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Abstract

Micro-rotation fluorescence microscopy is a novel, optical imaging technique de-
veloped with a cell rotation system. The imaging system enables individual living
cells to be rotated in suspension under microscopic dimensions, and allows us to
acquire a series of images of the cells, simultaneously during the rotation. A
challenging task in micro-rotation imaging is how to determine three-dimensional
(3D) cell structure from the image series.

This thesis thus presents four alternative methods for reconstructing 3D ob-
jects from a series of micro-rotation images. The three former methods, the
expectation maximisation (EM), the generalised Skilling-Bryan and the marginal-
isation methods, are iterative algorithms built on the Bayesian inversion theory,
which is used to quantify uncertainties in data and model parameters, and also to
utilise prior information about the unknown structure. The fourth method, dual
filtered backprojection (DFBP), is a fast, non-iterative algorithm derived from
the Fourier slice theorem in the classical computed tomography. Each method
has its own features: the EM method serves as a basic tool for general usability;
the Skilling-Bryan method is more flexible for modelling of noise and prior; the
marginalisation method serves as a statistical treatment of the reconstruction
that suffers from inaccurate image alignment; and the DFBP method beats the
other methods by computational speed but restricts itself with a certain imaging
condition. In general, selection of the reconstruction methods depends on imag-
ing and data conditions, such as conventional widefield or confocal microscopy,
the stability of cell rotation, and the quality of image alignment.

In conclusion, all the proposed reconstruction methods clearly increase capa-
bility to visualise 3D object structures, as shown by both simulations and exper-
iments with real micro-rotation data. Two obvious messages from the results are
that first, the quality of the reconstructed object highly depends on the accuracy
of image alignment, and second, micro-rotation reconstructions with the current
imaging system always contain poor resolution in the tangential direction of the
rotation. Future interesting research is thus to combine the micro-rotation proto-
col with extended depth-of-focus microscopy that could strengthen the tangential
resolution.

Keywords: optical microscopy, micro-rotation imaging, deconvolu-
tion, tomography, image reconstruction, statistical inverse problems,
cell biology.






Preface

This thesis is the result of my research in the Department of Biomedical Engi-
neering and Computational Science, Helsinki University of Technology during the
years 2005 to 2008. This work was supported by the European Commission (FP6
NEST program; the project AUTOMATION; contract number 4803).

I am grateful to Prof. Kimmo Kaski and Prof. Jouko Lampinen for providing
me the opportunity to conduct my research interest and the excellent environ-
ment to complete this work. I deeply thank Dr. Sami S. Brandt, my research
supervisor, for numerous discussions and fruitful suggestions. While he has been
busy with his own work, he always had time for a talk and it has been enjoyable
to work with him. My special thanks also goes to Dr. Peter Engelhardt and
Dr. Jukka Heikkonen, who gave me many insightful suggestions. I would like
to thank all my collaborators, Dr. Olivier Renaud and Dr. Spencer Shorte at
Institut Pasteur, Paris, for helpful discussions and providing all the image data.
I additionally thank all collaborators in the AUTOMATION consortium.

I have enjoyed and benefited from many lively discussions with all my col-
leagues in our research group, Dr. Vibhor Kumar, Kimmo Palander, Tapio Niem-
inen, Pentti Jaaskelainen, Tommi Tykkala and Markos Mevorah. I am thankful
to Eeva Lampinen, Kaija Virolainen and Senja Kojonen, for patiently taking care
of many practical issues that come up throughout the years.

Finally, I wish to thank my family, mother Siriya, farther Chirdsak, grand-
mother Sui-Ngo, brother Montri, and my girl Pao, for supporting me with their
relaxing talks during these years. I would like also to thank all my friends in
Finland for helping me to maintain a life outside this work.

Espoo, 10th February 2009

Danai Laksameethanasan






List of Publications

1. Danai Laksameethanasan, Sami S. Brandt and Peter Engelhardt (2006). A
Three-Dimensional Bayesian Reconstruction Method with the Point Spread
Function for Micro-Rotation Sequences in Wide-Field Microscopy. In Proc.
IEEE International Symposium on Biomedical Imaging (ISBI 2006), pp.
1276-1279, Arlington, VA, April 2006.

2. Danai Laksameethanasan and Sami S. Brandt (2007). Generalised Skilling—
Bryan Minimisation for Micro-Rotation Imaging in Light Microscopy. AIP
Conf. Proc.: 27th International Workshop on Bayesian Inference and Max-
imum Entropy Methods (MazEnt2007), Vol. 954 pp. 354-361, Saratoga
Springs, New York, July 2007.

3. Danai Laksameethanasan, Sami S. Brandt, Peter Engelhardt, Olivier Re-
naud, and Spencer L. Shorte (2008). A Bayesian Reconstruction Method
for Micro-Rotation Imaging in Light Microscopy. Microscopy Research and
Technique, 71(2), 158-167.

4. Danai Laksameethanasan and Sami S. Brandt (2009). A Bayesian Recon-
struction Method with Marginalised Uncertainty Model for Camera Mo-
tion in Micro-Rotation Fluorescence Microscopy!. IEEE Transaction on
Biomedical Engineering, Submitted.

5. Danai Laksameethanasan, Sami S. Brandt, Olivier Renaud, and Spencer L.
Shorte (2009). Dual Filtered Backprojection for Micro-Rotation Confocal
Microscopy. Inverse Problems, 25(1), 015006.

Y Helsinki University of Technology, Department of Biomedical Engineering and Computa-
tional Science, Technical report A08, ISBN 978-951-22-9756-6.






Author’s Contribution

The research is a result of collaboration between the author of this thesis and
the other authors in the described publications. The author of the thesis has
implemented all computer programs used in the publications and has analysed
their results with the other described authors. As the primary author of all
publications, the thesis’s author is responsible for their written material. The
real micro-rotation images used in the publications were acquired by Olivier Re-
naud, Christophe Machu, and Spencer Shorte (Institut Pasteur, Paris). The point
spread functions and the 3D cell phantom used in the publications were obtained
from Scientific Volume Imaging (http://www.svi.nl).






Contents

Abstract

Preface

List of Publications
Author’s Contribution

1 Introduction
1.1 Research Background . . . . . . . .. .. .. ... . oL
1.2 Research Problems . . . . . . . . .. .. ... ... ... ... .
1.3 Research Aims . . . . . . . . . . ...

2 Fluorescence Microscopy
2.1 Fluorescence Microscope Systems . . . . . . .. .. ... .. ...
2.2 Image Formation Models . . . . . ... ... .. .. ... .. ...

3 Reconstruction Methods
3.1 Statistical Methods . . . . . . . .. ... ...
3.1.1 Optimisation: Generalised Skilling-Bryan Method . . . . .
3.1.2  Expectation Maximisation Method . . . . . ... ... ..

3.1.3 Reconstruction with Motion Uncertainty Model . . . . . .
3.2 Fourier Method . . . . . .. ... . ... ... ... ...
3.3 Summary and Examples . . . . .. ... o0

4 Results and Method Assessments
5 Conclusions and Discussion

Bibliography

11
11
12
13

15
15
21

25
26

32
35
39
42

45

50

51






Chapter 1

Introduction

1.1 Research Background

Three-dimensional (3D) fluorescence imaging of non-adherent living cells is an
essential tool in cell biology and biomedical science for analysing their metabolic
functions. In 3D imaging, understanding of optical and geometric characteristics
plays an important role: how to effectively collect a 2D image series in order to
recover spatial information inside the specimen. To date, most of 3D fluorescence
imaging techniques use the conventional through-stacking protocol to acquire a 3D
image stack by shifting either the focal plane of microscope objective or biological
samples along the optical z-axis (Agard et al. 1989, McNally et al. 1999). The
fundamental limitation in through-stack imaging is that the axial (z) resolution is
always several folds weaker than the lateral (zy) resolution. The through-stacking
protocol compounds this problem such that any resulting 3D reconstruction is
distorted by the z,y, z resolution asymmetry, and the surface and volume of
objects are convolved in a complex manner. Another crucial limitation to the
through-stacking technique, particularly for 3D imaging of living cells, is that
samples need to be stabilised during image acquisition and often done by firmly
attaching the samples on a hard surface (cover glass). The stabilisation by the
attachment can change the original 3D shape of the cells in a way that effects
their native functions (Lee et al. 2004, Kang et al. 2007).

Micro-rotation fluorescence microscopy has been developed to overcome such
limitations by using dielectric field cage (DFC) technology, that has been demon-
strated as a useful tool for non-tactile manipulation of living cells in suspension
(Schnelle et al. 1993, Fuhr et al. 1994). The principle of DFC involves organising
the intensity and phase difference between eight electrodes to create a 3D dielec-
tric cage for cell trapping and to produce rotational force for the cell rotation
(Figure 1.1). In micro-rotation imaging, rather than shifting the focal plane, di-
electric fields trap non-adherent cells in suspension inside the 3D electrode cage
and continuously rotate them fully 360 degrees approximately around a chosen
axis, parallel to the fixed focal plane (Shorte et al. 2003). During the continuous
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Figure 1.1: Schematic illustration of micro-rotation imaging. (a) dielectric field chan-
nel with eight electrode strips: four attached on the top glass and four on the bottom
glass; (b) 3D electrode cage with the eight electrodes with an object, being rotated (by
the controlled electric fields) around a single axis parallel to the focal plane; (¢) micro-
rotation imaging geometry where each plane represents the position of focal plane in
the object coordinate frame.

rotation, the cells are sequentially imaged by an optical microscope, and usually
fluorescence microscope. An image example from real micro-rotation series is
shown in Figure 1.2. The advantage of the micro-rotation technique is that it
offers unique possibility to visualise non-adherent live cells from any orientations
in native environment that provides a way for improving 3D optical resolution,
particularly along the z-axis (Lizundia et al. 2005, Korlach et al. 2005). Today, a
major challenge in micro-rotation imaging is to develop powerful, computational
methods for reconstructing 3D object structures from a series of micro-rotation
images.

