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This Thesis describes investigations on the solid-liquid interface of helium. Helium crystals represent a unique model
system for the studies of the crystalline phenomena, such as faceting and crystal growth, and their surface can be
studied, in principle, down to the zero temperature quantum limit (0 K = −273.15◦C). Helium also becomes
extremely pure at low temperatures as all the impurities except the isotopical ones freeze out. In this Thesis the
solid-liquid interfaces of both helium-3 and helium-4 have been studied using a Fabry-Pérot interferometer and a
high-accuracy pressure gauge.

The optical studies on the faceting of helium-3 crystals have revealed that the quantum motion of the interface, which
keeps the solid-liquid interface rough (not faceted) down to 0.1 K, becomes damped at low temperatures. The quantum
fluctuations of the interface become more and more damped due to the Fermi-degeneracy of the liquid which creates a
bottle-neck for the spin transport through the moving interface. As a result, facets start to appear and, finally, at the
lowest temperatures below 0.001 K the solid-liquid interface becomes so localized that it resembles the surface of
classical crystals.

The melting curve of high-quality helium-4 crystals has been measured between 0.01–0.32 K with an accuracy of
0.1 Pa without finding any entropy signature which the possible supersolid transition could cause. The entropy below
0.3 K was attributed to phonons in solid and in liquid and the upper limit of the non-phonon entropy was set to
5 · 10−8R. The measurements on the thermal expansion of liquid helium-4 between 0.02–0.72 K in constant volume
pointed out that the rotons start to contribute to the thermodynamics of the solid-liquid interface of helium-4 above
0.3 K. In order to study the role of defects in the possible supersolidity, also the stacking faults were studied on
helium-4 crystals.
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Väitöskirjassa käsitellään heliumin kide–neste-rajapinnan tutkimuksia. Helium-kiteet edustavat ainutlaatuista mallia
kideilmiöiden, kuten fasetoituminen ja kiteenkasvu, tutkimukselle ja niiden kide–neste-rajapintaa voidaan tutkia
periaattessa aina nollalämpötilan (0 K = −273.15◦C) kvanttirajaan saakka. Heliumista tulee myös hyvin puhdasta
matalissa lämpötiloissa, kun kaikki epäpuhtaudet isotooppisia lukuunottamatta jäätyvät. Tässä väitöskirjassa on tutkittu
sekä helium-3:n että helium-4:n kide–neste-rajapintaa käyttäen Fabry–Pérot-interferometria ja tarkkaa painemittaria.

Helium-3 -kiteiden optiset tutkimukset paljastivat, että kvantittunut pinnan liike, joka pitää kide–neste-rajapinnan
karheana 0.1 K saakka, vaimentuu matalissa lämpötiloissa. Pinnan kvanttivärähtelyn vaimeneminen aiheutuu nesteen
Fermi-degeneraatiosta, joka muodostaa pullonkaulan atomien spinien kulkeutumiselle liikkuvan pinnan läpi. Sen
seurauksena fasetit alkavat ilmestyä kasvavan helium-3 -kiteen pinnalle ja lopulta matalimmissa, alle 0.001 K
lämpötiloissa kide–neste-rajapinta paikallistuu niin paljon, että se muistuttaa klassisten kiteiden rajapintaa.

Korkealaatuisten helium-4 -kiteiden sulamiskäyrää mitattiin 0.01–0.32 K lämpötiloissa 0.1 Pa tarkkuudella löytämättä
kuitenkaan merkkejä mahdollisen suprakiteisyystransition aiheuttamasta entropiasta. Alle 0.3 K lämpötiloissa entropiat
voitiin liittää kiteessä ja nesteessä oleviin fononeihin ja ei-fononisen entropian yläraja voitiin asettaa arvoon 5 · 10−8R.
Nestemäisen helium-4:n lämpölaajenemismittauksista lämpötila-alueella 0.02–0.72 K saatiin selville, että rotonit
alkavat osallistua helium-4:n kide–neste-rajapinnan termodynamiikkaan lämpötilan 0.3 K yläpuolella. Hilavirheiden
vaikutusta mahdolliseen suprakiteisyyteen tutkittiin tarkastelemalla myös pinousvirheitä helium-4 -kiteissä.
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Chapter 1

Introduction

Helium crystals represent a fine model system for the studies of phenomena
taking place on a crystal surface such as faceting. In addition to model-
ing classical properties, Nature has endowed helium with several properties
which cannot be studied with ordinary crystals and this renders the study
of helium crystals especially intriguing. As the liquid-solid interface of he-
lium exists down to the absolute zero temperature (T = 0 K), the theories
can be tested in the zero temperature quantum limit. Helium is also an
extremely pure substance as at low temperatures all impurities except for
isotopic ones freeze out.

The small latent heat of crystallization of helium and extremely good ther-
mal conductivity of the surrounding superfluid phase enhance the dynamics
of the liquid-solid interface to a level which is so fast that a the melting-
freezing wave easily propagates in 4He below 0.5 K (1). These crystallization
waves have been predicted to propagate also in 3He at temperatures below
0.2 mK (2). In 3He the propagation of crystallization waves would be affected
by the magnetic field. The lowest temperature to which the liquid-solid in-
terface of 3He has been cooled is, however, 0.35 mK (3).

Helium crystals can be studied in a relative wide temperature range, which
makes it possible to study faceting and crystal growth as a function of tem-
perature. Although helium crystals have been studied already since the
discovery of solid helium in 1926 by Keesom (4), there still remains many
unanswered questions. Whereas the understanding of the appearance of
facets (flat faces) on 4He crystals has been quite well established, the the-
ory of the appearance of facets on 3He crystals has been inadequate (5).



2 Introduction

The 1st part of the Thesis fills this apparent gap in understanding of the
roughening of the surface of 3He crystals.

It has been proposed that solid 4He could have a property similar to su-
perfluidity in liquid 4He (6,7). The possible superflow of vacancies in solid
4He has been investigated by several groups in different experiments before
1990s (8). In these studies no unambiguous supersolid state was found, but
they set the upper limit of 5·10−6 for the possible supersolid fraction in solid
4He and the value of < 0.5 nm/s for the critical velocity down to 25 mK.
Lengua and Goodkind (9) have observed an increased sound attenuation in
the ultrasonic experiments with ultrapure solid 4He. They attributed this
observation to the interaction between phonons and vacancies but obtained
a higher supersolid fraction ρss/ρs ∼ 0.001 and condensation temperature
of ∼ 0.1 K.

In 2004 Kim and Chan revived the interest to a very broad audience to
investigate the possible supersolid state of solid 4He by reporting on their
torsional oscillator experiments on solid 4He (10,11). Kim and Chan have
observed the so-called non-classical rotational inertia (NCRI) of solid 4He
sample which, according to Leggett(12), could be the manifestation of su-
persolidity. The NCRI, which signified the discovery of the superfluidity
of liquid 4He (13,14), is explained by the partial decoupling of the superfluid
(supersolid) sample from the rotating container.

It has been originally proposed by Andreev and Lifshitz (15) and Chester(16)

that Bose-Einstein condensation of quantum-delocalized point defects could
provide the mass flow in the solid. Due to the large zero-point motion of
helium atoms, the solid helium at any temperature may contain a finite
concentration of zero-point vacancies which would Bose-Einstein condensate
at sufficiently low temperatures. Such condensation would result in non-
dissipative mass flow in the solid, superfluidity in solid helium, also called
as “supersolidity”.

Kim and Chan have found that the reduction in the rotational inertia of the
cell filled with solid 4He varies from 0.5% to 1.5% depending on the solid
density and the purity of 4He (10,11). They attributed the reduction of the
rotational inertia of the cell to the appearance of the supersolid fraction.
Rittner and Reppy confirmed the effect and found supersolid signals ex-
ceeding even 20%(17). In addition, they were able with one of their samples
to eliminate the signal below the unobservable level by annealing. How-
ever, Kim and Chan could not confirm the annealing effect (18). Different
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experiments on the decoupled fraction of solid 4He have shown that the “su-
persolid” fraction significantly depends on the way the solid 4He is grown,
which refers to the involvement of the defects in solid 4He, because the
amount of disorder, or, defects (dislocation, grain boundaries, vacancies,
impurities) induced in the solid depends on the growth conditions.

Currently, there is a general consensus that the supersolid phenomenon is
most probably related to the disorder in solid(19). Numerical simulations
have indeed shown that certain types of defects in solid 4He support mass
superflow (20). If the phenomenon related to NCRI would be an intrinsic
property of helium, then it should reveal some excess entropy which could
be detected by the measurements of the melting curve. The 2nd part of the
Thesis focuses on the search of such entropy signature on the melting curve
measured with single high-quality 4He crystals.

In order to understand more the role of disorder in quantum solids, or,
quantum defects, it is also necessary to study experimentally single defects
and solid samples with well-characterized disorder (21). The 2nd part of the
Thesis also contributes to the study of quantum defects, presenting studies
on the stacking faults in solid 4He. Stacking faults, which are planar defects
in a single crystal, create canyons on the crystal surface which are similar
but shallower than the ones created by grain boundaries.

The experiments described in this Thesis were conducted at the Low Tem-
perature Laboratory (LTL) using the nuclear demagnetization cryostat of
the Interface group, which has several cooling stages in order to cool the
helium sample down to a temperature below 0.001 K. The windowed exper-
imental cell is located between the half-reflective mirrors of a Fabry-Pérot
interferometer. The interferometric images on helium crystals are projected
on the sensor of the CCD camera working at around 70 K inside the vacuum
can of the cryostat. From the interferometric images captured by the sensor,
the 3D profile of the helium crystals can be reconstructed. A high-resolution
capacitive pressure gauge and a low-temperature cold valve enable accurate
(∼ 0.05 Pa) measurements of the pressure of helium.

Organization of this Thesis

This Thesis is organized in the following way. First, in Chapter 1 a general
introduction is presented to the studies of the liquid-solid interface of 3He
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and 4He. The experimental cell of the Interface group and the interferomet-
ric techniques used in imaging helium crystals are described in Chapter 2.

The results of the investigations on the faceting of helium crystals are col-
lated in Chapter 3: the measurements of the surface tension of 3He crystals
[I], the studies on high-temperature faceting of 3He crystals [II], the studies
on the roughening of 3He crystals [III,IV], the measurements on the col-
lapse of facets on 3He crystals [V], and the remarks on the effective crystal
growth mode near the roughening transition [VI]. The investigations on
supersolidity and defects are reviewed in Chapter 4: the measurements of
the melting curve of 4He [VII,VIII,IX] and of the heat expansion of liquid
4He [IX], and the determination of the stacking fault energy in 4He crystals
[X]. The results and open questions aroused are summarized in Chapter 5.

1.1 Low temperature phase diagrams of
3He and 4He

1.1.1 Thermodynamical phases of helium

Helium has so large zero-point motion of atoms that the wave functions
of the atoms significantly overlap and the atoms partly lose their identity
and due to that liquid helium exists down to the absolute zero temperature.
Helium does not have the triple point where gaseous, liquid and solid phases
coexist in equilibrium, but instead, the melting curve is separated from the
vapor curve. Helium solidifies only at elevated pressures: 4He at about
2.5 MPa and 3He at 2.9–3.5 MPa. The low-temperature phases of both 3He
and 4He, which were studied in Thesis at zero magnetic field, are presented
in Fig. 1.1.

Although both the lighter 3He and the heavier 4He isotopes of helium are
electrically neutral, their behaviors at the lowest temperatures are very dif-
ferent. In 4He atom both two protons are paired with neutrons, which gives
the atom an integer spin and makes it a boson, whereas in 3He atom one of
the protons is unpaired, which makes it a fermion. The bosonic 4He liquid
becomes superfluid below 2.17 K, whereas the fermionic 3He liquid becomes
superfluid at a much lower temperature, below 0.0025 K. The properties
of liquid 3He well below its Fermi temperature of TF ≈ 1 K resemble the
properties of a Fermi degenerate gas (22). The bosonic 4He has only one
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(a) (b)

Fig. 1.1 Phase diagrams of (a) 4He and (b) 3He in zero magnetic field.

superfluid phase, whereas the fermionic 3He has two, superfluid A and B
phases in zero magnetic field and also A1 phase in a magnetic field.

