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4 Institut Pasteur, Plate-forme d’Imagerie Dynamique, Imagopole, 25–28 rue du Dr Roux,
75015 Paris, France

Received 19 June 2008, in final form 15 October 2008
Published 13 November 2008
Online at stacks.iop.org/IP/25/015006

Abstract

Micro-rotation confocal microscopy is a novel optical imaging technique which
employs dielectric fields to trap and rotate individual cells to facilitate 3D
fluorescence imaging using a confocal microscope. In contrast to computed
tomography (CT) where an image can be modelled as parallel projection of
an object, the ideal confocal image is recorded as a central slice of the object
corresponding to the focal plane. In CT, the projection images and the 3D
object are related by the Fourier slice theorem which states that the Fourier
transform of a CT image is equal to the central slice of the Fourier transform
of the 3D object. In the micro-rotation application, we have a dual form of
this setting, i.e. the Fourier transform of the confocal image equals the parallel
projection of the Fourier transform of the 3D object. Based on the observed
duality, we present here the dual of the classical filtered back projection (FBP)
algorithm and apply it in micro-rotation confocal imaging. Our experiments on
real data demonstrate that the proposed method is a fast and reliable algorithm
for the micro-rotation application, as FBP is for CT application.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The ability to image individual live cells in three dimensions (3D) is essential in cellular biology
and biomedical sciences for studies of spatial localization of signals. In 3D fluorescence
imaging, understanding of optical and geometric characteristics plays an important role in
how to effectively collect a 2D image series in order to recover spatial information inside
the specimen. To date, the conventional z-stacking is standard 3D fluorescence imaging that
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Figure 1. Schematic view of micro-rotation confocal imaging. (a) A dielectric field channel with
eight electrode strips: four attached to the top glass (300 μm thickness) and four to the bottom
glass (150 μm thickness), (b) a 3D electrode cage with eight electrodes and a spherical object at
the middle and (c) data-acquisition geometry (each plane represents the focal plane).

records a stack of 2D images by varying the microscope objective parallel to the optical
(z) axis (Pawley 2006). However, it is well known that this z-stacking technique provides
poor resolution in the z-axis direction due to the imaging geometry. In contrast, the micro-
rotation imaging technique employs dielectric fields to trap single cells in suspension inside
an electrode cage (see figure 1) and continuously rotate the trapped cells 360◦ around a single
axis perpendicular to the optical axis (Schnelle et al 1993, Shorte et al 2003). During
the rotation, images of the trapped cells are sequentially recorded using various optical
imaging modalities such as wide-field microscopy, laser-scanning or spinning-disk confocal
microscopy. The unique feature of micro-rotation imaging is that it offers the possibility of
visualizing non-adherent live cells from any orientations in suspension that provides a way to
improve the 3D optical resolution (Lizundia et al 2005, Renaud et al 2008, Laksameethanasan
et al 2008).

One of the most challenging problems in micro-rotation imaging today is how to provide
a fast, qualitative method for reconstructing rotating objects from micro-rotation image series.
This problem consists of two subproblems: motion estimation to determine the orientation
of the object and object density recovery to reconstruct the actual object structure. In the
micro-rotation application, a couple of methods have already been proposed for estimating
the object structure. Laksameethanasan et al (2008) introduced sequential methods that
estimate the unknown motion followed by the object reconstruction. Alternative methods solve
the unknown motion simultaneously with the object reconstruction (Brandt and Mevorah 2006,
Yu et al 2007). All the approaches above are based on the maximum a posterior (MAP)
estimate that includes the modelling of noise and structure prior together with the image
formation model. These methods however have relatively high computational cost. The major
source of computational complexity is due to the repetitive computation of 3D–2D projection
and backprojection, and the 3D image registration.

