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This thesis focuses on theoretical research of dielectric properties of colloidal suspensions in which the suspended
particles can be either homogeneous or graded. Colloids have enormous advantages of being experimentally
accessible. Atomic size scale, time scale of diffusion and tunable interactions of colloids make them as ideal tools for
fundamental investigations. Effective dielectric constant plays a key role in the investigation of the properties of
colloidal suspension. Many applications such as dielectrophoresis (DEP) and electrorotation are useful to study the
effective dielectric constant.

In the first part of this thesis, a theoretical study of the dielectrophoretic spectrum of a pair of touching colloidal
particles is present. The multiple image method is employedto account for the effective dipole factor, and an analytical
expression for the DEP force is obtained. It is found that, atlow frequency, the DEP force can be enhanced (reduced)
significantly for the longitudinal (transverse) field case due to the presence of multiple images.

The second part of the thesis investigates the dielectric properties of functionally graded materials using different
methods. Analytical approaches such as Bergman-Milton spectral representation theory and first-principles approach
have been generalized to study the dielectric properties ofgraded composite. Differential effective multipole moment
approximation has been developed to study the multipole polarizability of a graded spherical particle in a nonuniform
electric field. An anisotropic differential effective dipole approximation has been developed for calculating the dipole
moment of anisotropic graded materials. We compared the approximative results with the analytical results and the
agreement is excellent. Furthermore, the optical nonlinear response of graded films was studied in this thesis, and the
result shows that the composition-dependent gradation canproduce a broad resonant plasmon band in the optical
region, resulting in a large enhancement of the optical nonlinearity.
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Chapter 1

Introduction

1.1 Colloids

1.1.1 What are colloids

Colloids are heterogeneous systems in which one or more of the components
has at least one dimension within the micrometer (10−6m) range, i.e., it con-
cerns systems containing large molecules or macroscopic particles. Familiar
examples include industrial and household products such as paints and inks,
food products such as mayonnaise and milk, and biological fluids such as
biological molecules (e.g., erythrocytes) and viruses.

Figure 1.1: A schematic picture of a colloidal dispersion.

The most typical and common colloids are two-phase dispersions, i.e., disper-
sions of (Figure 1.1) finely divided particles with colloidal size dispersed in a
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2 Chapter 1. Introduction

continuous medium of a different composition. The phases are distinguished
as the dispersed phase (dispersed particles) and the dispersion medium (the
continuous medium). Table 1.1 lists examples of some common types of such
dispersions.

Dispersed Dispersion
Examples Term

phase medium
Fog, clouds, smog, hairspray Aerosol Liquid Gas
Smoke, dust, pollen Aerosol Solid Gas
Lather, whipped cream, foam Foam Gas Liquid
Milk Emulsion Liquid Liquid
Ink, muddy water, paint Sol Solid Liquid
Styrofoam, souffles Porous solids foam Gas Solid
Butter Solid emulsion Liquid Solid
Concrete Solid suspension Solid Solid

Table 1.1: Some common colloidal dispersions classified by the dispersed
phase and the matrix in which the particles are dispersed. Some of the
systems are known by common names such as emulsions.

1.1.2 Historical view of colloids

Application of colloids can be traced back to the earliest records of civiliza-
tion. Stone Age paintings in the Lascaux caves in France, and the pigments
of Egyptian pharaohs were produced by stabilized colloidal pigments [1], in
which carbon black is stabilized by gum arabic [2]. Many of our earliest
technological processes, such as paper-making, pottery, and the fabrication
of soaps and cosmetics, involved manipulation of colloidal systems [1]. Dur-
ing the Middle Ages artisans codified their knowledge and formed guilds that
served as the prototypes of present-day professional organizations [2].

The establishment of colloid science as a scientific discipline can be traced
back to the mid-nineteenth century. In 1847 Italian chemist Francesco Selmi
(1817-1887) reported detailed studies on the preparation of “pseudosolu-
tions” (the term colloid had not been coined yet) such as the pigment Prus-
sian Blue (iron (III) hexacyanoferrate (II)), prepared by mixing solutions
of potassiumferrocyanide and ferric chloride, or sulphur sols formed by the
reaction of hydrogen sulfide with an aqueous solution of sulfur dioxide [3].
In the 1850s Michael Faraday (1791-1867) made extensive studies of col-
loidal gold sols, which involve solid gold particles suspended in water. He
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described how to obtain colloidal gold as a red sol by treating chloroauric
acid with a variety of reducing agents in his famous Bakerian Lecture on
“Experimental relations of gold (and other metals) to light” [4]. He found
that these sols can be stabilized kinetically. However, these stabilizations
are thermodynamically unstable to coagulate because of the attraction be-
tween suspended particles. We know now that the attraction is just the van
der Waals interaction. Once they have coagulated, the process can not be
reversed. If properly prepared, however, they can exist for many years. In
fact, some of the colloidal systems Faraday prepared are still on display in
the British Museum in London [1].

In 1861 Thomas Graham (1805-1869) coined the term colloid (Greek kolla
for glue) to describe Selmi’s “pseudosolutions” [5]. The term emphasizes
their low rate of diffusion and lack of crystallinity. At that time, Graham
was studying the diffusion properties of various substances in solution, and
aimed at distinguishing the substances which were capable of going through
a wall of parchment from those which were not. He found that the substances
which invariably exhibit a crystalline form in the pure state can penetrate
the wall, however, those who can not penetrate the wall have a rather gluti-
nous appearance. Graham deduced that the low diffusion rate of colloidal
particles implied that they were fairly large – at least 1 µm in diameter in
modern terms. On the other hand, the failure of the particles to sediment
under influence of gravity implied that they had an upper size limit of ap-
proximately 1 nm. Graham’s definition of the range of the particle size that
characterize the colloidal domain is still widely used today.

1.1.3 Classification of colloids

Colloids are traditionally divided into two categories, lyophilic (liquid-loving)
and lyophobic (liquid-hating), depending on their interaction with the dis-
persion medium. If the liquid medium is aqueous, the terms hydrophilic and
hydrophobic are used. The lyophilic colloids are formed spontaneously when
the substance (e.g. gelatin, rubber, soap) is brought in contact with the
dispersion medium. Hence they are thermodynamically stable. Lyophobic
colloids (e.g. gold sol) can not be formed by spontaneous dispersion in the
medium. They are thermodynamically unstable with respect to macroscopic
phase, but they may remain for long times in a metastable state.

Lyophilic colloids comprise both association colloids in which aggregates
of small molecules are formed reversibly, and macromolecules in which the
molecules themselves are of colloidal size.
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Figure 1.2: Typical aggregate morphologies into which surfactant self-
assemble in aqueous solution (a) spherical micelle, (b) rod micelle, (c) in-
verted micelle, (d) bilayer fragment, and (e) vesicle.

Association colloids are typically formed by amphiphilic (both “oil and water-
loving”) molecules such as surfactants (Figure 1.2) and lipids, which consist
of a hydrophobic and a hydrophilic part. They orientate their hydrophilic
segments toward the solvent, while the other part of the molecule turns
to avoid contacting with the solvent. As a result, amphiphilic molecules
align according to well-defined patterns and give rise to colloidal aggregates
such as micelles (Figure 1.2). Amphiphilic self-organizing systems are more
complex than colloidal dispersions. One reason for this is that amphiphiles
are associated physically [1], consequently, microstructural size and shape
can change in response to subtle variations in concentration or temperature.
This facile response to chang environmental conditions contrasts strongly
with the relatively immutable behavior of colloidal sols.

Macromolecular colloid is another type of colloid. A polymer is one type
of macromolecules. Polymer solutions exhibit many features of colloidal so-
lutions, they form spontaneously and are thermodynamically stable. For
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Figure 1.3: (A) A scanning electron micrograph of a typical area on the
surface of the latex assembly; (B) A scanning electron micrograph along the
edge of a broken particle. The surface is seen at the top and the cut through
the bulk is toward the bottom of the micrograph. Scale bars, 1µm [6].

example, latex (Figure 1.3) is a colloidal sol formed by polymeric particles.
They are easily prepared by emulsion polymerization, and the result is a
nearly monodisperse suspension of colloidal sphere. Polymer solutions can
be modified in a controlled manner to produce charge-stabilized colloids or
by grafting polymer chains onto the particles to create a sterically stabilized
dispersion, such as stabilization of black carbon absorbed by arabic gum.

1.1.4 Characteristic physical phenomena related to col-

loids

Van der Waals attraction

Electrostatic repulsion

Figure 1.4: Stabilization of colloids by electrostatic forces. The attractive
van der Waals force has its origin in atomic polarizabilities.
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Neutral particles in a common solvent attract each other by van der Waals
forces, resulting in clumping together, followed by the formation of sediment.
How can this be avoided? One effective way is to change the surface of the
dispersed particles, i.e., change the interface between the dispersed particle
and dispersion medium. One of the characteristic features of colloidal sus-
pension is large interface between particles. Grains, e.g., gold particles in
water carry an electric charge (Figure 1.4) and repel each other by Coulomb
forces. This force neutralizes the van der Waals attraction, and the gold
grains remain isolated: the colloid is stabilized. This stabilization process
was discovered by Faraday. If salt is added (sodium chloride), the charge
surface of a dispersed grain is neutralized by the added ions, that is, the
Coulomb repulsions are screened out and thus the system clumps (Figure
1.5). The optical characteristics of the suspension are altered. Red corre-
sponds to absorption of light by individual gold grains; blue corresponds to
a clumped system in which only negative chloride ions are left.

+ +

+
+

+
++

+

+

+ +

+

+

+

+
+

Positive Na ion Negative Cl ion

Figure 1.5: Inhibition of stabilization by dissolution of an ionic salt. The
arrows denote the van der Waals attraction.

It is often difficult to keep water salt-free on an industrial scale, so colloids
must be protected by other means. The scribes of ancient Egypt needed
ink, which was based on carbon black mixed with water. But this two-
component mixture was unstable: the carbon grains attracted each other by
van der Waals forces, clumping together and forming a sediment within a few
minutes. So the wise Egyptians added gum arabic (a polysaccharide obtained
from the acacia tree). This is a long-chain polymer, which adsorbs onto the
carbon grains, forming a ‘halo’ around each one. When two grains come close
to each other, the halos overlap and create a repulsive force. The ink was
thus stabilized, and would last for months. On the other hand, when wine is
cloudy (due to some unwelcome fermentation), the winemaker carries out a
clarification. This involves pouring watered-down egg white into the barrel,
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whilst stirring it; the natural polymer causes organic particles in suspension
to aggregate, forming agglomerates sufficiently large to be sedimented out.
The clear wine is then decanted.

Colloids have another identifying property, an optical effect, which is referred
to as the Tyndall effect, after British physicist John Tyndall (1820 -1893).
This effect is caused by scattering of light by colloidal particles. When a
relatively narrow beam of light is passed through a colloid, such as dust
particles in the air, light is scattered by the dust particles and they appear in
the beam as bright, tiny specks of light. The scattering of light in a colloid
due to the reflection by large colloidal particles produces a visible beam of
light. No observable reflection is caused by the smaller solute particles in a
solution. Hence, a beam of light passing through a solution is invisible. The
most famous phenomenon of Tyndall effect of colloids is that is impossible
to see the beams of light from the car’s headlights, when a driver encounters
a foggy area on a highway at night.