1.1.2 Solid phases of helium

Solid 4He has the hexagonal close-packed (hcp) crystal structure at low
temperatures on the melting curve, except between 1.464–1.773 K where the
body-centered cubic (bcc) structure is more stable. Due to the hexagonal
symmetry, four base vectors are used for classifying the crystallographic
planes in the hcp structure, as shown in Fig. 1.2(a). In Figure 1.2(b) are
shown several crystallographic planes in the hcp structure.

Solid 3He at low temperatures has body-centered cubic (bcc) crystal struc-
ture on the melting curve. Due to the cubic symmetry, the three base
vectors used with the bcc structure lie on the x, y and z axes, as shown in
Fig. 1.3(a). The 3He atoms have a magnetic moment (spin) and the char-
acteristic spin-spin coupling energy is of the order of the Néel temperature,
TN = 0.902 mK. When the temperature of solid 3He is above TN , the spins
in zero magnetic field are disordered and in a finite magnetic field they order
paramagnetically. Below TN , the nuclear spins of solid 3He are ordered into
an antiferromagnetic structure shown in Fig. 1.3(b) in which the ferromag-
netic (100) planes are believed to order in the sequence of up-up-down-down
(u2d2 phase).
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(a) (b)

Fig. 1.2 The hcp crystal structure. (a) Base vectors a1, a2, a3 and c. (b) Plane
(hkil) is defined by vectors 1

ha1, 1
ka2, 1

i a3, and 1
l c, where i = −h − k. In hcp

4He crystals planes a(1010), c(0001) and s(1010) have the largest periodicities in
the lattice, da = 0.317 nm, dc = 0.299 nm and ds = 0.280 nm, then follow planes
(1012) with d = 0.218 nm and (1120) with d = 0.183 nm.

(a) (b)

Fig. 1.3 The bcc crystal structure. (a) Base vectors a1, a2, and a3. (b) The
plane (hkl) is defined by vectors 1

ha1, 1
ka2, and 1

l a3. In the magnetically ordered
structure of bcc solid 3He the (100) magnetized planes are believed to order in
the series of up-up-down-down. In bcc 3He crystals planes (110), (100) and (211)
have the largest periodicities in the lattice, d110 = 0.31 nm, d100 = 0.22 nm and
d211 = 0.18 nm.
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1.2 Liquid-solid interface of helium

1.2.1 Rough crystal surfaces

The equilibrium crystal shape (ECS) is of particular interest in crystallog-
raphy, because from ECS it is possible to resolve the angular dependence of
the surface tension, α. The surface tension measures the work required to
increase the surface area by a unit area, or, the force per unit length needed
to bend the surface by a unit curvature. According to the Laplace-Young
relation,

∆ρslg(h− h0) = −ακ,
thus the curvature κ of the surface decreases linearly with the hydrostatic
pressure difference ∆ρslg(h − h0) when vertical position h of the interface
changes in the presence of the acceleration of gravity g and the density
difference ∆ρsl between liquid and solid phases.

In helium crystals the surface tension is in general anisotropic and the
Laplace-Young relation has the following form,(23)

∆ρslg(h− h0) = −(γ1κ1 + γ2κ2), (1.1)

where for both principal curvatures κi of the surface one needs to use the
corresponding surface stiffness component γi which is related to the surface
tension as

γi(θi) = α(θi) + ∂2α(θi)/∂θ
2
i . (1.2)

In case of 4He crystals, the angular dependence of the surface stiffness γ(θ)
has been measured by Andreeva and Keshishev (24) from the measurements
on the dispersion of the crystallization waves. This anisotropic form (1.1)
of ECS has been used in Paper X when finding the energy of the stacking
fault, although the role of the anisotropy was found to be small.

If the surface tension is isotropic, the surface stiffness equals to the value
of the surface stiffness, α = γ1 = γ2. This condition holds for a rough,
not faceted crystal surface and for a partially faceted crystal surface in
orientations which are far from facets. In the isotropic case, the Laplace-
Young equation reduces to

h− h0 = −λ2κ, (1.3)

where λ =
√

γ
g∆ρsl

is the capillary length. The capillary length of 3He

crystals has been studied at different temperatures in Paper I.
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λ
Fig. 1.4 Equilibrium crystal shapes (ECS) in the cylindrical symmetry. Crys-
tals with diameter larger than the capillary length λ flatten out. λ is about
1.0 mm for both 3He and 4He depending slightly on orientation.

Solving numerically equation (1.3) reveals that a rounded crystal whose size
is smaller than the capillary length is nearly spherical in the gravitational
field, whereas larger crystal flattens out, as shown in Fig. 1.4. If the crystal
size increases even more, its height saturates to a value which is a bit larger
than 2λ and the top of the crystal becomes nearly flat. Even when the
hydrostatic pressure difference across a helium crystal in equilibrium reaches
2–3 Pa, the height change of a large crystal in equilibrium is exponentially
small compared to the change of crystal size. This saturation of the crystal
height was exploited in Papers VII, VIII and IX when measuring the
melting pressure of 4He with high accuracy (∼ 0.1 Pa).

If the hydrostatic term and the Laplace term are not balanced, then the
liquid pressure pl is above (or below) the melting pressure pm and there is
an overpressure δp that drives the growth (or melting) of the crystal surface,

δp = pl − pm = −ρlg(h− h0)− ρl
∆ρsl

ακ. (1.4)

Since the growth velocity vR of rough surface is proportional to the over-
pressure,

vR = µRδpR, (1.5)

it is possible to determine the effective mobility of the rough surface µR by
simply measuring the height, velocity and curvature of a rounded surface
in several places on the surface. Via relations (1.4) and (1.5) the rounded
surface has been used in Papers III and IV, and V as a reference in de-
termining the overpressure on the faceted crystal surface. This method is
extremely sensitive (∼ 0.01 Pa) and does not require any pressure measure-
ment.
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1.2.2 Facets

The interatomic cohesive forces are able to dampen the thermal fluctuations
of a crystal surface and at low enough temperature render a rounded (rough)
surface into a smooth (flat) one (see Fig. 1.5).

Fisher and Weeks (25) and Jayaprakash et al. (26) have found the universal
relation between the roughening transition temperature, TR, the surface
stiffnesses, γ1 and γ2, and the periodicity d in the lattice,

kBTR = (2/π)
√
γ1γ2d

2, (1.6)

where kB is Boltzmann’s constant. This simple relation predicts the faceting
transition for the basal c-facet on 4He crystals to take place at 1.3 K which
agrees with experimental observations but, for the (110) facet on 3He crys-
tals it yields 0.26 K which is much higher than the highest temperature
of 0.10 K at which facets have been seen(5). It has been pointed out that
the roughening theory which yields relation (1.6) neglects quantum fluc-
tuations of the liquid-solid interface of 3He which are able to roughen the
interface (27). The role of the Fermi degeneracy of liquid 3He in dampening
of the quantum fluctuations is studied in Papers III and IV.

Equation (1.6) can also be used for non-basal facets, but missing accurate
data on the surface stiffness of 4He crystals near the facet orientation is
not currently available in order to provide accurate predictions (5). The
predictions given by the isotropic surface tension were used in the studies
of non-basal faceting on 3He crystals in Paper II.

(a) (b)

Fig. 1.5 (a) A rough crystal surface. (b) A smooth (faceted) crystal surface.
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1.2.3 Roughening theory

The roughening of 3He crystals has been studied in Papers III and IV
from the viewpoint of the renormalization theory. In order to compare
the roughening of 3He and 4He crystals, it is reasonable to follow Nozières
and Gallet(28) who have developed a renormalization group approach for the
critical theory of roughening. In the static renormalization group approach,
the effective surface Hamiltonian is

H =

∫ [γ
2

(∇z)2 + V cos
2πz

d

]
d2r, (1.7)

where the cohesive forces of the interface, or, the pinning of the liquid-
solid interface to the crystal lattice is presented by the periodic potential V
which tends to pin the interface at integer positions of z/d. The ratio V/γ
describes the strength of the pinning of the interface to the lattice. If V/γ
is close to unity then the interface-to-lattice coupling is strong, and if it is
small then the coupling is weak.

The pinning potential is the strongest at 0 K. Thermal fluctuations renor-
malize the pinning potential to a smaller value which weakens the interface-
to-lattice coupling, until at the roughening temperature TR the interface
roughens completely. In the weak-coupling limit, V/γ � 1, the renormal-
ization of the surface stiffness γ is negligible at all temperatures except in
the narrow temperature region near TR, |(TR−T )/TR| . V0/(γ0d

2k2
0). Here

are being used the unrenormalized, “bare” values and of the pinning poten-
tial V0 and the surface stiffness γ0, and the short-scale cut-off k0 ∼ π/d of
surface fluctuations which are in shorter scale than the periodicity d. The
renormalized pinning potential is

V = V0 exp(−2π2〈z2〉/d2), (1.8)

where the average amplitude of thermal fluctuations of the interface is

〈z2〉 = (T/2πγ) ln k0/k∗. (1.9)

The large-scale cut-off k∗ is at the level when the coupling energy per unit
cell, 4πV/k2, reaches the energy of fluctuations with corresponding k.

The renormalized free energy of an elementary step on a facet is

β = (4d/π)
√
γV , (1.10)
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thus after renormalization the temperature dependent step energy is

β = β0

(4πV0

k2
0T

) T
2(TR−T ) , (1.11)

where β0 is the unrenormalized value for the step energy. On 4He crystals
the experimental data on the energy of an elementary step β on c-facet
has been successfully explained with the renormalization theory(29). As
found in Papers III and IV, on 3He crystals the step energies β110 of the
basal (110) facet near 100 mK can also be explained with the same theory,
however, in order to explain the full temperature dependence of β110 down
to 0.55 mK, the generalized version of the renormalization which includes
quantum fluctuations has to be used.

In order to incorporate quantum fluctuations, we used the dynamic version
of the renormalization group theory, in which the motion of the interface
z(~r, t) is described with the Langevin-type equation,

η
∂z

∂t
− γ∇2z + (2πV/d) sin(2πz/d) = R(~r, t), (1.12)

where η is the intrinsic damping coefficient of the interface and R(t, ~r) is
the time-dependent random force. In the case of thermal fluctuations the
random force has white spectrum,

R2
k,ω = 2η T f(k) g(ω), (1.13)

where f and g are the form factors used to cut off the renormalization,
f(k) = θ(1−k/k0) and g(ω) = θ(1−ω/ω0), where θ(x) is the step function.
In order to describe also quantum fluctuations of the interface, the random
force has to be replaced with its general form,

R2
k,ω = 2η ~ω coth

~
2kBT

f(k) g(ω). (1.14)

The static and dynamic renormalization theories yield the same results at
the roughening transition temperature TR where thermal fluctuations dom-
inate. In Papers III and IV it indeed has been found that the generalized
renormalization group theory is able to explain the renormalization of the
step energy β110 in 3He crystals in full temperature range from 0.55 mK to
103 mK.
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1.2.4 Equilibrium and critical size of facets

The shape which crystals tends to take has been already in 1885 considered
by P. Curie, who stated that the crystal surface should take such a form
which minimizes its surface energy(30). He also noticed that the surface ten-
sion α has a minimum in the direction of flat facets and that the minimum
in α is responsible for the finite-size facets. Later, in 1901, Wulff proved
that the distance from the origin of the crystal to the facet is proportional to
the surface tension of the facet (30). About 50 years later, Landau has shown
that the derivative of the surface tension ∂α/∂θ has a jump at the orienta-
tion of the facet which is proportional to the step energy β. Following the
approach developed by Wulff, Landau has found that the equilibrium size
of the facet is proportional to the value of the jump, or, to the step energy,

Req

L
∝ β/d

α
, (1.15)

where L is the characteristic size of the crystal.

In the faceting–roughening problem, the step energy β is the order param-
eter that describes the strength of the coupling between the crystal surface
and the lattice. This can easily be seen from equation (1.15)—if β is finite,

facets should appear on the crystal surface. If the ratio β/d
α

is close to unity,
then the equilibrium facet size is of the order of the crystal size and the
surface-to-lattice coupling is said to be strong. If β/d

α
is small, the equilib-

rium facet size is much smaller than the crystal size and the coupling is said
to be weak. For zero step energy also the equilibrium facet size is zero.

