have an agent technology background. However, within the conducted
implementation and tests the fipa-subscribe (FIPA 2002) was found to be well suited.

Basically the idea behind this experiment is to generate a user configurable and
extended version of alarm functionality provided by current process control systems.
Based on the work done in the experiment it can be stated that many process-related
monitoring tasks can be defined using CSP formalism. Using CSP as a basis for
monitoring makes the execution engine extendable, but CSP formalism is not
something that a process operator naturally understands and can utilise directly.
Although Ul aspects were not studied in this research, it may be stated that a more
user-friendly input methodology should be provided if CSP is to be used in industrial
settings. The real feasibility of this kind of end user focused functionality is strongly
influenced by usability issues, so further study should focus on e.g. studying user
activity in a larger number of use cases within real industrial settings.

The temporal monitoring functionality was primarily designed for situations in which
predefined tasks are performed and the supervising users need tool support for gaining
information about significant changes in the process. However, the temporal
monitoring tool could also be used in a normal monitoring situation as well, for
example as a more flexible way to configure alarm functions or, in scheduled runs, to
check that the relations between the most important process values are as wanted.
Temporal monitoring may also be used when dealing with disturbances, e.g. noticing
a disturbance from known symptoms and preventing the disturbance from occurring
again. The continuous development may also benefit when an alert on any interesting
special process situations may be obtained and possibly complex value combinations
may be monitored.

This experiment was the first that was designed and implemented so it dealt mostly
with agent negotiations and interaction protocols. However, the functionality of this
experiment would probably be rather easy to add to current systems as the user
provides all the definitions for decision-making and thus the monitoring would not
need additional configuration work in the form of process models and deduction rules.
Although the presented approach offers extended functionality compared to currently
available alarm solutions, the real applicability and benefits of the solution presented
here depend on the industrial settings. As measurements are typically stored to one
centralised database there is no reason to distribute the monitoring either. However, if
in the future field devices, distributed 10 equipment, and process stations provide for
added functionalities to be implemented in those, then the agent approach presented
here seems to be reasonable.
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6.4 Experiment 2 - Search of process events

6.4.1 Introduction

This experiment has its motivation in the situation where an operator is accessing
stored history data and trying to find interesting bits and pieces of information.
Typically, this happens when the user is trying to control disturbances and searching
for possible symptoms from the stored data. Within sites important process-related
information is stored in separate databases with mixed presentation formats, and most
of the time any connection between past process events and measurement time series
is not easily evident. What is also challenging is that there is an inconsistency in
viewpoints about how a certain process element is shown, how it is stored, and what
data are linked to each element. For example, for the maintenance personnel a process
device is a physical object with mechanical properties, but for the operator that same
device is important from the functional perspective.

Example use case for the functionality:

Quite often a user wants to find out what has happened in the past in a certain
process area, e.g. what happened in the previous 8-hour shift in the area that the
operator is responsible for. Typically, the operator starts the shift by going through
information that is stored in a variety of data sources to find out out-of-the-ordinary
events that might influence the way process operates. As most external data sources
use mixed naming practices, varying data presentation formats, and separate user
interfaces, the user needs to go through them one by one. A unifying system that
operates more automatically and gathers important events together and finds
relations between events would help the user to generate a general view of the
situation.

Differences in viewpoint influence the user interface and this, for example, makes
searching for interesting relations between process events laborious. For the
supervising user the interest is typically in some process area that is decomposed
spatially or functionally and the elements that are related to it. Therefore, one purpose
of this experiment was to produce a system that would provide the user with one
summarising interface to search for and view “all” the information that is related to a
specified process element. The basic idea is to use the speed and accuracy provided
by IT to go through information stored in separate data stores and delegate the
combination work to the system. Technically, this experiment uses Semantic Web
tools to link elements in various data sources and a more thorough discussion about
these aspects can be found in Pakonen et al. (2007). The following section focuses on
illustrating how agent design methodology can be used to develop this kind of
functionality.

6.4.2 Agent design for search functionality

The design of search of process events starts by defining the system goals on the basis
of the introduction and example use case. For this experiment the initial system goals
are search definition, searching, and result viewing. First, the search is activated by
the user by defining the search parameters. Then the system searches for the specified
information from various data sources and combines the result, which is finally shown
to the user. By naming and further refining these we get the following system goals:
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System Goals:

e Search definition — User defines search parameters with a suitable interface
that has some knowledge about the underlying process setup and capabilities
of the available data sources.

e Search decomposition — As data are stored in various data sources, the search
needs to be decomposed into parts that the respective data sources are able to
answer.

e Searching — Matching sub-results are searched for in individual data sources.

e Result combining — Combine overall result on the basis of partial sub-results
using formal data models that describe how an element in one data source sub-
result relates to elements described in other sub-results.

e Result viewing — Search results are presented to user.

Next, these system goals are broken down into functionalities and activities. Figure 19
shows how the actions and goals are related to the respective functionalities in this
experiment. The functionalities that are visible to the user are Search definition,
responsible for activating the whole search operation, and Result viewing, responsible
for showing the results to the user. The actual search operation consists of the Search
decomposition, Searching, and Result combination functionalities, which organise the
search operation. Search decomposition is divided into a part that is responsible for
searching through currently active and available data sources from the system and a
part that decomposes the search into partial search definitions. The Searching
functionality searches for data from data sources and the respective action delivers the
sub-results. The Result combination combines sub-results and sends them to be shown
to the user.

Configure search parameters
Search decomposition
Search definition Activate search
Find available data
sources

Run decomposed search

Searching
Show search results to user
Search requested data
from cata base Result combination

Combine search result \
Provide sub search result > Report search result >

Figure 19 — Search of process event functionalities using notation from Prometheus.

Result viewing

The next progress step is scenario development, which describes how the goals and
actions are linked together in the form of a sequence. Below is the Search for process
events scenario, which presents the normal operating sequence for this experiment in
which the user defines the search, the system finds relevant data from various sources
using a network of information-providing elements, and then the system merges the
partial results into a combined final search result. The presented scenario is activated
by the user. This scenario illustrates system operation that responds to the example
use case described in the introduction to the experiment.
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Outline specification of Search of process events scenario:
1. GOAL: Configure search parameters
2. ACTION: Activate search
3. GOAL: Find available data sources
4. OTHER: Use service descriptions to find responsible agents
5. GOAL: Decompose search
6. OTHER: Use models to partition the query
7. ACTION: Run decomposed searches
8. GOAL: Search for requested data from data source
9. OTHER: Format sub results to common format
10. ACTION: Provide sub-search results
11. GOAL: Combine search results
12. OTHER: Use data models to link individual events
13. ACTION: Report search results
14. GOAL: Show search results to user
15. ACTION: Show to user

For steps with OTHER type specified see discussion in Chapters 6.4.3 and 6.4.4. Next
in the design of experiment, the interface descriptions are presented. As this
experiment is activated by the user and then the system performs the search
autonomously, there are no other percepts than observing the first user activity that
triggers the whole operation. Internally, the system uses a number of actions to
partition the operation, but showing the results to the user is the only one that is
visible outside the system. Furthermore, in this experiment the following data stores
are used to exchange information between agents and their functionalities:

e Search — contains user-defined search. The search and its parameters refer to
available process ontologies.

e Process model — contains instance types of information about process elements
and their relations in the particular process. The properties of the process
model are discussed in the next section (Chapter 6.4.3). Basically, the process
model should be general to the whole system and available to all players.

e Sub-result — contains records of data that are the results of queries to
individual data sources.

e Search result — contains the overall search result that is shown to the user.
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Specifying agent types: After the system functionalities, operational sequences, and
environment interaction are defined it is possible to group these elements into
meaningful agents, using the generic agent role definitions discussed in Chapter 4.4 as
guidelines. Figure 20 illustrates the final version of this iterative grouping process.

