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Abstract

In this paper, the bandwidth limitations of dipoles matched
with negative impedance components are discussed. In
theory, infinite impedance bands are possible with non-Foster
impedances, but in practice the fields stored inside the
smallest sphere enclosing the antenna limit the band. Both
theoretical and practical achievable bandwidths as well as
non-Foster component tolerance issues are reported in this

paper.

1 Introduction

Theoretical bandwidths of small antenna elements are
traditionally limited by the size of the smallest sphere
enclosng the current carrying region [1, 2]. In these
formulations given for the radiation quality factor Q (whichis
taken to be inversdy proportiond to the fractional
bandwidth), however, the limit takes only into account the
non-radiating energy stored outsde the smallest sphere. In
principal, multi-sage matching can be used to achieve
bandwidth enhancement. In the earlier work [3] the
impedance matching properties of ideal dipoles achieved with
infinite amount of passive matching components has been
analysed. Promising results were shown, but still the actual
size of the antenna limited the achievable bandwidth.

On the other hand, in theory, infinite bandwidths are
achievable by cancedling out the antenna capacitance and
inductance with  corresponding negative  reactances.
Nevertheless, in practice limitations exi<t. In redlity, also the
energy stored insde the smallest sphere enclosing the antenna
affects the radiation Q and decreases the bandwidth
dramatically. In this paper, the bandwidth limitations of
dipoles matched with one and two non-Foster impedance
components are andysed both in the sense of theoretical
limits based on energy outsde the smallest sphere and in a
practical case including the inner energy. The redlization of
the negative impedances has been left out scope of this paper,
although implementations exist [4, 5].

2 Theory

In the model described by Chu [1], the antenna impedance
linked to the fields outside the smallest enclosing sphere is
represented by a ladder RLC-network. For the ideal dectric
dipole, TM4, the equivalent circuit is presented in Fig. 1. The

component valuesare C = a€,, L =amy, R=,m/e,,

where a is a radius of the smallest sphere enclosing the
antenna. The wave impedance seen by the fields propagating
outwards from the surface of the enclosing sphereisthus
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Fig. 1. Chu circuit moddl.

However, in practice strong fields are stored insde the
enclosing sphere and thus, more circuit components are
needed to model for the antenna impedance. According to
Hansen [6] the measured input impedance of a short wire
dipole can be described approximately as
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Hansen

where 2q is the length and ¢ thickness of the dipole. In Fig. 2
and 3 the red and imaginary parts of impedances calculated
with above models are illugtrated. The impedance described
by Hansen predicts lower resistance value than Chu moddl.
The imaginary part in Hansen mode is greatly affected by the
thickness of the wire. At thicknessratio a /¢ =50, however,
the imaginary part becomes similar to the one predicted by
Chu modd. By adding a network of two capacitances and an
inductor to Chu circuit (see Fig. 4.), the impedance behaviour
predicted by Hansen model may be achieved. Two
capacitances act as voltage divider, which illugtrates the ratio
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of the power transformed from the total power circulating in
the antenna region to TM; mode. The inductor, together with
shunt capacitance, represents a transmission line due to
physical nature of the wire dipole. The input impedance of
this extended Chu mode is described as
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0¢ jka—z 1+=2L¢1- &I_

i € C& jkatlgg

3

With ratios C,/C = 3.95, C,/C = 1.48 and L,/L = 0.32 the
impedance match very well with Hansen mode for thickness
ratio a/t =50 asillugtrated in Fig. 2 and 3. Simulations of
similar dipoles conducted with IE3D eectromagnetic
simulator based on MoM agree remarkably well with the
results gained from the extended Chu and Hansen models for

ka<<1.
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Fig. 2. Real part of impedance predicted with different
models.
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Fig. 3. Imaginary part of impedance predicted with different
models.

. L%R
! | 1

Fig. 4. Extended Chu circuit mode describing approximately
ashort wiredipole.

3 Matching with a single non-Foster component

3.1 1deal case

In the Chu modd, the impedance of a small dectric dipole is
inherently capacitive. Cancelling out this capacitance by a
single series negative capacitance leads to remarkable
bandwidth enhancements. In the bandwidth calculation the
antenna circuit including the negative C, component is
considered to be fed from an ideal impedance transformer, i.e.