1.1.5 Why are colloids interesting

Size of the colloids, time scale of their diffusion and tunable interactions
make them as ideal tools for fundamental investigations [7]. For example,
the discovery of Brownian motion resulted from observation of colloidal-sized
pollen particles by light microscopy; Einstein developed the relationship be-
tween Brownian motion and diffusion coefficients. In 1909 Jean Baptiste
Perrin (1870 -1942) used this relationship to determine Avogadro’s number.
Subsequently, Marian Smoluchowski (1872 - 1917) derived an expression that
related to the kinetics of rapid coagulation of colloidal particles to the for-
mation of a larger dimer particle. His expression was extended to explain
the role of diffusion in biomolecular reactions in general.

In industrial applications, monodisperse colloidal particles with specific physical-
chemical properties, adequate reactive groups, morphology and self-assembly
capabilities are opening up many new applications and possibilities for mak-
ing products such as magnetic drug carriers, bio-sensors, implants, magnetic
resonance imaging (MRI), ceramics, coatings, new electronic, optoelectronic
and magnetic devices. In particular, hybrid colloids with mixed structure,
containing inorganic (e.g. iron-oxides, silica) and organic (e.g. polymers,
chromophore or fluorophore, proteins) material, as well as colloids with com-
plex morphology such as core-shell and non-spherical shapes, are attracting
considerable technological interest due to their unique properties (catalytic,
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magnetic, optical, mechanical, etc.), which differ from those of their atomic
and bulk counterparts [8, 9].

1.2 Functionally graded materials

In this thesis, the suspended particles in the colloidal systems can be homoge-
neous as well as graded. The previous introduction is a general introduction
about colloids, however, in the following section, we focus on graded colloidal
particles. Such materials are often called as functionally graded materials
(FGMs).

1.2.1 Definition and historical review

Functionally graded materials (FGMs) are heterogeneous since their proper-
ties or structures may vary continuously in space. For example, one side may
have high thermal resistivity and the other side may have high mechanical
strength, which means that two aspects are present in one material. There
are many graded structures and functions in nature, such as bio-tissues of
plants and animals, and even human bones and teeth.

Figure 1.6: Structure of functionally graded materials. (a) shows continuous
graded structure and (b) shows stepwise graded structure [10].

The simplest FGMs are two different material ingredients which either change
gradually from one to the other as illustrated in Figure 1.6 (a), or change
in a discontinuous way such as the stepwise gradation – graded thin film –
illustrated in Figure 1.6 (b). One of well known FGMs is compositionally
graded from a refractory ceramic to a metal. Such FGM is synthesized by two
materials with different properties, such as the heat resistant ceramics with
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metals which have high toughness and strength. The concept of the FGMs
was first considered in Japan in 1984 during a space plane project, where
a combination of materials would function as a thermal barrier capable of
withstanding surface temperatures up to 2000 K and temperature gradients
of 1000 K across a 10 mm section [11]. These materials received consider-
able attention as one of the advanced inhomogeneous composite materials
and have been explored in various engineering applications since first being
reported [11]. These materials can be tailored in their materials properties
via the gradients. Benefits include the reduced residual and thermal barrier
coatings of high temperature components in gas turbines, surface harden-
ing for tribological protection and graded interlayers used in multilayered
microelectronic and optoelectronic components [11–13].

1.2.2 Applications of functionally graded materials

Figure 1.7: Potentially applicable fields for FGMs [10].

The concept of FGMs is applicable to many fields, as illustrated in Figure 1.7.
It was originally devised in aeronautics, in which FGMs were to provide two
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conflicting properties such as thermal conductivity and thermal barrier in
one material. At present, they enable the production of light-weight, strong
and durable materials, and they are applicable to a broad range of fields such
as structural materials, energy conversion materials and so on. In particular,
FGMs will be a vital technology for rocket and space stations.

In industrial applications, recent products for industrial tools are getting
stiffer, which requires that the materials have both wear resistance and tough-
ness. Hence, the application of FGMs is a possible solution. A trial produc-
tion of an industrial tool for dry cutting has been successfully conducted
using diamond (outside) and steel (inside).

Communication tools using optical fibers need further advancement, espe-
cially given the increasing volume of information. One idea is a light wave-
length multiplex communication system using a refractive index graded fiber.
The refractive index for wave transmitting direction continuously varies along
with wavelength frequency. With a refractive index graded fiber, unnecessary
refraction can be prevented to some extent. Application of FGMs to plastic
optical fibers can provide high-speed transmission.

The application of FGMs in biomaterials is growing in importance. Over
2500 surgical operations to incorporate graded hip prostheses have been suc-
cessfully performed in Japan over the past decade [10]. These graded hip
implants enable a strong bond to develop between the titanium implant,
bone cement, hydroxyapatite, and bone. The bone tissue penetrates hydrox-
yapatite granules inserted between the implant and the bone thus forming a
graded structure.

1.2.3 Functionally graded films

Thin graded films are of great interest in many practical applications and
often possess different optical properties in comparison to bulk materials [14].
Moreover, from the practical point of view, multilayer film materials are more
convenient to fabricate than bulk graded materials [15] and, there are many
algorithms available for designing multilayer coatings [16, 17].

1.3 Structure of this thesis

The objective of this thesis is to investigate dielectric properties such as ef-
fective dielectric constant and effective dipole factor of colloidal systems in
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which the suspended particle can either be homogeneous or graded. The the-
sis presents the results of a series of theoretical and computational studies
of different colloidal systems. Chapter 2 reviews the theories that have been
used in this study to describe colloidal systems. As we are mostly interested
in the dielectric properties of colloidal particles, we focus on properties such
as polarization of particles subjected to external electric fields as well as their
mutual electrostatic interactions. The latter becomes increasingly important
when the density of the suspended particles increases, or when they aggre-
gate due to, for example, exposure to an external field. Theories involving
dielectrophoresis, nonlinear alternating current response and effective dielec-
tric response are discussed in detail as they are among the main topics of the
original research presented in this thesis.

In textbook scenarios, theories relate to ideal models. Real systems, however,
should be modeled by considering the complexity of all these systems. For ex-
ample, we can represent cells as uniform spheres in some systems, or we may
represent them as multilayer sphere, or even as continuously graded spheres.
Hence, Chapter 3 describes the models of our study. The Maxwell-Garnett
theory is used to describe the dilute systems. By contrast, the effective
medium theory is applied to study colloidal system with high concentration.
The methods developed in this thesis, such as the first-principles approach
and differential effective multipole moment approximation, are given in de-
tail.

Finally, an overview of the results are given in Chapter 4. In addition, the
publications are referred to, where appropriate, in the rest of the overview.
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Chapter 2

Background

2.1 Polarization in materials

Macroscopic objects belong (at least, to a good approximation) to one of
two large classes: conductors and insulators (or dielectrics). Conductors
are substances that contain an “unlimited” supply of charges that are free
to move through the material. In practice what this ordinarily means is
that many of the electrons (one or two per atom in a typical metal) are
not associated with any particular nucleus, but are free to roam around.
In dielectrics, by contrast, all charges are attached to specific atoms or
molecules, and hence, are restricted to limited motions about the specific
atoms or molecules. Such microscopic displacements are not dramatic, but
their cumulative effects account for the characteristic behaviors of dielectric
materials.

What happens to a neutral atom when it is placed in an electric field E0?
Your first guess might well be:“Absolutely nothing, since the atom is not
charged, the field has no effect on it.” But this is incorrect. Although the
atom as a whole is electrically neutral, there is a positively charged core (the
nucleus) and a negatively charged electron cloud surrounding it. These two
regions of charge within the atom are influenced by the field: the nucleus is
pushed in the direction of the field, and the electrons the opposite way. In
principle, if the field is large enough, it can pull the atom apart completely,
“ionizing” it (the substance then becomes a conductor). For smaller fields,
however, the center of the electron clouds is shifted away from the nuclear
position resulting in an effective attractive interaction between the electrons
and nucleus, and this holds the atom together. The two opposing forces,

13
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which are E0 pulling the electrons and nucleus apart and their mutual at-
traction drawing them together, eventually reach equilibrium. As a result,
the atom is polarized, (Figure 2.1) with positive charge and negative charge
regions. The atom now has a tiny dipole moment p, which points in the
same direction as E0. Typically, this induced dipole moment is proportional
to the field:

p = αE0. (2.1)

Figure 2.1: Dielectric sphere in a uniform field E0(r), showing the polariza-
tion charge which forms the dipole. p is the dipole moment induced by the
applied electric field.

The constant of proportionality α is called atomic polarizability. Its value
depends on the detailed structure of the atom in question.

The neutral atom has no dipole moment to start with — p was induced
by the applied field. Some molecules, called polar molecules, have built-in,
permanent dipole moments. In the water molecule (Figure 2.2), for example,
the electrons tend to cluster around the oxygen atom, and since the molecule
is bent at 105◦, this leaves a negative charge at the vertex and a net positive
charge at the opposite end, which forms the dipole p. (The dipole moment
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of water is usually large: 6.1 × 10−30C · m; in fact this is what accounts for
its effectiveness as a solvent.) When such a molecule is placed in an electric
field, there will be a torque tending to line it up along the direction of the
field.

Figure 2.2: Water molecule with its permanent dipole.

These two mechanisms produce the same basic result: a lot of little dipoles
pointing along the direction of the field, thus the materials becomes polarized.
A convenient measure of this effect is

P(r) =
∑

i

Ni〈pi〉, (2.2)

which is called polarization, and pi is the dipole moment of the ith type of
molecule in the medium, the average is taken over a small volume centered at
r and Ni is the average number per unit volume of the ith type of molecule
at the point r.

Polarization in materials can be due to several mechanisms: electronic (atomic),
ionic, molecular (dipole), and interfacial (space-charge) polarization [19–21].
The effect on each mechanism can be seen schematically in Figure 2.3. For
a given material, the sum of contributions from each mechanism determines
the net polarization, P, of the dielectric material,

P = Pelectronic + Pionic + Pmolecular + Pinterfacial. (2.3)

Electronic polarization exists in all materials and is the response of the elec-
trons and the atomic nuclei that shift their relative positions under an applied
electric field and form an electric dipole (each per atom or ion). This po-
larization occurs instantaneously, in response to light electromagnetic field
frequency (∼ 1015 Hz), since the electrons have a very high natural frequency



16 Chapter 2. Background

Figure 2.3: Polarization mechanisms [18]

(∼ 1016 Hz). Ionic polarization is the displacement of negative and positive
ions toward the positive and negative electrodes, respectively. Since they
are much more massive than electrons, the ions cannot become polarized
as rapidly. Ionic polarization is limited to maximum frequency of approxi-
mately 1013 Hz. Molecular polarization occurs in materials consisting of polar
molecules (or unit cells) only. The maximum frequency of response varies sig-
nificantly from material to material depending on the size of molecules, but
is always less than that for electronic and ionic polarization and is typically
less than 1010 Hz. Interfacial polarization is a short-range electric conduc-
tion process. Due to the nature of diffusion, space charge polarization occurs
rather slowly and the typical frequency of response is approximately 102

Hz. Figure 2.4 summarizes the frequency dependence of various polarization
mechanisms.

