
Antti Nurminen. 2006. mLOMA a mobile 3D city map. In: Denis Gracanin (editor).
Proceedings of the 11th International Conference on 3D Web Technology (Web3D
2006). Columbia, Maryland, USA. 1821 April 2006, pages 718.

© 2006 by author and © 2006 Association for Computing Machinery (ACM)

This is the author's version of the work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The definitive version was published in
Proceedings of the 11th International Conference on 3D Web Technology.

http://doi.acm.org/10.1145/1122591.1122593

http://doi.acm.org/10.1145/1122591.1122593

Copyright © 2006 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for commercial advantage and that copies bear this notice and the full citation on the

first page. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail

permissions@acm.org.

Web3D 2006, Columbia, Maryland, 18–21 April 2006.

© 2006 ACM 1-59593-336-0/06/0004 $5.00

m-LOMA - a Mobile 3D City Map

Antti Nurminen∗

Helsinki University of Technology

Abstract

m-LOMA, mobile LOcation-Aware Messaging Application, is de-
signed to be a mobile portal to location-based information in cities.
The user can perform textual searches to location-based content,
navigate using 2D maps assisted by a GPS, and leave messages to
the environment, or recognize the environment from a 3D map. The
3D map view is the key feature of the m-LOMA system. The m-
LOMA client is capable of rendering photorealistic 3D city models
with augmented location-based information in a smart phone with-
out hardware rendering support at interactive frame rates. This pa-
per presents the key challenges and solutions in creating this 3D
map engine and a lightweight but photorealistic 3D city model.

CR Categories: I.3.6 [Computer Graphics]: Methodology
and Techniques—Interaction Techniques H.5.2 [Information Inter-
faces and Presentation]: User Interfaces—Graphical User Inter-
faces H.4.3 [Information Systems Applications]: Communications
Applications—Information Browsers

Keywords: mobile computing, 3D maps, mobile guides, 3D
graphics, visibility, GIS, VRML

1 Introduction and related work

Map is a representation of the environment, and used as an aid
for creating a mental image of the spatial relationships of the lo-
cal surroundings. It can present topological identifiers, such as
street names, that can further aid high-level cognitive tasks such as
wayfinding. Use of maps and cartographic conventions are strongly
tied to cultures, and require a priori knowledge of the representa-
tions used [Barkowsky and Freksa 1997]. For example, western 2D
maps are not necessarily understood in non-Western cultures. The
key hypothesis of a realistic 3D map is the short cognitive distance

∗e-mail: andy@iki.fi

between the observed world and the displayed virtual world, which
should make it a more intuitive interface for all users, at least for
simple lower-level tasks such as recognition.

Mobile guides have generally been of great interest to HCI re-
searchers. The potential of mobile guides is acknowledged in vari-
ous studies where the temporal and spatial context provide the user
information that is useful now, here [Pospichil et al. 2002; Iacucci
et al. 2004; Kray et al. 2003; Cheverst et al. 2000; Abowd et al.
1996]. An extensive list of recent work is provided in [Baus et al.
2005]. Certain guides are designed for tourism, where the guide
can provide information on points of interest or actually guide the
user through the sites [Bornträger et al. 2003; Cheverst et al. 2000].
Some mobile guides are created for messaging, or augmenting vis-
ited routes with personal information for “re-travelling” [Iacucci
et al. 2004]. Certain guides are used only for navigation, but
the graphical user interfaces have been adapted for different cases
[Krüger et al. 2004]. Research on 3D guide capabilities has been
carried out, with results indicating that the 3D view helps in recog-
nizing local landmarks [Rakkolainen et al. 2001]. Many of the ob-
servations related to perceptual phenomena are in accordance with
earlier studies of salient features and urban environments in general
[Lynch 1960; Vinson 1999].

While current technology allows reasonably straightforward devel-
opment of 2D map based mobile guides with textual search capa-
bilities, there is no standardized way of creating a mobile 3D map.
Before mobile 3D graphics has been possible, researchers have used
alternative means to conduct studies on 3D maps. In [Rakkolainen
et al. 2001], a realistic 3D city model was built, but due to slow
rendering (1 frame per 8 seconds) in a personal digital assistant
(PDA), field studies were performed using pre-rendered images em-
bedded on web pages. In a succeeding study, field studies were per-
formed using a more powerful laptop computer [Vainio et al. 2002].
In [Brachtl et al. 2001], pre-rendered video clips were used. On cer-
tain applications, figurative symbols or 3D graphics are rendered
on top of the 2D map to ease the recognition of landmarks [Krüger
et al. 2004]. While these studies have yielded interesting results on
navigation and use of 3D maps, they are still simulations of a real
mobile 3D map and lack many of the possible functionalities.

Very few studies exists with real mobile 3D maps on mobile devices
with reasonably realistic buildings [Kray et al. 2003; Oulasvirta
et al. 2005]. In the first case, the viewing distance was severely
limited and a generic capability of information delivery was miss-
ing. The second study was carried on using the m-LOMA system.

7

To overcome the lack of 3D map engines, studies have been made
to create guides based on direct model viewing that would allow
the use of a standardized model format, such as VRML, using
VRML viewing software or libraries such as PocketCortona [Par-
allelGraphics 2005]. For example, [Burigat and Chittaro 2005] use
VRML models and address the issue of information retrieval from
3D models in a promising manner.

Currently, a similar direct rendering approach is possible with the
Java JSR-184 API and the M3G model format. The M3G format is
a scene graph that can be directly parsed and rendered by the JSR-
184 API. Early attempts to utilize this higher level API demonstrate
the innate problems in rendering massive scenes: in a demonstra-
tion of [Bleschmied et al. 2005], a medium-sized city model took
2-3 minutes to load on a Nokia 6630 smart phone, and only one
or two selected buildings could be textured, yet the rendering speed
was below interactive speeds (1 frame per second or less). Software
crashes and memory overflows were common.

2 Mobile devices and computer graphics

Before the summer of 2003 it was possible to create 3D content
for mobile devices only using custom 3D development environ-
ments such as Fathammer X-Forge [Fathammer 2005] or model
viewing libraries such as PocketCortona that were based on propri-
etary rasterizers1. The first standard real-time 3D graphics applica-
tion programming interface (API) for mobile devices, OpenGL ES
[KhronosGroup 2005], was published in July 2003. Being a sub-
set of OpenGL, OpenGL ES is a low-level rasterization interface
accessible from native C/C++ code. A Java-based API, JSR-184
(M3G) [JCP 2005], was introduced soon after OpenGL ES. This
API provides higher-level functionalities and an efficient binary
scene graph file format also called M3G. A M3G file can be parsed
in and rendered with little programming effort. JSR-184 is designed
to use OpenGL ES for rasterization. The rendering pipeline features
of OpenGL ES are mostly exposed to a native C/C++ programmer,
but for a JSR-184 programmer using the J2ME environment they
are hidden.

3D applications are extremely resource-demanding programs. Un-
fortunately, the field of mobile applications is one of severe lim-
itations. Computational resources are sparse; CPU power, mem-
ory size and memory speed are limited, mobile networks are slow,
storage is usually slow or insufficient, and the displays are small.
Many studies acknowledge the limited 3D computational powers
of non-hardware accelerated mobile devices, and thereby consider
them unfeasible platforms for rendering realistic 3D images from
massive models at interactive rates [Bessa et al. 2004; Rakkolainen
et al. 2001; Burigat and Chittaro 2005]. These studies also estimate
that the situation will change as hardware advances.

When 3D hardware becomes generally available for mobile de-
vices, a boost in rendering times is to be expected. But even if
available computational resources do increase, so do the user ex-
pectations on the quality and complexity of the models. Therefore,
relying on future hardware improvements is not likely to remove the
problem. For example, the current highly optimized 3D game en-
gines still suffer from lack of computational resources, even though
the 3D graphics power available for consumers has exploded.