To reduce the computational complexity, we consider (laser-scanning or spinning-disk)
confocal imaging and assume good stability of cell rotation such that the rotation axis locates
approximately on the focal plane. In confocal imaging, a single confocal image can be rapidly
deconvoluted by 2D deconvolution by applying a 2D point spread function (PSF) (Larson
2002, Biggs 2004) since the depth of field of a confocal microscope is substantially thin.
The confocal image therefore can be treated as a 2D planar object, especially if the pinhole
diameter is very small. As to the cell rotation, it is a sensitive process since the non-adherent
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Figure 2. Comparison of the computed tomographic and the micro-rotation confocal projection
models. The right column illustrates the Fourier transform of the projections, related by the Fourier
slice theorem.

cells flow freely in suspension apart from the force included by the electric field of the cell
rotator. However, careful image acquisition improves the rotation stability5: an example of a
situation where the rotation stability is satisfactory is provided by Renaud et al (2008) who
demonstrated that the cell rotator is capable of reproducing high correlation images of the cell
after a complete rotation of 360◦ (with 90◦ stepwise). With sufficient rotation stability, the
acquired images can be accurately aligned using, for instance, a 2D cross-correlation method
with a prior constraint (Palander 2007). If the rotation stability condition does not hold,
one can still reconstruct the object using the statistical method by Laksameethanasan et al
(2008), but the computational advantage is lost and the full 3D registration method (Brandt
and Mevorah 2006) is additionally needed. In this work, the simplified imaging modality is
called micro-rotation confocal (MRC) microscopy.

The keynote of this paper is that the MRC imaging has dual relationship to the classical
projection model used in x-ray tomography (computed tomography or CT). This is due to the
fact that projection images in CT are parallel projections of the object whereas ideal confocal
images represent the central slices of object corresponding to the focal plane; see figure 2.
In x-ray tomography, the relationship between the projection images and the 3D object is
described by the Fourier slice theorem which states that the Fourier transform of a CT image
is equal to the central slice of the 3D object spectrum (Kak and Slaney 1988, Jain 1989). In
contrast, in the micro-rotation application the confocal images and the 3D object are related
by a dual Fourier slice theorem. That is, the Fourier transform of an MRC image is equal to
the parallel projection of the object spectrum as figure 2 illustrates.

5 Trapped cells were rotated around the x- or y-axis by modulating the phase of currents at each electrode of the cage.
The rotation speed and stability depend, for a given cell and dielectrophoretic (DF) cage, on the voltage and frequency
output of the DF-cage electrodes. Cell micro-rotation shows a highly stable rotation with parameters ranging from 2
to 3 V and 0.3 to 0.7 MHz.

3



Inverse Problems 25 (2009) 015006 D Laksameethanasan et al

In this paper, we take the advantage of the duality and propose a dual form of classical
filtered backprojection (FBP) to facilitate micro-rotation imaging in confocal microscopy.
The principle of the FBP algorithm, a standard reconstruction method in CT (Kak and Slaney
1988, Jain 1989), involves filtering of projection images and backprojecting the filtered images
in the spatial domain. In dual filtered backprojection (DFBP), rather than operating in the
spatial domain, the method filters MRC image spectra and backprojects the filtered spectra in
the frequency domain instead. The only difference between FBP and the DFBP is that they
operate the equivalent operations in the dual domains. The DFBP algorithm therefore has the
same computational complexity as the FBP method.

The rest of the paper is organized as follows. The micro-rotation imaging model is
introduced in section 2. We then review FBP in section 3 and introduce its dual form in
section 4. We describe the practical implementation of the dual algorithm in section 5. The
reconstruction results from the simulated and the real micro-rotation series are reported in
section 6. Finally, we discuss and conclude the paper in section 7.

2. Micro-rotation imaging model and deconvolution

This section will first describe how a series of micro-rotation images are constructed from the
3D object according to our previous work (Laksameethanasan et al 2008). As a preprocessing
step, we suggest to deconvolute the images by 2D deconvolution, as this procedure makes the
approximation better so that the real confocal images are central slices of the object.

In fluorescence confocal microscopy, the imaging system is well described by the PSF
which is the impulse response for a point source or point object. If linearity and shift invariance
hold, a measurement image gθ obtained at the projection angle θ is mathematically modelled
by

gθ (x, y) = Aθf (x, y, z) = S{h(x, y, z) ∗ Rθf (x, y, z)}, (1)

where Aθ is the linear operator describing the micro-rotation imaging model, f is the object
density evaluated at (x, y, z), h is the PSF, Rθ is the rotation operator for the projection angle
θ, ∗ denotes the 3D convolution operator and S is the ideal slice operator that takes a single
plane corresponding to the focal plane. A direct way to solve the unknown object f is to
use the MAP approach, formulated as f̂ = arg maxf p(g|f )p(f ). The likelihood function
p(g|f ) is constructed from the measurement noise model and p(f ) is the prior distribution
for the object (Laksameethanasan et al 2008). However, this method requires computational
effort due to the 3D convolution in the projection model.