2.1.1 Dielectric constant

For many substances, polarization is proportional to the field, provided E0

is not too strong,
P = ǫ0χeE. (2.4)

This constant of proportionality, χe, is called the electric susceptibility of the
medium, ǫ0 is the permittivity of vacuum. Materials that obey Equation (2.4)
are called linear dielectrics. Note that E is the total field — macroscopic
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Figure 2.4: Frequency response of dielectric mechanisms [22].

electric field; it may be due in part to free charges and in part to polarization
itself. With the definition of displacement D = ǫ0E + P, we have

D = ǫ0E + ǫ0χeE = ǫ0(1 + χe)E, (2.5)

so D is also proportional to E:

D = ǫE, (2.6)

where
ǫ = ǫ0(1 + χe) (2.7)

is the permittivity of the material.

ǫr =
ǫ

ǫ0
= (1 + χe) (2.8)

is called the relative permittivity of the material. Table 2.1 shows examples
of this parameter.

2.1.2 Complex dielectric constant

Poisson’s equation is used to describe the electrostatic properties of the ma-
terials. For nonconducting medium, Poisson’s equation is given by

∇ · (ǫ∇Φ) = −ρ, (2.9)
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Material Dielectric constant Material Dielectric constant
Vacuum 1 Benzene 2.28
Helium 1.000065 Diamond 5.7
Neon 1.00013 Salt 5.9
Hydrogen 1.00025 Silicon 11.8
Argon 1.00052 Methanol 33.0
Air (dry) 1.00054 Water 80.1
Nitrogen 1.00055 Ice(-30◦C) 99
Water vapor (100◦C) 1.00587 KTaNbO3(0

◦C) 34,000

Table 2.1: Relative permittivity (unless otherwise specified, values given are
for 1 atm, 20◦C). Source: Handbook of chemistry and physics, 78th ed. (Boca
Raton: CRC Press, Inc., 1997).

where Φ and ρ denote the electrical potential and charge density in the
considered region, respectively. For a conductive medium with conductivity
σ, no free charges and sources are allowed, and the Poisson’s equation is
given by

∇ · (σ∇Φ) = 0. (2.10)

When the medium is a mixture of these two cases (a lossy dielectric), it
consists of dielectric and conductive components. The Poisson’s equation
then becomes time dependent, and is given by a complex electric potential
in the region with the coupling of Equations (2.9) and (2.10), which is also
known as the continuity equation for the current density

∇ · (σ∇Φ) +
∂

∂t
∇ · (ǫ∇Φ) = 0. (2.11)

Equivalently, Equation (2.11) can be written as

∇ · (iωǫ̃∇Φ) = 0, (2.12)

where ω = 2πf being the angular frequency of the external electric field,
i =

√
−1, and ǫ̃ is the complex dielectric constant defined as

ǫ̃ = ǫ+
σ

iω
. (2.13)

The significant factor regarding complex dielectric constant is that it is fre-
quency dependent (i.e., it contains an ω term). If we consider the behavior
of Equation (2.13) at very high frequencies (ω → ∞), the imaginary term
tends to zero and ǫ̃ is dominated by the permittivity. At very low frequencies
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(ω → 0), conductivity term becomes very large and dominates over permit-
tivity. Therefore, there are two types of behavior — permittivity dominated
and conductivity dominated. At intermediate frequency there is a crossover
region from one type of behavior to another.

2.2 Dielectric spherical particles in electric

field

When a polarizable particle suspended in another medium is exposed to an
electric field, charge builds up at the interface between the surface of the
particle and its surroundings; differences in the numbers of positive and neg-
ative charges accumulating on the surface mean that the particle is polarized.
Since any electrostatic interaction with the particle can be treated as if it
were an interaction with the dipole across the particle, we can determine the
behavior of the particle by determining the dipole.

If an electric field E0 is applied to a polarizable particle, then charge accu-
mulates at opposite surfaces of the particle along the field vector to form a
dipole. However, if the particle contains no excess charge (i.e., it is charge
neutral), then the solution of Equation (2.10) in spherical coordinates lead
to a uniform electric field within in the particle [23]),

E =
3ǫ2E0

ǫ̃1 + 2ǫ̃2
, (2.14)

where subscripts 1 and 2 refer to the particle (inside the body) and medium
(outside the body), respectively.

The induced polarization P per unit volume within the particle is given by
the expression

P = (ǫ̃1 − ǫ̃2)E. (2.15)

Therefore, the dipole moment for a sphere of radius a is given by

p =
4

3
πa3P. (2.16)

From this, the induced dipole moment for a spherical particle suspended in
electric field can be written as

p = 4πa3ǫ2
ǫ̃1 − ǫ̃2
ǫ̃1 + 2ǫ̃2

E0, (2.17)
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Figure 2.5: (a) If the particle is more polarized than medium, the induced
electric field is aligned to counter the external field, and the field is warped
toward the particle (and intersects the conducting surface at right angles).
(b) If the particle is less polarized than medium, the dipole is oriented in the
opposite direction of the external field and the field lines wrap around the
particle.

where the bracketed term is the referred to as the Clausius-Mossotti factor
or dipole factor, b

b =
ǫ̃1 − ǫ̃2
ǫ̃1 + 2ǫ̃2

. (2.18)

This describes the dipole moment for a spherical dielectric particle suspended
in a dielectric medium; note that p depends on the dielectric properties of
both particle and medium and can change sign according to the complex
dielectric constants of the particle and medium. In the situation, where
the particle is more polarizable than the medium, impedance is dominated
by conduction in the particle and capacitance in the medium, and a larger
amount of charge will accumulate on the medium side of the interface (which
is acting like a capacitor) than on the particle side (which is acting like a con-
ductor). The imbalance between the charges means that across the particle
as a whole (including the charge on the interface) there is a dipole oriented
along the electric field (Figure 2.5(a)). If the medium is more conductive
than the particle, then there will be more charge on the particle side of the
interface than on the medium side, and hence the net dipole is oriented op-
posite the field (Figure 2.5(b)). Where the complex dielectric constant of
the particle and medium are equal, the net charge is zero and no dipole is
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present.

2.3 Electrokinetics

As we mentioned in Section 1.1.2, when colloidal particles disperse into a
continuous medium, they are normally charged; on the other hand, if the col-
loidal system is subject to an external electrical field, electric fields can have
a profound effect on the flow behavior of the dispersion. This gives rise to
electrokinetics – manipulation by controlling the electrostatic interactions be-
tween particles and their environment. For example, electrophoresis, dielec-
trophoresis (DEP), elecrorotation (ER), and traveling-wave dielectrophoresis
(traveling-wave DEP) are specific application forms of electrokinetics. The
best known of these effects is electrophoresis, a force imparted on a charged
particle due to the attraction between the electrode and the charges on the
particle, causing the particle to move toward the electrode of opposite po-
larity. Electrophoresis was developed in the late 1930s by Arne Tiselius [24]
of Uppsala University in Sweden for the physical separation of colloidal mix-
tures and later proteins; he was awarded the Nobel Prize for chemistry for
this in 1948. The principle of electrophoresis is that charged particles move
through a non-moving liquid in a electric field at a speed proportional to
their size and electrical charge, although typically one selects separation to
be principally dictated by one or the other by careful choice of experimental
conditions (such as pH and medium viscosity). Controlled electrophoresis
experiments require the application of an electric field magnitude, known as
a direct-current (DC) electric field, such that particles maintain a constant
velocity independent of time or position on the matrix.

Electrophoresis is an important method used to separate biological parti-
cles such as proteins and DNA. Their differences in size, binding affinity
and solubility determine the different moving velocity in the electrical field.
It operates best on larger scales such as the now-famous stripes of DNA
electrophoresis gels commonly used in medicine and forensic science for the
determination of identity.

The second of these electrokinetic forces, known as dielectrophoresis, is the
translational motion of particles induced by polarization effects in non-uniform
electric field (Figure 2.6), described in some detail in texts by Pohl [25],
Jones [26], and Zimmermann and Neil [27]. Certain types of particle, when
subjected to an electric field, will polarize, the inherent charges separate and
form a dipole. The poles interact with the electric field and generate elec-
trostatic forces. If the field is non-uniform, the greater electric field strength
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Figure 2.6: A schematic of a polarizable particle suspended within a point-
plane electrode system. When the particle polarizes, the interaction between
the dipolar charges with the local electric field produces a force.

across one side of the particle means that the force generated on that side
is greater than the force induced on the opposing side of the particle and
a net force is exerted toward the region of highest electric field. Moreover,
this force will act toward the region of greatest electric field regardless of
the orientation of the electric field and will thus also be present when an AC
electric field is applied between the electrodes. This motion of the particles is
termed positive DEP. However, if the particle is suspended in a medium more
polarizable than itself, the electric field will be distorted around the particle,
the induced dipole will orient in the opposite direction, and the force on the
particle will be directed away from the high-field regions toward the low-field
regions. This motion is referred to as negative DEP. The polarizability of
the particle and medium is dependent on the frequency of the electric field,
and it is possible for a particle to experience either positive DEP or neg-
ative DEP according to the frequency of the applied electric field. This is
because the orientation of the dipole depends largely on the accumulation
of charge on either side of the particle-medium interface (called a Maxwell-
Wagner interfacial polarization). The relative amount of charge accumulated
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depends on the impedance of these materials and hence the frequency of the
applied field. As frequency changes, the relative dielectric behavior of the
particle and medium change; in a given frequency window (called dielectric
dispersion), the net behavior of the system changes from being dominated by
the particle to being dominated by the medium, and the particles goes from
experiencing positive DEP to experiencing negative DEP, that is, the force
exerted on the particles changes sign on either side of one special frequency
– crossover frequency.

There are a number of early observations of the DEP force; among the first
experimental observations of the motion of particles in non-uniform electric
fields were undertaken by Hatschek and Thorne [28] in the study of nickel
suspended in toluene and benzene. The phenomenon was named DEP by
Herbert Pohl in 1951 [29], who later published an in-depth treatise on the
subject in his 1978 book Dielectrophoresis. Pohl’s work advanced the use
of DEP for investigating the properties of suspensions and for providing a
means of separating particles from suspension. Similar investigations have
been conducted using a frequency-based examination of DEP response of
populations of cells (e.g., Gascoyne et al. [30] and Kaler and Jones [31]),
yeast (e.g., Pohl and Hawk [32] and Huang et al. [33]), and bacteria (e.g.,
Hughes and Morgan [34]), including work by Nobel laureate Albert Szent-
Gyögyi. Practical applications of DEP have included the collection of cells
for cellular fusion in biological experiments [35–37]. An other example of
DEP is the separation of a mixture of two populations of latex beads, iden-
tical except for having different radii. Since the effective conductivity, which
influences the polarizability of particles, of a latex sphere is dependent on the
radius of particle, their crossover frequencies are different, which determines
the force exerted on the particles. Therefore, between the crossover frequen-
cies, particles exhibit different dielectrophoretic behavior – one experiences
positive DEP, the other negative DEP – and can thus be separated.