But even though resources in mobile devices seem to be sparse,
we can create a simple evaluation method to determine if a given
platform is suitable for 3D rendering, given that a 3D graphics API

1Fathammer X-Forge currently uses OpenGL ES for rasterization

exists for that platform. A rendering system is called output sen-
sitive if the rendering rate is directly proportional to the number
of visible primitives. Such a scene can be easily constructed of a
few dozen textured polygons that fit the screen without overlapping
each other. The rendering rate can be measured. We postulate that
if a system can manage the rendering of an output sensitive set of
primitives at interactive rates, it is ready for interactive 3D appli-
cations. If a system can survive a simple test such as this, it is then
merely a question of optimization (and storage capacity) whether
large, realistic models can be run in a small device or not.

Based on initial benchmark results, we assume our devices will be
ready for 3D applications by the definition above. We also assume
a decent amount of RAM, say, 10MB, and either a wireless network
connection or a local storage, say, 32MB or more. This would in-
clude most currently available PDA devices and several relatively
recent smart phones, such as the Nokia n-Gage or 6630.

3 Objectives

While the early guide systems using 3D - one way or another - have
provided excellent information on navigation and location-based
services, they have been limited in functionalities. The techno-
logical challenge of the m-LOMA project was to create a mobile
3D application with a rich set of information pulling and pushing
features, photorealistic 3D rendering quality with a large view dis-
tance, yet achieve interactive frame rates.

Several user scenarios can be created where the user is allowed only
a limited viewing mode. For example, one can suppose that the en-
vironment is easiest to recognize from the first person view. In
this case, the viewpoint can be forced to move only at the ground
level. On another scenario, one can claim that the user can have
a better overall understanding of the scene from above. Here the
viewpoint can be set at a certain height, looking down in a fixed
angle. Both these scenarios make visibility calculations relatively
straightforward. In the first case, street topology can be used to ren-
der buildings along the current streets. In the second case, rendered
buildings can be limited to a rectangular area. In m-LOMA, we al-
low the user to freely roam the entire 3D space. Perhaps later user
studies suggest useful restrictions on viewing direction and move-
ment, if any. We also require that the viewer should not be allowed
to go inside the model; a collision avoidance scheme should keep
the viewpoint outside the buildings.

The m-LOMA mobile client should be able to answers to questions
”What is ...?” and ”Where is...?”. A user should be able to point
at any feature on the map and receive an explanation or a table
of contents of that feature. A user should also be able to make a
location-based query and receive a list of potential answers, and be
routed to the selected one. The system is also required to allow the
users create their own content, messages, that could be attached to
any point of an object or a point in the map space, which can be
viewed by friends or everybody. In addition of these pull function-
alities, it should also be able to push information, such as alerts and
notions on disturbances on public transportation. Dynamic infor-
mation should be updated in real-time, for example GPS tracked
other users and possibly public transportation vehicles.

The testbed area should be relatively large and detailed, to cover
an entire city center. Real-world databases such as restaurant and
tourist info should be made available and associated to the scene.
GPS positioning should be supported. Network latencies and speed
related to wireless data transmission should be minimized, whether
it is the model, feature information, user information or positions
of tracked objects that are transmitted. Long download times, from

8

network or local storage, should not pause the application. The sys-
tem should be scalable, using smart information filtering techniques
such as visibility calculations at server side to limit the transmit-
ted data. The user interface should be easy to use and allow fast
operation as the mobile user has a relatively short attention span
[Oulasvirta 2005].

The development aims for a multiplatform software that could run
on Linux, Windows, MacOS X, WinCE (MobileWindows) and
Symbian.

4 3D Engine for urban scenery

Any efficient 3D engine exploits the features of the scenery the en-
gine is intended for. A mobile 3D engine can apply the same clas-
sical optimization techniques as any 3D application, even though
from the viewpoint of very limited resources. In the following, a 3D
engine for urban scenery is developed, selecting and implementing
suitable visibility culling algorithms.

4.1 Preprocess visibility culling

Work on the architectural walkthroughs in 90’s by Airey [Airey
1990] and Teller [Teller 1992] started a series of solutions to the
problem of rendering massive models. Considering mainly indoor
scenes of polyhedral structures, an observation was made: only a
subset of the model, the potentially visible set (PVS), is required
to render at a time. These indoor scenes can also be transformed
with the binary space partitioning algorithm [Fuchs et al. 1980]
into efficient search structures, BSP trees, also representing the ge-
ometry. For PVS calculations, the model space was subdivided to
cells, such as rooms, that are separated from each other by portals.
Smaller objects within the rooms, detail objects, do not contribute
to the visibility calculations. This scheme assumes convexity for the
cells, implying that construction of suitable models would require
constructive solid geometry (CSG) methods, or severe restrictions
set for boundary representation models (B-reps) [Thibault and Nay-
lor 1987; Sudarsky and Gotsman 1997]. While being popular, the
BSP/portal approach is not optimal for an outdoor scene.

For the m-LOMA system, we use a PVS approach, supporting com-
mon B-rep models such as VRML97. We divide our space to cubi-
cal volumes, cells, in all three dimensions, and perform from-region
[Nirenstein et al. 2002] visibility culling as a preprocess. We use
meshes as atomic objects to which visibility is performed, defined
later in section 5.2. At street level, convex polyhedrae could be
used as cells, fitted along streets, between the buildings [Marvie and
Bouatouch 2004]. We allow the user to roam freely in three dimen-
sions, so instead of having a specific, possibly manually adjusted
solution at street level, we use plain 3D grid subdivision throughout
our space. The cell size is specified to be less than the average build-
ing height. Our preprocess samples the model from a set of points
inside the cell, namely from the corners and the centre, to each di-
rection. Our solution is approximate [Nirenstein et al. 2002], as
sampling always leaves room for error. To increase the aggressivity
of the algorithm, we also define a hardly visible set [Andújar et al.
2000] consisting of objects that have less than a predefined amount
of pixels visible, and leave everything belonging to the HVS out.

Using cubical cells implies one small problem for the PVS calcula-
tion at street level: some cell corners may lie inside the buildings,
and if backface culling (see section 4.5) is enabled, the buildings
nearby will be included in the PVS. Therefore, we disable backface
culling during the PVS calculation. A few unnecessary backfaces

will end up in the PVS lists, but are culled at runtime with negli-
gible CPU cost. From the sky, no backfaces will be visible if the
model has been correctly built.

4.2 Runtime visibility culling

Most preprocess visibility culling methods calculate the visibili-
ties independently of the possible runtime viewing direction. In
addition to visibility culling, view frustum culling (VFC) methods
further omit polygons not directly in the view of the camera. For
example, [Moller and Haines 1999] describes a selection of VFC
algorithms.

m-LOMA uses a two-level hierarchy for frustum culling, applying
temporal coherence. At the higher level, we use mesh groups, con-
taining lists to individual meshes. During initialization, all mesh
groups belonging to the initial PVS cell are loaded, and marked in-
visible. Then, for each group, its bounding sphere is culled against
the view frustum. For all visible groups, meshes are loaded and
per-mesh frustum culling performed. Visible meshes are marked.
In addition, a counter is assigned to each tested mesh and mesh
group. The counter indicates the amount of rendered frames to wait
before repeating the test and depends on frame rate. For visible
groups, at maximum 20 frames can be rendered before a test occurs
again. The idea of the counter is in the low probability of major
visibility changes during successive frames when moving. During
rotation, abrupt changes are likely, and frustum culling is performed
to all groups, independently of the current counter value. This is re-
cursed to the individual meshes. Loading models and textures is
limited per a rendered frame to maintain responsiveness. When the
system is initializing and loading meshes, the user can perceive a
partial model during the first frames. In principle, the initialization
could take place before the first rendered frame, to hide the loading
from the user.

In addition to detecting visible meshes, a mechanism is needed to
solve screen-space per-pixel visibilities. The standard way is to use
the depth buffer, the Z buffer, that is part of all modern rendering
pipelines. The Z test lets a pixel to be drawn to the frame buffer only
if it’s the Z value is smaller than the previously calculated value.
We can further utilize this to avoid unnecessary texture accesses
that would follow the Z test in a rendering pipeline. We arrange all
visible meshes in depth order, closest-first, to let the closest meshes
fill in the Z values. Parts of meshes that are further away and behind
closer meshes are Z tested, but not textured. The major advantage
of mesh sorting is in collision detection, described in section 4.6.