To speed up the reconstruction process but taking most of the imaging model into
account, we consider a two-step solution for confocal imaging: first, the effect of the
imaging system is removed using 2D deconvolution and, second, interpolation is followed
to bring the reconstruction into the Cartesian coordinates from the cylindrical coordinates.
The deconvolution algorithm used in the work is based on the expectation maximization (EM)
method where Poisson noise in the measurements and a spatial-derivative object prior are
assumed (Dey et al 2006, Laksameethanasan et al 2008). The advantage of the EM method
is that it provides closed-form updates with the non-negativity constraint, and it also offers
the ability of suppressing high-frequency noise and preserving the edges of the object of
interest. The second step consists of the major contribution of this paper, the DFBP algorithm
(section 4), which can be understood as an interpolation algorithm in the Fourier space. Also,
other interpolation methods could be applied, for instance the 2D cylindrical-to-Cartesian
bilinear interpolation or the 1D angular linear interpolation followed by the mapping to the
Cartesian coordinate frame.
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Figure 3. Comparison between filtered backprojection (upper row) and dual filtered backprojection
(lower row).

The PSF required for the deconvolution method can be estimated either theoretically
or from a direct measurement. The theoretical PSF for a confocal microscope can be
calculated, for instance, using the model of van der Voort and Brakenhoff (1990), where
the the PSF depends on imaging parameters such as the numerical aperture of objective,
the excitation and emission wavelengths, and the refractive index of the immersion medium.
The experimental PSF can be measured by taking images from individual fluorescent beads of
<0.2 μm diameter and averaging the image stacks to improve the signal-to-noise ratio. In this
work, we experimented both theoretical and experimental PSFs where the 2D PSF used for
the deconvolution algorithm is obtained by projecting the estimated 3D PSF along the z-axis.

3. Filtered backprojection

This section reviews the FBP algorithm by introducing the Radon operator and its adjoint, and
the Fourier slice theorem in order to dualize this relationship in section 4. For simplicity, we
consider here the 2D geometrical setting where the extension to 3D real microscopic imaging
is straightforward and is discussed in section 2.

The Radon transform of an object function f (x, y) is its line integral along a line inclined
at an angle θ and at distance s from the origin; see figure 3. Mathematically, the Radon
transform R is defined as
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g(s, θ) =̇ R{f (x, y)} =
∫ ∞

−∞
f (s cos θ − t sin θ, s sin θ + t cos θ) dt, (2)

where g(s, θ) is the 1D projection of f (x, y) at an angle θ ∈ [0, π ] and (s, t) are the rotated
coordinates. The adjoint operator of the Radon transform is the backprojection B (Jain 1989),
defined as

b(x, y) =̇ B{g(s, θ)} =
∫ π

0
g(x cos θ + y sin θ, θ) dθ, (3)

which maps the projection functional g(s, θ) into a function of spatial coordinates.
Backprojection is simply the integral of all the backprojected rays that pass through the
position (x, y). When going to higher dimensional space (n > 2), the Radon transform is
replaced with the x-ray transform which is the integral over the set of all rays in n-dimensional
space (Deans 1983, Kak and Slaney 1988).

In formulating the FBP method, we use the Fourier slice theorem which describes the
relationship between the Fourier transform of a projection and object spectrum along a single
radial. By using (2) and changing the variables, the 1D Fourier transform of the projection
g(s, θ), for fixed θ , is

G(ks, θ) =
∫ ∞

−∞
g(s, θ) e−jks s ds

=
∫ ∞

−∞

∫ ∞

−∞
f (s cos θ − t sin θ, s sin θ + t cos θ) e−jks s ds dt

=
∫ ∞

−∞

∫ ∞

−∞
f (x, y) e−j (xks cos θ+yks sin θ) dx dy

= F(ks cos θ, ks sin θ), (4)

where F(kx, ky) = Fy{Fx{f (x, y)}} and F is the Fourier transform with respect to the
subscript. In other words, the 1D Fourier transform of the projection g(s, θ) is equal to the
central slice of the object spectrum F(kx, ky); see figure 3.

