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Mobile, hardware-accelerated urban 3D maps in 3G networks
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Figure 1: A 3D city rendered at 60fps.

Abstract

3D maps can visualize static and dynamic features of real envi-
ronments, and act as 3D gateways to location-based information.
Insufficient network speed has been a major bottleneck for dy-
namic download of 3D content for mobile devices. 3G network
technologies promise to solve this issue, allowing faster response
times and higher data rates. Similarly, mobile 3D graphics hard-
ware should provide a dramatic increase in rendering speed. We
examine wireless IP network properties, and develop an optimized
network scheme suited for navigation purposes. The presented sys-
tem allows free roaming in the 3D scene, while progressively down-
loading 3D data. For case platforms, we use two 3G Symbian smart
phones, one with 3D hardware and one without. Network, 3D ren-
dering and overall application performances are measured. For a
scalable 3D engine, 3D hardware improves the rendering perfor-
mance by over an order of magnitude. By using a compressed
network protocol and efficiently formatted 3D data, a textured but
lightweight 3D city can be progressively downloaded in 3G net-
works fast and without degrading application responsiveness.
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faces and Presentation]: User Interfaces—Graphical User Inter-
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1 Introduction

Mobile 3D maps are interactive guides to real environments. As
navigation aids, they may provide similar features as electronic 2D
maps: GPS positioning, routing, access to location-based data or
participation in location-based discussion, annotation, and visual-
ization of dynamic data, such as GPS tracked users or public trans-
portation vehicles. However, in a 3D map, everything is portrayed
within a 3D view. The key feature of such a representation is the
easy recognizability of the environment. The abstract 2D represen-
tation of the traditional map requires cognitive resources and topo-
logical reasoning to relate the map with the environment, whereas
a 3D view could be instantly matched based on visual cues. If this
essential feature is to be maintained, simplification or abstraction
of 3D maps cannot be taken to the same level as in their 2D coun-
terparts. This pushes the requirement for visual accuracy, veridi-
cality, quite high. Consequently, the spatial accuracy of any data
integrated to such a system must be comparable to the accuracy of
the representation, and positioned also in the third dimension. In
addition, data could be associated to the underlying 3D geometry.
For example, an annotation could be assigned to a specific window
of a specific building, instead of using a mere street address or 2D
coordinates.

The overall usability and usefulness of a 3D map constitute from
several factors. Responsivity of interaction, prompt availability of
content, easy-to-learn but efficient navigation features, overall ca-
pabilities of the system such as annotation of the 3D scene, ad-
vanced content query methods etc. all affect the user experience. In
particular, any delays will reflect negatively in the usability of the
application.
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Our scenario is a mobile user, who travels to new cities and wishes
to use the same interface, a 3D city gateway, for navigation in all
locations. At arrival, the user selects a suitable city, and the corre-
sponding model is progressively downloaded as the user navigates
within it, and within the city.

A network scheme binds together 3D modeling, 3D data structures,
3D engine properties and navigation in general. We discuss these
aspects, with previous work on 3D maps and progressive model
downloading mechanisms, in the context of a thin client, a platform
with limited networking capabilities. A mobile network may con-
tain several caveats for data transfer, which we analyze.

An overall system architecture is described, presenting our choices
of external and internal interfaces. The architecture allows the use
of various standard data exchange formats and integration of con-
tent databases while providing compact internal represenations and
facilitating efficient data transfer and rendering.

We select two 3G smart phones for test platforms, one with 3D
hardware (Nokia N93), and one without (Nokia 6630). We perform
simple network benchmarks with them to find real-world network
capabilities. Based on the results, we select a low level network
protocol, and a general data transmission algorithm. Finally, we
develop a progressive 3D data download scheme with emphasis on
navigation, utilizing several optimization methods such as visibility,
levels-of-detail, contribution culling and 3D data importance. A
compressed, binary network protocol is developed using compiled
XML descriptions. The scheme is implemented by adapting and
porting an existing 3D map application.

3D hardware facilitates very high fillrates in comparison to soft-
ware rendering. However, in such a situation other bottlenecks such
as slow file I/O or the lack of CPU power may become dominant.
Probably the most important limited resource is memory, which is
easily used up by textures. We ensure scalability by an efficient
caching scheme, minimize memory usage and assert that our 3D
engine does not pose any CPU limitations.

The resulting rendering speeds and application performances for
both platforms are compared and discussed. The results show that
a significant increase in networking, and a tenfold increase in ren-
dering speed are achievable via the new 3G networks and 3D hard-
ware.

Main contribution. The presented work identifies several key bot-
tlenecks and potential pitfalls in developing a networked, hardware-
accelerated mobile 3D application. The network scheme is opti-
mized for navigation, using importance measures, a binary model
format, visibility information, contribution culling, allowing the use
of smart pre-fetching algorithms. A lightweight XML based binary
network protocol is introduced. The resulting system allows free
roaming in the 3D space, simultaneously with progressive down-
load of the model, while maintaining responsiveness. Methods such
as smart memory and cache management are presented that allow
scalability to texture-rich large models, fully exploiting available
3D hardware.