4.3 Culling dynamic objects

The m-LOMA system supports dynamic objects, for example GPS
tracked users or simulated or tracked public transportation vehicles.
[Sudarsky and Gotsman 1997] present optimization techniques for
a dynamic scene, where a temporal bounding volume (TBV) can
be used to estimate a visibility of a moving object, and reduce un-
necessary network traffic between a server and client. In m-LOMA,
we use virtual voxels, similar in size and shape to our PVS cells and
with similar grid distribution, but that lie only at street level. The
voxels are included in the PVS calculation, but only a predefined
amount of voxel visibilities are created for each PVS cell.

For any moving object, the current voxel is determined simply by
approximating the object by a set of points, and resolving in which
voxels these points reside based on coordinates. If any of the voxels
lie within our PVS and are within our view frustum, we consider
the object visible, and render it. For a GPS tracked user, there is

9

only one coordinate pair (assuming the user moves slowly), but for
larger, faster objects, such as a trams and buses, a different scheme
is applied. Instead of a temporal bounding volume, we approximate
a fast-moving object by temporal sample points. If any of these
points is visible (within a visible voxel), the object is rendered.

4.4 Levels of detail and texture management

Objects far away occupy only a small amount of screen space, but
only the minimal information of the object should be needed to con-
vey the meaning of what is being viewed [Clark 1976]. If multires-
olution versions of an object exist, a rendering system can choose
the suitable version based on the estimated size on the screen, or
viewing angle. These common techniques are called level of de-
tail (LOD) techniques. Sometimes, an object can be represented by
an imposter, that replaces the actual model. A common choice for
an imposter is a billboard, typically a low-polygon rectangular tex-
tured plane that always faces the viewer. An extensive presentation
of LOD techniques is given in [Luebke et al. 2005].

In addition to geometrical models, LODs can be applied to textures.
A common way to enhance texture quality is through trilinear inter-
polation, also called mipmapping [Williams 1983]. A mipmapped
texture is stored in the memory with a set of downscaled versions.
When rendering, pixels are sampled from the mipmapped textures
based on screen size and distance, and linearly interpolated. In our
case, the limited memory of our target platforms sets strict limita-
tions on texture usage. For example, in a common view, 100-200
meshes could be visible (see section 7). With a decent resolution,
say, from 128x128 to 256x256 pixels, we would need 6-24MB of
runtime memory for mipmapped textures. In practice, current smart
phones can hardly allow 1-2MB.

For our system, we choose a texture-based LOD technique: we
open and use only that particular LOD version of a texture that is
comparable in size to the object size in screen coordinates. We will
not be able to perform trilinear interpolation, and will suffer a bit
from sampling errors when viewing buildings along the streets. On
the other hand, it is highly unlikely to be very close to several build-
ings at the same time, requiring a large amount of textures. Using
this technique, we can allow the use of high-resolution textures in
smart phones. In addition, we will define a limit, the lowest LOD
level, after which texturing will be disabled and a plain color used.

4.5 Rendering optimizations

The 3D rasterization pipeline properties can be addressed from a
3D API that exposes them to the programmer. Appropriate mea-
sures can be taken to increase rendering speed, or more commonly,
to avoid slowing it down. The 3D pipeline constitutes of a long
series of calculations from 3D transformations and lighting to ras-
terization, per-pixel Z evaluation and texturing (or shading). This
pipeline acts as a state machine, and needs to be restarted when a
state change is issued. As a generic rule state changes are to be
avoided. The pipeline should also be kept as short as possible by
turning off all unnecessary features. For example, in m-LOMA, we
do not use vertex lighting. Our mesh sorting scheme also avoids
unnecessary texture accesses (section 4.2).

The pipeline can also perform backface culling, avoiding rasteri-
zation of polygon sides that are facing away from the viewpoint,
given that the normals of rendered polygons are arranged in a con-
sistent manner; all the building wall normals should point outward,
or inward, but not randomly to both. Due to the minor issue on
street level visibility preprocessing (section 4.1), a few backfacing

meshes are included in PVS lists. We enable backface culling to
discard these meshes at run time.

All adjacent geometry fed to a graphics pipeline should be or-
ganized into connected triangles, namely triangle strips or trian-
gle fans, to avoid unnecessary transformation of individual ver-
tices. Certain pipelines may keep a small vertex cache to speed
up the rendering of individual but adjacent triangles, but a bet-
ter strategy is to organize the geometry in advance. This prob-
lem typically arises with storage formats that represent geometry
in a form that are easy to interpret into individual triangles, such as
VRML’s IndexedFaceSets. In cases where geometry data sets are
large or run time resources sparse, it is advisable to arrange model
formats to close to binary-compliant geometry representations to
avoid unnecessary parsing at runtime. The m-LOMA preprocess-
ing stage attempts to create as long triangle strips as possible from
the IndexedFaceSets, and packs them in a binary format.

[Miettinen 2005] provides a good general-purpose view on real-
time rendering optimization, given in the context of mobile 3D
graphics.

4.6 Collision avoidance

Collision avoidance techniques are used to prohibit the user from
going through walls, which has been found disorienting [Smith and
Marsh 2004]. The calculation involves intersection tests between
the line along which the user is moving and the polygons of the
world. If a collision is detected, the intersection point is calcu-
lated, and the viewpoint is constricted to be outside of the colliding
polygon at a predefined minimum distance. A straightforward cal-
culation does not scale up well unless the polygons are efficiently
organized. In our case, we depth-sort the meshes during loading.
We test the bounding sphere of the meshes in our sorted visibil-
ity list against the bounding sphere of our movement vector. For
meshes that succeed the test, more careful intersection tests are cal-
culated for the possible colliding polygons. The amount of poten-
tially colliding meshes is typically small. For example, if the user is
on ground level and near a corner, this list could contain 4 meshes,
requiring raycasting towards maybe 20 triangles. Commonly, when
moving towards a normal building, only one mesh (the wall) is col-
liding, consisting of two or four triangles. The worst-case scenario
would be in proximity of a corner of a high-polygon model.

At this point, we have not yet decided about using topographical
data. We prepare a simple lookup scheme for finding the current
ground triangle, if any, and prepare an interpolator for retrieving the
current elevation from the vertices. The collision detection against
the ground is calculated independently of other collision avoidance
schemes.

5 Modeling cities

Let us loosely observe a common city view. The environment
is dominated by large structures, occluding each other especially
when viewed from the ground level. These structures, buildings,
are unique. They have been designed by a legion of architects since
the founding of the city and exhibit individual characteristics, often
typical to the construction era (in Europe, several hundred years old
buildings may me adjacent to modern ones). The overall, average
shape of the buildings appears to be rectangular. There is geomet-
ric detail, but it is typically small in scale in comparison to the size
of the buildings. After these hopeful notions we immediately rec-

10

ognize also medium-sized geometrical features, for example struc-
tures and shapes near the roofs.

Figure 1: Modeling for mobile devices using lightweight geometry.

Our test scenario, the city of Helsinki in Finland, consists of build-
ings of relatively the same size, only 3-6 stories tall. There are no
skyscrapers, for example. The few tall buildings that exist are clear
landmarks. But there are other landmarks as well: for example, stat-
ues and various other artwork that are commonly present in urban
environments. In addition, building façades are often populated by
various ads and company logos, adding clearly recognizable detail.
Even though the salience of such features is a subjective matter, our
goal is to carefully reproduce as many potentially salient features
as possible. The roads exhibit less direct salience: the asfalt, side-
walk, curb stones and traffic signs tend to be similar everywhere.
On the other hand, these are topological cues to the environment.
The traditional street maps almost completely rely on the topology,
the network of connected and individually named streets. Very few
street names can be directly guessed from the look of the street;
they are marked separately in the environment.