Using (4) and the polar coordinate transform, the inverse Fourier transform of the object
spectrum is

f (x, y) =
∫ ∞

−∞

∫ ∞

−∞
F(kx, ky) ej (xkx+yky) dkx dky

=
∫ π

0

∫ ∞

−∞
|ks |G(ks, θ) ej (x cos θ+y sin θ)ks dks dθ

=
∫ π

0
ĝ(x cos θ + y sin θ, θ) dθ, (5)

where ĝ(s, θ) = F−1
ks

{|ks |G(ks, θ)} and, thus, we obtain the classical FBP reconstruction
formula

f (x, y) = B
{
F−1

ks
{|ks |G(ks, θ)}}, (6)

where F−1
ks

is the inverse Fourier transform with respect to ks . The multiplication with |ks |
in the Fourier space represents a filtering operation whereas the right-hand side of (5) is
backprojection by definition (3). In other words, the FBP algorithm filters the projections and
backprojects the filtered projections in the spatial domain.
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4. Dual filtered backprojection

Now, using the duality, we take the Radon transform of the object in the Fourier space rather
than in the object space. The dual Radon transform R∗ =̇ RF s of the object or the Radon
transform of the object spectrum is, hence,

G∗(ks, θ) =̇ R{F(ks, kt )} =
∫ ∞

−∞
F(ks cos θ − kt sin θ, ks sin θ + kt cos θ) dkt , (7)

where G∗(ks, θ) is the 1D projection of the object spectrum F(kx, ky) at an angle θ ∈ [0, π ];
see figure 3. The adjoint operator B∗ =̇ BF s of the dual Radon transform is

B∗(kx, ky) =̇ B{G∗(ks, θ)} =
∫ π

0
G∗(kx cos θ + ky sin θ, θ) dθ, (8)

which backprojects the spectral projections into the Fourier space.
Consequently, using (7), the dual Fourier slice theorem is

g∗(s, θ) = F−1
ks

{G∗(ks, θ)} =
∫ ∞

−∞
G∗(ks, θ) ejsks dks

=
∫ ∞

−∞

∫ ∞

−∞
F(ks cos θ − kt sin θ, ks sin θ + kt cos θ) ejsks dks dkt

=
∫ ∞

−∞

∫ ∞

−∞
F(kx, ky) ej (kxs cos θ+kys sin θ) dkx dky

= f (s cos θ, s sin θ). (9)

So it implies that the inverse Fourier transform of the spectral projection G∗(ks, θ) corresponds
to the central slice of the object f (x, y). From the Fourier transform of the object and (9), it
follows that

F(kx, ky) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
f (x, y) e−j (xkx+yky) dx dy,

= 1

(2π)2

∫ π

0

∫ ∞

−∞
|s|g∗(s, θ) e−j (kx cos θ+ky sin θ)s ds dθ

= 1

(2π)2

∫ π

0
Ĝ∗(kx cos θ + ky sin θ, θ) dθ, (10)

where Ĝ∗(ks, θ) = Fs{|s|g∗(s, θ)}. This leads to the dual formula of FBP as

F(kx, ky) = BFs{|s|g∗(s, θ)}. (11)

Hence, we call this reconstruction procedure as the DFBP method. The implementation
can also be performed in the dual way, that is, filtering the projection spectra and then
backprojecting the filtered spectra in the frequency domain. Table 1 compares the operation
procedure of the FBP and the DFBP methods. We note that DFBP and FBP performs equivalent
operations in the dual spaces, as the block diagram indicates in figure 4. In other words, DFBP
computes filtering and backprojecting in the Fourier space rather than in the object space as
FBP.

5. Practical implementation

Due to the duality, the DFBP algorithm can be implemented similar to the FBP algorithm. In
this section, we thus dualize the classic FBP implementation, which is described in Kak and
Slaney (1988) and Jain (1989).
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Figure 4. Block diagrams of the operation procedure of FBP (left) and DFBP (right).