Result viewi ™
esult viewing .

(1)

Result combination Search definition

Searching

\\_____-7-7-7-7-7_7@ - 7.__,,/ g

Search decomposition

\\\ ///

-

Figure 20 — Grouping of functionalities in search for process events experiment with Prometheus
notation. The clusters are named Client agent (1), Search agent (2), and Database agent (3).

In Search of process events the clusters of functionalities are defined as follows:

Client agent: The first cluster (1) groups the user interaction, which is
partitioned into the Search definition and Result viewing functionalities. From
these functionalities the Search definition is used by the user to produce
Search data. Result viewing is responsible for presenting the Search result to
the user. Process model is used to provide search options to the user and
support the formatting of the results. These functionalities are event-based,
and they are activated when the user defines the search and search results
become available. In general, both these events are rather rare, and typically
one agent per user is enough. This clustering uses the Client agent
architectural role definition.

Search agent: The second cluster (2) involves search managing
functionalities, namely the Search decomposition and Result combination
functionalities. Search decomposition uses Process model and Search data and
delegates searching to responsible parties. Result combination uses Process
model data when constructing an overall search result. The number of this type
of agents is not defined in advance, and it may change dynamically, depending
on the search requests. This clustering is based on the Information agent and
Wrapper agent architectural roles.

Database agent: The searching cluster (3) builds the searching functionality
and handles one data source. This functionality answers queries that are
related to a certain, possibly legacy, data source. The number of these agents
depends on available data sources, as typically there should be one agent
responsible for each data source. The architectural role of the Wrapper agent
is used to guideline this agent.
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In this experiment the user interface, acting as the input and output channel between
the user and the system, is defined as being handled by one agent. This is mainly
because it is best to realise the handling of complex data models once and in one
place. The process model data are left outside the individual agents in the clustering
because in the design of this experiment they are classified as global knowledge that
is available and common to every participant operating in the system.

The search functionality was partitioned into two different agent types. Wrappers
(Database agents) were designed to handle the formatting of inconsistent data to a
common and understandable format. This was seen to be a distinct operation from the
actual search decomposition and fusing functionality, which was left to the Search
agent.

Specifying interactions: As the operation of a search experiment on the agent
interaction level is rather simple, the Interaction protocol for process event searching
is easy to construct. Figure 21 shows the Search of process events interaction protocol
that was developed.

sd Search of process events )

:Search agent :Database agent
(Information agent) (Wrapper agent)
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i Partial queries—»
[<—Partial responses—

T
<Combine Search result data structure>

[<—Report result—i

Figure 21 - Search of process events interaction protocol using Prometheus notation.

The illustrated interaction protocol realises the main use case scenario of the search
functionality described in the introduction to the experiment.

The agent design defines the structural skeleton for the operation behind this
experiment. In Search of process events the benefits of agent design are more visible
in system structuring than in defining operations with agent negotiations. This is
partly because the search activity is heavily based on straightforward procedural
operation, and the focus is on utilising Semantic Web tools to handle data modelling
issues. Nevertheless, the use of systematic agent design assists in the partitioning of
the operation.
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6.4.3 Data models for information retrieval

To be able to query and fetch data from multiple data sources requires every agent in
the system to communicate with each other using a common, understandable, and
agreed vocabulary. In a software system this vocabulary should also be machine-
processable and agreed at least between the agents which are exchanging information
among one another. As was discussed in Chapter 3.4, this may be realised with
software tools originating from the Semantic Web. In this experiment we decided to
use a solution in which every entity in the system is responsible for providing
information using a common vocabulary defined in a shared ontology, and
furthermore data model introduced domain division was used in service coverage
definitions.

The concepts in the common ontology, called a plant ontology in this experiment,
were selected to describe important process-related matters from the operators’
viewpoint. The spatial relations of objects were found to be important, especially
because process operators are typically responsible for some physically restricted part
of the process. In this experiment the plant ontology is used in both cases, when
searching for the stored data and also when the user is describing the query. In the
query definition phase, the ontology is used to guideline the construction of the query
in such a way that it is understandable and processable by the agent who receives it.
The query decomposition was based on domain definitions, as each wrapper was
responsible of a certain domain of knowledge. In the search phase, the plant ontology
describes how things are related to each other, so that the search-processing agent
may find relations from the partial answers that the Wrapper agents sent to it. Figure
22 shows an example of how concepts from different viewpoints can be connected
when physical domain knowledge is used.

Maintenance domain Physical domain Functional domain
Process
system
Maintenance Process
Event ? Variable
AN \ 7N
T J
RN Process ' deoict
[ isRelatedTo Component Measurement epicts
Calibration 4|§‘ y
[ | b
/ provides
Device
L/
Replacement Pump Sensor

Figure 22 — A maintenance event described in the Maintenance domain may be linked to a
certain Process variable described in the Functional domain when using object relations defined
in the Physical domain ontology. (Pakonen et al. 2007).
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In this experiment, the spatial relations of process automation concepts were utilised.
It was decided that every Wrapper Agent would be responsible for providing extra
information that described how their objects link to objects in the Physical domain.
This idea seemed to have a rather intuitive background as things in process
monitoring tend to happen somewhere in the process. For example, as may be seen
above (Figure 22), if one agent provides information on how a maintenance event is
connected to a process component and another expresses the connection of a process
variable to a sensor, then the relation between the maintenance event and a certain
process variable may be found. More thorough discussion about ontological aspects of
the experiment 2 and architecture can be found in Jussila (2006) and Pakonen et al.
(2007).

6.4.4 Implementation and tests

A working demonstrator for this experiment was developed in the PROAGE project
and implementation was performed by the project team. A browser-based user
interface was chosen as the method to communicate with the user and the look and
feel were designed to resemble those of an ordinary web search engine as much as
possible. The structure that was realised, connecting the web server and the agents,
was shown in Chapter 5.4. As a result of the practical limitations of the research
project, our setup of experiments used off-line data dumps obtained from a real
industrial process. The dumps used contained information from the plant
measurement history, maintenance database, laboratory database, and an electronic
diary.

The experiment use case starts when the user defines the search. Typically, the
operator was thought to be interested in what events had occurred in the previous shift
or in a longer time period. Another thing that the users were interested in was similar
situations to the current one, trying to figure out how possibly to cope with the
problem. Figure 23 shows the search user interface realised for demonstration
purposes. It enabled the user to define the time span, process area, and event type that
(s)he was interested in. The choices in the search parameterisation related to plant
ontology and instance data that describe the particular process under consideration.
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Figure 23 — User interface search definition in search of process events. Also visible in the
“Define search” window is a process layout overview from the bleaching of mechanical pulp,
which was the test environment for the experiment.

After the user specified the search and activated it the web server generated and sent
an agent a message containing the search. In the implementation the search was
expressed with the SPARQL language, which is similar to the SQL language used to
query data from relational data bases (SPARQL 2008), but it is designed to query data
from ontological data stores. OWL-S (2008) was used by Wrapper agents for service
description and as each data source was holding data from a certain domain the
service description was selected to be defined base on these. In concrete software
realisation OWL-S API (2008) was used as an engine to match sub searches and
responsible agents.

Then, after the agents have done their searches and the result has been combined, the
outcome is shown to the user. Examples of these results are shown in Figure 24. The
idea of the interface is to combine information retrieved from multiple sources in one
combined user interface. In the result view the measured time series data were shown
with the related event information. In this experiment these were maintenance events
and diary entries. In addition, the laboratory measurements used for calibration
purposes were also shown, when available, beside the time series data.
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Figure 24 - User interface for results in search of process events.
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The implementation was in many aspects very simplified and built only for
demonstration purposes. In the future, potential targets for development would assist
the user in the search definition phase and facilitate flexible navigation through the
results. Iteration between search definition and result viewing should also be made
possible.

