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Abstract. The original Skilling–Bryan method, first introduced in the field of astronomy, minimises
the statistical cost function assuming Gaussian noise and the entropy prior functional. In contrast to
the conventional trust region methods, where the solution search in a high-dimensional space may
be very expensive, the Skilling–Bryan scheme minimises the cost function in a subspace instead,
yielding much more efficient computation. However, in low-photon-count processes, such as image
formation in confocal microscopy, Poisson noise assumption is more suitable. In addition, it would
be desirable to use the 2nd order, Skilling–Bryan optimisation framework in applications where
general prior functionals with the positivity constraint is required. In this work, we hence generalise
the Skilling–Bryan method to be used with the Poisson noise model as well as with various kinds of
prior functions including the total variation prior. The proposed method is generic whereas here it is
applied in the micro-rotation imaging, where we aim at 3D reconstruction of a rotating object from
2D projections taken by a light microscope. On the basis of our investigation, the extended Skilling–
Bryan method is promising for computing estimates in high-dimensional problems efficiently.
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1. INTRODUCTION

A standard way for characterising a posterior distribution is computing the maximum
a posteriori (MAP) estimate. Efficient numerical optimisation tools are essential for
finding the MAP estimate, particularly in high-dimensional problems. Among numerous
optimisation methods, line search and trust-region methods are conventional choices.
The line search methods, in each iteration, search for a solution in a single direction
whereas the trust-region methods compute the iterates in a high-dimensional space. In
general, trust region methods tend to be more robust than line search methods, such as
conjugate gradient [1]. However, the high-dimensional search may be expensive in the
trust-region approach.

In contrast to the techniques above, Skilling and Bryan suggested to minimise a
statistical cost function in a promising subspace, yielding more efficient computation
[2, 3]. This approach is thus appropriate for solving nonlinear cost functions in high-
dimensional spaces and, by their formulation, positivity of the solution is inherently
enforced [2]. This method was first introduced in the field of astronomy and thereafter it
has been widely used in other fields of science [4]. However, the original Skilling–Bryan
method assumes the Gaussian noise model and entropy prior functional whereas in low-
photon-count applications, such as image formation in confocal microscopy, Poisson
noise assumption is more suitable. In addition, in many applications [5, 6], rather than
the entropy prior, other priors may be needed.



Hence, we propose here a generalisation of the Skilling–Bryan method for minimising
the statistical cost function with the Poisson noise model and general prior functions
including the Gaussian and total variation (TV) priors. The method is generic and we
apply it in solving a 3D reconstruction problem in the Micro-Rotation application in
light microscopy [7, 8, 9]. Micro-Rotation imaging is an optical microscopic imaging
technique which employs dielectric fields in rotating cells around a single axis parallel
to the focal plane of the microscope [9, 10]. More precisely, the method involves
manipulating dielectric fields to trap and control cells, aiming to achieve high resolution
imaging of individual, intact live cells [10, 11]. Our ultimate goal is to obtain an efficient
3D reconstruction algorithm, based on Bayesian theory assuming Poisson noise with the
general priors.

The paper begins by presenting the image formation model for micro-rotation imaging
in Section 2 and introducing the statistical framework and the statistical cost functions in
Section 3. The generalisation of the Skilling–Bryan minimisation of the cost functions
is described in Section 4. The experimented results with simulated micro-rotation series
are reported in Section 5. In Section 6, we discuss and conclude the paper.

2. IMAGE FORMATION MODEL

In this section, we describe the image formation model, used in the Micro-Rotation ap-
plication. A typical microscope system can be characterised by its point spread function
(PSF): if the microscope system is linear and shift invariant, the measurement image is

mi(x,y) = h(x,y,z)∗ fi(x,y,z)
∣∣∣
z=d

, (1)

where h is the 3D PSF, fi = Ri f is the rotated object density for the projection i, Ri is the
rotation operator and ∗ denotes the 3D convolution operator. The measurement image is
thus recorded as the plane corresponding to the focal plane z = d and the optical axis is
assumed to be parallel to the z-direction.

In minimisation problem, the projection model (1) requires discretisation of the 3D
space and the images onto finite grids. Since the imaging operator (1) is linear, the total
discretised model for the M projections is described as

m = Af, (2)

where f is a vector of object density values, m = [mT
1 , · · · ,mT

M]T and A = [AT
1 , · · · ,AT

M]T
are the joint measurement vector and the joint projection matrix, respectively, combining
all the projections. The implementation details of the matrix A and its adjoint AT can be
found from [11, 12].

3. BAYESIAN INVERSION THEORY

By the Bayesian inversion approach, prior knowledge can be used in a systematic way.
The solution is described via the posterior distribution which, in our application, takes



the form

p(f|m) ∝ p(f)p(m|f), (3)

where p(m|f) is the likelihood density and p(f) is the prior density. The computation of
the MAP estimate

f̂ = arg max
f

p(f|m) (4)

corresponds to maximising the cost function

q(f) = s(f)−λc(f), (5)

where c(f) = − ln p(m|f) is the likelihood term and s(f) = ln p(f) is the prior term. The
auxiliary regularisation parameter λ balances the likelihood and the prior terms. Over
regularisation (too large λ ) leads the algorithm to diverge where as under-regularisation
amplifies noise. The likelihood density is constructed from the measurement noise
model, as follows.