5.1 m-LOMA modeling methodology

We consider our observations on our case area, and prior research
on urban areas and navigation [Lynch 1960; Paay and Kjeldskov
2004; Vinson 1999] in our goal to recreate a recognizable urban en-
vironment. We need to include distinctive features from the urban
environment: building geometry, individual building façades, land-
marks and other potentially salient features such as statues, parks,
shores and routes. Based on the presented simplification and opti-
mization methods, we set up a modeling methodology that would
efficiently reproduce these features.

There are two available 3D models on our case area: a large model
created to be a web portal [Linturi et al. 2000] and a municipal-
administered accurate model. The first one is a smart model, manu-
ally created to optimize recognizability with geometry, with various
levels of detail. Unfortunately, this model has no textures. The sec-
ond case is a municipal database, very accurate but with varying
design (some models are created with CAD tools, some automati-
cally from aerial laser scans). Many buildings have textures, but the
texture quality varies.

In computer graphics it is more efficient to introduce detail with
textures, not complex geometry, which requires far more compu-
tational power. The photorealism of a city model should therefore
be based on textures, not geometry. Our earlier experience with
city modeling, for example for [Kray et al. 2003], has shown that

modeling photorealistic cities for mobile use is fast, given that only
a lightweight geometry is required. On the other hand, creating
textures is more laborious. As neither of the available models pro-
vide consistent good-quality textures, and the geometry is not di-
rectly suitable for mobile use, we choose to create our own textured
lightweight model, possibly adapted to the requirements of our en-
gine.

Figure 1 presents a lightweight design for a building. We use digital
photography for texturing. We choose to omit geometric LODs and
trust on textures for recognizable detail. As rooftops are hardly
visible to the street level and contain little salient detail, they are
not textured, but assigned a color.

Landmarks are recognized as critical navigational aids [Darken and
Sibert 1993]. In addition, [Pasman and Jansen 2003] evaluate meth-
ods for geometrical or image-based simplification of objects in net-
worked environments, and note that at long distances, objects can
be simplified to simple imposters, billboards. To enable navigation
with known and visible landmarks from long distances, we choose
to create a set of billboards from selected buildings such as churches
and a railway station. Such landmarks will be rendered separately,
independently of our visibility range. A few landmarks far away
from our 3D modeled area are created as billboards, but not mod-
eled.

5.2 Modeling in practice

To verify that surface normals remain coherent for backface culling,
we created simple building models, exported them to VRML and
analyzed the results. We found out that at least 3DMAX v.7 and
its VRML exporter produce surfaces in a deterministic manner. We
also needed to decide the atomic primitives we will consider in-
dividual objects in our PVS calculation. The easy alternatives are
individual triangles, a collection of triangles under a Transform
node, or hierarchies of Transform nodes, such as buildings and
building blocks. Using individual triangles would yield almost in-
tolerable amount of visibility entries. Using blocks or buildings
would be inefficient from the visibility point of view: a small corner
of a wall would lead to rendering of an entire building or a building
block. As an attempt at balancing visibility list sizes and simplic-
ity we select individual walls and roofs as identifiable meshes. For
frustum culling purposes, they are arranged in named groups (see
section 5.1. For untextured objects such as roofs we allow larger
mesh sizes. Figure 2 presents a sample building, and its decompo-
sition of meshes.

We use existing digital city blueprints to provide decent accuracy
for the model placement. The building models are constructed
based on reference photography. We choose not to model streets
and sidewalks manually due to the lack of individual salient fea-
tures, but hope to obtain accurate street databases that could be uti-
lized for street detail visualization. We note that in our case, certain
streets are covered by asphalt, some with smooth rocks. We pre-
pare for automatic street texturing and create texture templates for
each street type. We also create texture templates for tram rails,
curb stones, etc. We hope to be able to extract street names from an
existing street database.

We attempt to create clean textures in a reliable manner. We take
care that the window rows and columns in the model match reality.
We clean the textures a bit to remove some of the possibly occlud-
ing wires, cars, trees etc. This is done in image processing software
by copying pixels from visually similar areas on top of the artifacts.
To minimize the amount of individual textures, we attempt to use
shared textures among building walls, if possible. We acknowledge
the difficulties in reproducing the street level shopping windows as

11

their content varies quite often, and recognition would require very
highly detailed textures. We note that the street level should be con-
sidered a separate layer of the model with dynamically updated tex-
tures. We choose to use static textures for entire façades, covering
also the street level. Statues are created from digital photographs
by separating the background by a transparent mask.

Figure 2: Splitting a building into separate meshes for visibility
calculations.

We model large distinguishable land areas such as parks with flat
colored geometry. In case of parks, we populate the area by bill-
board approximations of trees, and use green planes as the ground.
Sea is similarly approximated as a set of blue planes. For local
salient cues, statues seem a logical choice. [Pasman and Jansen
2003] proves that such objects should be represented with geome-
try, not imposters, at short distances. Unfortunately, we lack model-
ing resources to properly recreate them. We make a design decision
to create statue models based on imposters. As an attempt to mini-
mize the error, we use higher resolution textures on statues than on
buildings.

To associate database entries to a 3D model, an anchoring mecha-
nism is required. Our system will contain information associated to
static or dynamic targets. Our static objects being statues and build-
ings, we group the meshes of each such object to mesh groups, and
assign them individual names.

We choose to omit manual modeling of topography. We hope to be
able to adapt our 3D models to topographical data.

We subject all our design decisions regarding selected landmarks,
use of billboards, geometry/texturing ratio of the models etc. to
future field studies.

To further optimize model subdivision for a PVS engine, an in-
teresting approach would be to use automatic means to detect po-
tentially visible areas, and split or merge the model to a view-
dependent set of pieces. This would yield a larger number of in-
dividual objects (and larger total size of geometry), but the amount
of entries in visibility lists would probably remain the same (a wall
would normally require one list entry, but so would only the visible
piece of a wall). A simple simulation of finding probable splitting
axis is presented in figure 3, where a 360◦ degree wide and 30◦ high
arealight has been used to illuminate a part of the scene, estimating
the average roaming space of the user. The darker areas below the
red line would be unlikely to be visible to a user far away.

6 Implementation

6.1 Software development

To access the 3D rendering pipeline and generally be able to im-
plement our visibility algorithms, we used the OpenGL ES, and the

Figure 3: Possible automatic model splitting based on potential vis-
ibility.

C language. We used an implementation of OpenGL ES support-
ing the Common profile. The system was developed under Linux
and ported to Windows, Mac OS X, WindowsCE (MobileWindows)
and Symbian. Of these systems, Symbian was clearly an excep-
tion. Even though a unified source tree was maintained, Symbian-
specific limitations sometimes dominated the development. Porting
OpenGL ES to the various platforms was straightforward, while the
entire application needed to be suited for Symbian’s restrictions.

A lightweight OpenGL based widget set was developed for
platform-independent graphical user interfaces. With Symbian we
used the native Symbian Series 60 user interface system.

The development of the m-LOMA system consisted of essentially
three parallel stages; modeling the environment, programming the
preprocess tools, and creating the runtime environment consisting
of a server, database and the client.

6.2 3D preprocessing pipeline

The m-LOMA 3D model preprocess pipeline, implementing the al-
gorithms discussed above, has five stages:

1. VRML parsing

2. Texture processing

3. Visibility calculation

4. Visibility list encoding

5. File packaging

VRML parsing. The VRML scene is parsed for only a few features
existing in our scene graph. We separate high-level Transform
nodes that contain group names, and extract the child objects un-
der the next Transform nodes, where the geometry is described
as IndexedFaceSets. We create triangle strips out of the individ-
ual triangles in IndexedFaceSets. During parsing, all meshes are
assigned an individual identifier. A separate file is created for asso-
ciating group names to these identifiers. We also extract the object
textures. We will use shared textures, so only one entry per texture
is created.

Texture processing During the preprocess stage, LOD versions of
textures are created and stored in separate files in a compressed
format. As the LOD creation is an offline preprocess, we have time
to do further analysis on the textures. For example, we observe that

12

building façades exhibit repeating geometric patterns (see figure 4).
These templates could be extracted, and a rule set constructed to
build the original image from these templates. Single templates can
be compressed with common image compression methods. With
clean façades, this method may prove quite efficient. Our initial
implementation results support this hypothesis.