1.2 Research Problems

Reconstruction of 3D objects from multiple projection images is an inverse prob-
lem, which has been intensively developed in the past decades. Inverse problem
is a task to find unknown physical quantities (parameters or object intensities)
that cannot be observed from direct measurement; these parameters need to be
estimated from observable quantities, such as measurement data or projection
images. A common feature of inverse problem is its ill-posedness, i.e. small noise
in the observed data or small errors in the model may produce huge perturbations
in estimation of the parameters. The usual treatment for the ill-posedness can
be categorised into two major groups: the classical inversion and the statistical
inversion (Calvetti & Somersalo 2007). The classical inversion is built on the
linear algebra theory and often concerned with the questions about existence,
uniqueness and stability of the solution. The resulting uniqueness and stability
are helpful for analysing the obtained solutions as well as what information is
required in addition to the actual measurement. On the other hand, the statis-
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Figure 1.2: Five image example from two series of real micro-rotation images acquired
using (a) widefield microscope and (b) confocal microscope. Each image series repre-
sents the nuclear membrane of a single human living cell expressed by green fluorescent
protein (GFP) markers. Scale bars indicate 5 pm.

tical inversion formulates inverse problems based on the Bayesian principle that
provides valid utilisation of prior information and data uncertainty (Kaipio &
Somersalo 2004). An alternative advantage of the Bayesian method in addition
to the use of prior information, is the possibility to evaluate the reliability in the
estimated solutions. According to these features, the main focus of this thesis is
oriented towards the Bayesian inversion approach.

Determining actual object from multiple images often requires preknowledge
about projection directions, or motion parameters that describe the orientation of
the object. The reconstruction problem therefore involves not only object density
recovery to reconstruct the actual object, but also motion estimation to determine
the object orientation. This thesis, however, considers only the problem of object
recovery and assumes that the motion parameters are available. In the context of
the thesis, the problem of motion estimation has been addressed to a large extent
in Palander (2007) and Yu et al. (2008).

1.3 Research Aims

The primary goal of this thesis is to develop appropriated reconstruction algo-
rithms for micro-rotation imaging, and to study imaging characteristics of the
novel micro-rotation system. The secondary objective is to gain new scientific
knowledge that can be applied into related imaging applications in the field of
inverse problems.

The thesis is organised as follows. Chapter 2 presents an overview of fluo-
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rescence microscopy that includes standard and modern high-resolution optical
techniques, and also introduces the through-stack and the micro-rotation imaging
protocols together with their image formation models. The aim of Chapter 3 is to
describe theoretical concepts behind the statistical reconstruction methods and
the Fourier-based method used in the Publications. In Chapter 4, results and
assessment of the proposed reconstruction methods are presented based on the
Publications. Finally, we conclude and discuss the thesis in Chapter 5.



Chapter 2

Fluorescence Microscopy

Ability to image interior structures of living cells in three dimensions is an integral
part of understanding how the cells work. Visualisation of the interior of living
cells is, however, beyond the potential of electron microscopy and optical near-
field microscopy due to the restricted requirement for fixed sample preparations
(Engelhardt 2000) and surface-bound imaging (Novotny & Hecht 2006). Optical
microscopy, particularly fluorescence microscopy, is still very widely used in bio-
logical sciences, due to its unique capability to reveal interior cell organelles and
allow subcellular localisation in living cell preparations. Although the classical
resolution of optical microscopy is limited by about half of the wavelength of light
(diffraction limit), modern optical techniques (Hell 2009) have demonstrated to
provide resolution beyond the diffraction limit, that reduces the resolution gap
between optical and electron microscopy.

The aim of this chapter is to present the basis of fluorescence microscopy
including the widefield and confocal microscopes, and also shortly describe other
high-resolution techniques in optical microscopy. We then introduce through-
stack and micro-rotation imaging together with their image formation models.

2.1 Fluorescence Microscope Systems

The fluorescence microscopes is an optical microscope used to study and to
visualise the interior of cells and organisms using the fluorescence technique
(Murphy 2001). In fluorescence microscopy, the sample labelled with a fluo-
rescent molecule, a fluorophore, is illuminated by the excitation light; the fluo-
rophores in the sample then release emission light, which is transmitted through
objectives and focused to the detector (eyes or camera) to produce an image
(Figure 2.1). The unique advantage of fluorescence imaging is its ability to image
specific organelles in a living cell using multicolour molecular labelling, where this
feature is not shared by high-resolution techniques such as electron microscopy
(Frank 2006) and scanning-probe techniques (Novotny & Hecht 2006). Despite
the attractive feature in multicolor live imaging, fluorescence microscopy consists
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Figure 2.1: Principle of (epi-) fluorescence microscope. The excitation light with
certain wavelength (blue) from the light source passes through the excitation filter,
reflects at the dichromatic mirror, and illuminates on the sample through the objective
lens. The emission light with longer wavelengths (green) from the sample reflects back
and passes through the dichromatic mirror and the emission filter to the detector (eye
or camera).

of two usual limitations: the first is the diffraction limit in ordinary optical mi-
croscopy where its spatial resolution is bounded by the wavelength of light; and
the second relates to the fluorescence phenomena, photobleaching and photoxic-
ity, where the fluorophores or the living cells itself are gradually destroyed during
the light illumination.

Widefield and Confocal Microscopy

Fluorescence microscopes can be categorised into two major groups: widefield
and confocal microscopes. The widefield microscope is the most common type of
microscope in fluorescence imaging. In conventional widefied imaging, the com-
plete sample is uniformly illuminated by the excitation light and the light emitted
from the entire sample is simultaneously recorded on the detector (Figure 2.2a).
A widefield image therefore contains not only in-focus information from on the
focal plane, but also out-of-focus light from other sections nearby the focal plane.
The out-of-focus light is a source of blur in widefield images (Figure 1.2a) that
can be removed either computationally by deconvolution methods (Biggs 2004)
or physically by the use of confocal pinhole to block the out-of-focus light.
Confocal microscopes are thus designed to eliminate the out-of-focus light
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Figure 2.2: Principle of (a) widefield microscope and (b) confocal microscope. (a) A
large volume of the sample is uniformly and simultaneously illuminated by excitation
light. The light, emitted from the focal plane (in-focus light; solid line) and from other
planes nearby (out-of-focus light; dash line), is recorded on the detector as an image.
(b) Only a small volume of the sample (or a small point of the focal plane) is illuminated
by excitation light (laser source). Only the in-focus light (solid) emitted from the focal
plane is recorded by the detector, whereas most of the out-of-focus light (dash) emitted
at positions above and below the focal plane is blocked by the detection pinhole. A
confocal image therefore contains mainly the sample information located on the focal
plane.

reaching the detector using a pinhole (Pawley 2006). The first confocal micro-
scope type is laser scanning confocal microscope. Rather than entirely illumi-
nating the sample, only small volume in the sample is illuminated by the laser
point source and therefore the sample must be scanned to form a complete image
(Figure 2.2b). Although the capability in rejecting the out-of-focus light provides
a clearer and sharper details in images (Figure 1.2b), the required raster scan-
ning substantially slows down image acquisition rates. The spinning-disk con-
focal microscopes have hence been developed to improve the acquisition speed
in laser scanning. Instead of illuminating excitation light through a single con-
focal pinhole, the spinning-disk technique uses a disc with a series of pinholes
to simultaneously illuminate many points on the sample. The arrangement of
the pinholes on the disk is such that as when the disk rotates, the illumination
spot scan the entire plane to form an image. Perhaps one of the most important
drawbacks for the both types of confocal microscope is that, when working with
the weak fluorescence intensities of biological samples, the pinhole diameter has
to be increased beyond its ideal size, which reduces the resolution of the confocal
microscope.
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Point Spread Function

The imaging properties of a fluorescence microscope either widefield or confocal
types can be described by its point spread function (PSF)—a representation of a
3D diffraction pattern (images) of light that is emitted from a single point source
in the specimen and transmitted to the detector through microscope objectives.
The PSF of a microscope can be estimated either theoretically or from a direct
measurement. The experimental PSF can be measured as a 3D image of a small
point-like object such as a fluorescent bead (usually smaller than 200 nm). The
image quality of the experimental PSF is usually worse due to the presence of
high-frequency noise and therefore, the average of 3D images from many individ-
ual fluorescent beads often used to improve the PSF quality, instead from a single
bead.

The theoretical PSF is derived from the diffraction theory of light (Born &
Wolf 1999, Goodman 2005) and often depends on imaging parameters such as the
numerical aperture of objective, the excitation and emission wavelengths, and the
refractive index of the immersion medium (van der Voort & Brakenhoff 1990, Gib-
son & Lanni 1991). Figure 2.3 (a-b) shows an example of theoretical PSFs of
widefield and confocal microscopes. The PSF can be used to measure the maxi-
mum resolved resolution of the microscope, which describes its ability to distin-
guish two point objects in an image, or equivalently minimum distance between
distinguishable objects. In general, the microscope resolution is determined by
the main width of PSF, often defined by its full width at half maximum (FWHM)
in the direction of interest. The FWHM of the PSF depends on the wavelength
of light A and the numerical aperture (NA = nsinf), which is proportional to
the reflexive index n of the sample-embedded medium and half of the maximum
open angle 6 of light beams collected by the microscope objective.

Various definitions of the resolution measure exist in the literature (den Dekker
& van den Bos 1997). The classical approach to measure the resolution of the
conventional widefield microscope is the Rayleigh criterion, which is the distance
from the central maximum to the first minimum of the PSF profile. Mathemati-
cally, it is given by

0.61A 2nA\

R, = NA R, = NAZ (2.1)
where R;, and R, are the minimum resolved distance in the lateral and the axial
directions. Another well-known approach is to consider the frequency support
(non-zero values) of the spectrum of PSF, or the optical transfer function (OTF)
(Figure 2.3c,d). This is because a fluorescence image is a convolution of the object
with the PSF in real space and, by the convolution theorem, the image spectrum
is the pointwise product between the object spectrum and the OTF. Therefore,
a microscope cannot detect high-frequency information in the object that locates
outside the OTF support.
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Figure 2.3: Theoretical point spread function (PSF) of (a) widefield microscope and
(b) confocal microscope. Each PSF displays lateral (zy) and axial (xz) planes at the
centre of the PSF. (c¢) and (d) presents the corresponding optical transfer functions
(OTF) of the widefield and the confocal microscope, respectively. The theoretical
PSFs were computed using the SVI Huygens software™™
based on the vector diffraction theory.The microscope parameters used are 63x water-
immersion objective, numerical aperture 1.2, excitation wavelength 488 nm and emis-
sion wavelength 520 nm. Scale bars indicate 0.5 pm.

where its implementation is

Three-Dimensional Imaging

3D fluorescence imaging of living organisms has become popular in biomedical
science during the preceding decades. A reason for the popularity is that the
interpretation of imaging results in 3D truly shows what happens within, e.g.,
living cells (Abbott 2003, Webb & Horwitz 2003). To achieve 3D imaging, most
of commercialized imaging microscopes use so-called azial through-stack (z-stack)
protocol, or optical sectioning technique (Agard et al. 1989, McNally et al. 1999).
This technique requires that samples are stabilized by attachment to a cover glass
and, to collect a through-stack of 2D images, the focal plane of the microscope
is shifted in small steps along the optical (z) axis (Figure 2.4a). It is well known
that in through-stack imaging with both widefield and confocal microscopes, the
resolution along the z-axis is much less than the resolution in the xy-plane. This
bounded resolution in the axial direction provides a significant limit in the 3D
analysis of biological structures with the size comparable to the resolution of
the microscope. Improving the axial resolution, or equivalently achieving 3D
symmetric resolution, is therefore one of the most studied research topic in 3D
optical imaging.
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Figure 2.4: Data acquisition geometries in 3D fluorescence imaging. (a) Through
(single) stack; (b) Multiple stacks with three orientations; (¢) Micro-rotation. Each
plane represents the focal plane in the object coordinate frame.