By measuring the equilibrium size Req of a facet one could, in principle,
obtain the value of β. The difficulty of this method, however, has been
that the relaxation time of a faceted crystal has not been experimentally
accessible, due to the thresholds which exist in the facet growth (see next
section). In the case of 3He at high temperatures, also the large latent
heat of crystallization and poor thermal conductivity of the normal liquid
increase the relaxation times of crystals.

There are, however, other methods with which the step energy of facets
can be measured under quasi-equilibrium conditions. As suggested by
Marchenko and Parshin(31), the step energy of the basal c-facet on 4He
crystals has been measured by studying the surface-to-wall contact angle
as a function of the angle between the facet and the wall (32). Another way
is to follow the shape of faceted crystals during slow melting and, at the
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moment when the facets collapse, measure the critical size of facets, (23)

Rc =
ρl

∆ρsl

β

d δp
, (1.16)

which equals to a half of the equilibrium size Req of facets. The step energies
of the (110) and (100) facets on 3He crystals near 1 mK have been deter-
mined in Paper V by measuring the critical size Rc and the overpressure
δp of collapsing facets.

1.2.5 Growth modes of facets

A faceted crystal surface may grow through the appearance of new atomic
layers on the surface. New atomic layers can be created by the 2D nucleation
or by the spiral growth through screw dislocations. Compared to the growth
of the rough surface which is linear to the driving overpressure δp, it is
characteristic to a faceted surface that its growth below TR is non-linear to
δp. Only above TR, where the facet roughens, the growth in the direction
of a facet becomes linear to δp.

In the 2D nucleation of new layers of atoms there is a threshold which has
to be overcome. In order for a terrace of a new layer to expand, its size has
to exceed the critical size given in equation (1.16). The growth through a
single screw dislocation does not include a threshold. However, neighboring
screw dislocations of opposite windings form a pair which is called a Frank-
Read source (33). The Frank-Read sources have a growth threshold of

δpthr = 2β/d〈l〉,
where 〈l〉 is the average distance between the screw dislocations. Since
the growth threshold in spiral growth is typically smaller than in the 2D
nucleation of new layers, 2D nucleation is effective only close to TR where
the step energy β is very small and the critical size of the facet becomes
smaller than the size of Frank-Read sources, Rc < 〈l〉/2. On the other
hand, the critical theory of roughening predicts also that the step width ξ
increases with the decreasing step energy,(23)

(ξ/d) =
2

π2

γd

β
. (1.17)

As found in Paper VI for 4He crystals, this broadening of the step near TR
may again make the spiral growth more effective than the 2D nucleation.
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The step energy β can be determined from the crystal growth through screw
dislocations by measuring the quadratic dependence of the growth velocity
v on the overpressure δp (34),

v =
µst d

3

19 β
K
(∆ρsl
ρl

)2

(δp)2. (1.18)

Here µst is the step mobility and K is the number of steps produced by one
dislocation. In Papers III and IV the quadratic dependence of the facet
velocity to δp was found out to determine the step energy of the (110) facet.

On 3He crystals at low temperatures the step velocity vst reaches already
at an overpressure of δpthr ≈ 5 Pa the critical velocity vc = 7 cm/s, which
is close to the magnon velocity cmag in the solid 3He and pair-breaking
velocity vpb in superfluid 3He. After reaching this critical velocity the step
mobility becomes suppressed and the growth velocity of facet becomes linear
to δp (34),

v =
vc d

2

2πβ
K
(∆ρsl
ρl

)
δp. (1.19)

In Paper V, the step having width ξ has been considered as a rough surface
tilted by (d/ξ), which yields a lower estimate for the mobility of the rough
surface, µR = (ξ/d)(vc/δpthr).

In the absence of screw dislocations or when the growth threshold of a facet
is very high, new atomic layers may be nucleated at the contact of the facet
to the wall (5). As realized by Marchenko and Parshin, it is possible that the
contact of the surface to the wall becomes a source of new atomic layers for
the immobile facet (31)—the threshold of the c-facet growth on 4He crystals
has been observed to vanish when the facet-to-wall contact angle decreases
below ∼ 47◦ (32), which has been also indirectly observed in Paper X.

In experiments with 4He crystals there has been observed also a very fast
growth mode, which have not been completely understood yet. Parshin et
al. have seen “avalanche-like” growth of vertical c-facets (35) and Ruutu et
al. (36) have seen “burst-like” growth of new atomic layers for c-facets which
are oriented horizontally. The burst-like growth proceeds stochastically,
with overpressures ranging from about 10 to 100 Pa at T = 200 mK. The
role of the creation of stacking faults in these fast growth modes is discussed
in Paper X.
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1.2.6 Heat considerations on the growth of crystals

The movement of a liquid-solid interface is accompanied by the release of
latent heat of crystallization and the transport of the released heat through
the interface and through bulk phases. Nozières and Uwaha(37) have found
the coupling between the mass flow J = vρs and heat flow JE. The heat
flow through the interface, JE = JQ + TSJ , has two terms which describe
the conduction of heat, JQ = κ∇T , and the convection of heat, TSJ . Then
the coupling of the mass and heat flows across the interface can be written
with a paired equations

J = k
[
∆µ+ λ

∆T

T

]
(1.20)

∆T =RK [JE − λJ ], (1.21)

in which k is the isothermal growth coefficient, ∆µ = µl−µs is the chemical
potential difference over the interface, RK is the Kapitza thermal boundary
resistance of the interface, and the term λ describes the share of the latent
heat J(Sl − Ss)T between the liquid side, J(TSl − λ), and the solid side,
J(λ − TSs). The temperature difference ∆T across the interface can be
written in a symmetric form

∆T = RK [κl∇Tl + J(TSl − λ)] = RK [κs∇Ts + J(TSs − λ)]. (1.22)

The heat release at the moving interface is depicted in Fig. 1.6 which shows
how the heat is elaborated on both sides of the interface and conducted both
through the bulk thermal resistance Zl and Zs and through the Kapitza
thermal boundary resistance RK

(37). In solving the heat diffusion problem
for a facet and for a rough surface in Papers III and IV, equation (1.22)
was used as one of the boundary conditions.

When a rough crystal surface is growing, the velocity of the moving interface
is proportional to the overpressure that drives the crystal growth. Experi-
mentally measurable quantity is the effective growth coefficient keff = J

∆µmech

Fig. 1.6 Thermal circuitry across the moving interface.
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which is defined using the mechanical part of the chemical potential differ-
ence between liquid and solid ∆µmech = ∆ρsl

ρlρs
δp,

1/keff = 1/k+ ρs

[
RKZl(TSl − λ)2 +RKZs(TSs − λ)2 + ZlZsL

2

T (RK + Zl + Zs)

]
. (1.23)

In general case keff includes the elaboration and transport of heat and there-
fore the value of keff depends on what thermal impedances contribute to
the measurement of ∆µmech. In previous experiments (38,39,40,41) the effective
growth coefficient has corresponded to the thermal impedance of the liquid
between the crystal surface and the sinter, including the sinter. In con-
trast, the effective growth coefficients measured in this Thesis correspond
to the thermal impedance between different parts of the surface and can be
therefore called as differential growth coefficients.

Equation (1.23) simplifies in the case of 3He crystals below about 1 mK
where the thermal impedance of liquid is much smaller than that of solid,
Zl � Zs, the Kapitza resistance is negligible (42), RK � Zl. Then the
growth of the rough surface is limited by the latent heat transport,

1/keff = ρs
ZlL

2

T
, (1.24)

and there is no matter how the latent heat is shared between liquid and
solid phases. This temperature scaling of keff was used in Paper V when
estimating the overpressure on the growing rough surface.

Another limit of equation (1.23) is obtained for 3He crystals at high temper-
atures where the latent heat is elaborated in the liquid side (43,44), λ = TSs.
Solid 3He which conducts heat better than liquid 3He, Zs � Zl, acts as a
short-cut for the transport of heat between the different surface parts. Due
to the short-cut in transporting heat between two points separated by a
distance dq on the crystal surface, the Kapitza resistance RK does not scale
with distance, whereas the thermal impedance of the liquid Zl scales with
dq. In large scales, dq � RKκL ≈ 10 µm, Kapitza resistance becomes small
compared to the liquid impedance, RK � Zl. Then the growth of the rough
surface is limited by the latent heat transport through the interface,

1/keff = ρs
RKL

2

T
. (1.25)

This temperature scaling of keff has been used in Papers III and IV.
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Chapter 2

Experimental techniques

2.1 Experimental cell

The experimental cell of the Interface group is made of copper, it has cylin-
drical experimental volume and optical windows through which the helium
sample can be imaged. The windowed experimental cell is located between
two half-reflective mirrors which form a Fabry-Pérot interferometer. A pho-
tograph of the experimental setup is shown in Fig. 2.1.

Helium is injected to the experimental cell through a filling line which goes
all the way from room temperature down to the cell at low temperatures.
The filling line is thermally anchored to each cooling stage. A cryogenic
valve anchored to the mixing chamber of the dilution refrigerator isolates
the cell from thermoacoustic (Taconis) oscillations in the filling line.

Solid helium nucleates spontaneously when the pressure of liquid helium
exceeds the melting pressure by about 1 kPa. The overpressure needed to
nucleate a seed of crystal can be lowered with a nucleator, which in our case
is a bifilar coil wounded around a bakelite holder. When a high voltage of
about 300–700 V is applied over the coil of the nucleator, the electric field
produced permits a seed of crystal to nucleate at an overpressure of 0.4 kPa
or less. The growing seed initially hangs on the coil of the nucleator. When
the size of the crystal is large enough, the crystal drops on the bottom
window of the experimental cell.
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Fig. 2.1 Photograph of the experimental setup of the Interface cryostat.
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Fig. 2.2 A 3He crystal in the isolated cell can be grown by increasing the
pressure of 4He in the bellows which compress the cell volume.

When pressurizing 3He at a low temperature through the filling line, a
crystal nucleates first at TMCM = 315 mK in the filling line due to the
large depth (0.6 MPa) of the melting curve minimum of 3He. That crystal
grows and forms a plug which isolates the experimental cell from further
pressurizing through the filling line. In order to overcome this problem
Pomeranchuk type compressional cell is typically used. In the Interface
cryostat the flexible part of the experimental cell consists of compressible
bellows, as schematically shown in Fig. 2.2. The compressing of the bellows
with 4He decreases the experimental volume and increases the pressure of
3He in the cell.

In the case of 4He the depth of the melting curve minimum is only 0.8 kPa,
which is below the spontaneous nucleating overpressure of a 4He crystal.
The shallow minimum enables pressurizing the cell directly through the
filling line, as schematically shown in Fig. 2.3. However, in order to ensure
the nucleating of a 4He crystal in the cell, it is necessary to use nucleator
in the same manner than with 3He crystals.

Fig. 2.3 A 4He crystal can be grown by injecting 4He through the filling line.
An accurate 3He melting curve thermometer is thermally linked to the cell body.
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The pressure of liquid helium is measured using a capacitive pressure gauge.
In the experiments on 3He crystals, the liquid pressure on the melting curve
was also used for thermometry. In 4He experiments, a separate 3He melting-
curve thermometer (MCT) was thermally anchored to the experimental cell,
as shown in Fig. 2.3. The melting pressure of 3He is generally accepted as
a provisional low temperature scale, PLTS-2000, between TN = 0.902 mK
and 1 K.(45) Below TN , the nuclear ordering temperature of bulk solid 3He,
we used the T 4-law due to magnons in solid 3He to connect the pressure at
TN to the pressure at 0 K, P (0 K) − P (TN) = 198.7 Pa, (46) obtaining thus
relation P (T )− P (TN) = 198.7 Pa [1− (T/0.902 mK)4]. 1

2.2 Optics and interferometry

2.2.1 Optical setup

The helium crystals are illuminated with the light from a 5 mW He-Ne
single-mode laser working at room temperature. The light of the laser is
guided to the cryostat through an optical single-mode fiber. At the end of
the fiber there is a beam expander which diverges the light to propagate
radially. The radial beam is rectified by a converging lens. The planar light
encounters first a beam splitter which is a semitransparent mirror. The
reflected part of the light proceeds towards the cell and the transmitted
part of the light ends up to the light absorber behind the beam splitter.