Table 1. Formulation procedure of the FBP and the DFBP algorithms, described in (6) and (11)
respectively.

Operations FBP DFBP

Fourier transform G(ks, θ) = F{g(x, y)}
Filtering |ks |G(ks, θ) |s|g∗(s, θ)

Fourier transform F−1{|ks |G(ks, θ)} F{|s|g∗(s, θ)}
Backprojection f (x, y) = B{F−1{|ks |G(ks, θ)}} F(kx, ky) = B{F{|s|g∗(s, θ)}}
Fourier transform f (x, y) = F−1{F(kx, ky)}

In practice, the projection data are available only on a finite grid; thus, we write

g∗
n(sm) =̇ g∗(sm, θn), (12)

where sm = m�s, θn = n�θ,m ∈ [−M/2,M/2 − 1], n ∈ [0, N − 1], N is the number of
projections taken at equally spaced angles �θ and each projection consists of M samples with
a uniform sampling interval �s . If f0 is the highest spatial frequency of interest in the given
object, then �s should be smaller than the Nyquist interval �s � 1/2f0. If the object is
space limited, i.e. f (r, φ) = 0, |r| > d/2, then d = M�s . Thus, the number of samples
should satisfy M � 2f0d. In other words, for a given maximum spatial frequency f0 and the
maximum object dimension d, we can determine the sampling interval �s together with the
number of samples M for each projection θn.

The ideal ramp window |s| required in (11) amplifies projection samples located far
away from the projection centre. Since most practical images have a low signal-to-noise
ratio at regions far from the image centre, multiplication by |s| amplifies noise. To obtain
noise suppression, a window with finite support is required, i.e. h(s) = |s|w(s), where the
window function w(s) is chosen to moderate far-distance samples. A practical reconstruction
algorithm following (11) consists of three major steps, as follows.

(1) Compute 1D Fourier transform of windowed projections for each θn, i.e.

Ĝ∗(ksm
, θn) = Fs{|sm|w(sm)g∗(sm, θn)}. (13)

Here, we select the Tukey windows, a cosine-tapered window, as it is a commonly used
filter (Harris 1978) where the ratio of the Tukey taper r is chosen to be 0.1 (r = 0 is
a rectangular window and r = 1 is a Hanning window). Note that a too large taper
ratio (low steep) gives poor resolution while a too small value (high steep) leads to noise
amplification.

8
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(2) Perform backprojection to Ĝ∗(ksm
, θn

)
for all θn in the frequency domain

f̂ (kx, ky) = π

N

N−1∑
n=0

Ĝ∗(kx cos θn + ky sin θn, θn). (14)

To evaluate G∗(ks, θn) at locations in between the grid points, interpolation is required.
Among many interpolation methods (Lewitt 1992, Mueller 1998), we use the linear
interpolation method as it is computationally cheap and provides reasonable quality.

(3) Compute 2D inverse Fourier transform of the backprojections from

f (x, y) = F−1
kx

F−1
ky

{Wc(kx, ky)f̂ (kx, ky)}, (15)

where Wc is the frequency response of a lowpass filter6. This frequency window Wc

is required to suppress a high frequency region that contains sparse samples due to the
backprojection. Here, we use the Butterworth filter as it moderates a high frequency
response and gives a good compromise between the filter bandwidth and high frequency
suppression.

The transfer function of the Butterworth lowpass filter of order n (we used n = 8) is

Wc(kx, ky) = 1

1 +
( k2

x+k2
y

k2
c

)n
, (16)

where kc = 2πfc is the cut-off frequency. Selecting the cut-off frequency fc is crucial.
Inappropriate cut-off frequencies may lead to either smearing artefacts or poor resolution in
the reconstruction. Our suggestion on how to select this parameter is discussed below.

5.1. Selection of cut-off frequencies

Basically, we select the cut-off frequency so that the frequency window Wc covers the entire
backprojection area that contains dense samples. Theoretically speaking, if �t is the maximum
tangential displacement between two nearest projections, the cut-off frequency fc should be
smaller than the Nyquist frequency or fc � 1/2�t ; thus,

fc � N

πd
. (17)

In other words, the cut-off frequency fc linearly depends on the number of projections N and
the inverse of object dimension d. In certain cases, however, this theoretical bound is too
conservative as will be discussed below.