6.4.5 Discussion

In this experiment the functionalities were based mainly on operations on semantic
plant models and ontology engineering. The agent design was straightforward and
provided structural guidelines for modular system design, but the agent design did not
solve the knowledge-related issues. This issue is visible in an outlined scenario where
numerous OTHER type steps are defined. The search as a functionality is procedural
and does not require the autonomy or flexible communications that agent technology
provides. The experiment proved the potential of Semantic Web tools when
integrating multiple data sources and searching for links between elements in those
sources. Ontological aspects of data processing within this experiment are discussed
more thoroughly in Jussila (2006) and Pakonen et al. (2007).

This experiment provided users with a search tool for finding relations in process
events and measurements. In general, the benefit of this type of functionality would
be easier data access, which makes the examination of miscellaneous process history
data reasonable even when specific problems are not being searched for. The main
design focus in this experiment was to provide a tool to help operators to control
disturbances. Nevertheless, searching for interesting phenomena from history data
could also be a useful feature in normal monitoring mode and when performing
preplanned tasks. With the developed tool a person could “surf” history data and find
interesting events and possibly find the relations that these may have. And if
interesting relations are found, these could be used as the basis for building new
monitoring functionalities.
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6.5 Experiment 3 - Change point occurrence monitoring

6.5.1 Introduction

Typical industrial processes are designed in such a way that when they are operating
normally the physical process quantities are relatively steady and the trend lines
visible in the control room are practically straight. On the contrary, when the values of
measurements and actuators are changing more than normally then this might be a
result of a problem. Paunonen was thinking similarly in his research (1997: 75-76)
when pondering the possibilities of detecting process “fever” by “change sum”
calculation. In general, several value changes occurring simultaneously in multiple
quantities may be related to an activity burst that may be the result of changes in input
material or equipment malfunction. Sometimes these bursts of changes are the result
of desired set point changes that have been made elsewhere in the production site, e.g.
when performing grade change.

Example use case for this experiment:

The process operator has learned that normally the values of a set of process
variables are stable. Therefore, the operator has defined a list of 20 process
quantities, for example measurements and actuators that are situated in some
physical area, and requested the system to provide notification if more than 10
significant changes occur in a 30-minute time span.

The focus in this experiment is on the normal on-line monitoring of industrial
processes. This experiment describes the development of a monitoring system that the
operator can use to delegate the process “fever” monitoring. In this experiment this
“fever” monitoring iS based on the idea of monitoring Change Point (CP) events
generated from measurement time series values. CPs are defined as time points at
which the characteristics of process quantity change significantly, and these can be
found from time series data with statistical tools (see the discussion in Chapter 3.5).
Furthermore, the system is used to observe occurrence peaks in the amount of these
events in a user-specified time window.

6.5.2 Agent design for change point occurrence monitoring

The design of change point occurrence monitoring starts with defining the system
goals on the basis of the described use case. For this experiment these functionalities
may be seen as configuring, change point observing, occurrence monitoring, and
reporting. First, the system is started with the user configuring a group of
measurements and setting alarm occurrence limits for the group. Then the responsible
agent performs change point detection for individual process measurements. Then the
change point occurrence for a specified group of measurements is calculated and,
when needed, the exceeded limits are reported to the user. By naming and further
refining these functionalities we get the system goals as follows.
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System Goals:
e User configurability — User defines and groups a set of measurements to be
change point monitored and specifies the occurrence peak limit for this group.
e CP observing — Observes change point in individual process measurement.
e CP occurrence monitoring — Observe occurrence peaks in group of
measurements.
e User reporting — Report change point occurrence peaks to user.

Next, these system goals are broken down into functionalities, activities, and their
relations, as shown in Figure 25. In this experiment the functionalities User
configurability and User reporting are the ones that are visible to the end user. The
actual monitoring functionality is split into two separate parts. CP observing is
responsible for detecting change points from measurement time series and notifying
observations. The actual observation is discussed in Chapter 6.5.3. CP occurrence
monitoring gathers together the individual CP observations and monitors their timely
amount within the user-defined group.

CP observing User configurability

- Group
Observe CP in measurements and
measurement \ define monitoring

parameters

Notify about CP observation>

Activate requested operation

CP occurence monitoring

Link individual CPs based User reporting
on grouping
peak in group
, Report CP occurence
Notify about CP occurenoe@ m

Figure 25 — Change point occurrence monitoring functionalities using notation from Prometheus.

The next step is the scenario development, which describes how the goals and actions
are linked together as a sequence. Below is the Change point occurrence monitoring
scenario, which presents step by step the normal operating sequence in which the user
activates the occurrence monitoring task, the system observes change points and
monitors the amount of them, and finally, when needed, the findings are reported to
the user. This scenario produces the functionality described in the example use case of
this experiment.

Outline specification of Change point occurrence monitoring scenario:
GOAL.: Group measurements and define monitoring parameters
ACTION: Activate requested operation

GOAL: Observe CP in measurement

OTHER: Wait for process quantity to change substantially
PERCEPT: CP observed

ACTION: Notify about CP observation

GOAL.: Observe CP occurrence peak in a group

OTHER: Check CP occurrence peak

ACTION: Notify about CP occurrence peak

10 GOAL: Report CP occurrence peak to user

11. ACTION: Notify user

wCoNoUk~wNE
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See discussion in chapter 6.5.3 for the steps having the type OTHER defined.

The interaction of the system with the environment is the following. Perception is
responsible for triggering activities in the case of user activity and when a CP
observed is available in measurements. Internally, the system uses actions to trigger
functions, and the only one of these visible outside the system is Notify user.
Furthermore, the data used in this experiment are defined to be the following.

e CP configuration and grouping — contains information on what measurements
are to be observed for CPs and how these are grouped together for occurrence
monitoring. Also defines the time and amount of alarm limits.

e CPs — contains online records of observed process change points.

e CP occurrence monitoring data — stores history of observed CPs that belong
to a user-defined group and are within a specified time window.

e CP occurrence peak reports — contains information about occurrence findings
that exceed the defined alarm limits.

After the system functionalities, operational sequences, and environment interaction
are defined it is possible to group these elements into meaningful entities (agents).
The final version of this iterative grouping process is illustrated below (Figure 26).
The clustering is based on the generic architectural role definitions presented in
Chapter 4.4.

User configurability /

CP occurrence
monitoring data

\\ (2) CP observing .‘
\““-—-1‘_1_7_7_7_7 o 7_7_,_,.,)—-'-”// \ . //

Figure 26 - Grouping of functionalities in change point occuﬁrﬁfeﬂ:_é{monitoring experiment with
Prometheus notation. Clusters are named Configuring agent (1), Monitoring agent (2), and
Reporting agent (3).
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In Change point occurrence monitoring the clustering is defined as follows:

= Configuring agent: The first cluster (1) holds the User configurability
functionality, and produces CP configuration and grouping data. Typically
there is one agent of this type per user in the system. The architectural role
specified as the Client agent is behind this clustering.

= Monitoring agent: The second cluster (2) involves monitoring functionalities,
namely the CP observing and CP occurrence monitoring functionalities.
These are operations that have to be active in such a way that if something
happens in the data, these functions should observe it. These functionalities get
their initialisation from the CP configuration and grouping configuration. The
number of these agents is not restricted, and it depends on the related process
configuration and possibly on the number of observed measurements. This
clustering is influenced by the architectural role definitions of the Information
and Process agents.