The windowed cell is located between two semitransparent mirrors which
form the Fabry-Pèrot interferometer. The planar light which encounters
the two semitransparent mirrors perform one or more reflections, as shown
in Figs. 2.2 and 2.3. The reflected light beams then pass through the beam
splitter, three lenses which adjust the beam size, two mirrors forming a
periscope, and an infrared filter before interfering on the sensor of the CCD
camera. The infrared filter and the periscope prevent the infrared radiation
of the camera working at 60 K from warming the helium sample in the
cell. Helium crystal has a larger optical density than helium liquid and,
as a result, the interference pattern on liquid helium is modulated by the
thickness of a helium crystal.

1In Paper V, the exponent 4 in term (T/mK)4 has been erroneously changed into a
citation to (45).
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Fig. 2.4 The optical setup inside the Interface cryostat.

The images of helium crystals taken with our Fabry-Pèrot interferometer
provide 3D thickness plots. In low temperature imaging it is crucial to
have such an optical setup that the effects that could possibly warm the
sample are minimized. In the optical setup of the Interface cryostat shown
in Fig. 2.4, there are no direct optical paths to the experimental cell which
could pass infrared radiation to directly heat the helium sample.

2.2.2 Interference pattern

The interference pattern produced by the Fabry-Pérot interferometer, which
is a multiple-beam interferometer, is not sinusoidal like in the case of the
two-beam interferometry. With carefully chosen reflectivities R1 and R2 of
the semitransparent mirrors it is possible to tune the fringe pattern I(x) to
have either wider minima or wider maxima for the same intensity pattern
I0(x) and phase pattern ϕ(x),(47)

I(x) = I0(x)
R1 +R2 − 2

√
R1 +R2 cosϕ(x)

1 +R1R2 − 2
√
R1 +R2 cosϕ(x)

. (2.1)

In practice, the fringe shape depends not only on the reflectivities of the
mirrors but also, e.g., on the slight nonparallelity of the mirrors which
distorts the symmetry of the interference pattern (48), on the number of
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reflections which depends on the local intensity of the light, and optical
defects like dust particles. A helium crystal which is convex in its shape
acts also as a converging lens producing a lens effect that slightly refracts
the interfering beams creating secondary ripples in the interference pat-
tern. The interference pattern read with the CCD sensor at 60–70 K is also
slightly blurred due to the charge carrier freeze-out (kBT = 5 − 6 meV <
Edonor

ionization = 39 − 54 meV) that causes local trapping of the charge carriers
and the varying of the charge transfer efficiency with the signal level (i.e.,
CTE hysteresis) (49). The areas in which the fringe shape is significantly
distorted are typically avoided in the analysis of the interference pattern.

2.2.3 Solving the phase of interference

The phase of interference at each pixel is mapped onto the interference
pattern by the fringe profile. In earlier experiments by the Interface group
this phase has been directly found out at each pixel with the π/2 phase-
shift technique which employs a piezo-drive to vary the distance between
the half-reflective mirrors of the interferometer (50). The π/2 phase-shift
technique needs however four images to be taken and it is therefore slow
and applicable only in situations where the dynamics of the crystal is slow
and the crystal shape does not noticeably change in about 10 s, which is
the time required to take four images with our slow-scan camera. With fast
growing crystals the phase of interference has to be found out from a single
frame. Although the exposure time of the CCD is only 0.1 s, subsequent
images can be taken every 3–4 s which is the scanning time of the sensor.

If the crystal thickness changes in a known way, for instance linearly as
in the case of facets (see Fig. 2.5) or following ECS in the case of rough
surface (see Fig. 1.4) the whole area of interest can be fitted with a single
function which maps the crystal thickness with the fringe pattern. In other
cases it is necessary to solve the inverse problem, in which the phase of
the interference is found out at each pixel of the CCD sensor. If the phase
changes slowly within the area of interest, it is possible to select a N × N
area around each pixel and to solve the phase in each area. Although the
interference pattern is not sinusoidal, it is reasonable to approximate the
fringe pattern in the fitting area with sinusoidal washboard function. The
initial parameters of the fit, namely the phase, density and direction of the
fringes can be found with two dimensional Fourier Transform (FT) applied
on the area.
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Fig. 2.5 Interferogram of a growing 4He crystal (a) at 0.45 K and (b) at 0.50 K.
Highlighted areas enclose the c-facet, a-facet, and s-facet. The faceted areas have
been colored with the Chirp z-transform (CZT) applied on the 41 × 41 areas
around each pixel (see text). Previously the highest temperature of observation
of the s-facet was a bit lower, 0.43 K (51).
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Fig. 2.6 Fourier transform and Chirp z-transform in two dimensions of the
interference pattern of the s-facet area shown in Fig. 2.5(a).

If only an approximate solution is needed, the fringe density and the phase
given by FT can be used for a single area. More accurate solutions can be
found out by applying the Chirp z-transformation (CZT) which generalizes
FT. Whereas FT is used to solve all harmonics within the area, with CZT it
is possible to focus only to a certain set of harmonics and even to zoom into
the wave vectors between the main harmonics of FT, as shown in Fig. 2.6.
CZT has been used to mark the positions of the c-, a-, and s-facets in
Fig. 2.5.

The phase of interference does not however give directly the thickness pro-
file since it is 2π wrapped. The continuous phase can be found out by
unwrapping the phase. Once the continuous phase ϕ has been found out,
the thickness of the crystal can be established as (λHeNe/4π∆n)ϕ, where
λHeNe = 632.8 nm is the wavelength of the He-Ne laser light and ∆n is the
difference between the refractive indices of solid and liquid helium. One
notable thing is that the same optical setup can been used in the studies of
both 3He and 4He crystals, since the only parameter which changes is ∆n,
which in the low-temperature limit is 1.66 · 10−3 for 3He and 3.6 · 10−3 for
4He. Thus, the change of 2π in phase corresponds to the change of 0.19 mm
of the crystal thickness in 3He and 0.09 mm in 4He.
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Chapter 3

Studies on the faceting and
roughening of helium crystals

3.1 Rounded crystals

There has been a puzzle for a long time that why the roughening transition
in 3He crystals given by the universal relation (1.6) is 260 mK, whereas
facets have been seen only below 100 mK (27). As the roughening transition
temperature is proportional to the surface tension value, one possible reason
for the discrepancy could be that the surface tension would be temperature
dependent, which would lower the highest temperature where facets could
be observed.

Between 140 and 330 mK Rolley et al.(27) have measured for 3He crystals
the value of the surface tension α = 0.060 ± 0.011 mJ/m2. In this Thesis
work, the surface tension α has been determined in Paper I for 3He crystals
at lower temperatures, between 77 mK and 110 mK. Although facets should
be present on 3He crystals below 0.1 K, the step energy for the (110) facet
at these temperatures is still small and, as a result, the shape of the crystal
after slow melting appears to be close to the cylindrical symmetry, as can
be seen in Fig. 3.1.

For a rounded crystal (with rough surface) which lies on a horizontal sub-
strate, ECS in gravitational field is cylindrically symmetric. Laplace-Young
equation (1.3), which describes ECS, can be reduced into the cylindrically
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Fig. 3.1 (a) Interference pattern of a relaxed 3He crystal. (b) Simulated pat-
tern of cylindrical ECS [solution of equation (3.1)] inserted to it.

symmetric form given by the second-order differential equation,

1

λ2
(h− h0) +

r′′hh
(1 + (r′h)

2)(3/2)
− 1

r(1 + (r′h)
2)(1/2)

= 0, (3.1)

where r is the radius of the crystal at a vertical position h of the interface.

This differential equation (3.1) can be solved numerically using trial capil-
lary length λ and fixed boundary conditions. At the vertical crystal edge,
r′h(0) = 0, the diameter 2rmax of the crystal can be used to fix the boundary
condition r(0) = rmax. At the top of the crystal the other boundary condi-
tion h′r(r = 0) = 0 is satisfied which also uniquely determines the reference
vertical position h0.

For a trial λ the interference pattern corresponding to the cylindrical ECS
was generated and compared with the original interferogram. Repeating
this procedure with different λ, the range of capillary lengths λ which gen-
erate a matching interference pattern was found. Within the experimental
error no remarkable temperature dependence was found for α. In addi-
tion, the obtained average capillary length λ = 0.93 ± 0.10 mm, or, the
surface tension α = 0.052 ± 0.011 mJ/m2 agrees with the capillary length
1.03± 0.09 mm obtained between 140 mK and 330 mK by Rolley et al. (27)

From the result that the surface tension of the liquid-solid interface of 3He
does not significantly decrease when temperature decreases, one may con-
clude that the appearance of facets on 3He crystals well below TR is not
related to the change in the value of the surface tension. Rather, facets
appear below 100 mK on 3He crystals due to the enhanced pinning of the
liquid-solid interface to the crystal lattice.
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3.2 Faceting of 3He crystals

The roughening transition temperatures predicted by the universal rela-
tion (1.6) for the first three types of facets on 3He crystals, (110), (100), and
(211), are correspondingly at 260 mK, 130 mK, and 87 mK. Before the work
described in this Thesis, the (110) facet has been seen at 100 mK (27), the
(100) and (211) facets at 10 mK (52), and eight more facets at 0.55 mK (53,34).
The discrepancy between the predicted roughening temperature TR and the
highest temperature at which facets have been observed TR,obs seemed to be
relatively even larger for the (100) and (211) facets. In this Thesis work, the
appearance of other than the basic (110) facet has been studied in Paper II
with 3He crystals at temperatures between 8 and 55 mK, in order to find
out whether the (100) and (211) facets and higher order facets with smaller
d appear relatively at lower temperatures than predicted by the universal
relation.

The appearance of facets was studied with growing 3He crystals, since the
step energies of facets are really small close to their roughening transitions
and consequently, as seen from equation (1.15), the resulting equilibrium
facet size is also very small. Therefore, close to their TR large facets can be
seen only during crystal growth. However, the growth should not be too fast,
since at least two effects can destroy facets during fast growth. Firstly, if the
growth velocity of a crystal exceeds the critical velocity of Mullins–Sekerka
instability(54) in the solidification front, then there appear “fingers” which
soon will develop into dendrites similar to snowflakes. The critical velocity is
size-dependent and for 3He crystal at 50 mK with diameter of 1 mm it equals
0.2 µm/s. Secondly, the Pomeranchuk effect lowers the temperature of the
growing crystal surface and if the pressure difference ∆p, which develops
between the melting pressure of the crystal surface at a lower temperature
and the melting pressure for the liquid far from the crystal at a higher
temperature, exceeds the nucleation threshold of δp ∼ 0.3 kPa, a new crystal
nucleates and grows instead of the existing one. The critical crystal growth
velocity for such a nucleation is (δT κ)/(LD) ∼ 0.1 µm/s at 50 mK, where
δT = (dT/dp)MCδp, (dT/dp)MC is the slope of the melting curve, κ is the
thermal conductivity of liquid, L is the latent heat per unit crystal volume,
and D is the cell size.

In Paper II it is demonstrated how to grow 3He crystals covered with higher
order facets which are relatively closer to their TR than the (110) facet.
3He crystals were found to show facets for which the angle between the
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Fig. 3.2 Interferogram of a growing 3He crystal at 55 mK—facets 1–6 are shown
with fitted intensity distributions.

normal vectors of the adjacent facets is much smaller than 45◦, which is
the smallest angle which the two basic facets types, (110) and (100), can
form. In Figure 3.2 is shown such a single 3He crystal at 55 mK. The angle
between facets 3 and 6 is 30◦ ± 5◦ and, as the facet 5 is between facets 3
and 6, the angle between facets 3 and 5, or, between facets 5 and 6 is even
less. Due to the presence of high order facets, the crystal orientation could
not be unambiguously determined and the presence of small angles thus
suggests that at least 3 different types of facets should exist on 3He crystals
up to 55 mK, which is in line with the universal relation (1.6).