2 Related Work

Real-time rendered 3D virtual environments require more compu-
tational resources than any other applications. Therefore, the tech-
nical challenge in providing such environments in mobile devices
is demanding. All resources in mobile devices are sparse - memory,
CPU, possible GPU and storage are limited and slow. The new 3G
networks bring hope to network speed, and mobile 3D hardware
brings hope to rendering rates. Even with these improvements, the

mobile devices remain thin devices. We discuss related work in this
context.

2.1 Mobile rendering

Previous work on mobile guides applying client-rendered 3D
graphics has encountered serious technical problems related to ren-
dering speed. For example, [Kray et al. 2003; Rakkolainen et al.
2001] used laptop emulation for field studies. [Kray et al. 2003] was
later ported to Nokia Communicator using a proprietary rasterizer,
but the rendering scheme [Przybilski et al. 2005] and available fea-
tures were very limited. [Rakkolainen et al. 2001] used a high qual-
ity model, but even after considerable simplification, frame rates
were less than one per second on a PDA device. A demonstration
given by [Bleschmied et al. 2005], on a Nokia 6630, suffered from
a 2-3 minute initialization time, rendering speed of less than 1 fps,
and limitation to only a two or three textured buildings. In [Buri-
gat and Chittaro 2005], information retrieval directly from VRML
models was studied. Restricting the viewpoint to street level, the
model was embedded with visibility information for faster render-
ing. As in [Rakkolainen et al. 2001], an existing high-quality model
was simplified to allow rendering in a mobile device, and 4-5fps
was achieved for textured models.

Most approaches for client-side rendering have applied direct
model viewing, either with PocketCortona [ParallelGraphics 2005]
[Rakkolainen et al. 2001; Burigat and Chittaro 2005] or JSR-184
[JCP 2005] [Bleschmied et al. 2005]. The visibility information
in [Burigat and Chittaro 2005] certainly improves rendering speed,
but the restriction to street level movement is prohibitive. To over-
come these problems, a 3D engine suited for urban environments
was developed in [Nurminen 2006] with OpenGL ES, applying pre-
processing and optimized rendering techniques.

2.2 City models in networked environments

Developing a progressive model download scheme requires infor-
mation about the 3D model, its representation and how it is ren-
dered by the 3D engine. The following provides a view to various
approaches, where modeling and transmission are combined.

Procedural city modeling, such as [Parish and Müller 2001; Wonka
et al. 2003], can be used to create artificial cities from statistical
data or grammars. The resulting models look real, but do not di-
rectly match with existing cities. [Royan et al. 2006] use similar
procedural “2.5D” models instead of a full 3D presentation for com-
pression purposes, and adapts the system for network transmission.
In this scheme, only a model tree structure, building footprints, wall
heights, roof types and other procedural parameters are transmitted.
However, all textures are stored locally. [Quillet et al. 2006] attack
the problem of texture storage by extracting and vectorizing façade
features using edge detection. Their non-photorealistic rendering
scheme applies potentially visible sets, but forces the viewpoint to
street level. The 3D geometry onto which the edge vectors are ren-
dered remains colorless, and the recognizability of this representa-
tion has not been verified.

To reduce detail in buildings far from the camera, level-of-detail
(LOD) techniques can be used. [Döllner and Buchholz 2005] pro-
pose modeling buildings with continous level-of-quality representa-
tion (CLOQ), using a set of predefined basic components. Again, as
the technique is procedural, it does not yield models of high veridi-
cality. [Pasman and Jansen 2003] examine geometry simplification
methods for augmented reality systems. In addition to continuous
LOD, they consider replacing models with view-dependent impos-
tors rendered at server side on the fly. The focus is in choosing rep-
resentations where noticeable geometric error is minimal, assuming
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a wireless connection of 2–10Mbit/s.

[Schmalstieg and Gervautz 1996] consider demand-driven geome-
try transmission for distributed virtual environments. Similiraties
to out-of-core rendering are noted, where fetching from storage
is slow in comparison to having models reside in memory. They
present ideas for progressive transmission of hierarchical, level-of-
detail geometry. Only models at the area of interest (AOI), defined
by a radius, are downloaded with a pre-fetching scheme. This case,
and the follow-up [Hesina and Schmalstieg 1998], do not address
texturing.

[Döllner and Buchholz 2005] points out that the use of 3D city mod-
els go beyond mere visualization. 3D city models should facilitate
semantic and topological searches, and generally be associable with
any data. [Coors 2001] introduces the Urban Data Model (UDM)
for 3D-GIS, where objects or features are associated with the ab-
stractions body, surface, line or point. One of the key benefits is
the hierarchical structure, allowing for example annotation infor-
mation associated to surfaces be queried via the higher-level body.
CityGML [Kolbe et al. 2005] is a major initiative on standardizing
3D city representations, covering the geometrical, topological, and
semantic aspects of 3D city models.

[Brenner et al. 2001; Schilling and Zipf 2003] discuss automated
3D city model creation. While the techniques are promising, they
depend heavily on the available data. The results do not tend to pro-
vide accurate detail, which is solved in [Schilling and Zipf 2003] by
modeling and texturing “important buildings and sights” manually.