Positive and negative DEP have been used to separate mixtures of viable
and nonviable yeast cell [32,38] and mixtures of healthy and leukemic blood
cell [39]. Work by Rousselet et al. [40] and others applied DEP to the induc-
tion of continuous linear motion of particles, expanding on the basic concept
of DEP as a means of trapping particles in a specific region in space. An
important class of electrokinetic particle manipulator is the levitator – a de-
vice used to propel a particle against gravity, resulting the particle hovering
in midsolution (or midair) at a height governed by its dielectric properties,
allowing those properties to be measured, and allowing those particles to be
selected and trapped [41, 42]. Early experiments used electric fields gener-
ated by (relatively) large electrodes and high voltages to trap particles (as
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described by Pohl [25]); more recently, electrode structures have been fabri-
cated using techniques borrowed from the computer industry (e.g., Huang,
et al. [33], Markx and Pething [38], and Rousselet et al. [40]) to manipulate
much smaller particles at much lower voltage.

Figure 2.7: Electrorotation: a schematic of a polarisable particle suspended
in a rotating electric field generated by four electrodes with 90 ◦ advancing
phase.

Another form of electrokinetics is electrorotation (ER), the continuous rota-
tion of particles suspended within rotating electric field (Figure 2.7); although
this phenomenon produces quite different particle behavior than DEP, the
two are closely related in origin [43, 44]. Cell rotation was observed and re-
ported by experiments using alternative current DEP (e.g., Teixeira-Pinto et
al. [45]) and was later suggested to be the result of the dipole-dipole interac-
tion between neighboring cells [46]. This led Arnold and Zimmermann [47]
to the principle of suspending single particles in a rotating field and thus
to more amenable means of studying the phenomenon. ER occurs when a
dipole is induced by a rotating electric field. Since the dipole takes a finite
time to form, there is a time delay in the reorientation of dipole moment
towards the direction of the electric field. The relative orientation between
the applied electric field and the induced dipole induces a torque that rotates
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the cell. The direction of rotation is determined by the angle between the
dipole moment and the electric field; if the phase lag is less than 1800, the
particle rotation will follow that of the applied field, referred to as cofield
rotation. If the phase angle is greater than 1800, the shortest way in which
the dipole can align with the electric field is by rotating in the opposite di-
rection of the electric field (antifield rotation). As with DEP, the rate and
direction of cell rotation are related to the dielectric properties of both the
particle and the suspending medium. The technique thus can be used as an
investigative technique for studying these properties. ER has been used to
study the dielectric properties of matter, such as the interior properties of
biological cells and biofilms (e.g.,Arnold and Zimmermann [48] and Zhou et
al. [49]). A DC version (called Quinke rotation [26]) does exist; however, this
is far more likely to be observed as a result of other work than specifically
used for analysis.

Figure 2.8: Traveling-wave dielectrophoresis: A schematic showing a polar-
izable particle suspended in a traveling electric field generated by electrodes
on which the applied potential is 90 ◦ phase-advanced with respect to the
electrode to its left. If the electric field E moves sufficiently quickly, the in-
cluded dipole M will lag behind the electric field, inducing a force F in the
particle. This causes the particle to move along the electrodes.

Yet another example of electrokinetics is traveling-wave dielectrophoresis (Fig-
ure 2.8). The phenomenon was first reported by Batchelder [50] and subse-
quently by Masuda et al. [51, 52], where the electric fields travel along a
series of bar-shaped electrodes where low frequency (0.1 Hz to 100 Hz) sinu-
soidal potentials, advanced 1200 for each successive electrode, were applied.
This was found to induce controlled translational motion in lycopodium par-
ticles [52] and red blood cells [44]. At low frequencies, the translational
force was largely electrophoretic, and it was proposed that such traveling
fields could eventually find application in the separation of particles accord-
ing to their size or electrical charge. However, later work by Fuhr and co-
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worker [53], using applied traveling fields at much higher frequency ranges
(10 kHz to 30MHz), demonstrated the induced linear motion in pollen and
cellulose particles and also demonstrated that the mechanism inducing travel-
ing motion at these higher frequencies is dielectrophoretic, rather than elec-
trophoretic, in origin. Since then, Huang et al. [54] and others have, for
example, used traveling fields to move yeast cells and separate them from a
heterogeneous population of yeast and bacteria.

Traveling-wave DEP is effectively an extension of the principle of ER to the
case of linear translation of electric field. An AC electric field is generated
that travels linearly along a series of electrodes. Particles suspended within
the field establish dipoles that, due to the relaxation time, are displaced from
the regions of high electric fields. This induces a force in the piratical as the
dipole moves to align with the field. If the dipole lags within half a cycle of
the applied field, net motion acts in the direction of the applied field, while
a lag greater than this results in motion counter to the applied field.

2.3.1 Dielectrophoresis

Figure 2.9: A schematic representation of the force exerted on a dipole in a
nonuniform electric field.

One of the main topics of this thesis is dielectrophoresis and hence we will
now describe it in detail. Let us consider a spherical particle with radius a
in a nonuniform field E(r) such as the one shown in Figure 2.6. When this



2.3 Electrokinetics 27

particle polarizes, it will have centers of positive Q+ and negative charges Q−

that are equal in magnitude Q but separated by a distance d along vector
r as shown in Figure 2.9(a). Since the electric field is nonuniform, positive
and negative charges will experience different electric field strengths. That
gives rise to a net force on the particle of

F = Q+E(r + d) −Q−E(r), (2.19)

where d is small relative to the size of the electric field nonuniformly. It can
be approximated as

E(r + d) = E(r) + d · ∇E(r). (2.20)

Thus, the force can be rewritten as

F = Qd · ∇E. (2.21)

Since Qd defines the dipole moment p, the force can be written as

F = (p · ∇)E. (2.22)

In order to proceed further, we need to consider the nature of the electric field
in a more realistic manner, that is, the fact that it may be changing either
in space (having a magnitude gradient) or time (having a phrase gradient).
The best example is the AC electric field which varies in three dimensions.
This variation can be in the magnitude of the wave (the amplitude of the sine
wave varies according to position), phase (the sine wave reaches its maximum
at different times according to position), or both.

From Equation (2.17), the force on the particle can be derived,

F = 4πa3ǫ2Re[b](E · ∇)E, (2.23)

where Re[· · · ] denotes the real part of [· · · ]. Using the vector formula

∇(E · E) = 2(E · ∇)E + 2E × (∇× E), (2.24)

and ∇×E = 0, the force thus can be written as

F = 2πa3ǫ2Re[b]∇(E · E). (2.25)

The time-averaged force FDEP is given by

FDEP = 2πa3ǫ2Re[b]∇E2
rms, (2.26)
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Figure 2.10: Positive dielectrophoretic collection of yeast cells suspended in
280 mM mannitol of conductivity 3.61 pS cm−1, with 10 kHz, 10 V peak-
peak signal applied to electrodes. Source: Electrode design for negative
dielectrophoresis [55].

where Erms is the root mean square magnitude of the imposed AC electric
field.

One important feature to note is the fact that the expression for dielec-
trophoretic force contains the Clausius-Mossotti factor, which can take both
positive and negative values. This has implications for the direction of the
force; since FDEP is a vector quantity, a change in sign will result in a change
of direction. This property has been widely used to manipulate different par-
ticles. If Re[b] is positive, then the force acts in the direction of the increasing
field gradient and hence moves toward the region of the highest electric field.
This is so-called positive dielectrophoresis as shown in Figure 2.10 [55]. How-
ever, if the value of Re[b] is negative, then the value of the force is negative
and the particle is repelled from the regions of a high electric field as shown
in Figure 2.11 [55]. This is referred to as negative dielectrophoresis.
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Figure 2.11: Negative dielectrophoretic collection of the same yeast cells as
shown in Figure 2.10, when suspended in a 280 mM mannitol + 1.4 mM
KCI solution of Conductivity 170 µS cm−1 and subjected to a 10 kHz, 10
V peak-peak signal applied to the electrodes. Source: Electrode design for
negative dielectrophoresis [55].

2.4 Optical nonlinearity enhancement of graded

composites

Optical nonlinearities have fascinated physicists for many decades because of
the variety of intriguing phenomena that they display, such as frequency mix-
ing and optical solitons [56, 57]. Moreover, they enable numerous important
applications such as higher-harmonic generation, optical signal processing
and ultrafast optical switches [57–59]. Composites are of particular interest
because their nonlinearities may be strongly enhanced relative to bulk sam-
ples of the same materials. Various composite materials have been studied
with respect to their nonlinear-optical properties such as metals or semicon-
ductors in amorphous hosts — glass, plastic, or liquid [60, 61]. The physical
origin of this enhancement is not conclusively known. For sufficiently small
particles, quantum size effects [62, 63] or excitonlike confinement effects [64]
help to increase the third-order optical susceptibility χ(3) [65–69]. But even
if such quantum size effects are unimportant, χ(3) can still be enhanced by a
purely classical effect, that is, the electric field within the particles is greatly
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increased at optical frequencies because the composite is inhomogeneous.
Such a field enhancement can be produced by an appropriate ratio of host-
to-particle permittivity, by a modification of the field within a given particle
by other neighboring particles, by anomalous dispersion, or by some combi-
nation of these effects.

In this thesis, the multilayer effect on the effective nonlinear optical response
is discussed. We consider a graded metallic film with width L, and its grada-
tion in the direction perpendicular to the film. The nonlinear characteristics
are due to the field-dependence of the dielectric constant of the composite
materials, which have a constitutive relation

D = ǫ(z, ω)E(z, ω) + χ(3)(z, ω) |E(z, ω)|2 E(z, ω), (2.27)

where ǫ(z, ω) and χ(3)(z, ω) are the linear dielectric constant and the third-
order nonlinear susceptibility of the materials respectively. For convenience,
we simplify χ(3)(z, ω) as χ(z, ω). Because of this, composite materials are
considered to prossess inversion symmetry, thus the second-order nonlinear
optical response vanishes. Here, we also assume that the weak nonlinearity
condition is satisfied, that is, the contribution of the third-order nonlinear
effect is much less than that of the linear effect. Further, the discussion
is restricted to the quasistatic approximation, under which the whole lay-
ered geometry can be regarded as an effective homogeneous one with effec-
tive (overall) linear dielectric constant ǭ(ω) and effective (overall) third-order
nonlinear susceptibility χ̄(ω). With the above restrictions, the effective dis-
placement can be given as [70]

〈D〉 = ǭ(ω)E0 + χ̄(ω) |E0|2 E0, (2.28)

where 〈· · · 〉 denotes the spatial average, and E0 = E0êz is the applied field
along the z axis.