To illustrate the effects of selecting the cut-off frequency, we made 2D micro-rotation
simulations by creating the Shepp–Logan 2D head phantom with the size 151 × 151 pixels.
Figure 5(a) displays the original phantom (top) and its spectrum (bottom). The three 1D-
projection sets consisting of 45, 90 and 180 projections (�θ = 4◦, 2◦ and 1◦, respectively)
were taken at equally spaced angles from 0 to 180◦. The 2D reconstructions using the
DFBP algorithm are shown in figures 5(b)–(d). Obviously, the reconstruction from the 180
projections gives the best result whereas the reconstructions from 45 and 90 projections contain
aliasing artefacts at regions far away from the coordinate centre. This is due to the fact that

6 Note that the backprojection in Fourier space cannot respect the Hermitian symmetry and, hence, the reconstruction
f (x, y) will have a numerically non-zero imaginary part. In practice, the imaginary part is small assuming uniformly
distributed rotations and can thus be projected to zero.

9
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(a) True (b) 45 projections (c) 90 projections (d) 180 projections

Figure 5. Reconstructions of the 2D Shepp–Logan phantom using the DFBP algorithm for a
different number of projections without applying the frequency window. The lower row displays
the spectrum of the reconstructions on the upper row.

(a) No window (b) Too large fc (c) Too small fc (d) Proper fc

Figure 6. Comparison of DFBP reconstructions of the 2D Shepp–Logan phantom using the
frequency window with different cut-off frequencies.

the sparse-backprojection regions at higher frequencies were included in the reconstruction.
Thus, it is reasonable to apply a lowpass filter to suppress the high frequencies that contain
too sparsely measured data. Figure 6 illustrates the reconstructions with three different cut-off
frequencies (fc = 0.45fs, 0.35fs, 0.4fs). As can be seen in figures 6(b) and (c), too small fc

leads to a ringing artefact around object edges, whereas too large fc yields aliasing artefacts

10
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Figure 7. Empirical relationship between the number of projections and the cut-off frequency.

at regions far away from the coordinate centre. Comparing between figures 5(d) and 6(d), the
reconstruction with a proper cut-off frequency provides comparable quality.

Moreover, we made an empirical test by manually picking the cut-off frequency that
visually matches with densely covered regions in the frequency domain. Figure 7 shows the
linear relationship between the number of projections N and the normalized cut-off frequencies
fc/fs , where fs is the sampling frequency. The slope estimate equals 0.0045 which is larger
than the theoretical slope 1/πd = 0.0021 suggested by (17), indicating that (17) is too
conservative. Hence, in practice, fc should be selected larger. On the basis of this empirical
test, we suggest to use the formula

fc = c
N

πd
, (18)

where c is a constant greater than 1. In this case, we used c = 2.1.

6. Results

6.1. Simulation results

As the first proof of the DFBP principle, we reconstructed the 2D Shepp–Logan phantom
from a set of 1D projections, equivalent to the polar coordinate representation of the 2D
phantom, and then compared the DFBP method to the spatial bilinear interpolation. The
bilinear interpolation was performed in the standard way, i.e. the polar coordinates of the
2D Cartesian pixel locations were computed and the corresponding pixel intensity values
were interpolated from the polar coordinate representation of the phantom using the standard
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(a) True (b) Linear interpolation (c) DFBP
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Figure 8. Comparison of the 2D Shepp–Logan reconstructions between the DFBP and linear
interpolation methods. (a) Ground truth 2D-phantom perturbed by Gaussian noise with 3% of the
maximum object intensity as the standard deviation, (b) reconstruction from 180 1D projections
using only linear interpolation, (c) reconstruction from the same projected data using DFBP and
(d) L2-norm of the reconstruction error measured between the ground truth phantom (with and
without noise) and the reconstructions with the different number of projections.

bilinear interpolation kernel. Figure 8(a) displays the ground truth object to which i.i.d.
Gaussian noise with 3% standard deviation of the maximum object intensity has been added.
The 2D reconstructions from 180 1D projections using the linear interpolation and the DFBP
methods are shown in figures 8(b) and (c); it can be seen that the visual difference is relatively
small. Figure 8(d) additionally illustrates the L2-norm measured between the ground truth
phantom and reconstructions by varying the number of projections. It can be seen that, for both
the noise-free and noisy phantoms, the DFBP method achieves a lower error than the standard
linear interpolation for any choice of number of projections7. We however acknowledge
that the performance evaluation of interpolation algorithms is a sensitive topic and may be
affected by various factors, e.g. the nature of the object as well as the performance measure
selected.