= Reporting agent: The reporting cluster (3) involves User reporting, which is
responsible for reporting the issues found in the system to the end user. This
part of the system functionalities is event-based; they are activated when new
user reports are stored in the CP occurrence peak reports data store. Typically,
there is one agent per user of this type. This clustering realises the
functionalities defined by the architectural role of the Client agent.

In agent definitions, a question about merging Clusters 1 and 3 together may arise.
These two clusters are kept separate in this design because their operational activity
differs and they use different data. The configuring agent may provide a rather
advanced user interface, based e.g. on process functional and physical models, and it
may also be integrated with other applications in the control room. On the contrary,
the reporting interface may be only a simple display giving notification about
occurrence peaks. Leaving the reporting agent separate and as simple as possible
gives the opportunity to integrate it directly to e.g. process control system alarm
functions.

Interaction protocol development is based on use cases, scenarios, and related agent
division. Change point occurrence monitoring is divided into two natural parts. Figure
27 shows the initialisation performed at the beginning of every configured monitoring
task. The initialisation protocol shows how the peers are first queried from the
directory and then the peers are requested to report about change points that occurred
in individual measurements. The initialisation also generates and initialises the CP
occurrence monitoring data structure.
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sd CP occurrence monitoring initialisatioy

:Monitoring agent :Monitoring agent
(Information agent) (Process agent)

| I [
[Monitoring agent has been requested for CP occurrence monitoring]

I <Generate CP occurrence monitoring data structure based
I on user configuration and initialise it>
|
I

Directory facilitator

Option J

[If some CPs are responsibility of other agents]

I

I

|

I

I

I

la—List responsible agents— |
1 | I
<Internal search> | |
———List of agents——»! |

1 L
! I
<Initialise CP occurrence monitoring data structure> |

|

I

I

I

I

I

Option ) | i

[If some CPs are responsibility of other agents]:

Parallel J | |

I
For every responsible agent
[ v Ip gent] :—Report CP observations—»

Figure 27 — Change point occurrence monitoring initialisation interaction protocol using
Prometheus notation.

The change point occurrence monitoring interaction protocol is illustrated below
(Figure 28). This shows that the initialisation phase is performed once, directly after
the user has requested occurrence monitoring, and then the actual monitoring is
performed. There the responsible agent receives notification about CP occurrences in
the measurements that are of interest, and if enough change points are detected in the
specified group and given time span then this is reported to the user. This monitoring
operation continues until the user deactivates it.
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sd CP occurrence monitoring )

:Configuring agent
(Client agent)

:Monitoring agent
(Information agent)

:Monitoring agent
(Process agent)

:Reporting agent
(Client agent)

[User has configuIed and activates CP ockurrence monitoring]

Request CP
occurrence monitoring |

ref

CP occurrence monitoring initialisation

;
Option J :

i
I
I

[If some CPs are responsibility of others agents]

i
|
|
I
|

I
Parallel )I
|

I
[when CP occurs]

|-—Report of CP—

i

I
<Check CP occurrence monitoring data structure and
check it for occurrence peaks>

|

|

I

I

I

Option J i
o}

+—Report CP occurrence peak observation—m/

T

T

*[Until user deactivates CP occurrence monitoring]

|

|
}
|
I
|
|

Option J

[User deactivates CP occurrence monitoring]

|_Stop CP occurrence |
| monitoring [

|
I
I
I
I
I

<Check CP occurrence monitoring data structure>

Option J

[If some CPs are responsibility of other agents]

' Deactivate CP

T

| reporting |

Figure 28 — Change point occurrence monitoring interaction protocol using Prometheus notation.

These interaction protocols together realise the main use case scenario presented in
the introduction. In this experiment the role of agent negotiations is strong as they are

used to organise and delegate the monitoring functionality.

6.5.3 Change point detection and occurrence monitoring

In this thesis a Change Point (CP) is defined as a time point at which the time series
values of individual measurements change significantly. There are two distinct
motivations for using CP detection. On the one hand, successful CP detection from
noisy measurement data produces intuitively meaningful events and raises the
abstraction level for an easier decision-making process. On the other hand, agent-
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based systems operate most naturally with symbolic data and CPs offer a potential
solution for converting process automation-related numerical data into symbolic form.
In this thesis the target is not to design and implement the best possible CP detection
algorithm but to find a suitable system structure that could utilise this kind of
information for monitoring purposes. Therefore, a demonstrative realisation has been
made in order to understand the applicability and limitations of CP detection.

In this thesis the actual realisation of the CP observation is based on the simple idea of
approximating periods of individual time series values with a straight line. Figure 29
shows an example excerpt in which CPs are observed from time series values
originating from real processes. The assumptions for the algorithm design are that the
time series data are piece-wise continuous and the data contain white Gaussian noise.
These data contain segments that are separated by points at which values change
substantially, called CPs, and the segments are not necessarily related. In other words
this means that the data may be seen as a series of linear segments, each having
stochastic length and these segments may be approximated with a straight line.

ANK A sl o o -.—. N Tt T Fil e w—
fineUAA NN SSESEsLIoS s SRS

Tomig stiamps of chiigl awvinfs staring
from the baginning of this window: 3h 489min_|4h 40min Sh 45rmin Th 42min

Figure 29 — Example excerpt of Change Point of observation process produced by demonstration
implementation. The vertical lines show the points where the CP observation found significant
changes in the measured values.

In our system the demonstrative implementation of this symbolisation function is
called Liner. Liner fits lines to data by selecting the best straight lines that can be
drawn backwards from the current time to the previous CP using least squares
calculation as the evaluation criterion. The algorithm does not have any assumption
about the variance of the values. Another important design requirement for Liner is
that it needs to react to CP occurrences as they happen, on the so-called online
principle. This is an important issue as the algorithm design cannot make an
assumption that all the data are already available for processing e.g. in a history
database, which is typically necessary for e.g. efficient divide and conquer clustering
algorithms to be able to work. Finally, Liner is also thought to possibly operate on the
device level, so it needed to be relatively efficient.

As defined in the use case, the user is thought to be interested in the amount of CPs in
a certain physical process area and in a certain time window. Figure 30 shows an
example in which it may be seen that the amount of activity in process measurements
varies in time. The amount of variation depends on the selected measurements, the
time window that is under consideration, and the activity of the process at the given
time.
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Figure 30 - Example graph of 10-minute moving average of amount of detected CPs in one-
minute resolution from selected measurements. The amount of variables in the whole data set
was 149 and altogether the graph represents an 8-hour time period. The selection of CP observed
measurements was made on the basis of the process operational task and spatial relations. The
test data were measured from the bleaching of mechanical pulp in a paper plant. The graph does
not attempt to be a usable end result as such but it shows that the process activity level varies in
time, as was discussed in the introduction to this experiment.

As a configuration for this experiment, the user needs to set up the occurrence
monitoring by grouping the measurements and defining the monitoring parameters.
Table 8 shows the configuration data structure and its attributes which were used in
this experiment.

Table 8 - CP configuration and grouping data structure.

Parameter name Type Example values
Group identification String Group A
Monitoring time window Integer, minutes 30 min
Notification level Integer, events 8 events
Observed measurements | List of names AB10045,
AC10010,
AD10011

When the actual monitoring is activated, it uses the following data structure (Table 9)
to store CP observations. This data structure is used to check if the notification
condition is achieved.

Table 9 - CP occurrence monitoring data structure.