During preliminary field studies, we observed that the common
practice of using the average texture color for the lowest level LOD
produces sometimes colors that do not match the perceived build-
ing colors. In a smart phone, the poor display resolution causes
buildings at relatively close to fall to the color approximation, even
though in reality, the building can be still be perceived accurately.
A further observation is that the perceived color in reality is that of
the walls, not the reflecting windows. We suggest a new approach
for assigning a color for a building’s lowest LOD. We analyze the
texture and select the most dominant color, the color that has high-
est probability to appear in it. We use a straightforward solution
and pick the RGB color with the highest pixel count, culled to 4
most significant bits per component. In figure 4, a sample façade is
presented, with the averaged and dominant color. Our initial tests
are encouraging. A quick user study with a question “which color
best describes this building” consistently gave the dominant color
as the better alternative, even though on many buildings the differ-
ence wasn’t so noticeable.

Figure 4: Selecting the color for the lowest LOD: a) (upper left) the
average texture color or b) (upper right) the dominant texture color.

Visibility calculations Based on an approximate cell-to-geometry
PVS algorithm, the entire space is traversed. For each cell, the
scene is rendered with hardware acceleration at cell corners and
the center, to every direction. This calculation is distributed over
network. During rendering, unique colors are assigned for each
mesh, with flat shading and no antialiasing or oversampling. We
assume that only buildings contribute to the visibility. Statues and
billboard-represented database entries are considered detail objects
and are not rendered as occluders. To identify visible detail objects,
we render them in a separate pass without Z buffer updates, using
an approximate bounding box. After everything has been rendered,
the resulting framebuffer is read back, and colors mapped back to
id numbers. Redundant id numbers are removed.

Visibility list encoding The lists resulting from the visibility cal-
culation stage are huge. For example, a 200x200x50 grid with an
average of 500 visible objects, described by a two-byte identifier,
would yield a list requiring 2GB of storage. Fortunately, espe-
cially above the roof level where the lists become large, the spatial
coherence between cells is also largest. In addition, we limit the
maximum height for visibility calculations to 100m. [van de Panne
and Stewart 1999] describes a currently popular visibility compres-
sion scheme, based on a boolean lookup table. Even though it has
been improved by, for example, [Bouville et al. 2005], it overlooks
the natural three-dimensional visibility coherence. [Chhugani et al.
2005] encodes the identifier difference ∆I in three dimensions to
clusters. Our approach is similar. We create visibility clusters, tree-
like structures, with the following algorithm:

1. Find a location for new root node.

2. Starting from the adjacent cell with minimum difference, add
a new cell. Mark a return path to the current cell into an ex-
ternal structure using 3 bits (dx,dy,dz).

3. Iterate (2) for the current branch until maximum difference is
reached, maximum depth of branches is reached or maximum
total size for a tree is reached.

4. Go up in the current branch and continue (2). When all
branches for a mother node are found and maximums reached,
find a new mother node (1) until all cells are added to trees.

As of this writing, further compression using Huffman encoding is
being implemented, similar to [Chhugani et al. 2005].

File packaging Geometry files are stored in a compact binary for-
mat, preserving the mesh id, dominant color, vertex coordinates,
vertex normals and a bounding sphere for frustum culling. For
texture formats, m-LOMA supports JPG, PNG and our rule-based
compression method.

In our experience, file systems used in mobile devices do not scale
for situations with multiple, possibly thousands of files in single di-
rectories. Accessing a file, such as a texture, in such a directory
might take several seconds. To overcome problems with the file
systems, we pack our geometry, texture and PVS clusters into in-
dexed archives.

6.3 Runtime system architecture

The overall system architecture of the runtime system is presented
in figure 5. The databases are populated by python scripts that parse
a set of ASCII files (a tourist database and a restaurant database),
extract street names and assign preliminary coordinates. The entries
are associated to the 3D model using an extension to the m-LOMA
client, the associate mode. For each entry, the administrator assigns
a correct point within the model. This association is then trans-
mitted to the database. In addition to location-based tourist infor-
mation, the database contains user information and user-specified
location-based messages. Geometry, textures and visibility lists are
also stored. Users are required to register to the system using a web
form.

Wireless networking The m-LOMA system was designed for
wireless remote rendering on low bandwidth networks, such as
GPRS. The true bandwidth of GPRS varies, but typically it is as
low as 5kB/s. The common latency, or round-up-time, is more than
500ms. [Schmalstieg and Gervautz 1996; Hesina and Schmalstieg
1998] describe remote rendering systems with demand-driven ap-
proach for geometry transmission, including level-of-detail models.

13

Figure 5: The m-LOMA system.

The transmission will take place for areas of interest (AOI’s) de-
fined by a radius. A prefetching mechanism transfers geometry in
advance. [Pasman and Jansen 2003] evaluate methods for simpli-
fying small objects with geometric or image-based algorithms for
network transmission. The environment is intended for augmented
reality (AR) applications, assuming very high network speeds (2-
10Mbit) and low latencies (<100ms). View-dependent simplifica-
tion methods for detail objects are described. In our environment,
the only possible models for such simplification are the statues, but
due to our lack of modeling resources, we have created them as bill-
boards. We choose a networking approach somewhat similar to the
demand driven approach in [Schmalstieg and Gervautz 1996], even
though geometrical levels of detail are not in use.

Instead of an AOI, the m-LOMA utilizes the PVS scheme for de-
termining visibility. During initialization, if a network connection
is open and networking enabled, the client sends the server the cur-
rent cache content, the content of the local index files. The server
has full information regarding visibility and required data based on
PVS precalculations. When the viewpoint moves, this position is
transmitted to the server. When the server notices that new data is
required, it starts sending data. First, if new PVS cells are needed,
a whole PVS cluster is sent. Until this is received, the client con-
tinues rendering using the last known PVS cell contents. Possible
lack of data will not affect the responsiveness of the client. Then,
if geometry is needed, it is sent as individual meshes. As the third
stage, if textures are missing, the server starts sending them. This
data is integrated to the scene on the fly. As the PVS lookups are
fast, the server could serve hundreds of simultaneous users.

When a client receives data from the server, it immediately stores
it on local cache, and updates the corresponding index files. No
geometry or textures are transmitted twice, unless sending fails for
some reason. The whole model, including textures, PVS clusters
and meshes require less than 10MB (for PDA and smart phone sets),
so we assume that in normal conditions this can be saved on local
storage.

Tourist content is pushed to the client based on AOI, and the client
determines the visibility locally, possibly utilizing the voxel ap-
proximation. For dynamic data, data is similarly pushed to the
client, and the client determines the visibility locally.

On field tests, the responsiveness of the client was verified to be
adequate. Network transmission did not affect the rendering speed,
and buildings appeared steadily, at slow pace. Unfortunately, due to

the very slow GPRS connection, an uninitialized cache takes sev-
eral minutes to fill, for example when the user rockets to the sky.
As the model data is essentially static, the local caches can be eas-
ily filled in advance, by downloading the appropriate files. With a
BlueTooth connection, this is rather fast. Due to the more practical
and fast local file download, the support for model data transmis-
sion is currently disabled from the server.

The communication is based on TCP/IP. The routines used
for accessing the network have been abstracted into platform-
independent and platform-dependent components. The protocol
data units are described by an XML description, from which an
efficient binary protocol is generated.

6.4 3D rendering in mobile client

The m-LOMA system attempts to move the bulk of computations
to the preprocess stage. As a result, the actual rendering pass is
relatively straightforward:

1. Based on current position, select a PVS cluster

2. Determine the current mesh visibility list

3. Determine the currently visible messages and dynamic objects
using predetermined voxel visibilities

4. Perform frustum culling to all objects

5. Assert suitable LOD textures

6. Render landmarks with Z writes disabled

7. Render meshes, billboards and dynamic objects

8. Render the user interface components

To keep the 3D map interactive, no more than one texture is loaded
per a rendered frame. Texture loading is not threaded, but a list of
missing textures is automatically updated. In case we run out of
memory, we immediately release memory from within the software
using our explicit memory management system. For desktop sys-
tems, an additional skybox presenting a sky can be rendered prior
to anything else.