In this thesis we consider a bulk composite, that is, a small graded sperical
metal particle embedded in an insulating matrix of dielectric constant of
value unity. Then, the dielectric profile of the small graded spherical metal
is given by the Drude expression

ǫ(z, ω) = 1 −
ω2

p(z)

ω[ω + iγ(z)]
, 0 ≤ z ≤ L, (2.29)

where the various plasma-frequency gradation profile is given by

ωp = ωp(0)(1 − Cωz), (2.30)
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and the relaxation-rate gradation profile [71] is

γ(z) = γ(∞) +
Cγ

z
, (2.31)

where Cω is a dimensionless constant. Here γ(∞) denotes the damping coef-
ficient in the corresponding bulk material. Cγ is a constant that is related to
the Fermi velocity. Due to the simple geometry, the equivalent capacitance of
series combination required to calculate the linear response, i.e., the optical
absorption for the metallic film can be given by

1

ǭ(ω)
=

1

L

∫ L

0

dz

ǫ(z, ω)
. (2.32)

The calculation of the local electric field E(z, ω) can be given by the identity

ǫ(z, ω)E(z, ω) = ǭ(ω)E0, (2.33)

by virtue of the continuity of electric displacement.

The effective nonlinear response χ̄(ω) inside the graded film can be written
as [70]

χ̄(ω)E4
0 = 〈χ(z, w) |Elin(z)|2 Elin(z)

2〉, (2.34)

where Elin(z) is the linear local electric field. Next the effective nonlinear
response can be written as an integral over the layer, that is,

χ̄(ω) =
1

L

∫ L

0

dzχ(z, ω)

∣

∣

∣

∣

ǭ(ω)

ǫ(z, w)

∣

∣

∣

∣

2 [
ǭ(ω)

ǫ(z, ω)

]2

. (2.35)

In this thesis, χ(z, ω) is set to be constant, in an attempt to emphasize the
enhancement of the optical nonlinearity.
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Chapter 3

Model and methods

In this thesis, the model is a two-component composite system as shown in
Figure 1.1. Many particles with dielectric constant ǫ1 and volume fraction
f are randomly embedded in a homogeneous host medium with ǫ2, in the
presence of an external electric field E0 along the z-axis. The dielectric
constant of the suspended particle ǫ1 is constant if the suspended particle is
homogeneous. It is, however, a function of position ǫ1(r) if the suspended
particle is a functionally graded material (FGM).

The model is simple but the components maybe homogeneous or graded.
Moreover, such composite system can be either isotropic or anisotropic.
There exists many methods, both analytical and numerical, to calculate the
effective dielectric properties of such system.

Rigorous calculation of the dielectric properties of a composite system is
based on solving the Poisson’s equation

∇ · [ǫ(r)∇Φ] = −ρ,

and obtaining the local potential, where ǫ(r) is a function of position r. In
this thesis, the composite system has no free charge, that is, ρ = 0. Exact
analytical solutions exist only for a handful of cases such as ǫ(r) being a con-
stant, power-law and linear profile. The problem is analytically intractable
for systems having an arbitrary profile of ǫ(r). Therefore, one has to rely on
various approximations.

In this chapter, we provide the details of the approximations used for com-
posite systems in this thesis.

33
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3.1 Basic approximation methods

The effective dielectric constant ǫe is an important parameter which is used
to investigated the dielectric properties of composite systems. In what fol-
lows, the well known basic approximation methods, i.e., Maxwell-Garnett
theory (MGT), effective medium theory (EMT), Bergman-Milton spectral
representation theory, and multiple images method are reviewed.

3.1.1 Maxwell-Garnett theory

The Maxwell-Garnett theory (MGT) [72, 73] is also known as the Clausius-
Mossotti theory. It aims to predict the effective response of a composite
without having to calculate the microscopic electric field. It can be used to
study two-component composites such as our model, i.e., components with
dielectric constant ǫ1 and volume fraction f embedded in a medium with
dielectric constant ǫ2. Further, we approximate each particle as having a
spherical shape. The calculation of the electric field and the induced dipole
moment for a spherical particle have been given in Section 2.2.

We start by defining the molecular polarizability γmol of a single molecule:

pmol = γmolǫ2Emol, (3.1)

where pmol is the induced dipole moment and Emol is the polarizing electric
field at the location of the molecule. For simplicity, we assume that there
is no permanent polarization. We also assume that the polarizability is a
scalar, since we restrict the treatment to uniform spherical inclusions.

The polarized field is produced by an external source and by the polarized
molecules in the system except the one under study. We can image that we
remove a small cavity of radius R around the molecule as shown in Figure 3.1.
Now Emol can be expressed as

Emol = E −Ep + Enear, (3.2)

where E is the macroscopic electric field given by Equation (2.14), Enear is
the actual contribution of the molecules close to the given molecule, and Ep

is the contribution from those molecules treated in an average continuum ap-
proximation described by the polarization P. We assume that the structure
of molecular compoiste is regular enough a cubical grid for example, or that
they are randomly distributed. Lorentz showed that for atoms in a simple
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nearE
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R

Figure 3.1: Electric fields for one molecule.

cubic lattice Enear vanishes at any lattice site [74], and it seems plausible
that Enear = 0 also for completely random situations.

If the volume V near the molecule is chosen to be sphere of radius R con-
taining many molecules, the total dipole moment inside it is given by Equa-
tion (2.1), that is

p =
4π

3
R3P, (3.3)

provided V is small enough such that P is essentially constant throughout
the volume. The electric field in a uniformly polarized sphere is −P/(3ǫ2).
Consequently, the polarized field is

Emol = E +
P

3ǫ2
. (3.4)

The polarization vector P is defined in Equation (2.2) as

P = N〈pmol〉, (3.5)

where 〈pmol〉 is the average dipole moment of the molecules. This dipole
moment is proportional to the electric field acting on the molecule. According
to the Equation (3.4),

P = Nγmolǫ2

(

E +
P

3ǫ2

)

. (3.6)
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On the other hand, P = (ǫe − ǫ2)E, which results in the Clausius-Mossotti
equation

γmol =
3

N

ǫe − ǫ2
ǫe + 2ǫ2

, (3.7)

where ǫe is the effective dielectric constant of the suspended particles.

The polarizability of a single sphere with radius a follows directly from the
solution of the Laplace equation with a uniform background field E0. The
induced dipole is given by Equation (2.17), i.e.,

p = 4πa3ǫ2
ǫ1 − ǫ2
ǫ1 + 2ǫ2

E0. (3.8)

By using Equation (3.1), it is then clear that

γmol = 3V
ǫ1 − ǫ2
ǫ1 + 2ǫ2

, (3.9)

where V is the volume of the sphere.

Homogenization of the composite means that the two expressions of polariz-
ability are set to be equal. This yields the Maxwell-Garnett theory:

ǫe − ǫ2
ǫe + 2ǫ2

= f
ǫ1 − ǫ2
ǫ1 + 2ǫ2

, (3.10)

where f = NV is the volume fraction of spheres (0 ≤ f ≤ 1). It is easy to
check that this gives meaningful results for the special cases ǫ1 = ǫ2, f = 0,
and f = 1.

The validity of this formula is best at low fractions, since its derivation is
based on the analytical treatment of one sphere in an infinite space. Obvi-
ously, the MGT is an asymmetrical theory, that is, the physical properties of
the composite can be changed if one exchanges the notations 1 and 2. The
MGT can be extended straightforwardly to multi-component composites.

3.1.2 Effective medium theory

Effective medium theory was introduced by Bruggeman [75] (also known
as the Bruggeman theory) and studied quantitatively by Landauer [76]. It
is used to calculate the effective dielectric constant ǫe of a two-component
composite system. The virtue of the method is that it is not limited to
low concentrations of inhomogeneities or to weakly varying conductivities.
Its predictions are usually physically sensible and offers insight into some
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problems that are difficult to tract by other approaches. The suspended
particles, instead of being embedded in their actual random environment,
are immersed in a homogeneous effective medium of dielectric constant ǫe
which will be determined self-consistently. Further, we assume the particle
to be spherical. Then, the electric field inside the particles is uniform and
given by (Equation (2.14))

E =
3ǫe

ǫi + 2ǫe
E0, (3.11)

where ǫi = ǫ1 or ǫ2, and E0 is the applied electric field.

The self-consistency condition required by the EMA is that the average elec-
tric field within the particles shall be equal to E0, or equivalently,

f
3ǫe

ǫ1 + 2ǫe
E0 + (1 − f)

3ǫe
ǫ2 + 2ǫe

E0 = E0. (3.12)

The common factor E0 may be divided out. Then this equation simplifies to
the well-known form

f
ǫ1 − ǫe
ǫ1 + 2ǫe

= (1 − f)
ǫ2 − ǫe
ǫ2 + 2ǫe

. (3.13)

It is evident that the effective medium theory is a symmetrical theory, that is,
the physical properties of the composite remain unchanged if one exchanges
the notions 1 and 2. Extension to multi-component composites is straight-
forward.

3.1.3 Bergman-Milton spectral representation theory

The Bergman-Milton spectral representation theory is a rigorous mathemat-
ical formalism to express the effective dielectric constant of nongraded com-
posite materials. Suppose the external electric field is along the z-axis. The
problem is initiated by solving the differential equation [77]

∇ ·
[(

1 − 1

s
η(r)

)

∇φ(r)

]

= 0, (3.14)

where s = ǫ2/(ǫ2 − ǫ1) denotes the relevant material parameter and η(r)
is the characteristic function of the composite, having value 1 for r in the
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embedding medium and zero otherwise. The electric potential φ(r) can be
solved formally

φ(r) = z +
1

s

∫

dr′η(r′)∇′G0(r − r′) · ∇′φ(r′), (3.15)

where G0(r − r′) = |r − r′|/4π is the free space Green’s function. We define
an integral-differential operator as

Λ =

∫

dr′η(r′)∇′G0(r − r′) · ∇′, (3.16)

and the corresponding inner product as

〈φ|Φ〉 =

∫

drη(r)∇φ∗ · ∇Φ. (3.17)

It is easy to show that Λ is a Hamiltonian operator. Let sn and Φn(r) be
the n-th eigenvalue and eigenfunction of Λ, Then we obtain the effective
dielectric constant ǫe in the Bergman-Milton spectral representation theory
as

ǫe = − 1

V

∫

dV ǫ(r)Ez

=
1

V

∫

dV ǫ2

[

1 − 1

s
η(r)

]

∂Φ

∂z

= ǫ2

(

1 − 1

V

∑

n

|〈Φn|z〉|2
s− sn

)

= ǫ2

(

1 −
∑

n

Fn

s− sn

)

. (3.18)

The parameters sn and Fn satisfy the simple properties that 0 ≤ sn ≤ 1 and
∑

Fn = f , where f is the volume fraction of the suspended particles. Equa-
tion (3.18) is just the effective dielectric constant of a two-component compos-
ite system in the Bergman-Milton spectral representation theory. Moreover,
after introducing F (s) as a function of s as

F (s) =
∑

n

Fn

s− sn

, (3.19)

we may readily obtain the spectral structure of the composite. In doing so,
we may further represent F (s) as

F (s) =

∫ 1

0

dx
ν(x)

s− x
, (3.20)
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where the spectral function ν(x) is a crucial parameter which contains the
information about the spectral structure. It is given by

ν(x) = −1

π
ImF (x+ i0+). (3.21)

The Bergman-Milton spectral representation theory offers the advantage of
the separation of materials parameters (i.e., the permittivity or conductiv-
ity) from structural information (see Equation (3.18)), thus simplifying the
analysis.