Parameter name Type Example values
Group identification String Group A

Detected CP list Ordered list of 17:14, AB10045

(time stamp, name) 17:26, AB10045

17:42, AC10010

18:03, AD10011

The checking of the CP occurrence monitoring data structure is based on the
following principle (Figure 31):
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Figure 31 - Specification of CP occurrence monitoring activities, which shows in principle how an
agent processes received CP observation. Notation is based on Prometheus.

When going through the list of detected CPs there are the following two options:

A. Count how many distinct elements have generated CP observation in the given
time span. In this case, only one CP event is memorised for individual
measurement, and rapidly alternating measurements cannot activate the
notification. This is thought to be the default option in this experiment.

B. Count the total number of CP observations in this group within the user-
specified time span. In this option, every received event is calculated and one
individual measurement may produce more than one event.

The occurrence peak reports are a combination of CP configuration and grouping
data with the copy of CP occurrence monitoring data that activated the reporting.

On the basis of the demonstration implementation of CP detection, it is possible to
conclude that it is possible to construct this kind of detection and that it can provide
results from industrial data with minimal configuration; see Figure 30, for example.
This is important, as setting up monitoring agents within an industrial context should
require as little configuration as possible for the overall experiment functionality to be
feasible. In addition, the amount of CP points seems to vary with respect to time, so
the functionality of the experiment is potentially usable in an industrial context.
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6.5.4 Discussion

It is possible to develop the functionality of the experiment using an agent design
methodology. The functionality is well suited to an agent-oriented approach, as agent
negotiations provide tools to distribute the monitoring. Furthermore, the design
illustrates how CP detection may be moved to the device level in the future if the
devices permit this. On the basis of the short discussion about realising CP detection
with statistical methods, it seems possible to state that it is possible to construct this
kind of functionality and future research on the issues is proposed.

Change point occurrence monitoring introduces a new functionality that is not
currently available in commercial process automation systems. The functionality is
intended for monitoring mode within the normal operation of processes, but it is
thought that it may also be useful when preplanned tasks are performed in production.
The real value and usability of this kind of operation is unknown at the time of this
research as the experiment was not motivated by industrial partners. For this
functionality to prove its real potential it needs to be tested in an industrial setting.

6.6 Experiment 4 - Change point pattern monitoring

6.6.1 Introduction

Device malfunctions and other frequently-occurring problems may advance quite
similarly from the first symptom to the realisation that there is a problem. For typical
and regular problems these sequences may also be known and with corrective
operations performed in time the resulting losses and damage to equipment may
possibly be prevented. These types of problems have been studied extensively in the
past; e.g. Fault Detection and ldentification (FDI) research introduced numerous
methods for practical usage (Chiang et al. 2001). The previous work has been noted in
this research. In this experiment the basic idea is to use CP detection to build a user-
configurable fault detection functionality.

Example use case for the functionality:

The user has found out that a certain process activity pattern typically leads to
problems with process equipment or control. Therefore, the user defines a pattern of
change points and requests the system to provide notification when this pattern has
been observed in the process measurements.

This kind of monitoring operation would be helpful for the user in a normal
monitoring situation, which is defined as monitoring mode by Paunonen (1997). In a
normal and steady situation the process values do not fluctuate much and the operator
may sometimes become bored. Generally, a steady situation also makes the change
point pattern detection more reliable as there is no mixing noise present.
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6.6.2 Agent design for change point pattern monitoring

The design of change point pattern monitoring starts with defining the system goals
on the basis of the introduction and described use case. For this experiment these
functionalities are configuring, CP observing, pattern monitoring, and reporting. First,
the system is activated and configured by the user defining the interest of a certain
change point pattern. Then the agents perform change point detection for individual
process measurements. Then patterns of change point notifications are monitored and
finally, when the occurrence of some configured pattern is observed, the user is
notified about this. By naming and further refining these we get the following system
goals.

System goals:
e User configurability — User defines measurements to be CP monitored, and
sets up the patterns that should be monitored by the system.
e CP observing — Observe CP in individual process measurements
e CP pattern monitoring — Gather individual CP observations and observe CP
pattern formation based on the user-configured patterns.
e User reporting — Report CP pattern findings to user.

Next, these system goals are broken down into related functionalities and activities,
shown in Figure 32. In this experiment the functionalities User configurability and
User reporting are the ones that are visible to the end user. The actual monitoring
functionality consists of two separate parts, as follows. CP observing is responsible
for detecting change points in the measurement value time series (see also Section
6.5.3). Then CP pattern monitoring gathers change point detections and recognising
patterns from individual events.

CP observing User configurability Define interest of CP
pattern

Observe CPin
measurement

lefy about CP observahon

Configure measurements to
be CP monitored

Activate requested operation

User reporting
CP pattern monitoring

Observe CP pattern Nollfy abou1 CP pattern Report CP pattern to user

Figure 32 — Change point pattern monitoring functionalities with notation from Prometheus.

The next step is the scenario development, which describes how the goals and actions
are linked together to form a normal operating sequence. Below is the Change point
pattern monitoring scenario, which presents the normal operating sequence in which
the user activates the pattern monitoring, change points and their patterns are
observed, and finally pattern occurrence is reported to the user. This scenario is based
on the typical use case of this experiment and its operation is triggered by the user.
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Outline specification of Change point pattern observation scenario:
GOAL: Select measurements and setup pattern to be monitored
ACTION: Activate requested operation

GOAL: Observe CP in measurement

OTHER: wait for substantial change in measurement
PERCEPT: CP observed

ACTION: Notify about CP observation

GOAL: Observe CP pattern

OTHER: Check CP pattern occurrence

ACTION: Notify about CP pattern

10 GOAL: Report CP pattern to user

11. ACTION: Notify user

©CooNO~ N E

Discussion about the change point detection in the OTHER type step 4 can be found
in chapter 6.5.3 and the step 8 is covered in the following chapter 6.6.3.The
interaction of the system with the environment is the following. Perception is
responsible for triggering activities in the case of user activity and when a CP
observed is available in measurements. Internally, the system uses actions to trigger
functions, and the only one that is visible outside the system is Notify user.
Furthermore, the data used in this experiment are defined as the following.

Data stores for this experiment:

e CP configuration and pattern setup — contains information on what
measurements should be observed for CPs and are available for pattern
observation. Pattern setup contains definitions of CP patterns that are of
interest to the user.

e CPs — contains records of online process change points and possibly stores
some history of observed CPs.

e Pattern monitoring data — contains information about possible pattern findings
and, when found, these should be informed to the user.

e CP pattern reports — records of user-specified patterns that have been found
by the system.

After the system functionalities, operational sequences, and environment interaction
are defined it is possible to group these elements into meaningful entities (agents).
Grouping is an iterative process and the final version of this is illustrated in Figure 33.
General agent roles specified in the architectural design (Chapter 4.4) are used to
guideline the grouping.
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Figure 33 rbToUb_ing of functionalities in change point pattern monitoring experiment with
Prometheus notation. Clusters are named User agent (1) and Monitoring agent (2).

In the change point pattern monitoring experiment the grouping of functionalities
produces the following clusters:

User agent: The first cluster (1) holds the User configurability and User
Reporting functionalities. The configuration functionality produces data for
the CP configuration and pattern setup data store. The reporting functionality
is responsible for reporting the patterns found in the system to the end user, on
the event-based principle. Reporting is activated when new user reports are
stored in the CP pattern reports data store. Nevertheless, if the user is
interested in seeing what happens on the way, accessing Pattern monitoring
data enables him/her to view online how the monitoring is advancing. As
these events are rather rare in general, one agent of this type per user is
enough. This cluster of functionalities is motivated by the Client agent
architectural role.