7 We additionally experimented the case where the bilinear interpolation result is post-processed by the identical
low-pass filter used with the DFBP but, as expected, the RMS performance gets even worse.
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Figure 9. Simulation of micro-rotation reconstruction of a 3D synthetic cell. (a) Image example
taken from the ground truth 3D cell with different rotation angles (0◦, 45◦, 90◦ and 135◦) where
the rotation axes are parallel to the horizontal axes of the images, (b) four raw images from
the simulated micro-rotation set, (c) deconvoluted images, (d) reconstruction using the linear
interpolation method that shows the xy, xz, yz slices at the centre of the object and the view at a
half-way in between two consecutive raw images and (e) DFBP reconstruction. The symbol xy

denotes that x- and y-axes of the 3D space correspond to the horizontal and the vertical directions
in the image, respectively. The stretched, blurred dots appearing in the raw images at the 135◦
view are caused by thin bars in the object structure, oriented perpendicular to the focal plane.

In addition, we report our 3D simulations of micro-rotation imaging using a confocal
microscope. A simulated cell (true cell) obtained by a simulation of a real cell was created in
a volume of 165 × 165 × 165 samples, as shown in figure 9(a). By using the image formation
model (1) with the 3D theoretical PSF displayed in figure 10(a), 90 micro-rotation images
(�θ = 2◦) were constructed and distorted by Poisson noise where the signal-to-noise ratio
is 20. An image example from this image set is shown in figure 9(b) whereas figure 9(c)
displays the deblurred images using the 2D deconvolution method described in section 2. It
is obvious that the deconvolution improves the sharpness and contrast of the images, although
the deblurred images appear slightly different from the true cell due to the elongation of the
3D PSF along the optical axis. We then computed the 3D reconstruction by the DFBP method
and compared it to the 2D cylindrical-to-Cartesian bilinear interpolation, where identical
preprocessing was applied. The results are shown in figures 9(d) and (e), respectively. As can
be seen, both DFBP and the alternative interpolation method produced good results.
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Figure 10. 3D PSF of the confocal microscope displaying the axial plane at the centre of the PSF.
(a) Theoretical PSF and (b) experimental PSF. The symbol xz denotes that the x- and z-axes in
the 3D space are the horizontal and vertical axes in the image, respectively. The theoretical PSF
was computed using the model of van der Voort and Brakenhoff (1990), implemented in the SVI
Huygens softwareTM with the microscope parameters: 63× water-immersion objective, numerical
aperture 1.2, excitation wavelength 488 nm and emission wavelength 520 nm. The experimental
PSF was measured by taking image stacks of eight fluorescence beads of diameter 170 nm, and
the image stacks were then averaged all together. As noted, the experimental PSF is larger than
the theoretical one: it has been reported (Cannell et al 2006) that experimental PSFs are typically
>20% larger.

6.2. Results with real data

The proposed method was tested on a real micro-rotation set representing a single human living
cell expressing a fluorescent pattern localized to the nuclear membrane of the cell. This single
cell was trapped in suspension inside an electrode cage (DFC3 chipTM, Evotec Technology)
and rotated 360◦ around the x-axis by modulating the phase difference between each electrode
(Shorte et al 2003). The trapped, rotating cell was imaged using a 63× water-immersion
objective (numerical aperture 1.2) and a high-speed spinning-disk confocal microscope (iXon
EM-CCD camera DV885TM, Andor Technology) with an excitation wavelength of 488 nm
and an emission wavelength of 520 nm. The micro-rotation sequence consisted of 175 images
with 400 × 400 pixels (pixel size 127 × 127 nm2). As a preprocessing step, we aligned
the projection images and cropped the region of interest using the cross-correlation method
described in Brandt and Mevorah (2006) and Palander (2007); the final size used was 155 ×
155 pixels and the fundamental period was 41 images per 180◦. Figure 11(a) shows some
example images from the set.