6.5 Memory management and caching

PVS solutions follow the tradition of CPU-memory tradeoff by re-
leasing necessary online CPU cycles by offline computations, but
increasing online memory consumption. Unfortunately, memory in
mobile devices is also limited. Textures, geometry, and especially
visibility lists require memory. To minimize network traffic or local
storage I/O, we use data caching. Textures, PVS trees and geometry
are kept in a cache. This cache memory can be pre-configured and
explicitly managed by the m-LOMA client. When more memory is
needed, the least recently used data sets are immediately released.

7 Results

7.1 Model statistics, efficiency and rendering speed

Our target platforms include laptops, PDA devices and smart
phones. The laptop used in our tests was a Dell M60 with Pentium
M 1.7GHz with a Quadro FX Go 700 graphics chip. The PDA’s
used were Dell Axim X30 and X50v, which is equipped with the

14

Intel 2700G 3D chip. Due to lack of support for the OpenGL ES
Common profile, the X50v was tested using the 320x240 resolution
and no hardware acceleration, resulting in similar performance as
the X30. For smart phones, we used the Nokia 6630 and Nokia
n-Gage. The Nokia n-Gage has a poor rendering performance in
comparison to 6630.

The Symbian executable size is approximately 200kB, and the Win-
dows executable about 400kB. The memory usage is 3.6-5MB in
mobile devices, depending on the allowed cache sizes. In Windows,
the usage is between 12-16MB.

3D Model Our final model of the city of Helsinki contains 183 tex-
tured buildings and 101 nontextured buildings split to 1029 meshes,
within a 2x2km area (1.25x1.25 miles). Most of the objects, such
as building façades, contain only 2-4 triangles, but certain nontex-
tured but geometrically detailed landmark buildings are quite large
(200-400 triangles). The total triangle count of the entire model
is 12610. The original VRML file size is 14.3MB, and the binary
geometry mesh archive size is 714kB. There are 471 individual tex-
tures, of which 426 are building textures (mostly façades) and 14
statue billboards. If all the textures were to be opened, such as in
direct VRML model viewing with mipmapping, they would require
100MB texture memory. The model was created in two phases, and
took roughly 8 months to create by one person. Approximately 75%
of modeling time went into creating textures, 25% to the geometry.
6 presents a screenshot and a photograph of the same target. The
model contains no topography. The ground is not textured due to
lack of suitable map data.

Figure 6: Accuracy of modeling. Left, real world. Right, m-
LOMA.

Preprocessing For the model preprocess pipeline, we developed
programs for VRML parsing, PVS calculation, PVS clustering, tex-
ture LOD creation, texture compression and dominant texture color
selection. The pipeline can be configured to output versions suited
to a range of devices, from high-end desktop to smart phones 1. The
PVS cell size, hardly visible set pixel threshold and framebuffer res-
olution can be set according to the required accuracy and efficiency.
The template-based texture compression is optional. Our compro-
mise is to use 20x20x20m cell size, a little less than the average
building height in our scene, and only 1 pixel HVS limit.

Table 1 provides approximate preprocess results for given plat-
forms. The Nokia 6630 is considerably faster than Nokia n-Gage,
and we can use the same data sets for both 6630 and PDA de-
vices (the “PDA/Smart phone 1” set). With 20m cell size and PVS
sky limit of 100m, the total amount of such cells is approximately
50.000. The PVS calculation currently produces approximately 10-
50MB of raw data in a single file. The clustering stage compresses

this into 3-9MB. Higher resolution textures could be used for mo-
bile devices, but in practice, the low screen resolution would not
allow much improvement. The PVS calculation takes more than
99% of the preprocessing time. The PVS software uses OpenGL, so
good graphics cards would speed up the process. A decent desktop
computer such as Athlon 3500+ with a 6th generation graphics card
(NVidia 6800GT, for example) can process approximately 1 cell per
second, creating a smart phone optimized model in less than a day,
and a desktop optimized model in a weekend. The PVS calculation
can be shared over a network. The PVS preprocess efficiency will
be improved.

Device Laptop PDA/SP 1 SP 2
View distance 800 500 300
Texture max res. 512x512 256x256 128x128
HVS 1 pixel 1 pixel 1 pixel
PVS Resolution 768x768 320x320 208x208
VRML file size 14.3MB 14.3MB 14.3MB
Binary model size 714kB 714kB 714kB
PVS size 50MB 20MB 10MB
Clustered PVS 9MB 5MB 3MB
JPG textures 8.5MB 5MB 2MB

Table 1: 3D model preprocess settings and statistics (SP = smart
phone).

PVS efficiency The efficiency of the PVS solution depends on the
cell location and the surrounding geometry. The PVS solution is
most efficient at street level, when the view cell is under the roof
level. In such a case, 90-95% of meshes are typically culled away.
In a crossing, 80-90% are culled. Depending on viewing direction,
frustum culling removes another 50-80% of meshes. Above roofs,
the PVS typically removes 50% of meshes, and frustum culling an-
other 65-80%. Figure 7 presents a typical good situation at street
level: almost the entire city behind the closest buildings is culled
away by the PVS. Only a few visible meshes remain.

Meshes/position Total In PVS In frustum Culled%
Street 1029 40-100 20-60 95-98%
Crossing 1029 120-160 40-80 93-96%
Rooftops 1029 400-500 150-250 86-77%
Sky 1029 500-650 200-300 82-72%
Sky, looking down 1029 500-650 50-100 90-95%

Table 2: Culling efficiency statistics (a 90◦ field of view and 4:3
aspect ratio).

Rendering speed The approximate rendering speeds using the
same preprocessed data, the “Smart phone set 1”, are given in ta-
ble 3. The given values are real experienced frame rates, including
texture and mesh loading. Rendering speeds for the n-Gage with
“Smart phone set 2” are similar as for 6630 with “Smart phone set
1”. For the 6630, the higher frame rates would apply, given more
memory for texture cache. Currently, 25% of the time is spent in
opening texture files. The speeds are not accurate due to granularity
of the system time functions. The 6630 timer has 16ms accuracy,
and in the laptop environment the accuracy is 1ms. With the 6630,
fastest reported rendering times are near 30-50ms, while the laptop
can render the 1024x768 scenes in 2-3ms. In the laptop, we render
an additional skybox to provide a nicer visual impact. Rendering
the skybox affects the given numbers by 1ms.

In general, interactive rates are achieved for all platforms in all situ-
ations. At street level, the effect of the PVS is most notable. For the
situation where the viewer is at sky, looking down, frustum culling
dominates the culling processes (see table 2).

15

Figure 7: Visibility culling. The potentially visible set of the blue
cell (below) contains only 23 out of the 264 meshes visible to the
virtual camera (up).

7.2 User studies and UI development

The real results from our work on 3D maps come from user studies.
Our goal was to create a platform that can be used to test various
user scenarios. Before further developing the user interface, we
conducted an initial field experiment after the first phase of mod-
eling, without database integration, routing, GPS assistance or ad-
vanced GUI features. The users were given freedom to roam the
entire space with the limited input controls of a PDA device. There
were no special shortcuts for looking at targets or following a route.
The main goal for the experiment was to research the way users ori-
ent themselves in the world, and what strategies people use for the
mapping between the 3D view and the real world. We expected the
results to help us to develop a more easy-to-use navigation inter-
face. Two kinds of tasks were given: proximal mapping and remote
navigation, using a 2D view from high above, and a 3D view. The
results and methodologies used in the preliminary field experiment
are reported in [Oulasvirta et al. 2005].