3.3 Roughening of 3He crystals

The critical theory of roughening developed by Nozières and Gallet(28)

has been used to explain the temperature dependence of the step energy
of the basal c-facet on 4He crystals close to the roughening temperature
TR = 1.30 K (55). However, on 3He crystals the temperature dependence of
the step energy of the basal (110) facet which appear below 0.1 K, well be-
low the roughening temperature TR = 0.26 K, cannot be explained by the
same theory.

The absence of facets on 3He crystals well below TR has been explained by
Rolley et al. (27) who proposed that the quantum fluctuations of the inter-
face reduce the step energy and broaden the roughening transition. If an
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overpressure is applied on a finite-size crystal, which exceeds the threshold
overpressure of 2D nucleation, the crystal roughens dynamically and the
blurred transition takes place below TR

(28). The proposed dynamic rough-
ening explains the weak coupling (β110/d

α
≈ 0.01) of the (110) facet to the

lattice near 100 mK, where the step energy β110 of the (110) facet is smaller
than 0.2 fJ/m(27), but this coupling has been found to be nearly strong

(β110/d
α
≈ 0.4) at 0.55 mK, where β110 is 6.6 fJ/m(34).

In order to find out the temperature dependence of the step energy, in
this Thesis the growth dynamics of the (110) facets on 3He crystals has
been studied in Papers III and IV in a wider temperature range from
60 mK to 100 mK. In Figure 3.3 is shown the growing 3He crystal near the
temperature where facets appear. The growth of the facets was interpreted
to be due to the spiral motion of steps through screw dislocations, thus the
step energy could be obtained by measuring the quadratic dependence of
the facet velocity v on the overpressure δp that drives the facet growth.

The small, of the order of 1 Pa overpressures were determined using the crys-
tal surface as a sensitive (∼ 0.1 Pa) overpressure gauge. In this method the
overpressure on the facet δpF is obtained with respect to the overpressure

Fig. 3.3 Interferograms of a growing 3He crystal near 100 mK. On the top of
the growing crystal the size of the basic (110) facet (highlighted area) increases
with respect to the diameter of the crystal when temperature decreases below
100 mK. The areas have been colored using Chirp z-transform (see section 2.2.3).
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on the rough surface given in equation (1.4) which is used as a reference,

δpF − δpR = −ρlg(hF − hR) +
ρl

∆ρsl
ακR (3.2)

The differential growth coefficient of the rough surface was calculated as-
suming that all the latent heat of crystallization is released in the liquid
side (43,44), so that the sharing coefficient of the latent heat L is λ = TSs. In
the studied temperature range solid 3He conducts heat much better than
liquid 3He, Zs � Zl, and if the characteristic scale of velocity variation is
larger than RKκl ≈ 10 µm, then RK � Zl. The isothermal growth co-
efficient k is large and can be omitted far away from the melting curve
minimum temperature TMCM = 315 mK. Thus the equation (1.23) of the
rough surface mobility reduces into equation (1.25) which can be written in
terms of overpressure as(

dδp

dv

)
= µ−1

R =
ρsρl
∆ρsl

k−1
eff =

ρ2
sρlRKL

2

∆ρslT
. (3.3)

Here L = T (Ss − Sl) is the latent heat. In the temperature range from
0.05 K to 0.25 K the value of the Kapitza resistance RK varies inversely
proportionally to T 3 according to the acoustic mismatch theory,

RKT
3 = 3.3 · 10−6 m2K4/W, (3.4)

as measured by Amrit and Bossy(56) who also suggested λ = TSs. In
Paper IV the measurements on the growth dynamics of the rough surface
have confirmed relation (3.3) with 10% accuracy in the temperature range
from 0.06 K to 0.10 K.

The growth of the faceted surface is not uniform, as it is in the case of the
rough surface. On one hand, on the rough surface atoms stick uniformly
and, on the other hand, on facets atoms stick non-uniformly but only at
the steps. Each sticking event is associated with the elaboration of latent
heat L. Due to the different distribution of sticking events on the rough
surface and on the faceted surface, there appear several scales for the latent
heat diffusion. At the rough surface latent heat is elaborated uniformly,
but on the steps latent heat is elaborated at the steps, and no latent heat
is elaborated between steps, where there are no sticking events, thus the
temperature jump across the interface is there the smallest.

The temperature jump across the facet can be found for the steps far from
the screw dislocation which move at velocity vst and have an asymptotic
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distance l. Such a periodical distribution of moving steps can be described
by a sum of velocity harmonics, v(x) =

∑2π/ξ
q=2π/l vq cos(qx). Linear heat

diffusion equation can be analytically solved for each velocity harmonic.
The sum over q then yields the total heat distribution over the facet. For
steps which move at a velocity which is much slower than the diffusion of
heat between the steps, vst � κlq/Cl, where Cl is the specific heat of the
liquid, the delay in the moving temperature profile for the set of steps can
be neglected. Then thermal distribution over the facet is static and, as it
is found in Paper IV, the equation for the step motion is

vst =
πκLTρsl

L2ρ2
sρld ln l/ξ

[
δpF − δpR +

ρ2
sρlRKL

2

∆ρslT
(vR − 〈vF 〉)

]
. (3.5)

Here the term in square brackets is the effective overpressure δpeff that
drives step motion and the term before it is the step mobility µst. Since the
logarithm ln l/ξ varies very slowly with the distance between steps l, one
can use the equation for the asymptotic distance between the neighboring
steps (57),

l ≈ 20βρl/(d∆ρslδpeff),

and obtain the well-known quadratic dependence of the facet velocity vF
on the effective overpressure δpeff ,

vF = (d/l)vst =
π d κT

20βL2 ln(l/ξ)

(
∆ρsl
ρsρl

)2

δp2
eff . (3.6)

The quadratic dependence of vF to peff , which was used to find out the step
energy β, is shown in the insert of Fig. 3.4. Due to the step mobility µst

which strongly depends on temperature, the facet velocities at 64 mK can
be estimated to be only about twice larger than at 0.55 mK.

The measured temperature dependence of β shown in Fig. 3.4 reveals that
the interface-to-lattice coupling is weak in 3He in the temperature range
of 50–100 mK. Equation (1.10) which describes the renormalization of the
step energy β by thermal fluctuations can be well fitted to the β vs. T data
measured in the temperature range of 50–100 mK. By setting the short
scale cut-off to k0 =

√
2/3π/d which is the value for the highest possible

wave vector of the (110) plane, the obtained value for the pinning potential
V0 is by three orders of magnitude smaller than the value of the surface
stiffness α, which makes it impossible to explain the nearly strong coupling
(V0/α ∼ 1) at 0.5 mK (34). Therefore a new theory which incorporates quan-
tum fluctuations is needed to explain the full temperature dependence of β.
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Fig. 3.4 The step energy of the (110) facet on 3He crystals as a function of
temperature. The filled circle at 0.55 mK is from Ref.(34) Insert: The quadratic
dependence of the facet velocity vF to the overpressure δp. The lowest curve
extrapolates the δp vs. vF data at 0.55 mK (34) quadratically to low pressures.

To incorporate the quantum fluctuations the dynamic version of the renor-
malization group theory can be used. When using the Langevin equation
(1.12) the renormalization proceeds in the same manner both in the cases
of thermal and quantum distribution of fluctuations. The only difference is
in the correlation coefficient of the random force R which must be written
in a general form which is valid both in quantum and classical cases (58),

R2
k,ω = η~ω coth(~ω/2kBT ). (1.14)

In the zero limit of the Planck constant, ~→ 0, equation (1.14) reduces to
the classical white noise spectrum given in equation (1.13). Due to quantum
fluctuations, the amplitude of fluctuations 〈z2〉 changes to

〈z2〉 =
~

4π2γ

∫ ω0

0

dω coth
~ω
2T

(
atan

γk2
0

ωη
− atan

γk2
∗

ωη

)
. (3.7)

As suggested by Puech et al., the intrinsic damping coefficient η varies as
1/T . For a reference, the value measured at the melting curve minimum
temperature, η(315 mK) = 660 kg/(m2s) (43), is used.

All the experimental data on the step energy at different T can be fitted
with equations (1.10), (1.8) and (3.7), with only two fitting parameters, k0
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and ω0. The fitted value of the short-scale cut-off k0 = 1.9/d is close to the
value for the highest possible wave vector of the (110) plane

√
2/3π/d, and

the value for the high frequency cut-off ω0 = 7.4 · 1011 1/s agrees well with
the frequency range measured in the inelastic neutron scattering (59).

One may conclude that the coupling of the liquid-solid interface of 3He to
the crystal lattice is extremely weak below the roughening temperature at
0.26 K down to 0.1 K due to the quantum fluctuations of the interface which
significantly reduce the step energy. Below 0.1 K quantum fluctuations be-
come more and more damped due to the Fermi-degeneracy of the liquid
which creates a bottle-neck for the spin transport through the moving in-
terface, which allows the facets to show up. At ultra low temperatures the
quantum fluctuations are strongly damped, the coupling is nearly strong
and the interface is well-localized as it is in classical crystals.

Due to the strong damping of the surface fluctuations, the interface-to-
lattice coupling at ultra-low temperatures is in 3He even stronger than in
4He, which one would not expect on the base of the zero-point oscillations
of atoms which are larger for 3He atoms than for 4He atoms. Apparently
quantum fluctuations reduce also the step energy in 4He, but the reduction
of the step energy is much smaller in 4He because the surface tension in 4He
is nearly three times larger than in 3He. The reduction of the step energy
due to quantum fluctuations in 4He does not depend on temperature because
the surface oscillations (crystallization waves) are weakly damped and their
spectrum is temperature-independent(5).

3.4 Critical size of facets on the surface of
3He crystals at temperatures close to TN

Tsepelin et al. (34) have found that the interface-to-lattice coupling in 3He
crystals is nearly strong at the lowest temperatures, where the solid 3He
has the antiferromagnetic u2d2 ordering. The step energies of facets on 3He
crystals 0.55 mK have, however, been measured only at a single tempera-
ture and by analyzing the data on growing facets, which required several
assumptions. In order to confirm the results by Tsepelin et al. on the steps
energies and to find out the step energies in a wider temperature range,
the (110) and (100) facets have been studied in Paper V in a quasi-static
situation during slow melting of the crystal.



34 Studies on the faceting and roughening of helium crystals

Fig. 3.5 A slowly melting 3He crystal at 1.1 mK. (a) Original interferogram.
The horizontal (100) facet is bordered with the white line. (b) Image showing
the difference between the intensities of the interferograms at the beginning of
the melting series and just before the facet collapsed. In the area where the
(110) facet has been immobile, the phase difference, and, the intensity difference
vanishes. Insert: Development of the vertical position of the (100) facet.

The melting of faceted 3He crystals was carried out both below and above
the magnetic ordering transition temperature of solid 3He at TN = 0.902 mK.
During slow melting of the crystal, facets first remain immobile and only
their sizes decrease. When the critical radius Rc of a facet is reached, the
facet collapses, as is shown in Fig. 3.5. The step energies of facets were
determined using equation (1.16) by measuring Rc and the corresponding
overpressure on the facet δpF .

Before the facet collapsed, the size of the facet decreased relatively slowly
compared to the time of taking the interferograms, therefore the critical
size of the facet was determined from the interferogram at the moment just
before the facet was seen to collapse. The overpressure on the facet was
determined by comparing the overpressure on the reference rough surface,

δpF =
ρl

∆ρsl
ακR − ρlg(hF − hR) +

vR
µR
. (3.8)

The overpressure on the facet was thus determined from the shape of the
crystals as seen in the interferograms, namely from the height hF at a point
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on the edge of the facet and from the height hR and curvature κR at a point
on the reference rough surface, and no special pressure measurement was
needed. The mobility of the rough surface µR was used to find the reference
overpressure δpR = vR/µR.

The value of µR was determined from the dynamics of the rough surface
by measuring the vR vs. δpR dependence using equation (1.4). At 1.1 mK,
the value of µR = 0.044 (µm/s)/Pa was measured. The mobility of the
rough surface, or, the growth coefficient measured in this way corresponds
to the thermal impedance between different parts of the surface and can
be therefore called as differential growth coefficient. In previous measure-
ments (38,39,40,41) of the growth coefficient of the rough surface the values of
kR were smaller and were due to the thermal impedance of the liquid be-
tween the crystal surface and the sinter, including the sinter, and were not
therefore applicable in using the crystal surface as an overpressure gauge.