Monitoring agent: The second cluster (2) involves the actual monitoring
functionalities, namely the CP Observing and CP Pattern Monitoring
functionalities. These are operations that have to be active all the time so as to
be able to observe changes in data. These functionalities get their initialisation
from the configuration file, CP configuration and pattern setup. The number
of these agents is not restricted, and it depends on the number of observed
measurements and configured pattern observation. The architectural roles of
Information and Process agents influence this clustering.

Closer examination of the clustering may raise the question of why the configuring
and reporting functionalities are not separated, as was done in the previous
experiment (Experiment 3) in a fairly similar situation. Keeping these two
functionalities together is a design choice that has been made in this experiment
because the reporting of patterns is a rather complex task and it needs an advanced
user interface. Integrating configuring, supervising, and reporting activities into one
specialised user interface makes this functionality more useful for the user.
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Specifying interactions: Interaction protocols are developed on the basis of scenarios
and the related agent descriptions. Change point pattern monitoring interactions are
divided into two natural parts. The first of these is the initialisation interaction
protocol, which is illustrated in Figure 34. The initialisation protocol shows how the
responsible peers are first searched for from the directory and then these are requested
to report about change point occurrences. The initialisation also shows the generation
of the data structure.

sd CP pattern monitoring initialisation )

:Monitoring agent :Monitoring agent
(Information agent) (Process agent)

I ] I
[Monitoring agent has been requested for CP pattern monitoring]

Directory facilitator

1 1

| <Generate CP pattern monitoring data structure
| based on user specifications and initialise it>

| I

[ |

I

Option

|

|
[If some CPs are responsibility of other agents] |

|-—List responsible agents—|

! |
<Internal search>

I
—List of agents———
|

Option !

|

[If some CPs are responsibility of other agents;
]

Parallel J i

[For every responsible agent] )
, —Report CP observations—s=|

Figure 34 — CP pattern monitoring initialisation interaction protocol using Prometheus notation.

The second part of the change point pattern monitoring interaction protocol is
responsible for the actual monitoring activity, and it is illustrated in Figure 35. This
shows how change point occurrences are received and pattern occurrence is
monitored by the information agent. If patterns have appeared then the user is
notified. And finally, when the user deactivates the whole monitoring, the responsible
agents are released.
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sd CP pattern monitoring )

:User agent :Monitoring agent :Monitoring agent
(Client agent) (Information agent) (Process agent)

| |
[User has conﬁgured and activates CP péttern monitoring]

l_Request _CF’_pattern
monitoring

ref J

CP pattern monitoring initialisation

|
I I
} }
Option J | |

[If some CPs are responsibility of others égents]

Parallel JI

I

| [when CP occurs]
I«i—Report of CP '
1

|
| |
! !
| <Check all the active CP pattern monitoring |
| data structures for pattern occurrences> |
| |

|

Option J | |

[When CP Pattern has been detected] | "Message contai_ns _the
. | CP pattern monitoring

Report CP pattern structure

[ occurrence” [

*[Until user deactivates CP occurence monitoring]

| ]
Option ) | [
[User deactivates CP pattern monitoring]

| Stop CE pattern
| monitoring |

Option ) : :

[If some CPs are responsibility of other agents]

}—Deactivate CP reporting

b ]

Figure 35 — CP pattern monitoring interaction protocol using Prometheus notation.
These interaction protocols together realise the main use case scenario presented in

the introduction. In change point pattern monitoring roughly half of the operation is
based on agent negotiations and the other half on the actual pattern monitoring.
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6.6.3 Monitoring of change point patterns

This experiment uses Change Point (CP) detection as a method for generating events
from time series data for inference making. Detecting and observing CPs was already
discussed in the previous experiment and in Chapter 5.2.3. In this experiment, the user
is interested in detecting event patterns in which the individual events are the
respective CP observations. Because these CPs are events, instantaneous points in
time, they do not have duration. This makes the patterns easier to configure, as there
are not so many possible temporal relations between the two preceding events.
Compared, for example, to the approach that was used by Lowe et al. (1999), which
had 13 different relationships between two events, the pattern model promoted here
also makes the detection simpler. Without the duration option the pattern definition
consists of an event sequence specifying order and time constraints specified with not
before and not after parameters. These properties are illustrated in Figure 36.

example change point events
measurement names

O / AB1045

O —O— AC1110
O AD1212

S . =N =N

[ Y |
| @, ] AE2065
not before &#¥——
|
not after « .
I time
@ @ . 4 @ @ >

sequence of change point events
Figure 36 - Example change point pattern.

The illustrated pattern model is designed to be simple and understandable but it can
easily be updated to a more advanced one in the future if needed. Table 10 shows the
CP configuration and pattern setup data structure that is used to store the pattern
monitoring task parameters, and is used to transmit the user-defined pattern
monitoring task configuration to the monitoring agent.

Table 10 - CP configuration and pattern setup data structure.

Parameter name | Type Example values
Pattern name String Pattern ABCD
Observed List of Strings (hnames) AB1045,
measurements AC1110,
AD1212,
AE2065
CP pattern Ordered list of; AB1045, null, null,
String (hame), AC1110, 15min, 35min,
time (not before), AD1212, 20min, 40min,
time (not after) AC1110, 15min, 45min,
AE2065, 5min, 50min

98




When the pattern monitoring task is activated, this configuration data structure is used
to generate the Pattern monitoring data structure, shown in Table 11. In this
structure, the Observed CP events is a copy of the CP pattern table with additional
time stamp information. The time stamp is used to store the CP event occurrence
information, which is used in the monitoring algorithm.

Table 11 - Pattern monitoring data structure.

Parameter name | Type Example values
Pattern name String Pattern ABCD
Observed List of Strings (hames) AB1045,
measurements AC1110,
AD1212,
AE2065
Observed CP Ordered list of; AB1045, 15:08, null, null,
events String (hame), AC1110, 15:20, 15min, 35min,
timestamp (actual) AD1212, 15:31, 20min, 40min,
time (not before), AC1110, null, 15min, 45min,
time (not after) AE2065, null, 5min, 50min

The pattern monitoring algorithm may be implemented to work in both directions;
based on forward and backward scan principles. Computationally more efficient
algorithms are based on the backward direction, e.g. the Boyer-Moore string-
matching algorithm (Hume and Sunday 1991). However, the backward direction does
not enable the user to see how things evolve in time step by step. Therefore, the
forward direction should be used when applied to process monitoring to allow the
user to diagnose the operation in an online manner. Support for tracing the monitoring
as it advances may also be seen in agent design (Figure 28), in which Pattern
monitoring data is connected to the User reporting functionality.

The pattern monitoring algorithm should be based on a step-by-step comparison of the
defined patterns presently under observation and newly observed CP events that are
received by the monitoring agent. In this experiment the CP pattern monitoring is
based on the following principle (Figure 37):

99




P
_-observation-
received <

|

CP observation belongs to a | "° Discard the CP
monitored pattern observation

¢yes

CP observation is first in no
some configured pattern This particular CP is \ no Discard the CP
next in the pattern observation
¢ yes

i

[

yes
Create new pattern \ 4
monitoring data structure Time stamp satisties the ime™\ no /1o jete pattern from activel
and store time stamp contstraints specified in the morr:itored atterns y
o pattern P
‘ o
] yes

A 4

Store CP observation and its
time stamp to pattern

h 4

CP observation is no
last in the pattern

Compare time stgmp of yes
new CP observation and
. ] Y
patterns’ time constraints
(not before , not after)

Data structure is a copy
of user configured
monitoring template

CP pattern report

Figure 37 - Specification of CP pattern monitoring related activities, which shows in principle
how monitoring agent processes newly received CP observation (using Prometheus notation).

This algorithm design does not take into account the possibility of parallelism, as
there is no option to define the fact that two or more CPs may occur in mixed order.
Support for this might be added to the algorithm in the future.