— Zin B Re{Zm}

= , 4
Zin + Re{Zm}

where Z;, in this case is Z., (see equation 1) in series with

tuning capacitance C,. From equation (4) the optimal value

for C,/C may be solved as

C, 1
= 2 3 ’ ©)
C (k) , 2ka)® ||

(ka)? +1  (ka)? +1 [1_ BE )

On the other hand solving equation (4) as afunction & leads to
bandwidth information. Equation (4) may be presented as a
third order polynomial for £ as

C
2c c
k3-k2ic- Xy =0, (6)
where
2|r|a3
VE (7)
1-|r]

Third order polynomia (6) has three real solutions at C,/C(k
= 1). The roots represent three points where the matching

curve passes the matching Iimit| r| . One of the solutionsis a

trivial solution, £ = 1, representing the lower limit of the
band. Second solution represents the upper band limit and the
third solution the third passing point, which, however, is
irrelevant in the bandwidth cal culation.
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The maximum relative bandwidth achieved with an ided
negative C, matching component is presented in Fig. 5 as a
function of antennasizeka . Above certain size of the antenna
ka, the second root gives imaginary values indicating
infinite impedance bandwidth. The numerical circuit
simulator calculations conducted with Microwave Office
agree very well with the anaytical results. The corresponding
relative bandwidth values achieved with infinite amount of
passive components [3] is presented in Fig. 6. In theory,
larger bandwidths are possible with smaler size antennas
with one negative C, component that with infinite amount of
passive components.
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Fig. 5. Maximum bandwidth achieved with negative C,
component.
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Fig. 6. Maximum bandwidth achieved with infinite amount of
passive components.

3.2 Practical case

In a case of a real antenna, the achievable bandwidths with
negative C, element tuning are considerably smaller due to
the fidlds stored inside the smallest sphere. The analytical
solution for C,/C from equation (4), where in this case Z,, is
Z chu,extendea (SEE €QUALION 3) in series with negative capacitance
C,, leads to complicated formula and & is a function of sixth
order. The function is, however, analytically solvable with

symbolic computation solvers like Mathematica. £ has two
real solutions at C,/C(k = 1). First red solution is a trivial
solution, k& = 1, representing the lower limit of the band and
the second rea solution the upper band limit. The functions
are, however, extremely senstive to C,/C, C/C, L,/L and p
parameter values.

In Fig. 7 the maximum achievable bandwidths with an ideal
negative C, component in a case including the inner field

mode are illustrated as a function of size of the antenna ka .
Also the maximum bandwidths of corresponding simulated
electric dipoles tuned with negative C, component are
presented. The anadytical and smulated bandwidths
correspond very well. As can be seen from Fig. 7 in redlity
only limited bands are possible with negative capacitance
matching. For comparison, the maximum bandwidths of
dipoles tuned with infinite amount of passive components are
presented in Fig. 8. Infinite amount of passive components
was modelled here as a cascade of 14 LC resonators
generated by Genesys circuit simulator as in [3]. Tuning with
negative capacitance shows considerably larger bands than
tuning with passive components.
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Fig. 7. Maximum bandwidth achieved with negative C,
component
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Fig. 8. Maximum bandwidth achieved with infinite amount of
passive components.
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The variation tolerance of the negative C, component is
illugrated in Fig. 9. The tolerance is defined in a margin,
where frequency shifts maximum of 1.0 per cents from the
base frequency f;. The toleranceis really low and increases as

afunction of antennasizeka .
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Fig. 9. Variation tolerance of negative C, component.
4 Matching with two non-Foster components

4.1 ldeal case

In the Chu model, cancelling out the dominating capacitance
led to remarkable bandwidth enhancements. However, by
adding a parald negative inductor to the modd, the input
impedance of the circuit may be written as

@1 1 JWLR ©
JWLxg'wc+ iwC 'WL+R1

z, = e T JTETRE
. 21 1 JWLR O
JWL, +&——+— : T
gjl/I/C JwC, JWL+R g

If -L, is equal to L and simultaneously -C, is equal to C,
equation (8) becomes

Z, =R, (9)
indicating frequency independent, infinite band.

4.2 Practical case

In practice, as aready mentioned, the inner field limits the
bandwidth behaviour. In this case, the function for impedance
(Zchuextendea 1N SEXies with negative C, and L, components) has
two variables and anaytica formulation gets difficult.
However, according to the numerica optimization done with
simulated dipoles, relative bandwidths more than 2 are
possible with two negative series tuning components.
Unfortunately, the tuning is very sensitive to matching

component values. In Fig. 10 and 11 the component
tolerances a 1 per cent margin are presented.
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Fig. 11. Variation tolerance of negative L, component.

5 Conclusions

In this paper, the active element tuning for small antennasis
analysed. In theory, infinite bandwidths are achievable with
very small antennas using only one negative tuning el ement.
However, in practice strong near fidds limit the antenna O
and only limited bands are achievable with one active
element. On the other hand, by using two negative tuning
elements bandwidths larger than 200 % are achievable even
with very small antennas. Still, the variation tolerances are
very small and limit the component implementation
possibilitiesin practice.
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