For example, MGT and EMT can be expressed by Bergman-Milton spec-
tral representation theory. As a result, the F (s) function and the spectral
function for MGT respectively are

F (s) =
f

s− (1 − f)/3
, and ν(x) = fδ[x− (1 − f)/3]. (3.22)

As for EMT, we have

F (s) =
1

4s

(

−1 + 3f + 3s− 3
√

(s− x1)(s− x2)
)

, (3.23)

where x1 and x2 are given by solving

(1 − 3f)2 − 6(1 + f)x+ 9x2 = 0, (3.24)

and hence

x1 =
1

3

(

1 + f − 2
√

2f(1 − f)
)

, and x2 =
1

3

(

1 + f + 2
√

2f(1 − f)
)

.

(3.25)
In this case, the spectral function should be

ν(x) =
3f − 1

2
θ(3f − 1) +

3

4πx

√

(x− x1)(x2 − x), (3.26)

as x1 < x < x2, and

ν(x) =
3p− 1

2
θ(3p− 1) (3.27)

otherwise.

The Bergaman-Milton spectral representation theory can be extended to
three-component composites by taking into account various approaches [78–
80].
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Figure 3.2: Schematic representation of the multiple images method. The
total dipole moment is the sum of the induced dipole moments.

3.1.4 Multiple images method

This method calculates the multiple induced polarization between two col-
loidal particles x and y separated by a distance r. The particles are placed
into a host medium with dielectric constant ǫ2. Assume that the two particles
are spheres with same radius a and that they are electrically neutral, and a
constant electric field E0 = E0ẑ is applied to the spheres. Induced surface
charge results in a dipole moment in each sphere given by px0 = 4πa3ǫ2bE0

and py0 = 4πa3ǫ2bE0, respectively. The dipole moment px0 induces an image
dipole py1 in sphere y, while py1 induces yet another image dipole in sphere
x. Similarly, py0 induces an image px1 inside sphere x, leading to an infinite
series of image dipoles. As a result, multiple images are formed as shown in
Figure 3.2.

The total dipole moments of sphere x and y are given by [81]

pL = 4πa3ǫ2bE0

∑

n=0

∞(2b)n

(

sinhα

sinh(n+ 1)α

)3

(3.28)

pT = 4πa3ǫ2bE0

∑

n=0

∞(−b)n

(

sinhα

sinh(n + 1)α

)3

,

where L and T denote the longitudinal and transverse dipole moments, re-
spectively, and α satisfies coshα = r/2a. For two touching particles, the
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effective dipole moment of a particle is given by

p∗ = 4πa3ǫ2b
∗E0, (3.29)

where b∗ is the effective dipole factor which is given by

b∗ =
1

2
b
∑

n=0

∞[(2b)n + (−b)n]

(

sinhα

sinh(n+ 1)α

)3

. (3.30)

Thus, we can use the final induced dipole factor to calculate the DEP force
or electrorotation angular velocity.

3.2 Methods developed in this thesis

Over the past few years, there have been a number of attempts, both analyt-
ical and experimental, to study the responses of FGM to mechanical [82,83],
thermal [84, 85], and electric [86, 87] loads, and for different microstructures
in various systems. Numerous attempts have been made to treat the com-
posite materials of homogeneous inclusions [23] as well as multishell inclu-
sions [47, 88–90].

However, these established theories for homogeneous inclusions cannot be
applied to graded composite materials. It is thus necessary to develop a new
theory to study the effective properties of graded composite materials under
externally applied fields. In this thesis, we developed a first-principles ap-
proach i.e., solving the Poisson’s equation to calculate the effective responses
of graded composite in which the dielectric constant ǫ(r) of one of the compo-
nents has certain profiles, such as power-law and linear profile. Moreover, we
developed a differential effective dipole approximation (DEDA) to calculate
the effective dipole moment for isotropic graded composites, and anisotropic
differential dipole approximation (ADEDA) for anisotropic graded particles.
Furthermore, we developed a differential effective multipole moment approx-
imation (DEMMA) as well an anisotropic differential effective multipole mo-
ment approximation (ADEMMA) to compute the multipole moment of a
graded spherical particle in a nonuniform external field (produced by a point
charge).

3.2.1 First-principles approach

In this section, we introduce the basic procedure of the first-principles ap-
proach. The suspended particle is a graded particle of dielectric constant
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ǫ1(r). We start from the dielectric response, and the constitutive relation of
a graded spherical particle reads

D1 = ǫ1(r)E1. (3.31)

The relation for the host medium is

D2 = ǫ2E2, (3.32)

where ǫ2 is the dielectric constant of the host medium, and it is a constant.
The Maxwell’s equations read

∇ · D = 0, (3.33)

and
∇× E = 0. (3.34)

To this end, E is the gradient of a scalar function, the scalar potential, Φ:

E = −∇Φ. (3.35)

Equation (3.33) and Equation (3.35) can be combined into one partial dif-
ferential equation, the Laplace Equation:

∇ · [ǫ(r)∇Φ] = 0. (3.36)

ǫ(r) is a dimensionless dielectric constant, ǫ(r) = ǫ1(r)/ǫ2 in the particle, and
ǫ(r) = 1 in the host medium. Here we normalize the dielectric profile to the
dielectric constant of the host medium ǫ2 for convenience. Without loss of
generality, we may also let the suspended graded particles be spheres with
radius a = 1.

In spherical coordinates, the electric potential Φ satisfies

1

r2

∂

∂r

(

r2ǫ(r)
∂Φ

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θǫ(r)
∂Φ

∂r

)

(3.37)

+
1

r2 sin2 θ

∂

∂ψ

(

ǫ(r)
∂Φ

∂ψ

)

= 0.

We consider the applied electric field along the z-axis, thus Φ is independent
of the angle ϕ. If we write Φ = R(r)Θ(θ), after a separation of variables, we
obtain an ordinary differential equation for the radial function R(r),

d

dr

(

r2dR

dr

)

+
r2

ǫ(r)

dǫ(r)

dr

dR

dr
− n(n + 1)R = 0, (3.38)
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where n is a integer.

The potential can be obtained by solving Equation (3.38) with boundary
conditions, as follows:

Φ1(r, θ)|r=1 = Φ2(r, θ)|r=1

ǫ1(r)
∂Φ1(r, θ)

∂r

∣

∣

∣

∣

r=1

= ǫ2
∂Φ2(r, θ)

∂r

∣

∣

∣

∣

r=1

, (3.39)

where Φ1(r, θ) and Φ2(r, θ) denote the potentials inside the suspended par-
ticles and the host medium, respectively. In the dilute limit, the dipole
moment of the composite material can be derived. We take the average of
the operator D − ǫ2E in the whole volume of the composite material. That
gives

1

V

∫

V

[D − ǫ2E]dV = D̄ − ǫ2Ē, (3.40)

where V is the volume of the whole composite material. Ā denotes the
average of the operator A in the composite material. The integrand vanishes
in the host medium, and thus Equation (3.40) becomes

1

V

∫

Ω1

[D − ǫ2E]dV = D̄ − ǫ2Ē, (3.41)

where Ω1 is the volume occupied by the particle.

Now, we can define Ohm’s law for the composite material:

D̄ = ǫeĒ, (3.42)

where ǫe is the effective dielectric constant of the composite material. Thus

1

V

∫

Ω1

[(ǫ1(r) − ǫ2)E]dV = (ǫe − ǫ2)Ē. (3.43)

Equation (3.43) gives the polarization of the composite material and it can
be used to calculate the effective dielectric properties of the composite ma-
terial at a low particle concentration. For example, the dipole factor can be
calculated as

4πǫ2E0b =

∫

Ω1

[(ǫ1(r) − ǫ2)E1]dV. (3.44)
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Figure 3.3: A schematic representation of one sphere with shell.

3.2.2 Differential effective dipole approximation

In this section, we give the details of DEDA for spherical particles of graded
materials, and the corresponding result of effective dielectric response in the
dilute limit. We start to use the two-component composite model for the ho-
mogeneous case, that is, the dielectric constants ǫ1 and ǫ2 are both constants.
The suspended particle is sphere of radius a. The electric field strength is
E0. The induced dipole moment p is given by Equation (2.17), i.e.,

p = 4πa3ǫ2bE0, (3.45)

where b is the dipole factor

b =
ǫ1 − ǫ2
ǫ1 + 2ǫ2

. (3.46)

If we add a spherical shell of dielectric constant ǫ to make a coated sphere
of overall radius a1 as shown in Figure 3.3, then the induced dipole moment
becomes

p1 = 4πa3
1ǫ2b1E0, (3.47)

where b1 is the dipole factor of the coated sphere [12] given by

b1 =
(ǫ− ǫ2) + (ǫ2 + 2ǫ)x1y

(ǫ+ 2ǫ2) + 2(ǫ− 2ǫ2)x1y
, (3.48)

where x1 is given by

x1 =
ǫ1 − ǫ

ǫ1 + 2ǫ
, (3.49)
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Figure 3.4: A schematic representation of one graded sphere with one shell.

and

y =

(

a

a1

)3

. (3.50)

This can be extended to more shells of different dielectric constants at the
expense of a more complicated expression [12]. It is easy to check that b1
reduces to b when ǫ = ǫ1. Thus, the dipole factor remains unchanged if one
adds a spherical shell of the same dielectric constant.

Further, we consider an inhomogeneous sphere with dielectric profile ǫ(r) and
radius a. To establish the differential effective dipole theory, we mimic the
graded profile by a multi-shell construction, i.e., we build up the dielectric
profile gradually by adding shells as shown in Figure 3.4. We start with an
infinitesimal spherical core of dielectric constant ǫ(0) and keep on adding
spherical shells of dielectric constant ǫ(r), until r = a is reached. At radius
r, we have an inhomogeneous sphere whose induced dipole moment is given
by p(r). Certainly p(r) is proportional to E0, but the exact expression is
lacking. We further replace the inhomogeneous sphere by a homogeneous
sphere of the same dipole moment and the graded profile is replaced by an
effective dielectric constant ǭ(r). Therefore,

p(r) = 4πr3ǫ2b(r)E0, (3.51)

where

b(r) =
ǭ(r) − ǫ2
ǭ(r) + 2ǫ2

. (3.52)

Next, we add a spherical shell of infinitesimal thickness dr, of dielectric con-
stant ǫ(r). The dipole factor will change according to Equation (3.48). Of
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course, the effective dielectric constant ǭ(r), being related to b(r), should also
change. Let us write b1 = b + db, and take the limit dr → 0. We obtain a
differential equation:

db

dr
= − [(1 + 2b)ǫ2 − (1 − b)ǫ(r)] [(1 + 2b)ǫ2 + 2(1 − b)ǫ(r)]

3rǫ2ǫ(r)
. (3.53)

Thus the dipole factor of a graded spherical particle can be calculated by
solving the above differential equation with a given graded profile ǫ(r). The
nonlinear first-order differential equation can be solved, at least numerically,
with the initial condition b(r = 0).

3.2.3 Anisotropic differential effective dipole approxi-

mation

Due to gradation, anisotropic dielectric response occurs naturally. However,
composite systems with local anisotropy are often macroscopically isotropic [91].
In this sense, the existing isotropic gradation models [92–94] for describing
the isotropic graded particles are no longer valid, and anisotropic differential
effective dipole approximation (ADEDA) is developed.