Finally, when the monitoring finds a matching pattern from the event flow it copies
the current monitoring data to the report. Table 12 shows this reporting data structure,
which is constructed when the pattern being monitored is found.

Table 12 - CP pattern reports data structure.

Parameter name | Type Example values

Pattern name String Pattern ABCD

Observed CP Ordered list of; AB1045, 10:08, null,

events String (name), AC1110, 10:21, 15min, 35min,
timestamp (actual) AD1212, 10:44, 20min, 40min,
time (not before), AC1110, 11:14, 15min, 45min,
time (not after) AE2065, 11:25, 5min, 50min
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6.6.4 Discussion

This experiment seems to benefit from an agent approach in its design. The
functionality of the experiment may be designed and constructed relatively easily with
an agent approach. The CP monitoring may be decentralised with an agent approach
and the pattern monitoring may be utilised on an event-based principle. In this way
the agent negotiations are fully utilised and data abstraction may be performed as near
to the data source as possible. This experiment was the fourth to be designed and it
used the same CP detection as Experiment 3. The benefits of this experiment
functionality within industrial-scale process control are unknown, as this operation
was not motivated by industrial partners. For this functionality to prove its industrial
potential it should be tested in a real process.

This experiment was about detecting patterns in which individual events are change
points, observed from time series data. This is a new functionality that is not currently
available within commercial process automation systems. This functionality was
thought to be most useful in the normal monitoring of processes, but it is probably
also beneficial when monitoring the performance of preplanned tasks. Events other
than CP-type ones could easily be added to the design of this experiment, and the
functionality could be expanded that way. Such additions could be e.g. definitions of
exact values that quantities are not supposed to exceed. Consideration of these other
event generation principles was intentionally excluded from this design in order to
keep the focus on the principal design issues.
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6.7 Experiment summary and open questions

6.7.1 Summary of experiment results

The agent approach was used to develop four new different types of monitoring
functions for process automation users. These experiments were developed in order to
get an understanding about the feasibility of the agent approach, the design
methodology used, and also of the system architecture developed for services of this
type in process automation. As these experiments covered different aspects of process
monitoring, they provided feedback on the design choices from multiple perspectives.
Table 13 summarises the result of experiments and describes the functionalities that
were added and used in the architecture.

Table 13 - Summary of results of experiments and functionalities needed in the architecture.

Experiment name and
short description

Experiment results

Functionalities in the agent
architecture

Experiment 1
Temporal monitoring

Tool for monitoring relational
constraints between process
quantities. Decentralised
operation using flexible agent
interactions, and the use of
directory service to find
information providers.

Modularisation of agent’s
internal operation, separating
local monitoring (CSP engine)
and agent interactions
(handling the overall task).
First use of monitoring as
operating principle.

Experiment 2
Search of process events

Search tool for finding
relations in process events
and measurements. Merging
of partial information and
converting from one user
group’s viewpoint to other.
Especially, operators’
viewpoints on devices differ
from maintenance personnel
viewpoint.

Tool support for use of formal
data models and common
base ontology. Wrappers
covering external data
sources, conversion from one
viewpoint to other, enabling
e.g. legacy databases to be
used.

Experiment 3
CP density monitoring

Process “fever” detection
utilising CP occurrence
monitoring. A new functionality
making use of symbolisation
of process measurements.

Refinement of agent internal
modularised design, especially
separation of numeric
processing (with change point
detection) and symbolic
functionalities.

Experiment 4
CP pattern monitoring

CP pattern monitoring
functionality. A new
operational idea exploring
agent interaction capabilities
and data processing.

Further refinement of agent’s
internal modularised design as
a result of developing CP
pattern monitoring
functionality. Outputs the final
layered structure illustrated in
Chapter 5.

In the table, the results of experiments present issues related to the general
applicability of the functionality and are, as such, valuable to a wide audience range.
The functionalities in the architecture are more about the technology itself and are
thus more valuable to persons who are making decisions in the software area.
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6.7.2 Conclusions and open guestions

The experiments demonstrate four new functionalities to be used in process
monitoring. These all support the flexible and user-configurable use of the monitoring
functions, although the flexibility is restricted to cover only the designed functionality
in these simplified cases. The first two experiments were motivated by industrial
partners in our research project and are, as such, seen as functionalities with real
potential for usage. The latter two were designed by the author, and these show what
kind of monitoring functionalities could be offered with agent technology.

On the technical side the most interesting issue is the proposed benefits of goal-based
operation offered by the BDI model. The literature suggests that goal-based operation
is suitable for functionalities similar to the experiments that were conducted and
running in environments comparable with process automation. Nevertheless, as may
be seen in the agent design part of the experiments, the relatively simple and
procedural operation does not require or benefit much from the use of goals. This
aspect is especially visible in the scenario outlines, which shows that the goals and
actions follow each other in a rather straightforward manner. This is most likely to be
the result of simple operation, as in the scenarios there is no need to select what to do
next. However, the outlines do not show the elapsed time. Because much of the
monitoring functionality is about waiting for some specified event to occur, goal-
based operation is still reasonable for realising the operation.

In addition, the outlined scenarios represent how agent operations interact and control
the decision making activities. In scenarios OTHER and PERCEPT step types can be
used to specify other than agent based functionalities. With the presented four
scenarios the separation between agent functionality and decision making part was
quite clear and natural. Therefore, from this perspective the used design methodology
seemed to be suitable for the design of process automation related monitoring tasks.
In real life applications the presented agent design methodology can be used in an
early design phase to specify structure of the system and cover the distribution of
operations. However, on the architectural level the role definitions of Information,
Process, and Wrapper agent roles are mixed in each of the four experiments. This
seems to be the result of unclear responsibility definition in the architectural level and
also because the definition was defined to be related to the process setup and
respective functionalities. Future research should address the role division issue.

Although all the experiments used the same ideas in the background, the architectural
design, they were not running in exactly the same environment. This was because,
between the experiments, the design phase and implementation was always partly
started again from the beginning. The reason for this was that the experiments gave
ideas as to how to further refine the design and implementation. This is the major
issue that should be addressed when directing future research. It would be especially
interesting to integrate all the demonstrated functionalities into one flexibly and easily
configured environment and see how users in a real production context used and
combined these in their monitoring work. However, this study did not aim to provide
guidelines about what parts and properties of the monitoring task would be directly
configured by the operator and what should be left to the system engineer. Therefore,
a rather extensive study of user interface issues is needed before these functionalities
and their combinations are on such a level that operators and users are capable of
using them.
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7 Discussion and conclusions

7.1 Discussion

The thesis is built on a holistic view. The approach is about combining multiple tools
and methodologies together to form a new kind of system that facilitates flexible
monitoring in process automation. In the background is the idea of utilising agent
technology to extend the functionalities of process automation systems, and the aim of
this thesis is to extend the agent technology research to cover monitoring
functionalities.

Agents are designed to organise actions and operations in dynamic and distributed
settings. Additionally, autonomy is argued to be a basic property of an agent, and it
has been demonstrated to be suitable for the delegation of easy and laborious
functionalities to machines. The academic research background provides sound
theories for the utilisation of these aspects and lately systematic design methodologies
have become available. Currently, one of the most viable approaches to the
implementation of rationality seems to be the BDI (Belief-Desire-Intention) model,
which has its basis in human thinking. In addition, a systematic step-by-step design
methodology supporting BDI with enough quality was found to be available, and in
the thesis the selected Agent-Oriented Software Engineering (AOSE) methodology
was Prometheus.