In many applications, such as those of fluorescence microscopy, the amount of pho-
tons reaching the detector is well described by the Poisson process, i.e., the pixel mea-
surement mj is a sample of a Poisson distributed random variable with the expected
value (Af) j. Assuming independent measurements, the cost is

cP(f) = 1T(Af)−mT log(Af), (6)

where 1 = [1,1, ...,1]T. If the amount of photons arrived at the detector is high, the
Poisson noise is well approximated by Gaussian noise [13]. In the case of isotropic
Gaussian noise with unit variance, the cost function is

cG(f) =
1
2
‖m−Af‖2. (7)

To control the fitting, it is reasonable to set the bound caim to which we adjust the
likihood c [2]. Typically, the constant caim is proportional to the noise level in the images.
For the Gaussian noise model, caim is equal to Nσ2 where σ2 is the noise variance and
N is the number of measurement data. The Poisson case is more difficult, one possibility
is to select the Cisiszár I-divergence [14] as caim.

In this work, we have experimented Gaussian, Entropy, and the TV prior models. The
Gaussian, white noise prior, with the cost

sG(f) = −1
2
‖f‖2, (8)

is a simple choice and is also known as Tikhonov regularisation. The entropy prior is
obtained by setting

sE(f) = 1Tf− fT log(
f
f0

), (9)



TABLE 1. Likelihood and prior terms with their gradients and Hessians used in the extended
Skilling–Bryan minimisation method. The operations between two vectors are performed element
by element.

Functions Gradient g Hessian H

Gaussian noise cG
1
2‖m−Af‖2 −AT(m−Af) ATA

Poisson noise cP 1T(Af)−mT log(Af) −AT( m
Af −1) ATdiag

(
m

(Af)(Af)

)
A

Guassian prior sG − 1
2‖f‖2 −f −I

Entropy prior sE 1Tf− fT log(f/f0) − log(f/f0) −diag(1/f)
TV prior sT −1Tβ−1 log(cosh(βGf)) −GT tanh(βGf) −GTdiag

(
β sech2(βGf)

)
G

where f0 is the initial object, for which the ideal choice would be the true object. As the
true object is unknown, f0 is often selected to have a constant value.

For the total variation prior, we use the definition

sT(f) = −1T|Gf|. (10)

where G is the Toeplitz matrix representing the 3D convolution with the Laplacian of
Gaussian kernel. Since the absolute function is not differentiable, we use the smooth
approximation |t| ≈ β−1 cosh(β t), as suggested in [15], where β is a parameter. The
advantage of the TV is that it preserves the edges of the object while it smooths out
homogeneous regions [16, 6].

In minimising the cost, we need to compute the gradient g and Hessian H of the
likelihood and the prior terms. Table 1 summaries all the functions with their gradients
and Hessians, which will be used in the following section.

4. SKILLING–BRYAN MINIMISATION

In this section, we generalise the Skilling–Bryan algorithm to be applied with the
Poisson noise model with the three priors, described in the previous section. The method
aims at maximising the prior term s subject to the constraint c = caim, by implicitly
adjusting λ so that the constraint is satisfied. More precisely, in each iteration, s and c
are projected onto a small dimensional subspace where s attains its maximum while the
constraint is satisfied.

The cost function (5) can be approximated with the second-order Taylor expansion.
Then the vector p is selected so that the posterior cost function q is maximised, i.e.,

max
p

q(f+p) = q(f)+gT
q p+

1
2

pTHqp, (11)

where gq = ∇q and Hq = ∇∇q. This implies that gq = gs − λgc and Hq = Hs − λHc
where gc = ∇c, gs = ∇s, Hc = ∇∇c and Hs = ∇∇s. Searching for the vector p in a
high dimensional space is costly. To obtain an efficient computation, Skilling and Bryan
suggested maximising the cost function in the trust subspace, as follows.



The solution for (11) is

p = −(Hq + γI)−1gq, (12)

≈ −(I+ γ−1Hq)gq, (13)

≈ −gs +λgc + γ−1[(Hs −λHc)(gs −λgc)] (14)

where the inversion is approximated upto the second-order. Obviously, the search vector
p is just a linear combination of the six vectors, gc,gs,Hcgc,Hsgs,Hsgc and Hcgs in the
approximation. In practice, the linear combination of the last four terms can be used as
one search direction. Thus, we obtain the three search directions

e1 = fgs, (15)
e2 = fgc, (16)

e3 = fHc

(
e1

‖gs‖ −
e2

‖gc‖
)

+ fHs

(
e1

‖gs‖ −
e2

‖gc‖
)

, (17)

which define a 3D subspace. The vector multiplications and divisions are performed
element by element.