The results obtained with the method of slow melting of facets are shown in
Fig. 3.6. The step energy obtained for the (110) facet, β110 = 4.7±0.3 fJ/m,
and for the (100) facet, β100 = 1.1 ± 0.2 fJ/m, agree well with the values
obtained by Tsepelin et al. with the spirally growing crystals at 0.55 mK (34).

The kinetic correction, vR/µR, to the overpressure δpF results in the re-
duction of the value of step energy. Below TN , the value measured for µR
at 1.1 mK would result in the reduction of 5–20% of the step energies, but
above TN the reduction of the step energy due to the kinetic correction
would be up to 10 times larger than the measured value of the step energy.
Since the step energy can be only non-negative, the values measured for the
mobility of rough surface are far too low.

Another way to estimate the mobility of rough surface from below is to
utilize the facet growth measurements at 0.55 mK (34). In those measure-
ments the facet velocity depended linearly on the applied overpressure, as
described in equation (1.19), already at as low overpressures as 5 Pa, which
means that the step moved at the critical velocity vc = 7 cm/s. The mobility
of the step obtained from this observation is µst & 1 (cm/s)/Pa. Consid-
ering the step as a rough surface and taking into account the width of the
step given in equation (1.17), (ξ/d) = 2

π2α/(β/d) ≈ 1, the mobility of the
rough surface (28) at 0.55 mK is µR = 2

π2 (d/ξ)µst & 0.2 (cm/s)/Pa. The value
of µ−1

R = ρlρs

∆ρsl
k−1

eff can be scaled within the studied range of temperatures

using the L2/T dependence presented in relation (1.24), as the latent heat
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Fig. 3.6 Step energies measured with the collapsing (110) facets (open circles)
and (100) facets (open squares); for discussion on the kinetic correction, see text.
The results agree with the earlier measurements on spirally growing facets (filled
symbols) by Tsepelin et al. (34)

transport limits the growth of the rough surface (5) and the temperature de-
pendence of the thermal impedance of liquid is negligible below 0.7Tc

(60,61).
This kind of estimation yields that below TN the kinetic correction would
be negligible and above TN the value of µR(1.1 mK) & 4 (µm/s)/Pa would
result in only 10% reduction of the step energy, being thus within the ex-
perimental accuracy of the step energies without kinetic correction.

In the measurements presented in Paper V the critical radius of facets
was measured on helium crystals for the first time. The obtained step
energies agree with the earlier measurements by Tsepelin et al. (34), thus
at the lowest temperatures the interface-to-lattice coupling in 3He crystals,
β(100)/d

α
= 0.25, indeed is stronger than in 4He crystals,

β(0001)/d

α
= 0.07 (28,62).

The step energy of the (100) facet was found to be roughly constant below
TN and did not show increase above TN . As predicted in Paper III, the
observed step energies were found not to be significantly affected by the
antiferromagnetic transition of solid 3He. Although the antiferromagnetic
ordering of nuclear spins in solid 3He was not found to significantly affect



3.5. Remark on the growth of 4He crystals near the first roughening transition 37

Fig. 3.7 A growing bcc 3He crystal at 1.07 mK: (left) interference pattern and
(right) 3D reconstruction from front. In the vicinity of the spin-ordering transi-
tion of solid 3He at 0.902 mK (see Fig. 1.3), the (100) facets grow much slower
than the (110) facets and, as a result, the crystal have taken the form of a cube.

the energy of an elementary step on the facet, the growth dynamics of 3He
crystals could be strongly affected by the spin currents, which can be seen
in Fig. 3.7.

3.5 Remark on the growth of 4He crystals

near the first roughening transition

The roughening of 4He crystals has been thought to be well understood
within the frame of the renormalization group theory(37). Indeed, the step
energy of the basal (0001) facet measured below the roughening temperature
TR = 1.3 K down to 1.130 K has been observed to renormalize with the
thermal fluctuations(63,29).

In those measurements the chemical potential difference that drives the
crystal growth, ∆µ = ∆ρslgH/ρs, was measured from the height difference
H between the crystal under study and the reference crystal which had
a large horizontal surface. The growth velocities of the (0001) facet were
found to vary exponentially which suggests the 2D nucleation process to
dominate (63,29),

vF ∝ ∆µ exp

( −πβ2

3d∆µkBT

)
, (3.9)

so that ln(vF/∆µ) was linear to 1/∆µ. The slope of the linear dependence
resulted in the value of β.
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In the work described in this Thesis, the possibility of the growth of 4He
crystals near TR through screw dislocations has been reconsidered in Paper
VI. In the spiral growth of steps the velocity of facets varies as

vF =
Kρsd

2kst

19β
∆µ2, (3.10)

where kst is the growth coefficient of the step. In the original analysis
the growth of the step has been considered as growth of a rough surface,
kst = kR. With this assumption the spiral growth would have given much
smaller growth velocity than in the case of 2D nucleation for the same
driving force ∆µ.

However, the theory of critical fluctuation by Nozières and Gallet(28), which
was used to interpret the temperature dependence of the step energy, pre-
dicts also that near TR the step is not sharp. Instead, the step has a finite
width ξ which is inversely proportional to β, according to equation (1.17).
The step can be thought as an interface tilted by a small angle ∼ d/ξ, in
which case the growth coefficient of the broadened step will be

kst =
π2

2
(ξ/d)kR =

γd

β
kR. (3.11)

For the surface stiffness of γ ≈ 0.24 mJ/m2 (63) and the step energy of
β(1.130 K) = 0.11 fJ/m, the step width would be even ∼ 600d. The growth
coefficient of the step kst would accordingly be 600 times larger than the
growth coefficient of the rough surface. If the temperature of the facet is
closer to TR, the value of β is smaller and this factor would be even larger.
Combining equations (3.10) and (3.11) leads to the facet velocity

vF =
Kγd3kR

19β2
∆µ2, (3.12)

where K = 2 for the c-facet and kR/ρs = 3.1 · 10−4 exp(7.8 K/T ) s/m (63,28).

With the assumption that 2D nucleation is more effective than spiral growth,
the step energies β(1.130 K) = 0.14 fJ/m and β(1.173 K) = 0.063 fJ/m(63),
and β(1.205 K) = 0.0084 fJ/m(28) have been obtained. The measured av-
erage distance between the screw dislocations 〈l〉 ≈ 0.1 mm(63) results in
the growth thresholds of Frank-Read sources ∆µthr = β/[dρs(〈l〉/2)], which
at the temperatures mentioned before are ∆µthr(1.130 K) = 0.5 cm2/s2,
∆µthr(1.173 K) = 0.2 cm2/s2, and ∆µthr(1.205 K) = 0.03 cm2/s2. These
growth thresholds are by more than an order of magnitude smaller than the
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Fig. 3.8 Velocities vs. driving forces of the (0001) facet, as measured by Wolf et
al. (63) (1.130 K and 1.173 K) and by Gallet et al.(29) (1.205 K). The spiral growth
(lines) would give larger growth velocities at the same driving forces with the
reported step energies.

actual driving forces measured in the experiment. Thus the actual driving
forces are large enough to provide spiral growth. If the growth velocities
due to the 2D nucleation and due to the spiral growth are being compared
with the step energies found by assuming 2D nucleation, it is found that the
growth velocities of the facet through spiral growth would be more effec-
tive than via 2D nucleation at all temperatures and at all measured driving
forces, as it is illustrated in Fig. 3.8.

To conclude, the theory of critical fluctuations (28) which has been used
to explain the roughening of the (0001) facet on 4He crystals gives also a
prediction for the step width given in equation (1.17). If the prediction on
the step width is correct and it indeed diverges when approaching TR then,
as it is found in Paper VI, spiral growth should have been more effective
than 2D nucleation in the studies by Wolf et al. (63) and Gallet et al. (28). In
order to obtain adequate understanding on the roughening of 4He crystals,
the role of spiral growth should therefore be reconsidered either in these
measurements or in a new series of measurements.
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Chapter 4

Studies on the liquid-solid
interface of 4He

4.1 High-accuracy measurements of the

melting pressure

The study of “supersolidity” has leaded to various experiments in which
mainly the dynamic properties of the solid has been investigated. In the
work described in this Thesis the equilibrium properties of solid 4He have
been studied in Papers VII, VIII, and IX with the most convenient way,
by measuring the melting pressure of 4He. If the transition to “supersolid”
state is a real phase transition, the entropy should show an anomaly at the
transition, which might show up at the melting curve of 4He. Although there
exists results of earlier measurements on the melting curve of 4He (64,36), the
accuracy of these measurements was not good in the temperature range
where the possible superfluid phase has been proposed to exist.

According to the Clausius–Clapeyron equation the slope of the melting
curve is proportional to the entropy difference between liquid and solid,(

dP

dT

)
MC

=
Sl − Ss
νl − νs =

L

T∆νls
, (4.1)

where νl and νs are the molar volumes of liquid and solid. The entropy
of hcp solid 4He below 0.5 K is due to phonons, with the effective Debye
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temperature Θ ≈ 26 K, which leads to the heat capacity of solid 4He

Cs
V =

12

5
π4R

(
T

Θ

)3

, (4.2)

where R is the gas constant. The entropy of superfluid 4He below 0.5 K is
also due to phonons, moving at sound velocity c = 366 m/s, which yields
the heat capacity of liquid 4He

C l
V =

2

15
π2R

nl

(
kBT

~c

)3

, (4.3)

where nl is density of atoms in liquid. The specific heat, CV ≡ T
(
∂S
∂T

)
N,V

,

of both solid Cs
V and liquid C l

V is proportional to T 3, therefore also the
slope of the melting pressure

(
dP
dT

)
MC

varies as T 3. Any thermodynamical
transition would thus be seen as a deviation from the T 4 dependence of the
melting pressure.

The melting curve of pure 4He (80 ppb of 3He) measured in Paper VII
shows that the T 4 law is obeyed below 0.4 K down to 80 mK within the
experimental accuracy of ±0.05 Pa. The variation of the melting curve,
−3.42 ± 0.02 kPa/K4, agrees well with the earlier measurements on the
sound velocity and density of liquid and entropy of solid 4He (65) from which
the variation of −3.6 kPa/K4 can be found, and on the heat capacity mea-
surements on solid 4He (66) from which the variation of −3.47 kPa/K4 can
be found. Below 80 mK the melting curve, which is shown with the solid
line in Fig. 4.1, seemed to increase by about 0.5 Pa over the T 4 behavior.

In our later results published in Paper VIII this increase was attributed to
the temperature dependence of the pressure gauge sensitivity. The beryl-
lium bronze, which was used as the material for the flexible membrane of
the capacitive pressure, is known to have high tensile strength and low
losses on mechanical deformation but some types of beryllium bronze are
also known to have a low temperature anomaly in heat capacity(67) and in
Young modulus (68). The increase of ∼ 0.5 Pa at 2.5 MPa absolute pressure
corresponds to the change of 0.5 Pa/2.5 MPa = 2 · 10−7 in sensitivity of the
pressure gauge below 80 mK.

The sensitivity of the pressure gauge have been taken into account in the
later measurements in Paper VIII on the melting pressure of ultra-pure
4He (0.3 ppb of 3He). As can be seen in Fig. 4.1, the melting pressure
measured with the pure and ultra-pure 4He do not significantly differ—in
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Fig. 4.1 Upper: The measurements on the melting pressure of pure 4He (80 ppb
of 3He) [IV] and ultra-pure 4He (0.3 ppb of 3He) [VII] and on the pressure of
liquid 4He in constant volume at 2.51 MPa [VII]. Lower: The deviation of the
melting pressure from the T 4 dependence is within ∼ 0.05 Pa after the correction
(see text).

both measurements the low temperature tail is present. With the ultrapure
4He the heat expansion of the liquid 4He at a constant volume was also
measured. The liquid 4He was first pressurized close to the melting pressure
and the constant volume was provided by the cold valve attached to the
mixing chamber.