The theoretically proven issues of agent technology seem to match the requirements
set by monitoring in process automation. Other researchers have also found this
(Theiss 2007; Wagner 2002) and demonstrations have been presented (Bunch et al.
2004; Buse and Wu 2007; Cockburn and Jennings 1995; Gentil 2006; McArthur et al.
2005; Salyda and Taylor 2007; Worn et al. 2002). Although agents seem to be
feasible, numerous aspects of it are still under heavy development and this practically
postpones agent application in large-scale industrial projects. For example, FIPA
organisation has IEEE accepted standards defining overall agent system structures and
agent negotiations, but e.g. the Prometheus does not take FIPA issues into account in
any of its design phases. Furthermore, practically all reported monitoring applications
used distinct system structures and also implementation tools used varied.

Knowledge representation issues are central in organising rational operation with
agents in a distributed manner, e.g. decision-making processes, but usable standards
and tools for this are lacking within agent technology. At the same time knowledge
representation issues within Semantic Web have much more interest and visibility in
both academic research and industry than the respective agent community solutions.
Therefore, in addition to agent technology, the Semantic Web and related tools were
included in the system design because information-handling, partial data adaptation,
data modelling, and structuring properties offered by it were seen as being usable in
monitoring contexts. In addition, the development of Semantic Web has resulted in
standards and tools that are highly usable. Nevertheless, it was found that the
Semantic Web is also intended to cover control aspects related to information
services, which, however, was found to be a rather underdeveloped subject.

Based on studies, agents and Semantic Web seemed to complete each other. And
although the exploration of combining the best parts from both the Semantic Web and
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agents has been started, the work is in a fairly embryonic stage (Dickinson and
Wooldridge 2005; Greenwood et al. 2007; Huhns et al. 2005; Lassila 2007). Actually,
there was already available an initial implementation of a system combining agents
and the Semantic Web, but its development was halted before it was finalised (NUIN
2008). Furthermore, it was found that the OWL-S standard overlaps with the
structures used in actual agent BDI model implementations; in particular, the plan
context definition seems to be similar to the IOPE definitions in the OWL-S standard.

7.2 Conclusions

Technically process automation environment seems to enable the use of new software
tools. With respect to studying the requirements of monitoring systems in process
automation five desired properties were defined. (1) Flexibility is needed to be able to
adapt to changing situations and (2) delegation to aid users to cope with the increasing
amount of responsibilities. In addition, as important information is available in
multiple systems around the organisation (3) system integration is needed to be
supported. Finally, a system should support (4) Knowledge handling and be able to
execute (5) data processing. Comparing these to the properties proposed for agent
technology, the first three were found to be supported. Additionally, integration issues
and knowledge handling were found to be supported by Semantic Web tools. Finally,
data processing was determined to be covered by other solutions, e.g. statistical
mathematic tools.

Based on the technical studies it was decided that the developed system should
support both the BDI model provided by agent technology and also the use of
Semantic Web tools. BDI model was selected because literature promotes its use for
similar functionalities in other application areas. As no viable alternatives were found
to be available, a tailored system was to be built to be able to study possibilities
offered by agent technology. The design consisted of an architectural design and an
internal structure, and the five above mentioned properties were used to direct the
development process. In addition, available solutions were adapted as much as
possible, e.g. the FIPA structure and interaction protocols.

As the design covers everything from the overall system structure to the internal
design of an agent, it does not go deeply into details. Technically it is noted that a
major part of agent technology and the Semantic Web focuses on processing symbolic
or logical information. On the contrary, a major part of the important information in
process automation is in numerical format, e.g. time series data. Although possible
ways to link numerical and symbolic information together were proposed in this
thesis, no general solution or algorithms were provided. Furthermore, the layered
agent design aims to utilise simultaneously BDI model and Semantic Web tools but
the thesis represents it as a proposal because the subject is generally unstable in the
research community. On the other hand, the specified architectural design seems to be
more stabile.

The thesis documents four industrially motivated experiments that were successfully
realised with agent technology. The experiments were specified with a systematic
AOSE methodology (Prometheus) and used guidelines defined in agent system
architecture. Both of these aspects were found to be helpful and suitable for the
experiments. On the basis of the experiments it is possible to state that the specified
agent system architecture is general enough that a variety of monitoring
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functionalities can be designed and implemented with it. The Prometheus agent
design methodology was found to be useful for the system specification and
architectural design phases, as these phases were applicable for the design of
experiments. Furthermore, the step by step design procedure of Prometheus was
suitable for figuring out issues related to monitoring tasks. However, it was found that
Prometheus leaves much to be decided by the system designer, especially how to
select goals to support rational operation in a distributed manner. Furthermore, the
design of experiments revealed that the specified agent roles in architectural design
were not yet strict enough, as information, process and wrapper agent roles were
mixed.

The documented experiments demonstrate successfully that agent design covering
structural and timing issues of operation can be separated from algorithm design.
Although this was possible in the presented experiments it is unclear if this is true also
more generally in monitoring. In addition, it may be stated that guidelines for
selecting appropriate algorithms for decision-making would be beneficial.
Nevertheless, the experiments failed to test and demonstrate how different decision-
making modules and their results could be fused together. In addition, it may be stated
that the relatively simple functionalities demonstrated in the experiments could have
been realised without the BDI model, e.g. with procedural operation. This does not
verify that a BDI model-based operation would not be useful when used in larger and
more complex situations. However, in relation to monitoring functions in process
automation the question about the benefits provided by the BDI model is left open.

All in all, this thesis shows that agent technology provides a natural and usable way to
structure monitoring systems and the systematic agent design methodology may be
exploited to develop monitoring functionalities in real industrial settings. In addition,
an implementable system architecture using agent technology and Semantic Web was
also successfully specified. Furthermore, new types of monitoring functionalities were
successfully developed with the design methodology and presented agent architecture.
The experiments described here are examples of functionalities that could be provided
to monitoring users, and in the future these and a number of others should be gathered
together to form a valuable toolkit for operators. These should be designed in such a
way that the user is easily capable of restructuring and modifying them to automate
the variety of operations that are needed to monitor processes successfully.

7.3 Future work

There are many possible directions for future research in the area of IT-supported
monitoring in process automation. Although an agent-based system was used as the
technical approach within this research, the ideas and possibilities are accessible with
a multitude of software tools. On the one hand, the basic idea of providing the
possibility of using user-configurable and predefined elements mixed together goes
way beyond one specific implementation technique. Therefore, one possible future
task could be to generalise the architectural design and functionalities of experiments
that were conducted and implement these with different technology. On the other
hand, it would be interesting to apply the system developed here to other problem
domains, such as detecting weather fronts with monitoring agents from temperature,
humidity, and air pressure measurement values.
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One important aspect of further development could be process automation data
models, which should be created in the future. Extensive models in the process
automation area would offer the possibility of integrating information provided by
individual functionalities. Quality models would also provide improved deduction
properties and structurally more complex operations could be developed. The research
in this has already started in many directions, e.g. in connection to the development of
OPC UA, but a lot of work needs to be done before industrial applicability is gained.

In the long term new versions of technologies having similar properties to agents and
Semantic Web will be available. When utilising these successfully in a process
environment it will be possible to provide users a total monitoring solution with
controlled mesh up of things that has great structural flexibility of handling modular
information processing and accessing elements. The system would enable static
information describing known aspects of process setup (general process structure,
device properties and manuals, etc.) combined with dynamic information (values,
trends, events, etc.) generated from physical processes to provide new functions to
users. For example, navigation in process automation related information could and
should be based on these both aspects. In addition, relevant information could be
offered to human users similarly as news background stories. Partial technical
solutions for all of these functionalities are already demonstrated or at least visible but
systems combining them are not yet available.
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