Despite the efforts above, we can expect most models to conform to
currently supported formats, such as VRML or X3D. We separate
external model descriptions, and develop a compact internal rep-
resentation with basic support for geometry composed of triangles,
and include common properties such as normals, texture coordi-
nates and color. To optimize memory usage, our internal represen-
tation will use single texture LODs instead of mipmapping.

We will internally support model hierarchies, similar to the UDM
[Coors 2001] (buildings consisting of meshes), to maintain associa-
bility of data and for hierarchical frustum culling. We will support
billboard impostors as point objects. We will include support for
incremental geometry LODs, and, in principle, static LODs. In the
first case, a base model is equipped with smaller parts, which are
culled away until contributing sufficiently to the view. In the sec-
ond case, the whole object is replaced at the LOD limit. Based on
our previous field studies (see section 5), in contrast to [Pasman and
Jansen 2003], we suggest billboards to substitute complex geome-
try for small objects, such as statues, independently of distance or
viewing angle.

3 Wireless networking

3.1 Target platforms

For the current discussion, we select two primary test devices, the
Nokia 6630 and the N93. The 6630 is one of the first smart phones
supporting 3G networks, and N93 one of the first with 3D hard-
ware. Table 1 provides their essential specifications [Nokia 2006].
Nokia does not release accurate information about the CPUs or the
real amount of RAM. For the developer, especially the amount of
available memory would be essential, for cache optimization. For
the N93, the amount of dynamic memory is described as “up to
50MB”. External tools reveal that available RAM is 6–10MB for
the 6630, and 16–22MB for the N93. Both devices support OpenGL
ES Common profile for rendering, but only N93 has 3D hardware.

Platform Nokia 6630 Nokia N93
2G Networking GPRS/EDGE GPRS/EDGE
3G Networking UMTS UMTS
Display resolution 176x208 320x240
Colors 65 536 262 144
Operating System/UI Symbian S60 v2 Symbian S60 v3
Available RAM 6–10MB 16–22MB
Graphics acceleration No Yes

Table 1: The two 3G smart phones used in trials.

3.2 Internet in mobile environment

To assert a realistic mobile network scheme, we discuss network-
ing in the mobile environment. The protocol that defines the in-
ternet, the Internet Protocol (IP), provides worldwide routing of
data between computers using unique IP addresses. IP is circuit-
less, independent of the underlying hardware, thereby facilitating
implementations from ethernet cables to trained pigeons carrying
messages.

Two common data transfer protocols over the IP are used via the
socket interface: the reliable stream transport service, TCP (trans-
mission control protocol) and the user datagram protocol, UDP.
The fundamental difference is in reliability: received TCP pack-
ets are automatically acknowledged, so the application using TCP
to transmit data can always rely on the transmission. For a pro-
grammer, this is a major advantage: a TCP socket acts as a simple,
reliable stream into which data can be poured, independently of the
underlying reliability assurance mechanisms.

To increase network utilization, TCP uses the sliding window
paradigm: several packets can be sent consecutively before receiv-
ing any acknowledgements. To avoid congestion, TCP applies the
slow start algorithm: data rate is progressively increased as packets
are delivered. The basic TCP header is 20 bytes long, so any TCP
transmission should use large payload to minimize overhead.

UDP, even though developed after TCP, is simpler. The UDP header
(8 bytes) only contains a checksum for the receiving end to as-
sure its intactness. UDP packets are not automatically acknowl-
edged. An application listening to UDP only receives correct pack-
ets, and cannot know if any packets are lost. If a system wishes
to achieve reliability, the application must send back acknowledge-
ments. While the UDP header is smaller than the TCP header, large
packets are still encouraged to reduce overhead.

In mobile networks, latencies can be over 500ms, and the sliding
window paradigm is extremely valuable. However, a poorly de-
signed higher level network protocol can allow the slow start con-
gestion control to stall network performance. For example, HTTP
v1.0 applies a separate TCP connection for each object on a web
page, causing them all to suffer from the slow start [Parkvall et al.
2003]. In addition, packet loss may cause severe connection disgra-
dation due to excessive automatic retransmissions.

Several high-level middleware solutions exist, where further ab-
straction is layered over UDP or TCP, to provide communication
transparency to underlying programming languages, operating sys-
tems and networks. For example, CORBA maps objects defined
with interface definition language to various languages. SOAP, sim-
ple object access protocol, is an XML-based protocol for exhanging
messages, usually via HTTP 1.0. CORBA uses a binary protocol,
while SOAP uses basically human-readable text. Due to the lengthy
headers and envelopes, SOAP overhead is significant. Binary XML
proposals such as the WAP Binary XML (WBXML) [W3C 1999]
attempt to overcome this severe drawback.
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3.3 GPRS/EDGE and 3G network performance

The underlying network technology is transparent to applications
using the IP stack. There are certain settings that could be altered
to increase network efficiency, such as increasing the TCP receive
window size, but they are implementation dependent and not avail-
able from applications.

However, network efficiency can be improved by considering the
connection characteristics. For example, in the presence of packet
loss and high latencies, TCP tends to fall back to slow data rates,
while UDP based protocols with optimized application level control
could still be able to maintain reasonable transfer speeds.