The thermal expansion of the liquid helium at a constant volume varies as

(
∂pl
∂T

)
V

= − ρ
V

(
∂S

∂ρ

)
T

. (4.4)

As the heat capacity of liquid [CV ≡ T
(
∂S
∂T

)
is given in equation (4.3)] is

due to phonons, the entropy varies as S ∝ T 3( V
c3

). Noting in addition that
∂
∂ρ

( V
c3

) = V ( ∂c
∂ρ

) ∂
∂c

( 1
c3

) + 1
c3

∂
∂ρ

(V ) and V = Ml

ρ
, where Ml is the molar mass

of liquid, one obtains that the thermal expansion of the liquid at a constant
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volume varies as (
∂pl
∂T

)
V

= (3U0 + 1)
S

V
, (4.5)

where U0 = ρ
c
( ∂c
∂ρ

) is the Grüneisen constant. Consequently, the variation

of liquid pressure, pl(T )− pl(0 K), is proportional to T 4.

In the measurements of the pressure of liquid helium described in
Paper VIII, the deviation from the T 4 dependence was similar to that
in measurement on the melting pressure. Indeed, when the T 4 dependence
is subtracted from the pressure of the liquid at a constant volume (see solid
line in Fig. 4.1), the same low temperature behavior is present both in the
measurements of the melting pressure and of the pressure of liquid. When
comparing the difference of the melting pressure and the heat expansion
of liquid measurements, one may conclude that within about 0.05 Pa the
low temperature anomaly is the same and is therefore attributed to the
properties of the pressure gauge. Thus the melting pressure follows the T 4

dependence down to the lowest measured temperatures of 10 mK without
any sign of a supersolid transition.

The upper limit for the excess entropy Sexc due to the supersolid frac-
tion (ρss/ρs) can be estimated from the experimental accuracy of the melt-
ing curve measurement, ∆(dP

dT
)
MC
≈ 0.05 Pa/0.3 K. Differentiating the

Clausius-Clapeyron equation (4.1) with respect to (Sl − Ss) the upper es-
timate for the excess entropy is Sexc = ∆(Sl − Ss) = ∆(dP

dT
)
MC

(νl − νs) ≈
5 · 10−8R, where R is the gas constant. The possible supersolid fraction
(ρss/ρs) ∼ Sexc/R . 5 · 10−8 is thus by two orders of magnitude smaller
than the earlier estimate of 5 · 10−6 (8).

4.2 Elementary excitations in liquid and

solid 4He

In the work described in this Thesis the pressure of liquid 4He at a constant
volume was originally studied in Paper VIII in order to calibrate the sensi-
tivity of the beryllium copper pressure gauge at temperatures below 0.1 K.
The heat expansion of liquid 4He has been examined in detail in Paper IX to
analyze the melting curve with well established thermodynamical properties
of the liquid. Although there exists results of previous measurements (69,70)
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on the heat expansion of liquid 4He, the accuracy of these measurements is
much less than what is needed to compare with our melting curve data.

The temperature dependence of the pressure pl(T ) − pl(0 K) of liquid 4He
below 0.3 K at constant volume is well described by the T 4 dependence due
to phonons,

pl,ph = (3U0 + 1)
π2

90

k4
B

~3c3
· T 4 = 0.50 kPa/K4 · T 4, (4.6)

where U0 = 2.21 and c = 366 m/s (71). Above 0.3 K there appears an addi-
tional contribution pl,rot to to the liquid pressure due to rotons. From pl,rot

it is possible to find out the value for the roton gap ∆ using the equation
found in Paper IX,1

pl,rot =

[
∂F

∂Vl

∆

kB
− F ∂∆

kB∂Vl

(
1

2
+

∆

kBT

)](
∆

kBT

)−3/2

exp

(
− ∆

kBT

)
,

(4.7)

where the values for factors F = 2VlkBm
1/2
0 p2

0∆1/2/(2π~2)3/2, and for deriva-
tives ∂F

∂Vl
and ∂∆

∂Vl
at pl = 2.51 MPa are taken from the measurements by

Greywall(72,73).

The measurements on the variation of the liquid pressure pl(T )− pl(0 K at
constant volume are shown in Fig. 4.2, where the phonon contribution pl,ph

given in equation (4.6) has been subtracted. The solid line in Fig. 4.2 shows
the contribution pl,rot due to rotons with the value ∆ = 6.95 K of the roton
gap. This revised value is larger than the value 6.8 K reported in Paper IX
and closer to the value 7.28 K given by Greywall measurements (72,73). At
0.46 K the calculated pl,ph deviates from the experimental points by almost
0.2 Pa, which is small compared to the phonon contribution pl,ph(0.46 K) =
27.3 Pa and may be due to the change of 0.25 Pa/25 MPa = 10−8 in the
sensitivity of our pressure gauge, as the Young modulus of beryllium copper
is known to change not only below 0.1 K but also at higher temperatures (68).

In the melting curve of 4He below 0.46 K the contributions from phonons and
rotons are dominating as well. The melting curve data is shown in Fig. 4.3
with the fitted pMC,ph = −3.61 kPa/K4 · T 4 term due to phonons both in
liquid and solid subtracted.2 The remaining temperature dependence of

1In Paper IX term ∆
kB

was missing from p
l,rot and should have been inserted after ∂F

∂V .
2The pMC,ph term here is from the melting curve data in Papers VIII and IX.

The difference from pMC,ph = −3.42 kPa/K4 · T 4 measured earlier in Paper VII can be
attributed to the sensitivity of the 3He melting curve thermometer and the sensitivity of
the 4He pressure gauge, which were calibrated more accurately in the latter experiments.
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Fig. 4.2 Variation of the pressure Pl(T ) − Pl(0 K) of liquid 4He at constant
volume after the T 4 term, found from the data below 0.32 K, has been subtracted.
Solid line is a fit of the roton contribution pL,rot (see text).

pMC can be attributed to the rotons,

pMC,rot =
F

∆Vls

∆

kB

(
∆

kBT

)−3/2

exp

(
− ∆

kBT

)
, (4.8)

with the revised gap value of ∆ = 6.95 K. The roton contribution pMC,l is
shown in Fig. 4.3 with the solid line. There is also in the specific heat of solid
4He a T 7 term(66), C7 = 11.4 mJ/(mol K)(T/1 K)7, which contributes to the
melting curve a T 8 term, pMC,8 = −(1/56)(C7/∆vls)T = −86 Pa (T/1 K)8.
The T 8 term in the melting curve, which is shown together with the roton
contribution by the dashed line in Fig. 4.3, contributes 0.2 Pa to pMC at
T = 0.46 K, which is within the limit of our accuracy. It is also possible to
estimate the possible contribution due to free vacancies from above,3

pMC,free vac = − Vs
∆Vls

(
M∗

2π~2

)3/2

(kBT )5/2 exp

(
− Φ

kBT

)
, (4.9)

as their contribution cannot be detected within our accuracy. The estimated
contribution pMC,free vac is shown by the dash-dotted line in Fig. 4.3. The

3The minus sign in pMC,free vac was missing in Paper IX.
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Fig. 4.3 Variation of the melting pressure pMC(T ) − pMC(0 K) of liquid 4He
after the T 4 term, found from the data below 0.32 K, has been subtracted. Lines
show the theoretical curves due to (solid line) rotons, (dashed line) rotons and
the T 8 term, and (dash-dotted line) rotons, T 8 term and free vacancies (see text).

lower limit for the activation energy of free vacancies can be estimated as
follows. At 0.46 K the contribution of vacancies is pMC,freevac = 0.2 Pa (or
less) and (the lower limit of) the effective mass of vacancies M∗ equals to the
mass of a 4He atom m4, which results in the lower limit for the activation
energy Φ = 5.5 K of free vacancies.

4.3 Thermal expansion of liquid 4He

The results of the measurements on the thermal expansion coefficient a of
liquid 4He in the temperature range from 0.02 K to 0.72 K are presented
in Paper IX. Compared to the previous measurements (69,70), our measure-
ments shown with the solid line in Fig. 4.4 give almost by an order of mag-
nitude smaller value for the maximum value of a near 0.5 K. The thermal
expansion coefficient is defined as

a =
1

Vl

(
∂Vl
∂T

)
p

= − 1

Vl

(
∂Vl
∂p

)
T

·
(
∂p

∂T

)
V

= β ·
(
∂p

∂T

)
V

, (4.10)
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Fig. 4.4 Thermal expansion coefficient a of liquid 4He near the melting pressure
at 2.51 MPa. The dashed lines show the phonon contribution and the dash-dotted
lines show both phonon and the roton contribution with the roton gap value of
∆ = 7.15 K. The fitted maximum value of a = 8.0 · 10−6 K−1 is at 0.48 K. Circles
are from Ref. (69) and squares from Ref. (70)

where β = − 1
V

(∂V
∂p

)T is the isothermal compressibility of liquid. The value
of a below 0.3 K can be explained by the contribution from phonons,

aph = β(3U0+1)
S

V
= β(3U0+1)

2π2

45

k4
B

~3c3
·T 3 = 9.0·10−5(

T

1 K
)3 K−1, (4.11)

where again U0 = 2.21 and c = 366 m/s (71), and β = 1
ρ
(∂ρ
∂p

)T = 4.5·10−3 K−1.
The phonon contribution aph is shown with the dashed line in Fig. 4.4.
Above 0.3 K there appears a contribution due to rotons,

arot = β ·
(
∂pL,rot

∂T

)
V

, (4.12)

which can be found out by numerically derivating pL,rot given in equation
(4.7). If the phonon contribution aph and the roton contribution arot are
added together, the curves shown with the dash-dotted lines in Fig. 4.4 can
be obtained using the value 7.15 K for the roton gap ∆.

This revised value 7.15 K for the roton gap ∆, obtained by fitting the full
temperature dependence of a, and the revised value 6.95 K, obtained by
fitting pl at constant volume around 25.1 MPa, were found to be larger
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than the value 6.8 K reported in Paper IX. The higher value 7.15 K is very
close to the value 7.28 K given by Greywall measurements (72,73) and the
values near 7.2 K obtained from neutron scattering experiments (see (72,73)

for references).

The difference of 3% between the revised values 6.95 K and 7.15 K of ∆
reflects the accuracy of the methods used to determine the roton gap. It is
known that the Young modulus of the beryllium copper changes slowly in
the whole temperature range and thus changes the sensitivity of the pressure
gauge. It is however difficult to find out accurately how the sensitivity
of the pressure gauge changes at higher temperatures due to lack of an
accurate reference pressure. Even if the sensitivity of the pressure gauge
was exactly known in the whole temperature range, it could be possible that
the inelastic scattering processes of phonons, which result in the T 5 and T 7

terms in the specific heat of liquid 4He (72,73), would become important at
higher temperatures.

4.4 Stacking fault energy in 4He crystals

Disorder which appears when preparing the solid 4He sample has been
shown to play an important role in “supersolidity”(19). In order to un-
derstand the behavior of quantum defects, it is important to study single
well-defined defects (21). In the work described in this Thesis the stack-
ing faults (SFs) have been studied in Paper X. SFs are low-energy planar
defects in crystals which may appear during the crystal growth. SFs are
special grain boundaries (GBs) since the plane of a SF matches the plane
of a facet, and the orientations of crystals on both sides of the SF match.
In hcp crystals SFs can lie only on the basal c-plane—GBs in any other ori-
entation are high-energy defects which have the nearest neighbors severely
disturbed, while the SFs have only second-nearest neighbors disturbed(33).

The process of“avalanche-like”growth of 4He crystals is known to sometimes
be associated with the creation of a stacking fault(35,62). In Paper X it
is shown that the “burst-like” creation of new atomic layers (36) might be
accompanied by the creation of SFs as well, so that “avalanche-like” and
“burst-like” growth can be closely related. When Rolley et al. (62) tried
to produce high-quality crystals they found that facets may stick to the
irregularities on the wall until the threshold overpressure was exceeded and
the facet quickly jumped into another position.
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Fig. 4.5 A 4He crystal at 0.2 K. (a) Immobile c-facet stays while two a-facets
and the s(1011)-facet grow. (b) After SF has been created the c-facet continues
growing. (c) SF is seen on the edge of the crystal. Dotted area has been replaced
with the fitted equilibrium crystal shape. (d) Two a-facets grow on both sides
of SF. Contact to the cell wall has stabilized the s(0111)-facet whose size has
become the largest.