In the last decade, numerous high-resolution techniques have been developed
to improve the axial resolution as well as the lateral resolution (Gustafsson 1999,
Torok & Kao 2003, Hell 2009). Most of the high-resolution techniques rely on
similar principle: fluorescence molecules are switched on and off sequentially in
time, to avoid interference between adjacent objects. /Pi microscopy (Hell &
Stelzer 1992) uses two objective lenses to simultaneously illuminate the sample
from two orthogonal directions, and the resulting superposition pattern makes
the PSF with an increased axial resolution. Two-photon microscopy (Zipfel
et al. 2003) uses two-photon absorption to excite the sample: the probability
of a fluorescence photon to be emitted increases quadratically with the excita-
tion intensity, meaning that the excitation PSF is the square of the widefield
PSF resulting the narrower main-width of the PSF. Structured illumination mi-
croscopy (Gustafsson et al. 2008) uses a diffraction grating to split excitation light
into different light patterns, which are used to excite the sample. The sample
then generates emission light that contains high-frequency information (which
is shifted in frequency space) used to produce high-resolution images. All the
techniques above however restrict to 3D imaging with the single through-stack
protocol and, therefore, the axial resolution remains worse than the resolution in
lateral direction.

An alternative family of high-resolution techniques that attempt to overcome
resolution asymmetry is multiple through-stack microscopy, or axial tomographic
microscopy (Shaw et al. 1989, Cogswell et al. 1996, Bradl et al. 1996, Heintzmann
& Cremer 2002). Its key idea is straightforward: several image stacks are acquired
in different orientations by rotating the sample or using multiple lenses oriented
around the sample of interest (Huisken et al. 2007). The multiple stacks are then
fused into a single reconstruction volume (Figure 2.4b) using a computational
method (see Heintzmann & Cremer 2002). This technique significantly enhances
the axial resolution while the lateral resolution slightly degrades, comparing to
the reconstruction using the conventional single stack. Two major difficulties in
multiple stack imaging are that this approach requires accurate stack alignment,



2.2 Image Formation Models 21

and complex data acquisition which requires non-simultaneous recording of the
oriented volumes.

Micro-Rotation Imaging

Micro-rotation cell imaging has thus been developed with the dielectric field cage
(DFC) technology to overcome these two limits: the poor axial resolution and the
sample stabilisation by surface attachment. The principle of DFC technology in-
volves modulating the electric current at each electrode to create dielectric fields
in such a way that allows an individual cell to be manipulated and rotated in mi-
croscopic dimensions under an optical microscope (Schnelle et al. 1993, Schnelle
et al. 2000, Shorte et al. 2003). The interactions between dielectric fields and the
cell depend on the dielectric structure of the cells, the conductance and dielectric
constant of the suspended medium, as well as the applied frequency and voltage
of electric current to the electrodes (usually ranging in order of hundred kHz and
Volts). Furthermore, living cells tend to do not suffer from any biological damage
with the manipulation in this manner, making the DFC technology attractive
for 3D live cell imaging. In micro-rotation imaging, while the cell continuously
rotates around a chosen axis parallel to the focal plane, images of the rotating cell
are sequentially recorded using various optical imaging modalities, for instance,
conventional wide-field microscopy, laser-scanning or spinning-disk confocal mi-
croscopy. In contrast to single and multiple through-stack imaging, only a single
2D image is taken from each direction, as illustrated in Figure 2.4c.

In addition to micro-rotation geometry, the DFG technology can be applied
for multiple through-stacking imaging by performing stepwise rotation of object,
instead of continuous rotation, together with shifting the focal plane to collect
each through stack. The advantage of this approach includes not only the ability
to improve the 3D resolution but also to handle 3D imaging of non-adherent cells.
The drawback of the DFG multiple through-stacking, however, remains the same
as the conventional multiple through-stacking, that is, it gives low speed in image
acquisition that can be problematic for live cell imaging. The use of the DFG
technology with the multiple through-stacking protocol has be addressed in a
large context by Renaud et al. (2008).

The rest of this chapter describes image formation of through-stack and micro-
rotation imaging, based on the concept of PSF. The image formation models will
be used as a basis for the reconstruction algorithms in the next chapter.

2.2 Image Formation Models

Conventional Through-Stack

Within the linear shift-invariance system, the 3D measurement volume in through-
stack imaging can be represented by a convolution between the 3D PSF of the
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microscope and the 3D object of interest. Mathematically, the convolution oper-
ation is written as

g(x,y,z) = /// r—a y—y, 2= 2y, ) dd'dy'dZ,  (2.2)
= hz,y,2) * f(z,y,2),

where f is the piecewise-continuous object volume evaluated at the position
(x,y,2), g is the piecewise-continuous measurement volume, h is the 3D PSF
and * denotes the 3D convolution operator. That is, the 3D image is represented
a sum of the collection of PSF's where their positions and intensities are adjusted
according to the corresponding point sources in the sample.

The discetised model for (2.2) can be represented as a matrix form

g = Hf (2.3)

where g € R” is a vector of 3D image data, f € R" is a vector of object densities
(N voxels) and H € RY*¥ is the Toeplitz matrix representing the 3D convolution
operations with the PSF. In practice, the matrix-vector product between H and f
can be efficiently implemented using the fast Fourier transform (FFT) algorithm.

Micro-Rotation

In micro-rotation imaging, a series of images is simultaneously acquired while the
object is continuously rotated around a single axis parallel to the focal plane of
microscope objective. Assuming linear shift-invariance, a measurement image m;
obtained at the projection direction ¢ is represented by

mz(xay) - Aeif(@"a%z) = P{h(l‘,y, Z) * Rez‘f(xaya Z)}7 (24)

where Ay, is the linear operator describing the image formation model, Ry, is the
rotation-translation operator defined as a function of the motion parameters 6;
and P is the ideal slicing operator that picks up a single plane corresponding to
the focal plane. The 3D convolution in (2.4) can be efficiently computed using
2D convolution between the object and PSF slices which are parallel to the focal
plane, and thereafter all the convoluted 2D slices are summed along the z-axis to
obtain the measurement image m; (see Publication 3).
The discretised model of (2.4) can be represented as a linear system

= A f = PHR, f, (2.5)

where m; € RM is a vector of image densities (M pixels) for the projection i,
f € RY is a vector of object densities (N voxels), Ag. € RM*V is a projection
matrix, P is a projection matrix which picks the object plane coinciding with
the focal plane, H is the Toeplitz matrix representing the 3D convolution opera-
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tions, and Ry, € RY*Y is the rotation-translation matrix defined by six motion
parameters 0; = (o, B, Vi, ta;, ty,, t2;). The first three parameters are rotation
angles (o, 3,7) describing the 3D orientation of object’ and the rest are trans-
lation parameters (¢,,t,,t.) that indicate the position of the object with respect
to the centre of the focal plane. In practice, the matrix-vector product Reg,f
is computed by the rigid transformation operating on the 3D object coordinate
with the six motion parameters, and thereafter we apply the linear interpolation
for determining intensity values located in between 3D grid points. The matrix-
vector product between the Toeplitz matrix H and the rotated object R;f can be
efficiently computed using the fast Fourier transform algorithm. In the optimi-
sation problem, we additionally need the adjoint operator of Ay., or equivalently
the transpose matrix Ay = Rg H'P" which involves zero-padding, correlation
with the PSF and rotation of the volume. The derivation and implementation of
the adjoint operator have been addressed in detail in Publication 3.

In estimating the reconstruction, we solve the equation (2.4) simultaneously
for all the projections. The total linear model composed from (2.5) is given by

where m = [m7,..., mp|T € R¥M is a joint vector of the K image vectors, Ag =
[Ag,, .. Ag, ]T € RFM*N s a joint projection matrix including the K projection
matrices, and @ = [07,...,0%]T € RS is a joint vector of motion parameters.

The similar model that solves the deconvolution problem with multiple projection
images has been also proposed in fluorescence microscopy and astronomy (see,
for instance, Verveer & Jovin 1999, Heintzmann & Cremer 2002, Anconelli et al.
2006).

Deconvolution Algorithms: A Short Survey

Determining the unknown object f from a set of micro-rotation images m in
(2.6) is related to solve f in the through-stack model (2.3), which is a well-
known deconvolution problem, or the image restoration problem. According to
the relationship between these two imaging techniques, we now give a short survey
in deconvolution algorithms applied to through-stack imaging, and thereafter
introduce the reconstruction algorithms for micro-rotation imaging in the next
chapter.

The first deconvolution algorithms are termed inverse filters that determine
the unknown object linearly by multiplications and divisions in Fourier space.