The current common packet-switched wireless data transfer tech-
nologies intended for mobile phones, such as the General Packet
Radio Service (GPRS) and the enhanced version Enhanced Data
rates for GSM Evolution (EDGE) can theoretically provide 140.8–
236.8kbit/s, depending on allocated time slots and coding meth-
ods. These speeds are seldom met. However, EDGE technology in-
creases the transmission reliability by adding error correction data.

True 3G technologies, for example the Universal Mobile Telecom-
munications System (UMTS), should yield much higher data rates.
Starting with a 384kbit/s, future UMTS systems could theoretically
support up to 11Mbit/s rates. The next evolution step of UMTS,
High-Speed Downlink Packet Access (HSDPA) is being deployed,
with peak downlink rates of 1.8–3.6Mbit/s, although with heavy
dependency on network load.

Our tests were performed on a UMTS network, with a maximum
capacity of 384kbit/s. We measured packet loss probability by
sending UDP packets 500 bytes long to the devices, which replied
by retransmitting the same packet. This was iterated at least a 100
times per one measurement. The packets contained digital noise,
generated at server side, to suppress any possible compression. We
performed several measurements. These tests do not account for
the roaming effects between neighboring cells, as we did not move
during the tests. The results were encouraging. Usually, we experi-
enced no packet loss, even for GPRS/EDGE. At worst, we detected
two lost packets in a sequence of a 100 packets (tables 2 and 3).

The UDP round-trip-times were measured using the minimum
packet size of one byte. For GPRS/EDGE, the delay varied from
400ms to 800ms. Occasionally, we witnessed very long round-
trip times (the maximum being 2.7s), with only 2-3kB/s rates. For
UMTS, the delay seemed to stay between 140ms and 150ms, to
both directions, and with both devices (tables 2 and 3). However,
3G networks were sometimes unavailable indoors.

TCP maximum transfer rates were measured by pooring data to the
TCP sockets. We made simple tests with 10kB, 100kB and 1MB
to see if the TCP slow start has any effect on the rate of the 3G
devices. The results can be seen in table 4. The first 10-100kB are
transferred relatively slowly, but about 5 seconds after initiating the
transmission (after 100kB), the maximum rate of about 40kB/s is
achieved. As the theorerical maximum is 384kbit/s (48kB/s), the
network performs quite well with TCP. The upload rate of the 6630
is less than half of the download rate, but in our case, it will not be
saturated by map data requests (see section 6.2).

3.4 Networking strategy

The good and steady performance of the measured 3G network sug-
gests using a TCP-based data transfer scheme in favour of a propri-
etary low-level UDP solution. The relatively high latency, 140ms,
however, must be considered. A request-response protocol (remote
procedure call, RPC) between a client and a server would not be
efficient, unless an algorithm similar to sliding window in TCP is

Platform Nokia N93 Nokia 6630
Technology GPRS/EDGE GPRS/EDGE
Packet loss (UDP 0.5kB) <3% <1%
UDP RTT 400–800ms 400–800ms
Max TCP speed downlink 13-15kB/s 10-14kB/s
Max TCP speed uplink 9-11kB/s 5-10kB/s
TCP RTT 400-800ms 400–800ms

Table 2: Network statistics for a 2.5G (GPRS/EDGE) network in
good conditions.

Platform Nokia N93 Nokia 6630
Technology UMTS UMTS
Packet loss (UDP 0.5kB) <1% <1%
UDP RTT 140–150ms 140–150ms
Max TCP speed downlink 40kB/s 40kB/s
Max TCP speed uplink 40kB/s 15kB/s
TCP RTT 140–150ms 140–150ms

Table 3: Network statistics for a 3G (UMTS) network in good con-
ditions.

used. In addition, as the slow start effect is clearly visible, data
should be transferred through a single TCP connection. The ob-
served 40kB/s is not much in comparison to common 3D model
sizes, and a progressive download scheme is justified.

Of the currently available middleware solutions, most are too
resource-consuming for mobile devices, and unnecessarily generic
for a specialized application. Some solutions, such as SOAP, also
produce excessive overhead. Of the available generic methods, the
most potential is the binary XML [W3C 1999].

4 3D Engines and visibility

3D engines can apply several techniques to speed up rendering,
which have an impact on a networking scheme. One common goal
in 3D engines is to maintain output sensitivity, where only those
objects that actually are visible to the user are rendered. In highly
occluded environments, potentially visible sets (PVS) [Airey 1990],
objects visible from each view cell, can be pre-calculated. In urban
environments, a view below roof level is highly occluded and the
PVS solution is efficient, typically culling over 90% of the scene.
When the viewpoint is raised, PVS may cull only 50%.

A PVS solution provides a view-independent list of objects. The
ones that fall outside the view frustum are culled away using frus-
tum culling. In addition, objects that contribute very little to the
scene may be culled away using contribution culling techniques.
3D engines often apply backface culling to avoid rasterization of
surfaces that are not facing the user.

In a progressive download scheme, a PVS solution is of obvious
help. Only those buildings that are visible need to be downloaded.
At street level, downloading may be quite fast due to the small
amount of visible objects. It may be argued that at sky, where a PVS
solution only offers roughly 50% efficiency, the geometry could be
easily culled using fast client-side backface culling, and a PVS solu-
tion would be unnecessary. However, in a networked scheme, these
backfacing 50% of geometry and textures need not be downloaded
in the first place. This is a substantial advantage. Frustum culling
is not so potential method to minimize network traffic, as rotation
may change the entire view in a fraction of a second.