As results from the field experiment, we were able to verify sev-
eral aspects of the m-LOMA system. The environment was found
easy to recognize from the 3D view. People used various salient
features of the environment to orient themselves, such as building
façades, colors, sizes, shapes, and landmarks. When the real envi-
ronment matched the 3D view, orientation and recognition was fast.
On a few occasions, the unfinished 3D model was not accurate. For
example, in a case where an entire façade was left untextured, the
poor user who had decided to use that as a salient feature spent a
lot of time searching for it in the 3D map. On another occasion,
the overall texture color of a building was not accurate, and again

Platform Dell M60 Dell X30 Nokia 6630
Resolution 1024x768 240x320 176x208
Startup time <5seconds 5 seconds 16 seconds
Street 300-600fps 20-25fps 10-20fps
Crossing 200-400fps 15-20fps 8-15fps
At rooftops 200-300fps 10-15fps 5-12fps
In sky 150-250fps 8-15fps 4-10fps
In sky, looking down 200-300fps 10-16fps 6-14fps

Table 3: Approximate rendering speeds with the same preprocessed
data set (“PDA/Smart phone 1” set) for typical platforms.

the orientation strategy of the user failed. Because the target points
were not marked in the GUI, people often lost them in the naviga-
tion tasks. The 2D view had no street names, so users were not able
to locate themselves well from the 2D view, unless clear salient
features were present. Sometimes users dove to street level to be
able to recognize the nearby buildings. Many users expected even
faster rendering. For example, diving to street level should have
been almost immediate.

8 Conclusions and future

We have demonstrated that with a combination of preprocessing,
suitable modeling methodologies and real-time rendering optimiza-
tions, a photorealistic VRML model can be turned into an efficient
real-time 3D map running on a mobile device without hardware
acceleration. The development of the m-LOMA system has been
dominated by the use of high- and low-level 3D optimization al-
gorithms. All our implementations have been suited to the needs
of optimization. Of the various optimization methods, two are crit-
ical: visibility calculations and texture management. The visibil-
ity calculations drastically reduce the amount of primitives to ren-
der, and texture management allows us to use a model with hun-
dreds of high-resolution textures with a decent memory consump-
tion. Adapting 3D modeling methodologies to the selected opti-
mization algorithms facilitates the efficiency of the algorithms. Us-
ing lightweight models makes it possible to render a large amount
of buildings, allowing a large view distance.

The results from the initial field experiment indicate that the re-
quirements for a realistic 3D map are high. When users learn to
trust the 3D view, randomly appearing visual flaws are unaccept-
able. The street level is especially difficult: even though a careful
texturing would be made, the contents of the windows in the real
world change continuously. Users should be warned of this prob-
lem so that they would not rely on the street level textures for their
navigation. Or, the street level textures should be cleaned of details
or filled only with company logos. On the other hand, the realistic
buildings are easy to recognize. Certain simplifications are allowed
to the 3D models that do not seem to increase the cognitive dis-
tance between a real world and the model. For example, we have
modeled all statues using billboards, which means they can only be
observed from a fixed angle. Still, no complaints about the fixed
viewing angle were reported in our experiment. On the contrary, all
statues were easily recognized. The field experiments also demon-
strated the stability of the software: during one or two hours of
consecutive use, software restarts were not necessary.

Following our initial field experiment, several enhancements have
been designed and implemented for the user interface. Currently,
the UI features a municipally administered, manually drawn raster
map, a real-time rendered vector-based 2D street map, GPS track-
ing using a BlueTooth GPS, routing within the map area with a

16

route visualization and an arrow pointing at a current target, a track
system to allow easier, discretized navigation at street level, etc.
Content databases are being integrated to provide the users infor-
mation on local sights, restaurants and public transportation. A
messaging system is being implemented, allowing users to attach
their own messages to the 3D scene in a common web forum fash-
ion, allowing location-dependent public discussions. Message and
information filtering is being implemented at the server side. Sev-
eral other features have already been designed and are being im-
plemented. These features will be studied iteratively in near future
field experiments to finalize the m-LOMA system into a usable ap-
plication.

In future, in order for mobile 3D maps to be commonly used for
navigation, efficient and possibly automatic model acquisition sys-
tems should be further developed [Howard et al. 2004], where the
outcome should be a lightweight, recognizable 3D model. A pre-
process pipeline should be developed that would accept a range of
3D models, able to split and merge them automatically according
to visibility calculations. To further standardize the process, sup-
port for visibility lists could be added to existing 3D standards such
as VRML and X3D. The very interesting paper [Marvie and Boua-
touch 2004] provides a framework for such an extension. If this
kind of an approach could be embedded into any standard 3D model
format such as VRML, X3D or M3G in an efficient manner, in-
cluding support for texture management, direct rendering of such
models might become feasible on mobile devices.

9 Acknowledgements

The author wishes to thank Ville Helin, the lead 3D programmer
of the project. Thanks also to Petteri Torvinen for 3D modeling,
Heikki Vuolteenaho for Symbian programming, Ilpo Ruotsalainen
for back end programming and Antti Kantee for keeping them busy.
Our implementation of the OpenGL ES was provided by Hybrid
Graphics. This work has been supported by the EU Interreg IIIA.

References

ABOWD, D., ATKESON, C., HONG, J., DS. LONG, AND PINKER-
TON, M. 1996. Cyberguide: A mobile context-aware tour guide.
Wireless Networks 3, 5, 421–433.

AIREY, J. M. 1990. Increasing Update Rates in the Building Walk-
through System with Automatic Model-Space Subdivision and
Potentially Visible Set Calculations. PhD thesis, UNC Chapel
Hill.

ANDÚJAR, C., NAVAZO, I., AND BRUNET, P. 2000. Integrating
occlusion culling and levels of detail through hardly-visible sets.
Computer Graphics Forum 19, 3, 499–506.

BARKOWSKY, T., AND FREKSA, C. 1997. Cognitive requirements
on making and interpreting maps. In COSIT ’97: Proceedings
of the International Conference on Spatial Information Theory,
Springer-Verlag, London, UK, COSIT, 347–361.

BAUS, J., CHEVERST, K., AND KRAY, C., 2005. A survey of map-
based mobile guides. In Map-based mobile services - Theories,
Methods and Implementations, 197-213.

BESSA, M., COELHO, A., AND CHALMERS, A. 2004. Alternate
feature location for rapid navigation using a 3d map on a mobile
device. In MUM 2004 XXX, ACM.

BLESCHMIED, H., ETZ, M., AND HAIST, J. 2005. Providing
of dynamic three-dimensional city models in location-based ser-
vices. In MOBILE MAPS 2005 - Interactivity and Usability of
Map-based Mobile Services. A workshop., Mobile HCI.

BORNTRÄGER, C., CHEVERST, K., DAVIES, N., DIX, A., FRI-
DAY, A., AND SEITZ, J. 2003. Experiments with multimodal
interfaces in a context-aware city guide. In Proceedings of Mo-
bile HCI 2003, Mobile HCI.

BOUVILLE, C., MARCHAL, I., AND BOUGET, L. 2005. Efficient
compression of visibility sets. In International Symposium on
Visual Computing (ISVC 2005), Sprnger-Verlag, ISVC.

BRACHTL, M., SLAJS, J., AND SLAVÍK, P. 2001. Pda based nav-
igation system for a 3d environment. Computers and Graphics
25, 4, 627–634.

BURIGAT, S., AND CHITTARO, L. 2005. Location-aware visual-
ization of vrml models in gps-based mobile guides. In Web3D
’05: Proceedings of the tenth international conference on 3D
Web technology, ACM Press, New York, NY, USA, ACM, 57–
64.

CHEVERST, K., DAVIES, N., MITCHELL, K., FRIDAY, A., AND
EFSTRATIOU, C. 2000. Developing a context-aware electronic
tourist guide: some issues and experiences. In CHI ’00: Pro-
ceedings of the SIGCHI conference on Human factors in com-
puting systems, ACM Press, New York, NY, USA, ACM, 17–24.

CHHUGANI, J., PURNOMO, B., KRISHNAN, S., COHEN, J.,
VENKATASUBRAMANIAN, S., AND JOHNSON, D. S. 2005.
vlod: High-fidelity walkthrough of large virtual environments.
IEEE Transactions on Visualization and Computer Graphics 11,
1, 35–47. Member-Subodh Kumar.