The gradient directions gs and gc are replaced by fgs and fgc to increase the weight
for high values in order to achieve the positivity constraint. In the third direction, the
normalisation by the length of gradient vector is performed before multiplying with the
Hessian matrix. In the case of the entropy prior, the second term in (17) can be dropped
since fHs is then equal to unity matrix. Note that solving the search vector p from (12)
corresponds to the Levenberg-Marquardt method whereas using the first-order Taylor
approximation would coincide with optimisation with line search methods.

Within the 3D subspace, the search vector p is

p = Ex = x1e1 + x2e2 + x3e3, (18)

where the matrix E = [e1 e2 e3] and the coefficient vector x = [x1,x2,x3]T. Now, we
determine x in this subspace that gives the maximum of s subject to the constraint
c = c̃aim < caim. In order to estimate the maximum s in the 3D subspace, the three-
element gradients and nine-element Hessian need to be computed. For details, see [2].
Finally, the current f is moved to the new location by

fnew = f+Ex, (19)

while the updated f needs to be protected against stray on negative values; if fnew be-
comes negative, we scale the updated vector Ex down by the factors of two until it
becomes positive. The iteration is repeated until the aim c = caim is achieved or the
maximum number of iterations is reached. Compared to line search methods, the op-
timisation scheme requires much less number of iterations but each iteration consists
of six projection and back-projection (ATA) pairs. So constructing the more sophisti-
cated search directions is made on the expense of more frequent evaluation of the image
formation model.
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FIGURE 1. Left: The original 2D synthetic object. Right: Ideal geometries of the data acquisition of
Micro-Rotation imaging where each line represents the focal plane in the object coordinate frame.

5. RESULTS

To evaluate the proposed method, we have experimented simulated wide-field micro-
scope images. In the simulations, we created a synthetic 2D object in a volume of
100× 100 samples. The object consists of a filled circle in the middle and three thin
bars, arranged around the sphere in different directions, as illustrated in Figure 1. The
object has only two intensity values, one for the background and the other for the object.
Poisson noise was added to the object and it was then projected onto 50 one-dimensional
views using the simulated micro-rotation imaging model.

In Figure 2, there are six reconstructions computed with different selections from the
two noise models and the three prior functions. As the number of simulated photons was
relatively large, the reconstructions with Poisson and Gaussian noise models have only
a small difference when the same prior function is selected. Likewise, there is only a
small difference between the Gaussian and entropy priors but the TV prior is the most
competitive in smoothing the artifacts inside the homogeneous region inside the circle
while the edges of the circle remain sharp. It can be additionally seen that the three bars
oriented in the radial direction can not be reconstructed. We see that this is due to the
rotation geometry and the elongation of the PSF function of the microscope which make
the resolution weaker in the tangential direction of the rotation [11].

We also experimented with a 3D simulated cell. Figure 3 (left) shows some example
images, obtained by the simulated image formation model with Poisson noise. The
100 × 100 × 100 reconstruction using Poisson model and TV prior is illustrated in
Figure 3 (right) which shows the rotated slice of the reconstruction corresponding to the
original images. In the simulation, the algorithm converged in about 100 iterations for
both Gaussian and Poisson noise models. In the early iterations, the algorithm typically
has slow convergence but it becomes faster nearer the optimum. In addition, we found
only slight differences in convergence curves between different prior models. However,
the convergence of the algorithm highly depends on sharpness of the PSF; the narrower
the PSF width, the faster the convergence seems to be.
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FIGURE 2. 2D reconstructions of simulated data using different priors and noise models. Upper row:
Gaussian noise; lower row: Poisson noise; columns from left to right: Gaussian, Entropy, and Total
Variation priors.

6. DISCUSSION

In this work, we have generalised the original Skilling–Bryan method to be applied with
the Poisson noise model as well as the various kinds of prior structures, including the
Gaussian, the Entropy and the TV priors. In general, our extended algorithm should be
able to find the optimum solution for arbitrary convex, nonlinear cost functions with the
positivity constraint. Only the gradients and Hessians of the cost functions is required
for this method. The main features of the Skilling–Bryan method is that (1) a subspace
of several search directions is used instead of a line search, (2) the algorithm directly
controls the noise level constraint over the likelihood function so that the selection of
regularisation parameters becomes implicit, and (3) the method inherently enforces the
positivity constraint during each subspace search. These features make our extended
algorithm attractive for solving high-dimensional, nonlinear problems. In addition, our
experiments in the Micro-Rotation setting suggested that the extended algorithm is
appropriate for solving the wide class of measurement noise and prior models within
the Bayesian framework.
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FIGURE 3. Left: Simulated, original wide-field micro-rotation images (SNR=20). Right: Deblurred
images, i.e. the ideal slices of the reconstruction from the positions corresponding to the focal plane of the
original images.
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