10



Network UMTS/6630 UMTS/N93
10kB upload 5–7kB/s 6–7kB/s
100kB upload 12–14kB/s 24–28kB/s
1000kB upload 13–15kB/s 39–41kB/s
10kB download 5–6kB/s 5–6kB/s
100kB download 22–24kB/s 22–24kB/s
1000kB download 39–41kB/s 39–41kB/s

Table 4: The slow start of TCP. Each test starts by opening a new
TCP connection.

5 Navigation

With our low level networking capabilities resolved, we attack our
problem from a user’s perspective. Our 3D map should support
navigation in all its aspects. As seen in section 4, a high perfor-
mance would be expected if the viewpoint can be restricted to street
level. However, this may not be appropriate for navigation tasks.
As assessed by [Downs and Stea 1977], one of the primary design
decisions for map making is the purpose. We investigate previous
research on navigation to identify user requirements, and perform
field experiments to verify the assumptions.

The classic model for spatial knowdledge is division to landmark
knowdlege, route knowledge and survey knowledge [Siegel and
White 1975; Thorndyke and Stasz 1980], which can be seen as a
hierarchical learning model (for a child, [Holahan 1982]), where a
user performs spatial sampling by moving in an environment. How-
ever, an extensive exposure to environment via observations from
street level does not necessarily lead to an accurate mental model
of spatial relationships [Chase 1983]. In addition, merely follow-
ing a route does not necessarily develop this cognitive map either
[Golledge et al. 1992]. Use of a secondary source, such as a map,
helps navigators to directly observe spatial relations and acquire
survey knowledge [Thorndyke and Hayes-Roth 1982].

[Downs and Stea 1977] divide navigation to four stages: 1) ini-
tial orientation, 2) maneuvering, 3) maintaining orientation and 4)
recognizing the target. [Darken and Cevik 1999] further classify
wayfinding tasks in virtual environments. When a goal is marked on
a map, a navigator performs a targeted search. When only the tar-
get’s approximate location is known, a primed search is performed.
When the location is unknown, the navigator performs an exhaus-
tive, naı̈ve search in the entire environment. Finally, the navigator
can simply roam about, conducting exploration.

When navigating in a large virtual world, one needs a large scale
view to maintain a sense of the overall environment, but a small-
scale view is required for cue extraction, to identify details that are
used to match the two worlds [Oulasvirta et al. 2005]. This scaling
problem is well known [Furnas 1986; Darken and Peterson 2002],
and exists in both paper and electronic maps.

To research users’ orientation strategies, we have performed a field
study [Oulasvirta et al. 2005] using our 3D map system with locally
stored data. Users were allowed freedom to move anywhere in the
3D space. We conducted tests for local orientation and wayfind-
ing, providing an initial viewpoint at street level or at sky (look-
ing down as a 2D map). The initial orientation angle was varied
between tasks. Subjects considered local orientation tasks easy at
street level, especially if the initial view was correctly oriented. On
the other hand, wayfinding tests were more demanding. Targets
were not marked, forcing the users to perform a primed search in-
stead of a targeted search. Street names were not provided to focus
on visual features. 8 subjects performed the tasks, of which 6 had
previous experience of 3D maneuvering with 3D games.

Figure 2 presents typical cases of primed search and orientation in
unrestricted 3D space. In figure 2 (left), the subject is physically
located at (A) and asked to maneuver to (B). Initial view is at (1),
in 90oangle to the A–B route. The subject first descends and moves
forward to (2) to realize his error (noticing a park), then returns to
his physical location (3), where he performs orientation near street
level, and finally proceeds over rooftops to destination (4). In the
figure 2 (right), a subject at (A) is asked to find a landmark (B) in
the 3D view. (B) lies off the screen with a 180o initial angle dif-
ference, but is visible in the physical space. The subject ascends to
sky for a better view (2), soon spots the target (3), and returns back
(4). In total, we performed 26 successful wayfinding experiments,
where we also observed pure exploration at sky level, where a sub-
ject simply browsed the 3D world before performing his task. We
also conducted over 50 orientation experiments.

During navigation, users used all available cues for navigation:
building shapes, façade textures, façade colors, statues etc. Façades
that were not textured caused orientation problems. Statues were
represented by billboards, which were recognized easily. The ex-
periments demonstrated the importance of scaling. Local orien-
tation at street level should be allowed, using sufficiently detailed
models for cue matching. In addition, a view over large areas is
required to allow larger scale orientation. In this case, landmarks
should be viewable even from long distances. We found no evi-
dence to support restriction of the viewpoint to street level only.

Figure 2: 3D navigation. Initial orientation and a primed search
from A to B (left), and orientation at A to spot a landmark farther
away at B (right).