ADEDA is a numerical method which is put forth for the analysis of the prop-
erties of arbitrarily graded anisotropic particles. Its derivation is based on a
two-component composite system. The host medium is homogeneous. The
graded spherical particle has a tangential permittivity in the plane orthogonal
to the radial vector of the sphere [ǫθθ(r) = ǫφφ(r)], and radial permittivity
ǫrr(r). In view of the spherical symmetry, the dielectric anisotropy of the
graded sphere can be expressed by means of the permittivity tensor

↔

ǫ c [95]:

↔

ǫ c(r) =





ǫrr(r) 0 0
0 ǫθθ(r) 0
0 0 ǫφφ(r)



 . (3.54)

Next, we follow the same procedure as in the derivation of DEDA. Now per-
mittivity has two components ǫθθ(r) and ǫrr(r). The dipole factor should
change according to the dipole factor of one shell anisotropic composite in-
clusion [95], that is

b1(r) =

ǫrr(r)δ+ − ǫ2
ǫrr(r)δ+ − ǭ(r)

− ǫrr(r)δ− − ǫ2
ǫrr(r)δ− − ǭ(r)

ρ

ǫrr(r)δ+ + 2ǫ2
ǫrr(r)δ+ − ǭ(r)

− ǫrr(r)δ− + 2ǫ2
ǫrr(r)δ− − ǭ(r)

ρ

, (3.55)
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where

δ+ =
1

2



−1 +

√

1 +
8ǫθθ(r)

ǫrr





δ− =
1

2



−1 −
√

1 +
8ǫθθ(r)

ǫrr





ρ =

(

r

r + dr

)

δ+−δ− . (3.56)

Let us write further b1(r) = b(r) + db, and take the limit dr → 0. Then
the desired correction db is infinitesimal. Thus, one obtains a differential
equation:

db(r)

dr
= − 1

3rǫrr(r)ǫ2
[(1 + 2b(r))ǫ2 − (1 − b(r))δ+ǫrr(r)]

[(1 + 2b(r))ǫ2 − (1 − b(r))δ−] , (3.57)

where 0 < r < a. This equation reduces to (Equation (3.53)) if δ+ = 1,
δ− = −2 and ρ = 3, i.e., ǫrr(r) = ǫθθ(r), ADEDA reduces to the isotropic
case — DEDA.

Therefore, the dipole factor of a graded anisotropic spherical particle can be
calculated by solving the first-order differential equation (Equation (3.57)).
This differential equation can be integrated, at least numerically, if we are
given the gradation profiles ǫθθ(r) and ǫrr(r), and the initial condition b(0).

3.2.4 Differential effective multipole moment approxi-

mation

The problem of a dielectric sphere interacting with a point charge is more
general than the uniform applied electric field, because the nonuniform field
of the point charge induces all the linear multipolar moments – that is, the
dipole, quadrupole, octopole, etc. Differential effective multipole moment
approximation is developed to compute the multipole moment of a graded
spherical particle in a nonuniform external electric field produced by a point
charge.

We consider a graded spherical particle of radius a subjected to a nonuniform
electric field of a point charge Q placed on the z-axis as shown in Figure 3.5.
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Figure 3.5: A schematic representation of particle in electric field produced
by point charge.

The derivation of DEMMA is similar to that of DEDA, only the dipole factor
b is replaced by multipole factor Hl(r) [96]

Hl(r) =
l(ǭ(r) − ǫ2)

l(ǭ(r) + ǫ2) + ǫ2
. (3.58)

It is easy to see that for l = 1,

H1(r) =
ǭ(r) − ǫ2
ǭ(r) + 2ǫ2

(3.59)

is the dipole factor b(r) (Equation (3.52)).

Next, we add a spherical shell of infinitesimal thickness dr of permittivity
ǫ1(r). The resulting multipole factor H ′

l will change according to [97]

Hl
′ =

[l′ǫ(r) + lǭ(r)] [lǫ(r) − lǫ2] − ρ [lǫ(r) − lǭ(r)] [l′ǫ(r) + lǫ2]

[l′ǫ(r) + lǭ(r)] [lǫ(r) + l′ǫ2] − ρll′ [ǫ(r) − ǭ(r)] [ǫ(r) − ǫ2]
, (3.60)

with l′ = l + 1 and ρ = [r/(r + dr)]2l+1.

Of course, the equivalent permittivity ǭ(r), being related to Hl(r), should
also change. Let us write H ′

l = Hl + dHl, and take the limit dr → 0. We
obtain a differential equation:

dHl(r)

dr
= − 1

(2l + 1)rǫ2ǫ(r)

× [(l + (1 + l)Hl(r))ǫ2 − l(1 −Hl(r))ǫ(r)]

× [(l + (1 + l)Hl(r))ǫ2 + (l + 1)(1 −Hl(r))ǫ(r)] . (3.61)
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It is easy to notice that Equation (3.61) reduces to Equation (3.53) as l = 1.

When we substitute Equation (3.58) into Equation (3.61), we obtain a dif-
ferential equation for the equivalent dielectric constant ǭ(r)

dǭ(r)

dr
=

[ǫ(r) − ǭ(r)][(l + 1)ǫ(r) + lǭ(r)]

rǫ(r)
. (3.62)

Setting l = 1 in the above equation is a special case of the Tartar formula
derived for assemblies of spheres with varying radial and tangential conduc-
tivities [98].

3.2.5 Anisotropic differential effective multipole mo-

ment approximation

The differential effective multipole moment approximation can be extended
to the anisotropic case, that is, the suspended spherical particle has a tan-
gential permittivity in the plane orthogonal to the radial vector of the sphere
[ǫθθ(r) = ǫφφ(r)], and radial permittivity ǫrr(r). In view of the spherical
symmetry, the dielectric anisotropy of the graded sphere can be expressed
by means of the permittivity tensor

↔

ǫ c [95] given by Equation (3.54). The
derivation of anisotropic differential effective multipole moment approxima-
tion (ADEMMA), which is similar to DEMMA, is a numerical method for
the analysis of the electric properties of anisotropic graded particles with ar-
bitrary gradation profiles. Similarly, we may regard the gradation profile as a
multishell construction. Let us start with an infinitesimal isotropic spherical
core with permittivity ǫ(0+), and keep on adding shells with both tangential
and normal permittivity profiles ǫθθ(r) and ǫrr(r) until r → a is reached. At
radius r, we have an inhomogeneous particle with effective permittivity ǭ(r),
which has the multipole factor

Hl(r) =
l(ǭ(r) − ǫ2)

l(ǭ(r) + ǫ2) + ǫ2
. (3.63)

As before, we add a shell with infinitesimal thickness dr with permittivities
ǫθθ(r) and ǫrr(r). The multipole factor H ′

l should change according to the
multipole factor of a single-coated particle [99]

H ′

l =

ǫrr(r)u+ − lǫ2
ǫrr(r)u+ − lǭ(r)

− ρl

ǫrr(r)u− − lǫ2
ǫrr(r)u− − lǭ(r)

ǫrr(r)u+ + l′ǫ2
ǫrr(r)u+ − lǭ(r)

− ρl

ǫrr(r)u− + l′ǫ2
ǫrr(r)u− − lǭ(r)

, (3.64)
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with l′ = l + 1 and

u± = [−1 ±
√

1 + 4l(l + 1)ǫθθ(r)/ǫrr(r)]/2

ρl = [r/(r + dr)]u+−u−. (3.65)

Let us write further H ′

l = Hl + dHl, and take the limit dr → 0. We obtain a
differential equation

dHl(r)

dr
= − 1

(2l + 1)rǫ2ǫ(r)
(3.66)

× [(l + l′Hl(r))ǫ2 − (1 −Hl(r))u+ǫrr(r)]

× [(l + l′Hl(r))ǫ2 − (1 −Hl(r))u−ǫrr(r)] .

This equation is the general form of the differential effective approximation.
It reduces to DEMMA when ǫrr = ǫθθ, and further reduces to DEDA when
l = 1. Thus, the multipole factor of an anisotropic graded spherical particle
Hl(r = a) can be calculated by solving the nonlinear first-order differential
equation (Equation (3.66)) which can be integrated, at least numerically, if
the profiles ǫθθ(r), ǫrr(r) and the initial condition Hl(r = 0) are given. The
substitution of Equation (3.63) into Equation (3.66) yields the differential
equation for the equivalent permittivity

dǭ(r)

dr
=

(1 + l)ǫθθ(r)ǫrr(r) − ǫrr(r)ǭ(r) − lǭ(r)2

rǫrr(r)
. (3.67)

Equations (3.66) and (3.67) can respectively be reducee to Equations (3.61)
and (3.62), as long as ǫθθ(r) = ǫrr(r). The substitution of l = 1 into Equa-
tion (3.67) yields the Tartar formula [98].



Chapter 4

Overview of results

This thesis focuses on thoretical study of dielectric properties of colloidal
particles. It consists of two parts. In the first part the attention is on the
dielectrophoresis (DEP) spertrum of two touching spherical homogeneous
colloidal particles by considering the effect of multiple images. This reserach
is covered by Publication I. Publications II-VII, the second part of the the-
sis, address the effective dielectric properties of functionally graded materials
using various methods. In them, the graded profile ǫ can be either isotropic
or anisotropic. For certain profiles, the dipole factor can be obtained ana-
lytically; for the arbitrary profiles, it is computed by developed approximate
methods. It is notable, that the approximate results agree well with the
analytical results.

Publication I was motivated by the results of Ref. [100], which demonstrates
that the multiple images method agrees with the multipole expansion method
and the multiple images method reflects, although not exactly, some char-
acteristics of the third order multipole expansion method, i.e., an octopole
effect. In this work, by employing the spectral representation theory [77], we
derived an analytic expression for the DEP force and hence determined the
DEP spectrum as well as crossover frequency with the influence of interactive
polarization. We investigated two cases: (1) the longitudinal field case where
the applied field is parallel to the line joining the centers of the two particles,
and (2) the transverse field case where the applied field is perpendicular to
the line joining the centers of the two particles. We also compared the DEP
spectra for an isolated particle and for two touching particles.

The results show that the effect of multiple images play an important role
in the DEP spectrum in the low frequency region. The effect increases (de-
creases) the induced-dipole moment of the individual particles in the longitu-
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dinal (transverse) geometry, and hence the DEP force can be enhanced (re-
duced) significantly for the longitudinal (transverse) field case. The crossover
frequency in the longitudinal (transverse) case moves to the lower (higher)
frequencies in the case where the particles are in contact. This is due to the
effect of multiple images.

Publication II presents a first-principles approach and an anisotropic differ-
ential effective dipole approximation (ADEDA), respectively, for the calcu-
lation of the dipole moment of anisotropic graded particles. This work is
an extension of Ref. [93] which calculates the dipole moment of isotropic
graded particles by combining a first-principles approach with the differen-
tial effective dipole approximation (DEDA). The results of this studies found
that there is an exact solution when the gradation profile is a linear radial
function. We evaluate the ADEDA by considering a linear gradation profile.
The numerical integration has been done by the fourth-order Runge-Kutta
algorithm with step size 0.01. The agreement is excellent. Thus, ADEDA is
a very good approximation for anisotropic graded spherical particles.