'The choice of the coordinate system for the rotation parameters («, 3,7) should be done
carefully in order to avoid singularity in the parameterisation (Triggs et al. 2000). According to
the previous work of (Brandt & Mevorah 2006) concerning micro-rotation imaging, we define
the rotation parameters («, /3,7) over the z-, z- and z-axes, respectively where « is the rotation
angle on the image plane (ideally zero), § is the angle between the rotation axis and the
projection direction (ideally 7/2) and ~ is the rotation angle around the rotation axis.
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The simplest inverse filter functions by taking the Fourier transform of 3D images
and dividing it by the Fourier transform of the PSF, mathematically represented
by F'= G/H where F'; H and G are the 3D spectral density of object f, image
stack g and PSF h respectively. The utility of this method is limited by noise
amplification as, during division in Fourier space, small values of high-frequency
noise are amplified by the division operation. Another approach to compromise
the noise amplification is Wiener filtering (Erhardt et al. 1958, Jain 1989), where
the unknown object is computed by multiplying the spectrum of images with a
set of optical transfer functions, i.e F' = H*G/(H*H + S) where % is complex
conjugate and S is the power spectrum of noise over object density. The lim-
itation of the Wiener filter is that it does not generally provide optimal image
quality due to the band-limited PSF and the presence of high-frequency noise.
More importantly, the Wiener deconvolution, as it is understood in the classical
sense, is not applicable in the micro-rotation imaging since due to the rotating
geometry the imaging process, though being linear, is not shift invariant unlike
the conventional through-stack imaging. As the consequence, the 3D Wiener de-
convolution cannot be performed in the 3D Fourier domain by a simple product
with a transfer function of the Wiener filter.

An alternative family of deconvolution algorithms is the nonlinear iterative
algorithms which are introduced to improve the performance of inverse filters
by incorporation of prior information about the unknown object. Most of the
nonlinear deconvolution methods applied in fluorescence imaging solve the well-
known Tikhonov functional f = (HTH + AI)"'H"g, iteratively where X is the
regularisation parameter and I is the identity matrix. Many iterative algorithms,
such as the Carrington’s algorithm and the iterative constrained Tikhonov—Miller
(ICTM) algorithms (Carrington 1990, van der Voort & Strasters 1995, Verveer
& Jovin 1997b), solve the Tikhonov functional using conjugate gradient (CG)
methods. These algorithms are named differently according to how their non-
negativity constraint is implemented. Another family of iterative algorithms is
developed using the statistical inversion theory to model measurement uncer-
tainty and utilise prior knowledge. The methods are based on the concept of the
maximum a posterior (MAP) and the expectation maximization (EM) estimates
(see, for instance, Holmes 1989, Verveer et al. 1999, Vicidomini et al. 2006). In
general, the statistical approaches are effective when the noise in images is fairly
strong, but they yield at the cost of increased computational complexity.



Chapter 3

Reconstruction Methods

The problem of determining a 3D structure from multiple images consists of two
subproblems: motion estimation to determine the motion parameters 8, and ob-
ject density recovery to reconstruct the object structure f. Although this thesis
focuses on the latter problem, estimating the motion parameters, or equivalently
image alignment, is crucial because inaccurate motion estimates will causes arte-
facts in resulting reconstruction, no matter what reconstruction methods we se-
lect.

The image alignment methods used in the thesis are based on the work of
Palander (2007) who suggested three different approaches for estimating the mo-
tion parameters. The estimation methods include cross-correlation, feature-based
and model-based methods. First, the cross-correlation method serves as an effi-
cient tool for solving initial estimate of in-plane translation parameters (t,,t,)
with fast and automatic computation. This method estimates motion parameters
based on the assumption that two consecutive micro-rotation images are highly
correlated, and therefore cross-correlation values between these images can be
used for translation estimate. Second, the feature-based method is used to solve
more general motion parameters, such as the in-plane translation! and the three
angle parameters, at a higher cost of computation and some hyper-parameters
need to be adjusted. The feature-base approach determines the motion parame-
ters based on tracking correspondence information (object features such as edges,
corners or blobs) extracted from adjacent images; This approach thus requires
sufficient number of reliable features to obtain an accurate estimate. Finally,
the model-based method is the most general, but also required heaviest compu-
tation, method which can fully solve the six motion parameters describing the
3D rotation. The method estimates the motion parameters simultaneously with
the object structure by taking into account the PSF projection model (Brandt &
Mevorah 2006, Brandt & Kolehmainen 2007, Yu et al. 2008). Because of the com-
putational complexity, the model-based method is often used at the final state

Unfortunately, the depth translation parameters (t.) can not be recovered by the feature-
based approach due to its implicit assumption for the straight-line projection.
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¢ Raw images

Image Processing

v Croped images & Fundamental period

Cross-Correlation
Alignment

¢ XY translations & 1 tilt angle

Feature-Based
Alignment

¢ XY translations & 3 tilt rotations

Model-Based
Alignment

¢ Full 6 motion parameters

Figure 3.1: Hierarchical motion-estimation algorithm combining the cross-correlation,
feature-based and model-based alignment methods. Image processing crops the region
of interest in micro-rotation images, and determines the fundamental period (number
of images for a full 360° rotation) using the 1D autocorrelation function for each image
pixel through out the image sequence.

after good initial parameters are estimated by the correlation and feature-based
methods. In conclusion, the motion estimate is achieved by using a single, hierar-
chical three-step algorithm that combines the three described methods together
(Figure 3.1). In principle, to obtain a good reliability and accuracy in motion
estimation, the micro-rotation image data should contain clear details.

Once the motion estimation has been solved, determining the object density
f in (2.6) is equivalent to solve a linear inverse problem. The following section
will introduce the statistical theory used as a basis for developing the statistical
reconstruction methods applied for micro-rotation imaging.

3.1 Statistical Methods

The image formation model (2.6) describes how the projection images m can be
constructed from the object density f. However, this image formation model is not
realistic because the image data and the model itself always contain various kinds
of uncertainty. The uncertainty generally arises from many reasons, for example:
measurement noise caused by the image acquisition process, model uncertainty
occurred by inexact modelling of image formation, or from the inaccuracy of the
alignment methods. A standard approach to characterise such uncertainties is to
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use the statistical concept built on the Bayesian principle (Jaynes 2003) where all
parameters of interest are treated as random variables. An alternative advantage
of the Bayesian approach is that all the available prior knowledge relating to
the unknown object can be used in a systematic way to solve the reconstruction
problem. The statistical framework used in solving the reconstruction problem
will be addressed in the following.

Statistical Framework

In statistical inverse problems, the complete solution f in (2.6) can be represented
by the posterior distribution p(f|m, @), given by the Bayes’ formula

p(mlf, 8)p(f)

p(ﬂm? 0) = p(m)

o p(mlf, 8)p(f) (3.1)

where p(ml|f, 0) is the likelihood density, p(f) is the prior density for f and the
denominator p(m) is a normalisation term, independent of f, which often can
be dropped. The likelihood function p(ml|f, @) contains the relationship between
the measurement images and the object that characterises information about
measurement noise and modelling uncertainties. The prior density p(f) expresses
our belief about the actual object density, prior to measurement of images m.
The construction of the likelihood and the prior density functions is described as
follows.

Two commonly used assumptions for characterising measurement noise in flu-
orescence imaging are the Poisson and the Gaussian noise models. The Poisson
model is based on the assumption that all recorded image values in m are from
an independent Poisson process with the mean value (Agf);. The correspond-
ing likelihood function, which is the joint probability density function for the
measurement data m, is given by

1
p(mlf,0) = ] (m—]') exp (m” log(Aef) — 1T Agf) | (3.2)
j=1
where 1 = [1,1,...,1]T is a vector whose elements equal to one. On the other

hand, the Gaussian noise model is based on the assumption that all recorded
image values in m are from an additive, independent and identical Gaussian
process, mathematically represented by m = Agf + n where the additive noise
n ~ N(n|Apf,0?) with the noise covariance o2. The corresponding Gaussian
likelihood density is thus written by

(3.3)

_ 2
p(mlf, 0) o exp (—M> .

2
202

It should be noted that, for the high number of measured photon count, the
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Object prior —log p(f)

Gaussian AJ|f])?
Entropy MfT log(f/fy) — 1TF)
Total Variation (TV) TGS

Table 3.1: Prior functions used in reconstruction algorithms where A is the prior
strength or the regularisation parameter, fy is the initial object which, in practice, is
often selected as a constant value. The operations between two vectors are performed
element by element.

Poisson noise model can be approximated by the Gaussian model (Calvetti &
Somersalo 2007).

In the case of the prior density p(f), we consider three statistical functions: the
Gaussian, the entropy and the spatial-derivative priors (Table 3.1). The Gaus-
sian prior is a widely used prior in fluorescence imaging, through its well-known
properties for preventing noise amplification and providing smooth structure in
the solution. The Gaussian density can be also seen as the Tikhonov functional in
the traditional regularisation problem. The entropy function is another common
prior that has been widely applied for image restoration in astronomy (Skilling
& Bryan 1984, Gull & Skilling 1999) and to some extent in electron microscopy
(Frank 2006). According to Skilling (1989), the entropy distribution is optimal
for non-negative functions in the absence of further prior knowledge.

Another choice for the prior density is spatial-derivative priors which are in
general derived from the Markov random fields theory (Kaipio & Somersalo 2004).
The derivative priors have been highly successful in fluorescence imaging due to
its ability to suppress high-frequency noise in measurement images, while the
edges of object of interest remain sharp (the edge-preservation property) (Dey
et al. 2006, Vicidomini et al. 2006). In this thesis, we thus use the spatial-
derivation prior with the total variation (TV) function defined by

V() = /|Af(r)|dr%Z‘Z&Ag(rl—rk),
~ 1%|Gf|, (3.4)

where A is the Laplacian operator, f(r) = >, {xg(r—ry) is the piecewise continu-
ous object density with the Gaussian kernel g(r) and f = [£, &, ..., En]T, G is the
Toeplitz matrix representing the 3D convolution with the Laplacian of Gaussian
kernel Ag. Now, the TV regularised prior takes the form

p(f) o< exp (—AV(f)) = exp (—A1LT|Gf]), (3.5)
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which A is the regularisation parameter choosing according to the noise level in
the measurement. Since the function taking the absolute value is not differen-
tiable at zero, we use the smooth approximation |t| &~ (7! log(cosh(5t)) in the
object prior (3.5), as introduced by Green (1990) and Kolehmainen et al. (2003).
In Publication 3, we have demonstrated that this TV prior (3.5) can produce
competitive reconstruction quality with the spatial-derivative prior, proposed by
Green (1990) in positron emission tomography.