CLARK, J. H. 1976. Hierarchical geometric models for visible
surface algorithms. Commun. ACM 19, 10, 547–554.

DARKEN, R. P., AND SIBERT, J. L. 1993. A toolset for nav-
igation in virtual environments. In UIST ’93: Proceedings of
the 6th annual ACM symposium on User interface software and
technology, ACM Press, New York, NY, USA, 157–165.

FATHAMMER, 2005. Fathammer x-forge.
http://www.fathammer.com (last accessed, December 2005).

FEINER, S., MACINTYRE, B., HÖLLERER, T., AND WEBSTER,
A. 1997. A touring machine: Prototyping 3d mobile augmented
reality systems for exploring the urban environment. In ISWC
’97: Proceedings of the 1st IEEE International Symposium on
Wearable Computers, IEEE Computer Society, Washington, DC,
USA, IEEE, 74.

FUCHS, H., KEDEM, Z., AND NAYLOR, B. 1980. On visible sur-
face generation by a priori tree structures. Computer Graphics
(Proc.SIGGRAPH’80) 14, 3, 124–133.

HESINA, G., AND SCHMALSTIEG, D. 1998. A network archi-
tecture for remote rendering. In DIS-RT ’98: Proceedings of
the Second International Workshop on Distributed Interactive
Simulation and Real-Time Applications, IEEE Computer Soci-
ety, Washington, DC, USA, 88.

HOWARD, A., WOLF, D. F., AND SUKHATME, G. S. 2004. To-
wards 3d mapping in large urban environments. In Proceed-
ings of 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IEEE.

IACUCCI, G., KELA, J., AND PEHONEN, P. 2004. Computational
support to record and re-experience visits. Personal and Ubiqui-
tous Computing 8, 2, 100–109.

17

JCP, 2005. Jsr 184: Mobile 3d graphics api for j2me.
http://www.jcp.org/en/jsr/detail?id=184 (last accessed, Decem-
ber 2005).

KHRONOSGROUP, 2005. Opengl es - the standard for embedded
accelerated 3d graphics. http://www.khronos.org/opengles (last
accessed, December 2005).

KRAY, C., ELTING, C., LAAKSO, K., AND COORS, V. 2003.
Presenting route instructions on mobile devices. In IUI’03, 209–
224.

KRÜGER, A., BUTZ, A., MÖLLER, C., STAHL, C., WASINGER,
R., STEINBERG, K.-E., AND DIRSCHL, A. 2004. The con-
nected user interface: realizing a personal situated navigation
service. In IUI ’04: Proceedings of the 9th international confer-
ence on Intelligent user interface, ACM Press, New York, NY,
USA, ACM, 161–168.

LINTURI, R., KOIVUNEN, M.-R., AND SULKANEN, J. 2000.
Helsinki arena 2000 - augmenting a real city to a virtual one. In
Digital Cities, Technologies, Experiences, and Future Perspec-
tives [the book is based on an international symposium held in
Kyoto, Japan, in September 1999, Springer-Verlag, London, UK,
83–96.

LUEBKE, D., REDDY, M., COHEN, J., VARSHNEY, A., WATSON,
B., AND HUEBNER, R. 2005. Level of Detail for 3D Graphics.
Morgan Kaufmann.

LYNCH, K. 1960. The Image of the City. Cambridge: M.I.T.Press.

MARVIE, J.-E., AND BOUATOUCH, K. 2004. A vrml97-x3d ex-
tension for massive scenery management in virtual worlds. In
Web3D ’04: Proceedings of the ninth international conference
on 3D Web technology, ACM Press, New York, NY, USA, ACM,
145–153.

MIETTINEN, V., 2005. Building scalable 3d applications. ACM
SIGGRAPH 2005 Course #35: Developing Mobile 3D Applica-
tions With OpenGL ES and M3G, August.

MOLLER, T., AND HAINES, E. 1999. Real-time rendering. A. K.
Peters, Ltd., Natick, MA, USA.

NIRENSTEIN, S., BLAKE, E., AND GAIN, J. 2002. Exact from-
region visibility culling. In Proceedings Eurographics Render-
ing Workshop, S. Gibson and P. Debevec, Eds., Eurographics,
191–202.

OULASVIRTA, A., NIVALA, A.-M., TIKKA, V., LIIKKANEN, L.,
AND NURMINEN, A. 2005. Understanding users’ strategies with
mobile maps. In Mobile Maps 2005 - Interactivity and Usability
of Map-based Mobile Services, a workshop, Mobile HCI.

OULASVIRTA, A. 2005. The fragmentation of attention in mobile
interaction, and what to do with it. interactions 12, 6, 16–18.

PAAY, J., AND KJELDSKOV, J. 2004. Understanding and modelling
built environments for mobile guide interface design. Behaviour
and Information Technology 24, 1, 21–35.

PARALLELGRAPHICS, 2005. Pocket cortona - mobilize your en-
terprise! http://www.parallelgraphics.com/products/cortonace/
(last accessed, December 2005).

PASMAN, W., AND JANSEN, F. W. 2003. Comparing simplifi-
cation and image-based techniques for 3d client-server render-
ing systems. IEEE Transactions on Visualization and Computer
Graphics 9, 2, 226–240.

POSPICHIL, G., UMLAUFT, M., AND MICHLMAYR, E. 2002. De-
signing lol@, a mobile tourist guide for umts. In Proceedings of
Mobile HCI 2002, Springer-Verlag, Mobile HCI, 140–154.

RAKKOLAINEN, I., TIMMERHEID, J., AND VAINIO, T. 2001. A
3d city info for mobile users. Computers and Graphics 25, 4,
619–625.

REDDY, M., LECLERC, Y., IVERSON, L., AND BLETTER, N.
1999. Terravision ii: Visualizing massive terrain databases in
vrml. IEEE Comput. Graph. Appl. 19, 2, 30–38.

SCHMALSTIEG, D., AND GERVAUTZ, M. 1996. Demand-
driven geometry transmission for distributed virtual environ-
ments. Computer Graphics Forum 15, 3, 421–431.

SMITH, S. P., AND MARSH, T. 2004. Evaluating design guidelines
for reducing user disorientation in a desktop virtual environment.
Virtual Reality 8, 1, 55–62.

SUDARSKY, O., AND GOTSMAN, C. 1997. Output-senstitive ren-
dering and communication in dynamic virtual environments. In
VRST ’97: Proceedings of the ACM symposium on Virtual real-
ity software and technology, ACM Press, New York, NY, USA,
ACM, 217–223.

TELLER, S. J. 1992. Visibility Computations in Densely Occluded
Polyhedral Environments. PhD thesis, University of California
at Berkeley.

THIBAULT, W. C., AND NAYLOR, B. F. 1987. Set operations on
polyhedra using binary space partitioning trees. In SIGGRAPH
’87: Proceedings of the 14th annual conference on Computer
graphics and interactive techniques, ACM Press, New York, NY,
USA, ACM, 153–162.

VAINIO, T., KOTALA, O., RAKKOLAINEN, I., AND KUPILA, H.
2002. Towards scalable user interfaces in 3d city information
systems. In Mobile HCI ’02: Proceedings of the 4th Inter-
national Symposium on Mobile Human-Computer Interaction,
Springer-Verlag, London, UK, Mobile HCI, 354–358.

VAN DE PANNE, M., AND STEWART, J. 1999. Efficient com-
pression techniques for precomputed visibility. In Rendering
Techniques ’99 (Proceedings of the 10th EG Workshop on Ren-
dering, Eurographics Association, Springer Computer Science,
Eurographics, 305–316.

VINSON, N. G. 1999. Design guidelines for landmarks to support
navigation in virtual environments. In CHI ’99: Proceedings of
the SIGCHI conference on Human factors in computing systems,
ACM Press, New York, NY, USA, ACM, 278–285.

WILLIAMS, L. 1983. Pyramidal parametrics. In SIGGRAPH ’83:
Proceedings of the 10th annual conference on Computer graph-
ics and interactive techniques, ACM Press, New York, NY, USA,
ACM, 1–11.

18