5.1 Progressive model download supporting naviga-
tion

The discussion and results above pose demanding requirements for
a networking scheme, in addition to modeling and a 3D engine.
[Schultz and Schumann 2001] discuss using importance in render-
ing, and [Coors 2002] applies that to retrieving map content from a
database. We adapt and support these ideas with the purpose of as-
sisting navigation, while maintaining high responsiveness and rec-
ognizability. We provide priority levels that can be assigned to 3D
map objects. First, the status of a major landmark can be assigned
to any classical landmarks, such as churches, railway stations or
other unique and well-known buildings with high visibility. Sec-
ondly, all smaller but potentially salient cues such as statues and
company logos can be marked as minor landmarks. Common struc-
tures receive no priority. In practice, importance is assigned to the
model directly in the 3D view in administrator mode via menus.

Our progressive download scheme will priorize landmarks over
common geometry. The major landmarks should be viewable from
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long distances in the 3D map, so we also support landmark impos-
tors, billboards, that are rendered even beyond the far plane of the
view frustum. In addition, marker arrows can be assigned to point
to any positions outside the current view.

6 System Architecture

Figure 3 provides a view to the system architecture. We separate
external data exhange formats by interfaces, where we parse the
subset of available features supported by our system, into a com-
pact internal format. Our internal format supports PVS, triangle
meshes with incremental LODs, LOD textures and model hierar-
chies. Common geometry features such as normals, texture co-
ordinates, color etc. are included in the binary mesh description.
2D data is used for address queries and routing. We allow basi-
cally any external data formats that can be used within our 3D map
system, including VRML, X3D, CityGML, MapInfo, Shape and
various content databases. Currently, we have parsers for VRML,
MapInfo, Shape and two XML based tourist databases.

Figure 3: System interfaces. External interfaces accept various
formats, while internally the data is stored and transmitted in com-
pact form.

We pre-calculate PVS, applying contribution culling. This culling
is performed in screen space with a simple threshold for minimal
amount of pixels required for an object to be included. If the input
models contain LOD levels, the PVS can directly choose appro-
priate meshes. The resulting PVS cells are difference-encoded to
clusters. Textures are split to LODs.

Content databases are similarly parsed, and stored into a database
independently of their original file format, but saving a common
set of attributes. The database is accessed via normal SQL queries.
We currently store PVS lists, geometry and textures into separate
files instead of a content database for faster retrieval. Most of this
data can remain resident in server’s memory for lightspeed access,
assuring the scalability of the system.

6.1 Asynchronous pipelined networking

Our low level network scheme is a request-response system (Re-
mote Procedure Call, RPC), where the client performs requests, and
server responds. However, all requests and responses are serialized
into send buffers, which are asynchronously sent to the TCP socket.
Requests and responses are also received asynchronously. More

requests can be sent before all responses are received. The send
buffers are organized as tail queues that can be rearranged prior to
transmission. Several requests and responses are accumulated to
the buffers before actually transmitting them (see figure 4).

Figure 4: Pipelined networking with send buffers. Buffer contents
can be re-organized prior to actual transmission via TCP.

Our asynchronous pipelined networking solution overcomes the
overhead related to small packet sizes and removes the problems
caused by round-trip latency in the common RPC scheme. The
same connection is used as long as the application is running, so the
slow start of TCP only affects the first transmissions. This scheme
is able to exploit the full capacity of the network.

6.2 Network protocol

Our network protocol is described using XML. The protocol con-
sists of messages, which can have attributes, specified as fields with
the appropriate field type. The lenght of the message header is al-
ways 4 bytes, but the length of a field varies depending on the type,
usually 1 or 4 bytes. Types can also be enumerated, such as the
result field of each response. End tags are needed only for the de-
scription and are not included in the binary protocol. Binary data,
for which exact field lengths cannot be defined in advance, is car-
ried in containers. The container type, such as uint32 t, defines
the container’s atomic data unit. Previously defined structures, such
as texture data, can also be used as atomic container types. As
an example of the protocol definition, table 5 presents the XML de-
scription for a mesh request and a response. The parse time of the
binary protocol is negligible.

All requests perform a query for a single object, which is answered
by a single object. For example, a mesh query would contain a 4
byte header (the enumerated message name), and the payload (mesh
id) is another 4 bytes. In a case where the user raises from street
level, he may instantly see perhaps 200-400 new meshes over the
rooftops. When the client serializes the requests, the request buffer
will be filled by 400x8 bytes = 3200 bytes. When flushed to the
TCP socket, only a couple of full TCP packets are generated and
sent in a fraction of a second. The response would consist of 400
response messages. With an average mesh size of 512 bytes, 200kB
would need to be transferred. The overhead imposed by our proto-
col to the responses would be only (4 + 4)/512 = 1.56% (if the
mesh id, 4 bytes, would be counted as part of the payload). Still,
the network would be saturated for several seconds. Our buffering
scheme is able to handle prioritized requests (such as landmark ge-
ometry) due to the ability of arbitrary management of the buffered
messages until they are actually flushed to the TCP socket.

The benefits of our protocol, in contrast to other lightweight proto-
cols, say, JSON [Json.org 2006], include very low overhead, light-
speed parsing, capability to send binary data such as textures, send
buffer management, including control for maximizing TCP packet
size, and asynchronous data transmission.
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<message name="mesh_data_request">
<field name="id" type="uint32_t"/>

</message>
<message name="mesh_data_response">

<field name="result" type="result"/>
<field name="id" type="uint32_t"/>
<container name="data" type="uint8_t"/>

</message>

Table 5: XML specification for a mesh request and response.