Structure Estimation

Once the posterior distribution has been constructed through the likelihood and
the prior functions, an efficient parameter estimation is required for characterising
the posterior distribution. T'wo widely used estimates in the Bayesian framework
are the conditional mean (CM) and the maximum a posteriori (MAP) methods
(Kaipio & Somersalo 2004). In high dimensional problems such as 3D image
reconstruction, the use of CM estimate is problematic because of the required
heavy computation of the CM integral, which in practice need to be numerically
evaluated by using sampling techniques such as the Markov chain Monte Carlo
(MCMC) method. An example where image reconstruction problem is solved
using sampling techniques can be found, for instance, in single photon emission
tomography (Green 1990, Weir 1997). Due to the computational complexity,
parameter estimation for 3D image reconstruction is often done using the MAP
estimate.
In this study, we thus compute the MAP estimate

f = argmax p(f)p(mlf,6). (3.6)

which means that, for the given prior density p(f) and the measurement data m,
we determine the unknown values f which approximate the data m the best. In
this way, the computation of the MAP estimate (3.6) is equivalent to minimise
the cost function

q(f) = c(f) + s(f) (3.7)

where ¢(f) = —logp(ml|f) is the likelihood term and s(f) = —logp(f) is the
prior term. Hence, the MAP estimate can be seen as the traditional estimates
with additional regularisation (Calvetti & Somersalo 2007). Furthermore, since
the likelihood functions and the prior functions described above are concave, the
posterior functions will be also concave and therefore a global maximum can be
found.

Now, there are several ways to compute the MAP estimate (3.6). One possibil-
ity is direct numerical optimisation using either the first order (line search) meth-
ods or the second order (trust region) methods (Nocedal & Wright 2006). An al-
ternative approach is to use a closed-form iterative solution which is, for instance,
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derived from the expectation-maximization method (Dempster et al. 1977). These
two approaches are the main topics in Publication 2 and Publication 3, and will
be discussed in the following two sections.

3.1.1 Optimisation: Generalised Skilling-Bryan Method

Numerical optimisation is a task for finding minimum (or maximum) location(s)
of a cost function. Optimisation methods can be categorised in two classes: line
search and trust region methods. The line search methods search for a solution
in a single direction in each iteration, whereas the trust-region methods compute
the iterates in a high-dimensional space. In other words, line search methods
fix the direction and then evaluate an appropriate moving distance, but trust
region methods first choose a maximum moving distance and thereafter searches
for a local minimum location, subject to the distance constraint. In general,
trust region methods converse faster and tend to be more robust than line search
methods (Nocedal & Wright 2006).

In deconvolution fluorescence microscopy, line search methods such as the
conjugate gradient method have been widely applied for computing the MAP
estimate (Carrington et al. 1995, van der Voort & Strasters 1995, Verveer &
Jovin 1997a, van Kempen et al. 1997, Markham & Conchello 2001). The con-
jugate gradient method becomes popular due to its ability to iteratively solve a
large system of linear equations whose matrix is symmetric and positive definite.
Since the physical quantities of the unknown object f are non-negative, most of
these algorithms have been implemented the non-negativity constraint by simply
projecting negative values to zero after each iteration. Except that Carrington
et al. (1995) used the Kuhn-Tucker condition and Verveer et al. (1999) used the
parameter transformation f = x? to ensure the non-negativity constraint.

In contrast to the line search techniques above, Skilling & Bryan (1984) de-
veloped a complicated but highly successful scheme, which repetitively searches
for a minimum of the cost function in a small dimensional subspace, instead of
a single search direction or a high-dimensional full space. This method has been
widely used in solving image deconvolution problems in astronomy and medical
imaging (Skilling 1989, Jannetta et al. 2004), because of the ability to solve non-
linear cost functions with the non-negativity constraint. However, the original
Skilling—Bryan method restricts to minimise the statistical cost function which
assumes the Gaussian noise model and the entropy prior functional. It would be
useful to generalise this method to be used with the Poisson noise model and the
other prior functions, for instance, the ones described in Table 3.1. The gener-
alisation of the Skilling-Bryan method is the topic of the Publication 2 and its
principle is summarised as follows.
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Algorithm

The cost function (3.7) can be approximated with the second-order Taylor ex-
pansion. Then the vector p is selected so that the posterior cost function ¢ is
minimised, i.e.,

. 1
min ¢(f +p) = g(f) + g, P+ §pTqu, (3.8)

where g, and H, are the gradient vector and the Hessian matrix of the cost
function g. Searching for the vector p in a high dimensional space is costly. To
obtain an efficient computation, Skilling and Bryan suggested minimising the
cost function in the trust subspace defined by three basis vectors (ey, es, e3). The
selection of these basis vectors is the key idea of the Skilling-Bryan optimisation
that will be discussed in the following.

The solution p for (3.8) is

P = (Hq + ’YI)_lgqa (39)
~ (I + fy*lHq)gq =g+ 8+ ’)/71<Hs + Hc)(gs + gc): (310)

where the matrix inversion is approximated up to the second-order, 7 is a con-
stance, and g, g5, H. and Hy are the gradient vectors and the Hessian matrices of
the likelihood function ¢ and the prior function s. Obviously, the search vector p
is just a linear combination of the six vectors (g, gs, H.g., Hsgs, Hsg. and H.g;)
in the approximation. In practice, the linear combination of the last four terms
can be used as one search direction. Thus, we obtain the three search directions

elzfgs> e2:fgc, e3:fHC (i—F&) _|_st (i‘i‘&),
lgsll  lgell lgsll  lgell

which define a 3D subspace. The vector multiplications and divisions are per-
formed element by element.

The gradient directions g, and g. are replaced by fg, and fg. to increase
the weight for high values in order to achieve the positivity constraint. In the
third direction, the normalisation by the length of gradient vector is performed
before multiplying with the Hessian matrix. Note that, solving the search vector
p from (3.9) corresponds to the Levenberg-Marquardt method, whereas using the
first-order Taylor approximation is equivalent to optimisation using line search
methods (Nocedal & Wright 2006).

Within the 3D subspace, the search vector p is

P = Ex = ri1€e1 + To€e9 + r3es, (311)

where the matrix E = [e; e, e3] and the coefficient vector x = [xy, x5, 23]T. Now,
we determine x in this subspace that gives the minimum of s subject to the
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constraint? c,,. In order to estimate the minimum s in the 3D subspace, the
three-element gradients and nine-element Hessian need to be computed, and the
minimum in the subspace is estimated by simply solving three linear equations
with a procedure for controlling the non-negativity constraint. For details, see
(Skilling & Bryan 1984). Finally, the current f is moved to the new location by
f.ew = f + Ex. The iteration is repeated until the aim ¢ = ¢4, is achieved or the
maximum number of iterations is reached.

In summary, the main features of the Skilling-Bryan method is that (1) a
subspace of several search directions is used instead of a line search or a high-
dimensional space and (2) the method inherently enforces the positivity constraint
during each subspace search. These features make the extended algorithm at-
tractive for solving high-dimensional, nonlinear problems with the positivity con-
straint. Compared to line search methods, the optimisation scheme requires much
less number of iterations but each iteration consists of six projection and backpro-
jection (AjAg) pairs. So constructing the more sophisticated search directions is
made on the expense of more frequent evaluation of the image formation model.
As a drawback, the Skilling-Bryan algorithm requires to compute the Hessians of
the cost functions that can be problematic when the Hessians are not analytically
available. In principle, the generalised Skilling-Bryan algorithm is also appropri-
ate for solving the wide class of measurement noise and prior models within the
Bayesian framework.

3.1.2 Expectation Maximisation Method

The expectation maximisation (EM) algorithm for image reconstruction has be-
come popular in the fields of astronomy and biomedical imaging (McLachlan &
Krishnan 2008). Initially, it was derived from Bayesian principle in the early
1970’s by Richardson (1972) and Lucy (1974). In the early 1980’s it was red-
erived by Shepp & Vardi (1982) as an iterative algorithm for solving problems in
positron emission tomography (PET), assuming a photon emission process with
Poisson statics. The iterative scheme is a maximum likelihood solution that was
derived from the expectation maximisation algorithm of Dempster et al. (1977).
Thereafter, Holmes (1989) applied the photon emission principle into fluores-
cence microscopy and later the EM algorithm becomes a widely used algorithm
for image restoration in this field. The reason for its popularity is that the EM
algorithm provides an elegant closed-form iterative solution and the apparent
ability to produce reconstructed images with good quality in the presence of high
noise levels (Conchello 1998). The EM algorithm is the topic of the Publication 3
and its mathematical concept is briefly discussed in the following.

2The constant ¢y, is proportional to the noise level in the images. For the Gaussian noise
model, cqipm is equal to No? where o2 is the noise variance and N is the number of measurement
data. The Poisson case is more difficult, one possibility is to select the Cisiszar I-divergence
(Csiszar 1991) as cqim.
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Algorithm

The principle of the EM algorithm is based on the maximum likelihood (ML)
estimate of unknown parameters, given observations with missing information,
or incomplete data. The EM algorithm introduces a set of complete but unob-
servable data z that relates the incomplete observed data m to the object f. The
algorithm first estimates the conditional mean of the complete-data log likelihood
log p(z|f) from incomplete data m and the current estimate f;, (expectation step)
and second, maximises the expected complete-data likelihood with respect to the
object (maximisation step):

E-step:  Q(f|fy) = Eym(log p(z|f)|m, ],
M-step:  fi11 = arg max Q(f|fy), (3.12)
where k denotes the iteration index.

In the photon-emission reconstruction problem the complete data is defined
as z = {{z;}},}/, where each z; denotes the emissions from voxel j detected
by detector element 7. Assuming that the complete data z;; are independent
Poisson distributed random variables, the E-step in (3.12) can be written as

Q(f|f,) = £, (Ao Aefk) log f(AT1) — £(A%1) and the M-step becomes the well-

known, EM iterative algorithm

fy.
f A} 1
k+1 — AT]_ ( (7] Aefk) (3 3)

where 1 = [1,1,....1]T, k is the iteration index and the vector divisions and
multiplications are performed element by element. The iteration goes as follows:
(1) create initial volume fj, often equal a positive constant, (2) divide data images
m elementwise by the projected images Agfy, (3) multiply the backprojected

volume A Ao, clementwise by the initial fo, and (4) finally dividing the resulting

3D volume elementwise by Aj1 to update the next estimate fy.;. The four
steps are repeated until convergence or reaching the chosen maximum number of
iteration.

An attractive feature of the EM algorithm is that the updates force a natu-
ral non-negativity constraint. This feature is not shared by the gradient-based
method or the trust region methods where the implementation of a non-negativity
condition on these methods requires a careful handling (Skilling & Bryan 1984,
Verveer & Jovin 1997b). Another characteristic of the EM algorithm is that the
likelihood increases monotonically during the EM iterations, although its conver-
gence is relatively slow Dempster et al. (1977).