The fact that ADEDA shows very good agreement with the first-principles
approach is encouraging as ADEDA allows us to treat arbitrary gradation
profiles in realistic problems, such as optical properties of anisotropic graded
materials, and electrokinetic behaviors of biological cells.

Publication III addresses the optical nonlinear properties of graded materials.
In contrast to bulk materials, the corresponding thin films often prossesses
inhomogeneous optical properties [14, 101]. It is also known that graded
materials [26, 98] have quite different physical properties from homogeneous
materials. In addition, graded thin films may have better dielectric prop-
erties than single-layer films [102]. Moreover, there is a wide range of ap-
plications for nonlinear optical materials with large nonlinear susceptibility
or optimal figure of merit (FOM). However, the surface plasmon resonant
nonlinear enhancement often occurs concomitantly with a strong absorption,
and unfortunately this behavior renders the FOM of the resonant enhance-
ment peak too small to be useful. To circumvent this problem, we considered
a graded metal-dielectric composite film, in which the dielectric component
is introduced as spherical particles embedded in a metallic component.

When the layer dielectric profile of form p(z) = azm is taken into account, a
broad resonant plasmon band is always observed. In other words, the broad
band is caused by the effect of the positional dependence of the dielectric or
metal. Also, we found that increasing a causes the resonant band not only
to be enhanced, but also to be red-shifted (e.g., located at a lower frequency
region). The present results do not depend crucially on the particular form of
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the layer dielectric profile p(z). The only requirement is that there must be
a composition-dependent layer to yield a broad plasmon band for the graded
film. It should be noted that the optical response of a graded structure
depends on polarization of the incident light, because the incident optical
field can always be resolved into two polarizations. However, a large nonlinear
enhancement occurs only when the electric field is parallel to the direction
of the gradient [103], and the other polarization does not produce nonlinear
enhancement [103].

Publication IV was motivated by the study of the optical absorption spec-
trum of a graded metallic film [104]. In this work, a broad surface plasmon
absorption band was observed in addition to a strong Drude absorption peak
at zero frequency. Such a broad absorption band has been shown to be re-
sponsible for the enhanced nonlinear optical response as well as an attractive
figure of merit (the degree of optical absorption). Yuen et al. [105] pointed
out that such an absorption spectrum, being related to the imaginary part
of the effective dielectric constant, should be also reflected in the Bergman-
Milton spectral representation of the effective dielectric constant [106–108].
This work on grade film is an example of a more general work on graded
composite in three dimensions. One of the main purposes of this work is to
help identify the physical origin of the broad absorption band. Contrary to
the case of homogeneous materials, the characteristic function of a graded
composite is a continuous function due to the continuous variation of the di-
electric function within the constituent component. Moreover, we apply our
theory to a special case of graded composites, namely multilayer materials.
From a practical point of view, they are more convenient to fabricate than
graded materials [15] and, in addition are more reality available for designing
multilayer coatings [16, 17].

The results of Publication IV present a graded composite film and a sphere
by means of the Bergman-Milton spectral representation. It was shown that
the spectral density function can be obtained analytically for a graded sys-
tem. However, unlike in the case of homogeneous constituent components,
the characteristic function is a continuous function due to the presence of
gradation. The derivation, as well as some salient properties, including the
sum rules, the definition of the inner product, the definition of the integral-
differential operators, and the range of spectral parameters, change because
of the continuous variation of the dielectric profile within the constituent
components. This work also studied multilayer composites and calculated
the spectral density function versus the number of layers in order to explic-
itly demonstrate that the broad continuous spectrum arises from the accu-
mulation of poles when the number of layers tends to infinity. This finding
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agrees with the experimentally observed broad surface-plasmon absorption
band associated with the optical properties of graded composites [109].

Publication V extends the first-principles calculations of dielectric responses
of graded particles in uniform electric field. In this case, the particles are suf-
ficiently far apart so that it is possible to neglect contributions form higher-
order multipoles. As the separation of the particles decreases, the local field
becomes extremely inhomogeneous especially near the surface of the parti-
cles. In this work, we studied the multipole polarizability of a graded spher-
ical particle in a nonuniform field due to a point charge. The electrostatic
boundary-value problem of a graded spherical particle was solved to obtain
exact analytic results for a power-law profile. For arbitrary profiles, we devel-
oped a differential effective multipole moment approximation (DEMMA) to
compute the multipole moment of a graded spherical particle to capture the
multipole response in a nonuniform field. The results of the first-principles
approach and that of DEMMA agree with each other. However, DEMMA is
a numerical method which can be applied to an arbitrary profile.

Moreover, DEMMA is extended to anisotropic differential effective multi-
pole moment approximation (ADEMMA), which is used to calculated the
dielectric responses of anisotropic graded materials, and it is applicable to a
general case.

Publication VI was motivated by Publication III and IV. Publication III in-
vestigates the enhancement of optical nonlinearity in compositionally graded
metal-dielectric films in which the fraction of metal component varies per-
pendicular to the film. Publication IV found that there is always a broad
continuous function in the spectral density function in graded composite, but
simple poles in multilayer composite, and the number of the poles depends on
the number of layers. In this work, the results show that the optical absorp-
tion spectrum and the enhancement of optical nonlinearity consist mainly of
sharp peaks. However the strong optical absorption and the large fluctuation
of the nonlinear optical enhancement near these sharp peaks render the FOM
too small for industrial applications. When the number of layers becomes
large, the sharp peaks accumulate to a broad band while the fluctuations are
reduced significantly. In this limit, the broad continuous absorption band
emerges, and a large FOM persists. To sum up, as the number of layers
inside the metallic films increases, a gradual transition from sharp peaks to
a broad continuous band emerges until the graded film results are recovere.
This agrees with the results in Publication IV.

The work in Publication VII is a first-principles approach. It gives the analyt-
ical solution of local potentials of graded particles in terms of hypergeometric
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functions when the dielectric constant of suspended particles assume a profile
of the form ǫ1(r) = A + crk, where r is the radius of the suspended spheri-
cal particle, and A, c and k are constants. Our analytical results are useful
for analyzing the bulk AC response of graded colloidal suspensions and for
the control of the dielectric response of functionally graded materials having
complex dielectric graded profile.
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Chapter 5

Summary

In this thesis dielectric properties of colloidal suspension were studies theoret-
ically. It consists of the study of dielectrophoresis spectrum of two touching
spherical particles in suspensions and the study of effective dipole factor of
functionally graded materials in suspensions. We adopted analytical methods
and various approximate methods. The results obtained from this various
methods show excellent agreement.

We attempted a theoretical study of dielectrophoresis (DEP) of two ap-
proaching spherical particles by considering the effect of mutual polariza-
tion. When two particles approach and finally touch, the mutual polariza-
tion interaction between them leads to a change in the dipole moment of
individual particles and hence the DEP spectrum, as compared to that of
the well-separated particles. This effect of mutual polarization is studied via
the multiple image methods as shown in Figure 3.2. From the results, we
found that the effect of mutual polarization can change the characteristic
frequency as well as the magnitude of dielectrophoresis spectrum. In view of
the results of a two-particle system under consideration in this work, an ex-
tension to higher concentrations is necessary. In doing so, we could resort to
an effective medium theory to include many-body (local-field) effects [110].
This theory can be applied to investigate the dependence of DEP spectra
on gradation (inhomogeneity) [92, 93] inside colloidal particles or biological
cells. We should point out that the multiple images method is approximate
method [111] but this approximation is quite good [81], and the computa-
tion is cheap. In addition, charge, temperature and Brownian motion are
not included in our analysis, these factors are always present in experiments.
Work is in progress to address these questions. And some of them have been
solved in literature [112–114].
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In this thesis, we applied First-principles approach which is an analytical
method. It only gives solutions for certain graded profile ǫ, such as power-
law, linear and exponential profiles, and the solving procedure is complicated.
Note that having one exact solution yields much insight and such solution
could be useful as benchmark. The Begman-Milton spectral representation
is a rigorous mathematical formalism and was originally developed for calcu-
lating the effective dielectric constant and other response functions of two-
component composites. However, in the original representation both of the
two components concerned are assumed to be homogeneous. In this thesis,
we extended it to graded composite materials. We also studied multilayer
composite and calculated the spectral density function versus the number
of layers in order to explicitly demonstrate that the broad continuous spec-
trum arises from the accumulation of poles when the number of layers tends
to infinity. The spectral representation approach separates the material pa-
rameter from the structure parameter, then we can investigate the effect of
material parameter and structure parameter, respectively. In this thesis, we
studied the effect the structure parameter, and the spectral representation
visualize the graded structure.

We developed several approximate methods in this thesis. Anisotropic differ-
ential effective dipole approximation (ADEDA) is an extension of differential
effective dipole approximation (DEDA) to calculate the effective dipole fac-
tor of graded materials. Its results show excellent agreement with the results
from first-principles approach. Colloidal suspensions and many kinds of cells
have non-spherical shapes, e.g., red blood cells are oblate spheroids. The
derivation of DEDA for non-spherical particles had been done [92], hence
similar work for ADEDA is also possible to be extended. It would be also in-
teresting to compare this theory to experimental results. Further work could
be extended to discuss the dielectrophoresis spectrum of a pair of graded
anisotropic particles by taking into account the effect of multiple images and
to investigate high concentration suspensions by discussing the many-body
(local field) effects [115]. A generalization which includes both of these effects
is of particular interest.

We also developed a differential effective multipole moment approximation
(DEMMA) to compute the multipole factor of a graded spherical particles in
a nonuniform electric field due to a point charge. We compared the DEMMA
results with the exact results for the power-law dielectric profile and the
agreement is excellent. As the multipole response is sensitive to the graded
profile of the particles as well as to the structure of the nonuniform field
source, there is a potential application to AC electriokinetics of graded col-
loidal particles [116]. The similar approach can be applied to electrorheolog-
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ical fluids [117,118] because the particles in electrorheological fluids can have
very dense structures locally. The local electric fields are extremely inhomo-
geneous near the particles so that multipole effects can play an important
role. In this regards, DEMMA could be extended to study the interparticle
force between graded particles [81] in electrorheological fluids. In the other
topics, based on the calculation of DEMMA, the similar calculation of the
multipole response of a graded metallic sphere in the nonuniform field of
an oscillating point dipole at optical frequency could be attempted. When
the oscillating source is placed close enough to the graded metallic sphere,
higher-order multipole response can be excited. The approach may also be
applied to the electroencephalogram of the human brain by regarding the
brain as a graded anisotropic conducting sphere. For the anisotropic case,
anisotropic DEMMA can be applied.

Nonlinear optical materials with a large value of the third-order nonlinear
susceptibility are in great need in industrial applications. In this thesis, we
investigate the nonlinear optical enhancement in graded metallic materials
and in multilayer metallic films. Our preliminary results show that the final
representation and the definition of the spectral density function remain the
same as the Bergman-Milton representation [77]. Moreover, the separation
of the material parameter from the structure innformation still holds. Also,
it is interesting to extend the present consideration to composites in which
graded spherical particles are embedded in a host medium to account for
mutual interationcs among graded particles. Similar considerations can be
extended to other nonlinear optical properties such as the second-harmonic
generation [119].
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