The growth of the 4He crystal at 0.2 K shown in Fig. 4.5 was studied before
and after the appearance of a SF. The nearly vertical c-facet, which was
immobile, touched the horizontal bottom glass of the cell and after growing
for some time it touched also the vertical cell walls. From the height of the
crystal it was found out that the threshold overpressure to grow c-facet and
to create a SF, was ∼ 8 Pa, which is similar to the overpressures needed to
initiate the “burst-like” growth of facets (36).

The cell walls have a major role in creating new atomic layers when the 2D
nucleation of new layers or spiral growth are not effective (5). The key role
of the cell walls and similar overpressures both in “burst-like” growth and
in creation of stacking faults lead to the suggestion that “burst-like” might
be accompanied by the creation of stacking faults.
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The role of cell walls in growing a facet in contact to the wall has been stud-
ied theoretically by Marchenko and Parshin(31) who found that at certain
facet-to-wall contact angles new atomic layers may be created even without
any threshold. This was later confirmed by Keshishev et al. (32) who found
that the c-facet on 4He crystals grew without any threshold when the facet-
to-wall contact angle decreases below ∼ 47◦ (32). At larger contact angles
the finite thresholds prevents facet growth, but the growth threshold may
be weakened by the surface irregularities of the rough cell wall.

The stacking fault energy εSF can be measured from the shape of the groove
which the SF creates on the crystal surface. The shape of the groove can
be described by the Laplace-Young equation (1.1). If one of the curvatures
is zero, equation (1.1) reduces to

(h− h0) = −γ(θ)

∆ρsl

x′′(h)

[1 + x′(h)2]3/2
, (4.13)

where θ is the angle subtended by the normal of the surface and nor-
mal of the stacking fault tilted by the angle θtilt with respect to vertical,
x′(h) = tan(θ − θtilt). The values of the anisotropic surface stiffness γ(θ)
can be obtained from the crystallization waves experiments by Andreeva
and Keshishev(24) in the range that covers the normals on the fitted surface
profile, namely the range 65 < θ < 90◦ from the [0001] orientation to the
[1120] orientation. Equation (4.13) was solved numerically.

The cross section of a fitted crystal profile around the stacking fault is
shown in Fig. 4.6. The area used in fitting is shown with the dotted line in
Fig. 4.5(c). The values obtained for the contact angles were θL = 70 ± 3◦

Fig. 4.6 The cross section of the fitted equilibrium crystal shape near the SF
which is tilted by 7◦ from vertical. The dihedral angle (θL + θR) is the sum of
the contact angles θL and θR subtended by the normal of the crystal surface and
the normal of the SF.
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and θR = 85 ± 3◦, which gives the dihedral angle 155 ± 5◦. The energy of
the stacking fault in the case of anisotropic surface stiffness is

εSF = α(θL) cos θL + α′(θL) sin θL + α(θR) cos θR + α′(θR) sin θR. (4.14)

The angular dependence of the surface tension α(θ) was found out by nu-
merically solving the differential equation (1.2) using the step energy of the
(0001) facet as one of the boundary conditions, α′(0) = (β/a) = 14 µJ/m2,
and the zero step energy condition in the [1120] direction, α(π/2) = 0.
Thus, the obtained value for the surface tension α(θL) = α(θR) = 0.18 mJ/m2,
and for its derivatives α′(θL) = −2.8 µJ/m2 and α′(θR) = 1.7 µJ/m2 re-
sulted in the stacking fault energy εSF = (0.07±0.02) mJ/m2. The obtained
value for the εSF is a bit smaller than the earlier estimate 0.1− 0.2 mJ/m2

based on the canyon depth ∼ 0.5 mm or less (35), in our case the measured
grooves on several crystals were also shallower, between 0.2− 0.25 mm.

Equation (4.14) is applicable for the crystal profile only when if the orien-
tation of the crystal is known, the groove is far from facets and one of the
curvatures on the surface is negligible so that the surface can be approxi-
mated as 1D surface. Far from facets the contribution from the derivative
terms α′ in equation (4.14) are small, in the above example crystal about 2%
or less, and without a significant loss of experimental accuracy the isotropic
approximation of the SF energy can be used,

εSF = 2〈α〉 cos〈θ〉. (4.15)

On several crystals the dihedral angle of the grooves produced by SFs were
found to be the same, 2θ = 155 ± 5◦, thus the same value εSF = (0.07 ±
0.02) mJ/m2 was found for SFs in several crystals.
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Chapter 5

Conclusions

In the 1st part of the work of this Thesis, the faceting of helium crystals has
been studied. Around the temperature of 0.10 K where the (110) facets ap-
pear on 3He crystals, the surface tension of 3He crystals was found to remain
nearly unchanged. At least two more types of facets were found to exist on
3He crystals at 0.055 K, although more experiments should be carried out
to identify them and to determine their temperature of appearance.

The quantum oscillations of the liquid-solid interface tend to dynamically
roughen the crystal surface (27). However, on the surface of 3He crystals
facets do appear below 0.10 K because the Fermi degeneracy of liquid 3He
creates a bottleneck to the spin transport through the moving interface,
which dampens the oscillations of the interface. Below 0.001 K, the interface
becomes localized like in classical crystals and the liquid-solid interface in
3He is even more strongly pinned to the lattice than in 4He, which is not
obvious at all since the zero-point motion of the lighter 3He atoms is larger
than in 4He. The antiferromagnetic ordering of nuclear spins in solid 3He at
0.0009 K was not found to significantly affect the measured step energies,
however, the spin currents could still strongly affect the growth of facets.

The renormalization group theory, which explains the temperature depen-
dence of the step energy, predicts that the width of the step diverges with
diminishing step energy. Thus a facet with small step energy has large
step width, which could make the spiral growth more effective than the
2D nucleation of new terraces even close to the roughening temperature.
Therefore, the possibility of the spiral growth should be reconsidered in the
experiments on the c-facet growth(63,29) in 4He crystals near 1.3 K.
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In the 2nd part of the work of this Thesis, the melting curve of 4He has
been measured for normal purity 4He (80 ppb of 3He) and ultra-pure 4He
(0.3 ppb of 3He) with similar results. With the accuracy of 0.1 Pa, no super-
solid transition was found and the temperature dependence of the melting
curve below 0.32 K can be attributed to phonons in liquid and in solid. The
upper limit of the non-phonon entropy in the solid 4He below 0.3 K could
be set to 5 · 10−8R. Thus “supersolidity” is not an intrinsic property which
would change the entropy of solid 4He below 0.1 K. Most probably the de-
fects, which appear during the sample preparation and known to affect the
“supersolid” fraction, are responsible for that interesting phenomenon.

The non-phonon contributions on the melting curve of 4He above 0.32 K up
to 0.46 K could be attributed mainly to the rotons with the gap value of
6.95 K. Other contributions, like contribution from free vacancies in solid
were found to be small within the experimental accuracy of about 0.2 Pa at
0.46 K, which yielded an estimate 5.5 K for the lower limit of the activation
energy of vacancies. The temperature dependence of the heat expansion
coefficient a of liquid 4He at 2.51 MPa could be explained with phonons and
rotons with the gap value 7.15 K, which is larger than the value of the roton
gap obtained from the melting curve below 0.46. The 0.2 K difference in the
roton gap values reflects the accuracy of the method and is most probably
due to the temperature dependence of the pressure gauge sensitivity which
could be calibrated only below 0.32 K.

The energy of a stacking fault in 4He, 0.07 ± 0.02 mJ/m2, was measured
at 0.20 K. It would be interesting to measure the temperature dependence
of the stacking fault energy and compare the results on the temperature
dependence of the shear modulus of solid 4He (74) which seems to follow
the typical temperature dependence of the “supersolid” fraction observed in
solid 4He (74,10). Some temperature dependence of the SF might be found
below 0.20 K, since ultrasonic measurements (75,76,77) in hcp 4He have shown
that only dislocations in the basal c-plane contribute to the shear modulus
by gliding in the basal plane itself (78).
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I The surface tension 3He crystals is measured at 77–110 mK. The sur-
face tension was measured on slowly melting crystals in order to avoid
appearance of facets below 100 mK. Within the accuracy no increase of
the surface tension was found near the roughening transition temper-
ature temperature, thus the appearance of facets is not related to the
change in the value of the surface tension but rather in the enhanced
interface-to-lattice coupling.

II The faceting of bcc 3He crystals is studied optically. Using our interfer-
ometric technique we found at least three types of facets to be present
on 3He crystals up to 55 mK, while previously only the (110) facet has
been observed at such high temperatures.

III The temperature dependence of the step energy of (110) facet on 3He
crystals is measured at 60–110 mK using the imaged crystal surface as a
highly sensitive overpressure gauge. The obtained step free energies show
that the interface-to-lattice coupling is very weak at these temperatures,
which is shown to be due to quantum fluctuations of the interface. The
appearance of the facets on 3He crystals at 100 mK, which is well below
the roughening temperature of 260 mK, can be shown with the renor-
malization group approach to be due to the increased interface-to-lattice
coupling as the quantum fluctuations of the interface become dampened
at lower temperatures due to the Fermi degeneracy of liquid 3He. Con-
sequently, at very low temperatures the interface-to-lattice coupling is
nearly strong.

IV The subject of Paper III, which describes the measurements on the step
energy of (110) facet on 3He crystals at 60–110 mK, is gone deeper and in
addition the elaboration and transport of heat during the crystal growth
is discussed. The growth of rough surface was found to be limited by
the transport of the latent heat of crystallization, which is in accordance
with theoretical predictions and previous measurements near the melting
curve minimum of 3He. The mobility of an elementary step was found
also to be limited by the latent heat.

V A new method is applied on slowly melting 3He crystals to measure the
step energies from the critical size of collapsing facets. The step energies
were obtained for the (110) and (100) facets on 3He crystals near 1 mK. It
was found that the antiferromagnetic transition in solid 3He at 0.902 mK
has no significant effect on the step energy.
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VI A remark is made on the earlier careful studies on the roughening of
4He in Paris in 1980s. In the roughening theory which is used to explain
the measured temperature dependence of the step energy of c-facet on
4He crystals, the step width diverges with decreasing step energy when
the temperature approaches the roughening temperature. Consequently,
with the step energies they measured near the roughening temperature
assuming 2D nucleation of atomic terraces, an another mechanism pro-
vided by screw dislocations should be more effective than 2D nucleation.

VII The melting curve of normal purity 4He is measured at 10–400 mK in or-
der to see a heat capacity signature of a possible supersolid transition of
the solid 4He. Within the accuracy of 0.05 Pa the experimental data can
be explained by the sound velocity in liquid 4He and the Debye temper-
ature of solid 4He. Only below 80 mK we found a deviation of ∼ 0.5 Pa
from the T 4 dependence, but that deviation could not be attributed to
the possible supersolid transition.

VIII With high-purity 4He (containing 0.3 ppb of 3He impurities) and addi-
tional optical observations on the 4He crystals, the melting curve of 4He
is demonstrated to follow the expected T 4 dependence due to phonons
within 0.05 Pa in temperature range from 10 to 320 mK. The low tem-
perature deviation found in Paper VII could be eliminated through a
recalibration of the sensitivity of the BeCu pressure gauge. With high-
quality 4He crystals the non-phonon entropy which contributes to the
melting curve are thus smaller than ∼ 5 · 10−8R.

IX The melting curve is measured up to 0.45 K and the heat expansion of
liquid 4He is studied at constant volume up to 0.72 K. Below 0.32 K,
the phonons in liquid 4He and in solid 4He were responsible of the T 4

dependence of both the melting curve and the heat expansion of liquid.
Above 0.32 K the rotons in liquid started to contribute in liquid 4He, and
the deviation from the T 4 dependence in heat expansion of the liquid
resulted in the roton gap value of 6.8 K.

X The appearance and the energy of the stacking faults is studied in hcp 4He
crystals. A connection was found between the appearance of a stacking
fault and the initiation of a burst-like creation of new atomic layers on
4He crystals. The stacking fault was found to create a groove on the
crystal surface with the dihedral angle of 155±5◦. The measured stacking
fault energy was found to be about 0.4 of the surface tension of the liquid-
solid interface of 4He.
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