The EM algorithm can be directly extended to incorporate with prior func-
tions using the generalised EM method, coinciding with the MAP estimate (Dempster
et al. 1977). The treatment of the complete data remains unchanged, so that the
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E-step given in (3.12) is the same. However, the M-step maximises the log pos-
terior given the complete data z, i.e. fy11 = arg maxe {Q(f|fx) —logp(f)}. Green
(1990) proposed a one-step-late algorithm to the MAP estimate in the PET prob-
lem that yields the iterative scheme

fk m
f = AT 3.14
i AT1+\VV(£,) ( o Agfk> ’ (3.14)

where )\ is the regularisation parameter and V' is a spatial-derivative function.
Thereafter, Dey et al. (2006) and Vicidomini et al. (2006) introduced this al-
gorithm in the field of fluorescence microscopy (through-stack imaging), with
alternative derivative-prior functions V. By contrast, Publication 3 applied the
iterative scheme (3.14) with the TV prior (3.5) for solving image reconstruction
in micro-rotation fluorescence microscopy and, in this thesis, we call it the EMTV
algorithm.

Parameter Selection

A difficulty in the use of the MAP approach, such as (3.14), is the selection of
the regularisation parameters, or equivalently, the hyperparameter of the prior.
If X\ is too large, the prior tends to over-smoothing in the solution, whereas too
small \ leads noise amplification and instability in the solution. There are sev-
eral methods available for selecting A in through-stacking image restoration, for
instance, constrained least square, generalised cross validation (GCV) and maxi-
mum likelihood (Galatsanos & Katsaggelos 1992). The numerical comparison be-
tween these methods has been demonstrated by van Kempen & van Vliet (1999)
who concluded that the CGV seems to be the most accurate for estimating the
regularisation parameter. These method is however restricted to the Gaussian
noise assumption with the Gaussian prior. The analytical solution for the Pois-
son noise assumption is not available. van Kempen & van Vliet (1999) suggested
to linearise the Poisson likelihood using a Taylor series expansion that yields an
approximated solution, which linearly depends on the Gaussian solution obtained
by the GCV method. The similar approximation for determining the regularisa-
tion parameter for the Gaussian likelihood with the entropy prior can be found
in Thompson (1988).

All the described methods for estimating A in through-stack imaging require
to solve the restored 3D image, which is usually estimated by the non-iterative
Wiener filter. Unfortunately, the Wiener solution is not analytically available
for micro-rotation imaging. One possibility is to use the iterative reconstruction
methods, such as EM algorithms, for estimating the micro-rotation reconstruc-
tion. The iterative methods is however computationally expensive compared to
the Wiener filter due to the required repeatedly computation of the image forma-
tion model. Therefore, in practice the selection of A is often done in an heuristic
way through visual inspection of the resulting reconstruction.
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Various forms of the EM algorithm

The original EM algorithm has been extended into many forms for different
proposes. For instance, Conchello & McNally (1996) proposed to incorporate
the EM algorithm with the Gaussian prior. This algorithm is similar to the
original EM algorithm unless a modification is introduced before the update:
fri1 = (=1 4+ /1425 1)/\ where i is given in (3.13). By using the
I’Hopital’s rule, we notice that the update f;,; remain unchanged when A goes to
zero. As the nature of Gaussian prior, this algorithm suppresses high-frequency
noise in images as well as smooths out all structures including object’s edges.

An alternative form to the original EM algorithm is the OSEM (ordered-
subsets EM) algorithm, which provides remarkable improvement in convergence
rates in the early iterations Hudson & Larkin (1994). The principle of the OSEM
algorithm is that, for each OSEM iteration, the update uses only a subset of the
data in which each subset typically consists of a group of images. The selection of
subset is crucial as it effects convergence rates of the algorithm (Byrne 1998, Sot-
thivirat & Fessler 2003). Subset balance is recommended by Hudson & Larkin
(1994), that is, each group of images should contain uniformly distributed pro-
jection directions around the object. Although the convergence of the OSEM
algorithm is not guaranteed, it is the most widely used iterative method in emis-
sion tomography that demonstrates the success of the OSEM. A further research
direction therefore is to investigate the applicability of the OSEM algorithm to
the micro-rotation application.

The EM algorithm has been also developed for blind deconvolution, which is
the term given to a image restoration method that estimates the object simulta-
neously with the PSF (Holmes 1992, Holmes et al. 2006). This algorithm contains
two deconvolution steps: first initial PSF and estimate the object using the ordi-
nary EM algorithm (3.13) for a specific number of EM iteration and, second using
the estimated object to compute the PSF using the EM iteration in the reciprocal
way. The second step is essentially an inverse of the original EM algorithm, as
the object and PSF have reverse roles. As the two EM iterations are required
for a complete loop, the additional computation for EM blind deconvolution be-
comes unavoidable. A comparison between the EM and the Wiener-filter blind
deconvolution can be found in Fish et al. (1995) and the results demonstrated
the robustness and high-noise tolerance of the EM blind algorithm. As a future
work, it would be interesting to investigate whether the EM blind deconvolution
could be applied for micro-rotation imaging and give any significant improvement
in the reconstruction quality.

3.1.3 Reconstruction with Motion Uncertainty Model

The reconstruction methods described in the previous subsections require prior
knowledge of the motion parameters 8 that describe the positions and orienta-
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tions of 3D object. The motion parameters can be estimated using, for instance,
the correlation alignment and the feature-based methods (Frank & McEwen 1992,
Brandt & Mevorah 2006, Palander 2007). However, no matter what methods we
select, there is always some inaccuracy, or uncertainty, in the estimated param-
eters that causes artefacts in the reconstruction. Our hypothesis is thus that
the quality of the reconstruction would be better if we take not only the mo-
tion estimates but also their uncertainty into consideration in the reconstruction
phase. Incorporating motion uncertainty into the reconstruction process is the
main topic of Publication 4 where its principle is summarised in the following.

Algorithm

In the Bayesian framework, it is straightforward to create the joint posterior
distribution p(f, @|m) of the object density and the motion parameters, given the
measurement images. However, in the reconstruction problem, only the object
density is of our interest where the motion parameters can be seen as nuisance
parameters. To eliminate the nuisance parameters we compute the marginal
posterior distribution p(f|m) by integrating the joint distribution p(f, @|m) over
0. ie.,

p(flm) = /p(f,0|m) dO /p(f,@)p(m|f, 0) do, (3.15)

where p(m|f, 6) is the likelihood function and p(f, @) is the joint prior distribution
of the object density and the motion parameters.

Assuming independence between the prior distribution of the object density
p(f) and the prior distribution of the motion parameters p(@), the marginal pos-
terior in (3.15) can be written as

p(flm) o p(f)p(mlf), (3.16)

where p(m|f) is the marginal likelihood

p(mlf) = [ p(@)p(mit.6) d. (3.17)

The models (3.16) and (3.17) provide us the basis of incorporating the motion
uncertainty model p(#) into the reconstruction problem, as the recovery of camera
parameters are often assumed independent from the reconstruction problem. In
the following, we show how to construct of the marginal likelihood p(m|f) and
thereafter the object structure prior p(f).

To construct the marginal posterior p(m|f), we need the likelihood function
p(ml|f, 0), and the motion uncertainty distribution p(8) appearing in the integral
(3.17). For the likelihood function p(ml|f, @), we assume i.i.d. Gaussian noise with
the isotropic covariance in the measurement images, mathematically written as
p(mlf,0) ~ N(m|Apf,I) where the normalised noise covariance matrix can be
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Figure 3.2: A sketch showing how marginalisation improves solution in a simple 2D
problem. Here p(z,0|m) is a joint posterior density of the parameters x and 6 for a
given data m, where the maximum of the joint density is achieved at (z*, 6*) and p(6)
is an uncertainty distribution (prior) centred at 0. The maximum a posteriori (MAP)
solution for z given 6 yields the estimate . Obviously, uncertainty in estimating 6 leads
to the difference x* — & between the maxima. If we take the uncertainty distribution
p(0) into account, we can determine x that maximises the integral of p(z, 0|m) over 6,
that is 7 = argmax [ p(x|m, 0)p(#) df. The marginal solution Z locates closer to the
maximum z* where the improvement depends on the shape and orientation of the joint
posterior distribution p(z, 6|m).

obtained by performing normalisation over image intensities. The prior p(0) is
assumed to be i.i.d. Gaussian with the centre at 6 and the covariance matrix C,
that is p(8) ~ N(6]0,C). The Gaussian model is reasonable, especially when
the maximum likelihood estimator (MLE) is used for solving the motion param-
eters 9, since the MLE is asymptotically normal under relatively mild regularity
conditions (Karr 1993).

Thus, the marginal posterior takes the form

p(flm) o p(f) /exp (—%Hm — Aof|? - %(9 -0)'c'(6 - é)) de, (3.18)

R T T
where 8 = [0,,...,0,]" € R°F is a joint vector of the pre-estimated motion

parameters for the K projections, and the covariance matrix C € R4 *6K char-
acterises the degree of uncertainty in the estimated values 6. The covariance
matrix C can be obtained as by-product of the motion estimation methods. A
simple example visualising the basic idea behind (3.18) is illustrated in Figure 3.2.

To make the integral (3.18) analytically tractable, the nonlinear projection
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matrix Ag requires linearisation over the motion parameter using the Taylor
series expansion. The resulting linear term in the exponential can be then inte-
grated over 0 using the Gaussian integral identity (for detail, see Publication 4).
Inserting the resulting integral (3.18) and the TV prior (3.5) into the MAP esti-
mate (3.6), we obtain the cost function ¢ to be minimised over the object density
f:

Gunc(F) = A1T|GE| + |m — Ay f|? — g%, 'g, (3.19)

where ¥ = Bf By + C! € RV*6K o = B (m — Apf) € R® and By is the
combination of derivative matrices of Ag with respect to the motion parameters 6.
The formulation (3.19) can be seen as the standard MAP estimate supplied with
an extra regularisation term, which depends on the confidence in the estimated
motion parameters. The higher the confidence in the motion estimates, the closer
to zero the extra term will be (the motion parameter distribution shrinks to a
point).