Figure 5: Progressive model downloading. As the user moves, new
visible geometry is requested. When the user stops, texture LODs
are updated.

6.3 Network scheme

To allow map data prioritization, we separate all map contents while
maintaining their associations and hierarchies: 3D geometry, tex-
tures, location-based information and dynamic data can be trans-
mitted in any order. After establishing a TCP connection, the client
first requests a model hierarchy, which also provides landmark in-
formation. Based on the current location (for example, a GPS po-
sition), global landmark impostors are requested in distance order.
Then, the current location is sent to receive a PVS cluster, and the
current viewcell decoded to identify the currently visible meshes. If
no geometry resides in memory or local caches, all visible meshes
are requested, prioritizing landmark geometry. If the user does not
move and all geometry is queried, textures are requested, in dis-
tance order.

As the user moves, our difference encoded PVS cell structure di-
rectly provides the newly visible mesh id’s (the difference between
the previous and the current cell), which are used to query the ac-
tual meshes. As geometry is received, it is inserted to the internal
scene structure and rendered. Requests, responses and rendering
are asynchronous. Again, textures are requested after all geome-
try requests are sent (independently of the received geometry), with
priorities on global landmark textures and local landmark impostor
textures. Figure 5 presents the movement of a user, with the highest
and lowest LOD ranges with visibility differences.

The system allows application of any higher level pre-fetching
scheme for situations where all visible objects are downloaded and
the network is idle.

6.4 3D hardware considerations

Mobile 3D programming interfaces such as OpenGL ES and JSR-
184 provide standardized 3D programming. From the viewpoint of

such an API, a hardware-accelerated platform is no different from
a software implementation. However, with hardware, rendering is
pipelined. [Möller and Haines 1999] divide this pipeline to the three
conceptual stages of application, geometry and rasterizer (given
that a hardware geometry stage exists).

Rendering speed in a pipelined system is dependent on the slow-
est stage. Applications should manage the scene efficiently to feed
the graphics hardware. Geometry should be arranged in hardware
compatible forms, such as vertex arrays, using connected primi-
tives, such as triangle strips. Visibility algorithms providing output
sensitivity should be applied to minimize rasterization. In general,
state changes in the graphics pipeline should be avoided to keep
the pipeline fully occupied. [Möller and Haines 1999] provide sev-
eral other optimization techniques that 3D programmers should be
aware of. Our 3D engine takes full use of such methods, and is
described in more detail in [Nurminen 2006].

6.5 Caching

In a mobile environment, probably the most limited resource is the
available memory. When rendering a large, textured scene, the en-
tire textured model will not be likely to fit in the memory. Out-of-
core algorithms attack this problem. [Funkhouser et al. 1992] ap-
plies a memory management algorithm that computes the necessary
LOD models to store in memory, estimating which will be rendered
next. [Chim et al. 1998] assumes that the local cache storage can be
exhausted, and sends the server the local cache contents and client’s
location to receive model updates. The local cache mechanism uses
access scores to predict the access probability of models.

Figure 6: 3D data caching. The application first inspects a RAM
cache for compressed objects, or the local cache indices, before
sending a request to a server.

Our implementation has been programmed to be memory-efficient.
We use explicit memory management and are able to free memory
in any situation. We pre-configure upper memory limits for ap-
plication data, such as geometry and tourist data, and textures. In
addition, any data originally in a compressed format can be held in
a RAM cache. Currently, this cache holds JPG textures and PVS
clusters.

Our memory management system applies a method similar to the
least recently used algorithm. When the application memory limit
is exceeded, objects outside the current PVS cell and, if necessary,
outside the view frustum, are released, in reverse distance order.
When texture memory is exceeded, textures outside the current PVS
cell (and possibly view frustum) are released in LOD order. Antici-
pating file I/O to be inefficient for several small files in comparison
to a few large files due to access latencies, we favour smaller ob-
jects to be stored in the RAM cache. As PVS clusters tend to be of
similar size and relatively small due to pre-process restrictions, the
RAM cache is first clensed of large textures.

The cache mechanism and memory usage are presented in figure
6. When new data is needed, the application first checks the RAM
caches for compressed data, or the local storage. Data on local stor-
age is organized into cache files, on internal flash memory, storage
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card, internal hard drive or any such device (selectable by user).
A 3D environment may consist of hundreds or thousands of indi-
vidual objects. Mobile devices still use the FAT filesystem, which
suffers from severe increase in access latencies when such amounts
of small files are stored. We have frequently observed file access
latencies of the order of seconds when distributing our data over
thousands of separate files. To overcome this, we use cache files
that hold 100 objects each, accompanied by corresponding index
files. These indices also remain in memory. Therefore, the appli-
cation knows immediately if an object is present in the local cache
or if a network request must be performed. When new data arrives
from a server, it is stored and the index file updated. The num-
ber of objects held in cache files could be optimized for each sys-
tem (and storage device) by benchmarking the access latencies and
seek times at user’s discretion. However, as such tests tend to be
relatively lengthy, we have chosen a value that limits the number of
individual files of our current data set to a hundred or less, yielding
fast access in all cases.