The 2D deconvolution of the micro-rotation images with the experimental PSF
(figure 10(b)) are visualized in figure 11(b). As can be seen, the deconvoluted images
are sharper and have higher contrast, with a lower apparent background than the raw
images. The 3D reconstruction using the DFBP is displayed as three orthogonal views
xy, xz and yz, respectively, in figure 11(d). In addition, we compared the DFBP method
with the 2D cylindrical-to-Cartesian bilinear interpolation and the MAP method described
in Laksameethanasan et al (2008); the results are shown in figures 11(c) and (e). The
reconstruction obtained with DFBP is slightly better than that with the linear interpolation
method. The MAP reconstruction appears clearly sharper than those of the two reconstructions
because it takes into account the 3D PSF in the imaging model. The MAP approach
however requires much more computational effort, as it took about 6.4 h whereas DFPB used
24 min (on Matlab 7.4 with a single, 3.0 GHz Pentium(R) 4 processor) for the image series
experimented.
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Figure 11. Micro-rotation reconstructions of a single human living cell expressing a fluorescent
nuclear envelope marker. (a) Four raw images from the real micro-rotation set, (b) deconvoluted
images, (c) reconstruction using the linear interpolation method, (d) DFBP reconstruction
displaying the xy, xz, yz slices at the centre and the novel view at a half-way in between two
consecutive raw images and (e) MAP reconstruction. The rotation axis is parallel to the x-axis and
the focal plane is parallel to the xy plane.

7. Conclusion and discussion

We have proposed the dual filtered backprojection algorithm for solving 3D reconstructions
from micro-rotation image sequences, acquired by a confocal microscope. The dual method is
based on the fact that micro-rotation confocal microscopy is the dual imaging technique of the
classical computed tomography. The dual algorithm is attractive for solving the reconstruction
problem since it provides features equivalent to the FBP method including fast computation
and good-quality reconstruction for projections with complete angular coverage. We believe
that most of well-developed tools available for FBP could be directly applied in the micro-
rotation application since the dual method shares the same procedures, but only in the dual
domain.

Unfortunately, most of the known limitations of FBP will be also inherited to the DFBP
algorithm including either sparse or uneven angular distribution of projection directions
(Marabini et al 1998, 2004, Sorzanoa et al 2001). The reconstruction problem is, in general, an
ill-posed problem which can be overcome by traditional regularization methods or statistical
methods (Kaipio and Somersalo 2004, Calvetti and Somersalo 2007). In addition, since
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the mathematical principle of FBP is similar to the weighted backprojection (WBP) method,
widely used in transmission electron microscopy (Radermacher 1992), an accurate filter design
for a generalized angular distribution used in WBP could also be applied with DFBP.

Concerned with the robustness of the proposed algorithm, there are next to no tunable
parameters in DFBP, except that the selection of the cut-off frequency fc requires fine tuning
of the constant c in (18). Although we have suggested an approximate value for the constant,
it can be adjusted by the user for achieving visually optimal reconstruction. This justification
for choosing the cut-off frequency is based on a visual experiment without mathematical
verification concerned with the convergence of the approximated solution to the exact solution,
when error tends to zero. Currently, we do not have clearly mathematical justification for this
parameter. However, selecting the cut-off frequency in practice is trivial (if compared to the
selection of the regularization parameter in the maximum a posteriori estimation) because our
procedure is just simply lowpass filtering which is performed as a post-processing step in the
reconstruction process.

In general, all the techniques which have been, or will be, discovered in computed
tomography could be dualized and applied in the micro-rotation application and vice versa.
Also, the duality can be seen in a more widespread context: every algorithm should have a
dual form applicable in the dual domain. For instance, the classical maximum entropy method
has its dual, the spectral entropy, which favours spectral smoothness rather than forcing the
entropy distribution in the spatial domain (Wu 1997). The notion of duality thus suggests a
whole collection of new algorithms and interpretations, for which we have shown to have a
practical value in the novel micro-rotation application.
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