There are several ways to minimise the objective function (3.19). One can use
the second-order optimisation methods that require to construct the Hessian or
approximated Hessian of the cost function. However, the construction of the (ap-
proximated) Hessian matrix could be complex and lead to excessive computation.
To avoid too heavy complexity, we select a nonlinear (Pok-Ribiere) conjugate gra-
dient (CG) algorithm instead with an explicit line search method (Pytlak 1998).
The iteration is stopped when the the change in Ly-norm between two consecu-
tive iterations is smaller than the threshold 10, or the algorithm reaches the
maximum number of iterations. The non-negativity constraint is implemented
by projecting the negative values to zero after each iteration.

Marginalisation in Other Applications

In addition to the micro-rotation application, Bayesian marginalisation has been
applied in image super-resolution problems where several low-resolution images
are fused to obtain a single high-resolution image (Tipping & Bishop 2003, Pickup
et al. 2007). Tipping & Bishop (2003) considers an image registration problem
where the object intensities are integrated out from the posterior, yielding an
improvement in the registration accuracy. On other hand, Pickup et al. (2007)
overcomes registration uncertainty by integrating the posterior distribution over
the registration and imaging parameters that results a slight improvement in the
quality of the fused image. The latter approach is closely related to our proposed
method, but it considers a 2D image-fusion problem and merely takes translation
uncertainty into account.

In conclusion, the marginalisation method estimates the object structure by
considering all the likely realisations for camera motion by utilising not only a
single estimate for the motion but also its covariance estimate. This marginalisa-
tion procedure makes the reconstruction of the 3D structure more robust to errors
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caused by inaccurate camera geometry. Due to the nonlinear approximation of
the projection model, the performance of the proposed method relies on the de-
gree of nonlinearity in the projection model and also how well the Gaussian model
describes the motion parameter distribution. As it is natural, the marginalisation
method gives only minor improvement when the motion parameters have been
accurately recovered. Due to its general nature the marginalisation method is also
directly applicable in other imaging applications that involve reconstruction of
object densities from multiple projection images and suffer from high uncertainty
in camera geometry.

3.2 Fourier Method

It has been shown in Section 3.1 that the statistical reconstruction methods have
capability to incorporate prior knowledge about the object, to model measure-
ment noise, as well as to handle uncertainty in the estimated motion parameters.
The statistical methods, however, suffer from computational complexity, which is
about about O(N log N) per iteration for the reconstruction N voxels and even
more expensive for the reconstruction with the motion uncertainty model. The
source of computational complexity arises due to the required repetitive computa-
tion of the statistical methods for calculating object-to-image and image-to-object
transformations.

To overcome the computational complexity, Publication 5 suggests a two step
solution for confocal imaging: first, individual confocal images are rapidly de-
convoluted by 2D deconvolution using only a 2D PSF (Larson 2002, Biggs 2004)
and second, we propose a non-iterative Fourier-based method to bring the recon-
struction into the Cartesian coordinates from the cylindrical coordinates. The
Fourier-based method has dual relationship to the classical filtered backprojec-
tion (FBP) method which is a standard reconstruction method in X-ray tomog-
raphy (computed tomography or CT). The duality arises due to that projection
images in CT are parallel projections of the object, whereas ideal confocal images
represent the central slices of object corresponding to the focal plane, as shown
in Figure 3.3(a,c). In X-ray tomography, the relationship between the projec-
tion images and the 3D object is described by the Fourier slice theorem which
states that the Fourier transform of a CT image is equal to the central slice of
the 3D object spectrum (Kak & Slaney 1988). By contrast, in the micro-rotation
application, the confocal images and the 3D object are related by dual Fourier
slice theorem. That is, the Fourier transform of a confocal image is equal to the
parallel projection of the object spectrum as Figure 3.3c-d illustrates.

The principle of the FBP algorithm involves filtering of projection images and
backprojecting the filtered images in the spatial domain (Kak & Slaney 1988,
Jain 1989). In dual filtered backprojection (DFBP), rather than operating in the
spatial domain, the method filters confocal image spectra and backprojects the
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Figure 3.3: Comparison of the computed tomographic and the micro-rotation confocal
projection models. The right column illustrate the Fourier transform of the projections,
related by the Fourier slice theorem.

filtered spectra in the frequency domain instead (Figure 3.3d). The importance
feature of the DFBP is that the operations, filtering and backprojecting, are pre-
formed in the same manner in the dual domain. As a consequence, the DFBP
algorithm has computational complexity O(N) which is equivalent to the linear
complexity of the FBP. The complete mathematical derivation and practical im-
plementation of the DFBP algorithm can be found in Publication 5 where the
resulting formulation is summarised in the following.

Algorithm

The mathematical formulation of FBP can be represented by

f(z,y) = / / ks |G (ky, 0)e?@eos0Fysin®ks g g (3.20)
0 —00

where f(z,y) is the 2D object function, G(ks,0) = Fs{g(s,0)} is the Fourier
transform of 1D projection data g(s, ) of the object f at angle 6, and F is the
Fourier transform with respect to the subscript (see Figure 3.3a-b). The multi-
plication with |ks| in the Fourier space represents a filtering operation whereas
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the integration over 6 is the backprojection step. Now, using the duality the dual
formula of FBP is

1 T poo . _
Fkoohy) = s /0 / Islg* (s, B)e ik costthusind)s gogg  (3.91)

where F(ky, k) = F{F.{f(z,y)}} and ¢*(s,0) = f(scosf,ssinf) is the 1D
central slice of object f at angle 6 (see Figure 3.3c—d). As can be seen, the DFBP
operations are performed in the dual way: filtering the projection spectra and
then backprojecting the filtered spectra in the frequency domain.

To achieve good-quality reconstruction, the DFBP algorithm requires a good
stability of cell rotation, such that the rotation axis locates approximately on the
focal plane. The cell rotation is a sensitive process since the non-adherent cells
flow freely in suspension apart from the force included by the electric field of the
cell rotator. However, careful image acquisition improves the rotation stability:
an example of situation where the rotation stability is satisfactory is provided
by Renaud et al. (2008) who demonstrated that the cell rotator is capable of
reproducing high correlation images of the cell after a complete rotation 360°
(with 90° stepwise). With sufficient rotation stability, the acquired images can
be accurately aligned using, for instance, a 2D cross-correlation method with
a prior constraint (Palander 2007). If the rotation stability condition does not
hold, the object can be still reconstructed using the statistical methods described
in Section 3.1, but the computational advantage is lost and the full 3D image
alignment (Brandt & Mevorah 2006, Yu et al. 2008) is additionally needed.

It should be noted that the DFBP algorithm can be seen as an spatial interpo-
lation method that resamples projection images from the cylindrical coordinate
into the Cartesian coordinate. In Publication 5, the DFBP algorithm has been
compared with the bilinear interpolation method and the results showed that,
for both the noise-free and the noisy image data, the DFBP method achieves
lower error than the linear interpolation for any choices of the number of pro-
jections. In principle, the DFBP and the direct spatial interpolation should give
similar results, which is in analogy to the FBP and the direct Fourier interpola-
tion. However, in practice the FBP algorithm has become much more popular in
computed tomography than the direct Fourier interpolation; one reason for this is
that the errors produced by the polar-to-Cartesian interpolation downgrades the
performance of the direct interpolation (Stark et al. 1981, Choi & Munson 1998).
We may expect the same analogy in the dual setting on the favour of the DFBP
method in the micro-rotation application.

As a final note, we believe that the duality concept is important because
the duality can be seen in more widespread context: every algorithm, assum-
ing similar projection models, has its dual form applicable in the dual domain,
and this motivates the development and dualisation of other existing algorithms.
The notion of duality thus suggests a whole collection of new algorithms and
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Figure 3.4: Flow chart of the four reconstruction methods for micro-rotation fluores-
cence imaging.

interpretations to have practical value in the novel micro-rotation application.

3.3 Summary and Examples

This Chapter has considered the methods of expectation maximisation, Skilling-
Bryan optimisation, marginalisation and dual filtered backprojection for the 3D
structure reconstruction from a series of micro-rotation images. Figure 3.4 shows
the flow graph of the proposed reconstruction algorithms. All the algorithms re-
quire motion parameters as the input (Figure 3.1). The EM method is a closed-
form, iterative algorithm bases on the Poisson noise model and the Skilling-Bryan
method is second-order, subspace optimisation enabling the use of more general
noise and prior models. The marginalisation method additionally requires the
covariance matrix characterising uncertainty in the estimated motion parame-
ters and the DFBP algorithm needs 2D convolution as a preprocessing step.
The marginalisation approach is capable to compensate reconstruction artefacts
caused by the inaccurate motion estimate at an additional cost in computational
complexity, whereas the DFBP approach benefits from the fastest computational
speed but it restricts itself with the confocal imaging modality and a good sta-
bility of cell rotation. Finally, to give an idea how micro-rotation reconstructions
look like, two examples of the reconstruction using the EM algorithm are dis-
played in Figure 3.5 for a Caenorhabditis elegans embryo, and Figure 3.6 for the
mitochondria and nuclear envelope of a single human living cell.
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(b) (c)

Figure 3.5: Micro-rotation widefield fluorescence images of a Caenorhabditis elegans
embryo expressing a protein marker (Histone-GFP ). The 397 micro-rotation images
(pixel size 254x254 nm) were acquired using a 63X water-immersion objective (nu-
merical aperture 1.2) and a widefield microscope (excitation wavelength 488 nm and
emission wavelength 520 nm) with the frame rate 32 images/sec. The images were
aligned and cropped the region of interest using the correlation method; the final size
used was 175x175 pixels and the number of imaged was 65 for a half rotation. (a)
Three raw-image example at angle 0°, 60° and 120°; (b) EMTYV reconstruction slices
corresponding to slices in (a); (¢) EMTV reconstruction showing the zy, xz, yz slices at
the volume centre, where the rotation axis is in the horizontal (z) direction, see the ac-
quisition geometry in Figure 2.4c. It is obvious that high-frequency noise appear in the
raw images have been removed and the reconstructed object is sharper and higher in
contrast; Although the reconstruction on the zy and xz views (parallel to the rotation
axis x) is better than that on the yz view (orthogonal to the rotation axis).
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(a) (b)

Figure 3.6: Micro-rotation confocal fluorescence images of a single human living
cell in suspension. The single cell expresses a nuclear envelope marker (lamin-GFP;
green) and stained with a mitochondria marker (mito-OFP; red). The two series (red
and green) of micro-rotation images (pixel size 127x127 nm.) were acquired using a
63x water-immersion objective (numerical aperture 1.2) and a spinning-disk confocal
microscope (excitation wavelength 488 nm and emission wavelength 520 nm) with the
frame rate 8.6 images/sec. . The two images series were aligned and cropped the region
of interest using the correlation method; the final size used was 165x 165 pixels and
the number of imaged was 43 for a half rotation. (a) Three raw-image example; (b)
EMTYV reconstruction slices corresponding to (a); (¢) EMTV reconstruction showing
the three orthogonal slices at the volume centre. As the same in Figure 3.5, the result
is clearer and sharper with fine details, but the reconstruction on the views parallel
to the rotation axis x is better than that on the view orthogonal to the rotation axis,
especially along the tangential direction of the rotation.
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Results and Method Assessments

This chapter summarises important results and assessments of the proposed re-
construction methods based on the five Publications. Publication 1-4 are built
on the statistical inversion theory described in Section 3.1. Each publication
concentrates on different statistical points of view in utilising prior information
and modelling uncertainties, arisen from measurement noise, missing data, and
image alignment. Publication 5 presents the reconstruction method based on the
Fourier inversion which is addressed in Section 3.2.