Figure 7: A street-level scene rendered by Nokia 6630 in 78ms
(left), and Nokia N93 in 5ms (right). The rendering quality is simi-
lar.

7 Results

We have created an optimized network scheme for progressive 3D
model download in 3G networks. We have also optimized a 3D map
application for 3D hardware. The system has been implemented
and installed on two 3G smart phones. The table 6 provides results
regarding rendering speeds for typical navigation situations at street
level, above rooftops and looking down from the sky. Nokia 6630
reaches interactive rates even without 3D hardware, but the 3D ac-
celerated Nokia N93 performs extremely well, rendering scenes an
order of magnitude faster, sometimes reaching 3-5ms (200-300fps)
at street level (figure 7). In practice, we have been able to use over
500m visibility range, reaching over 60fps independently of the
viewpoint. Figure 1 presents such a case, where the N93 renders
over 200 façades and rooftops using over 50 unique textures.

The progressive download utilizes the 3G networks to the fullest,
with minimal overhead. We reach the maximum measured data
rates, 40kB/s, if we exclude the time spent for storing data onto
local caches. Due to our compact protocol and buffered use of TCP,
this is also the rate for actual model data transfer. The slow start of
TCP allows the use of full network capacity in about 5-10 seconds
after the beginning of data transfer.

Our case city model contains almost 200 individually textured
buildings. The landmark-priotized scheme with visibility optimiza-

Platform Nokia 6630 Nokia N93
Resolution 176x208 240x320
View distance 360m 360m
Contribution culling 16 pixels 16 pixels
Memory usage 4–8MB 4–8MB
Street 50–100ms 3–10ms
City overview 100–250ms 10–20ms
In sky, looking down 80–150ms 10–20ms

Table 6: Approximate rendering speeds for a two 3G phones, with
and without 3D hardware.

tions provides a navigable map in 15-30 seconds. The user may
start exploring the map, or orientate with the local environment,
maintaining responsiveness as the model is progressively transmit-
ted. In practice, after a minute or two of exploration, most of the
lightweight model geometry (3MB original VRML, 714kB binary)
is downloaded, and several important buildings are textured (the
complete model contains 3-9MB of JPG textures, depending on the
maximum allowed resolution). In the case of street level naviga-
tion, geometry is downloaded without saturating the network, and
buildings become textured quickly.

Latencies related to local file I/O affect the overall performance. We
have minimized this by caching compressed data in memory and
using indexed file aggregates, but still each read and write blocks
the application, reducing the effective download rate. In addition,
the experienced framerate reduces from 60-100fps to 30-60fps. Al-
lowing texture storage on the fly would further degrade the per-
formance, causing noticeable split-second freezes. We currently
load or store textures during the short breaks when the user is not
maneuvering, given no geometry is pending. Using internal flash
memory instead of external storage cards provides a considerably
more pleasant experience. With texture loading turned off while
moving, and geometry being loaded from network or internal flash,
the abovementioned 60fps is usually maintained.

The size of our Symbian 3D map executable is approximately
260kB. The memory usage is 4–8MB, depending on the allowed
cache sizes. We have launched the application with only 1MB, even
though no textures were loaded, and less than 10 buildings could be
fit into the memory.

8 Conclusions and future

We have developed an optimized, progressive urban 3D model
download scheme for mobile devices in 3G networks, suited for any
navigation situation. Smart buffering and a compact network pro-
tocol provide maximal throughput. The network protocol is easy
to extend, and suits any RPC scheme, where minimal overhead,
fast parsing and a small memory thumbprint are essential. The po-
tential applications vary from any mobile client-server systems to
smart home robot communications.

A 3D hardware compatible engine performs excellently on our
test platform, maintaining good responsiviness during data trans-
fer. Users have provided very positive initial feedback regarding the
overall experience with the 3D map, with network speed sufficient
for navigation. Based on further user experiments, we may still
optimize the networking scheme, for example by devicing smart
pre-fetching algorithms.

The system proves that the current level of technology has matured
to the point where real-time rendered mobile 3D applications with
progressive model download schemes can become commonplace.
However, the economical viability of such a system depends on cost
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efficiency related to 3D modeling, integrating external databases,
and manual work needed for data association and metadata annota-
tion. In addition, the system should scale for thousands of concur-
rent users. Our experiences are encouraging. Our case area, an en-
tire city center, took 8 person months to model manually, of which
6 months were used in creating textures. Automatic or semiauto-
matic texture acquisition methods could significantly speed up this
process. Modeling practices allowing optimization methods such as
visibility pre-calculations should be further investigated in associa-
tion with standardization work on formats (X3D and CityGML, for
example). Our system provides metadata and location-based data
annotation directly via the 3D interface in the administrator mode.
This is fast, for example annotating a landmark requires only a few
seconds. As 3D data may reside in the server’s memory and the
network protocol is suited for lightspeed parsing, the system scales
well and is mainly limited by the local network speed. For the po-
tential user, minimizing data transfer costs may be critical. Com-
pact binary model representation together with the lightweight net-
work protocol ensure that data transfers remain within reasonable
limits.
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