Publication 1 proposed the Bayesian reconstruction method that assumes
Gaussian noise and the Gaussian prior for the posterior distribution (3.1). In
this work, we used the MAP method (3.6) for estimating the object density from
the posterior distribution and, thereafter, employed the trust-region optimisa-
tion method, implemented in Matlab™ (Coleman & Li 1996), for minimising the
posterior cost function (3.7). The proposed method was tested with a series of
micro-rotation images of prophase chromosomes in cell mitosis (see Table 4.1 for
image acquisition details). The results with the real dataset demonstrated that
the proposed method is promising for determining the 3D object structure from
micro-rotation images.

In Publication 2, we generalised the original Skilling-Bryan method, discussed
in Section 3.1.1, for solving the posterior cost function with general noise models
and object prior functions. As a simulation, the proposed method was tested with
2D simulated data that assume the Gaussian and Poison noise together with the
Gaussian, the entropy and the total variation (TV) priors. The results showed
that, for the same prior function, the difference between the reconstructions that
assume the Poisson and Gaussian noise appears fairly small, whereas the recon-
struction with the TV prior is clearly better than the one with the Gaussian and
entropy priors. In term of the convergence of algorithm, we found only minor
difference between the three different priors, but the selection of the noise models
seems to have higher impact to the algorithm convergence (see Figure 4.1). In
addition to the 2D simulation, we reported our 3D simulation of micro-rotation
imaging with a 3D simulated cell, where the results showed that the generalised



46

Publication 1 Publication 3 Publication 4&5
Object types chromosomes in | nuclear envelope | nuclear envelope
cell mitosis in human cell in human cell
Imaging modes widefield widefield spinning-disk
confocal
Pixel size (nm) 129 x 129 127 x 127 127 x 127
Image size (pixels) | 195 x 212 295 x 298 400 x 400
Number of images 90 378 175
Fundamental period | 18.1 143 82
Recon. size (pixels) | 121 x 121 x 121 | 150 x 150 x 150 | 155 x 155 x 155

Table 4.1: Image acquisition details of real micro-rotation datasets used in the de-
scribed publications.

Skilling-Bryan method is capable of solving the wide class of measurement noise
and prior model.

Publication 3 proposed to solve the reconstruction problem by using the ex-
pectation maximisation method with the TV object prior, or the EMTV method
which has been addressed in Section 3.1.2. In this work, we first reported our 3D
simulation on a 3D phantom object to evaluate the properties of the proposed
method and to compare micro-rotation imaging with through-stack imaging pro-
tocol. The simulation illustrated in Figure 4 of Publication 3 showed that, for
through-stack imaging, the resulting reconstruction contains high resolution de-
tails in the lateral planes (zy), but some blur remains in the axial planes (zz,
yz), particularly along the optical axis (z); On the other hand, for micro-rotation
imaging, the reconstruction is sharp on the planes parallel to the rotation axis
(z-axis), but it is blurred in the planes (zy, xz) orthogonal to the rotation axis,
especially in the tangential direction of the rotation. More precisely, through-
stack imaging suffers from poor axial z resolution whereas micro-rotation imaging
gives weak tangential resolution on the directions orthogonal to the rotation axis.
Furthermore, we compared the proposed EMTV method (3.14) to the standard
EM method (3.13) as well as the EM method with the spatial-derivative prior
(EMGR) suggested by Green (1990). The results showed that the reconstruc-
tions with the EMTV and the EMGR are clearly better than the one with the
EM approach, whereas the difference in the quality of the reconstruction between
the EMTV and the EMGR is fairly small. Finally, the proposed method was
tested with real micro-rotation images of a human living cell expressing a fluo-
rescent nuclear-envelope marker (Table 4.1). The experiment demonstrated that
the proposed method was successful with the real dataset although the rotation
geometry leads to some artefacts visible on the planes parallel to the yz-plane,
which is similar to the results reported in the simulation.

Publication 4 presented a Bayesian marginalisation method, described in Sec-
tion 3.1.3, for determining 3D object structure from a micro-rotation image series
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Figure 4.1: Convergence curves of the six reconstructions using the generalised
Skilling-Bryan method that assumes Gaussian and Poisson noise together with the
Gaussian, the entropy and the total variation prior functions. The actual reconstruc-
tions correspond to the results presented in Figure 2 of Publication 2.

in consideration with uncertainty in the motion estimates. We first evaluated the
proposed method by a 2D simulation with the Shepp-Logan 2D head phantom.
The reconstructions of the head phantom were estimated using the marginali-
sation method and the standard MAP method with the correct and incorrect
(perturbed) motion parameters. The simulation results showed that the marginal-
isation method gives visually and numerically better results than the standard
MAP method for any degrees of uncertainty in the motion estimates. Moreover,
we tested the proposed method with a real micro-rotation set which represents
the nuclear membrane of a single human living cell, expressed by green fluorescent
markers (Table 4.1). The 3D reconstructions of the cell were computed using the
standard MAP and the marginalisation algorithm with the initial and estimated
motion parameters. The results from the real dataset showed that the reconstruc-
tion with the standard MAP clearly contains smearing artefacts in all directions
whereas the marginalisation approach smooths out the motion-uncertainty arte-
facts appearing on the object structure. However, when the motion parameters
have been accurately recovered, the marginalisation method provides only minor
improvement comparing with the standard MAP estimate.

Publication 5 suggested the dual filtered backprojection (DFBP) algorithm
for solving 3D reconstructions from micro-rotation images acquired by a confocal
microscope. As the first proof of the DFBP principle, we reconstructed the 2D
Shepp Logan phantom from 1D projections and compared the DFBP method to
the direct spatial linear interpolation where deconvoluted data is merely resam-
pled from the cylindrical coordinate frame into the Cartesian coordinate system.
The results showed that, for both the noise-free and noisy phantoms, the DFBP
method achieves lower error than the standard linear interpolation for any choice
of number of projections. Furthermore, we computed the 3D reconstruction of



48

the simulated cell by the DFBP method and compared it to the linear interpola-
tion. The reconstruction results demonstrated that both DFBP and the alterna-
tive interpolation method produced good results. Finally, we experimented the
proposed method with the real micro-rotation confocal dataset used in Publica-
tion 4, and also compared the DFBP method with the linear interpolation and
the EMTYV method presented in Publication 3. The reconstruction obtained with
the DFBP is slightly better than the one with the linear interpolation method,
whereas the EMTYV reconstruction appears clearly sharper than those of the two
reconstructions. The EMTV method however needs more computational effort
due to the required, repetitive computation of the 3D-2D transformations between
object and images.

As we have seen in all the Publications, micro-rotation reconstruction always
contains poor resolution in the tangential direction on the view orthogonal to the
rotation axis, regardless of reconstruction methods we applied. The tangential
resolution limitation is due to the fact that the elongation of PSF orients to the
direction orthogonal to the image plane, which is the tangential direction of the
rotation in the micro-rotation setting. One possibility to improve the tangential
resolution is to use the micro-rotation imaging protocol with extended depth-
of-focus (EDF) microscopes (Arnison et al. 2003, Botcherby et al. 2006, Wicker
& Heintzmann 2007). The attractive feature of the EDF microscopes is that it
greatly enlarges the depth-of-focus of the microscope, while the lateral resolution
is still preserved. In this way, the image formation model of the combined micro-
rotation imaging with the EDF microscope is close to the straight-line projection
in classical computed tomography, or X-ray tomography (Kak & Slaney 1988).
An explanation for the concept how the tangential resolution can be improve by
EDF microscopy is illustrated in Figure 4.2. To evaluate this concept, we made
a 2D simulation that compares the micro-rotation reconstructions using a wide-
field PSF and a depth-of-focus PSF. Figure 4.3 shows that, for the conventional
PSF, the weakness in tangential direction remains unsolved when the number of
projections increases; By contrast, the tangential resolution is clearly enhanced
for the extended-focus PSF with increasing the number of projections.
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Figure 4.2: Comparison of the frequency support between four different imaging ge-
ometries. (a) Single through-stack imaging gives the limited frequency support (ellipse)
of PSF in the z direction that leads band-limited resolution in the z-axis (k, and k,
denote the spatial frequency in the z and z directions); (b) Multiple through-stack
imaging enlarges the frequency support along the z-axis by collecting multiple image
stacks in different orientations; (c) Micro-rotation imaging projects the frequency sup-
port (each ellipse) to its central line in the orthogonal direction. As a consequence,
the orthogonal projection of the frequency support is the major cause of optical blur
in the tangential direction of the rotation; (d) Micro-rotation imaging with extended
depth-of-focus microscope narrows each ellipse approximately closer to the central line
and, therefore, the resolution improvement in the tangential direction can be achieved.

i

(a) PSF (b) 30 projections  (c) 60 projections (d) 120 projections

Figure 4.3: 2D simulation of micro-rotation reconstruction with (upper row) coven-
tional and (lower row) extended-focus point spread function (PSF). (a) conventional
PSF (upper) and extended-focus PSF (lower) with the anisotropic Gaussian kernel;
(b—d) reconstructions from different number of 1D projections: 30, 60 and 120, respec-
tively. The true test phantom refers to Figure 1 in Publication 2.



Chapter 5

Conclusions and Discussion

This thesis has presented four different methods for estimating 3D object struc-
tures from a series of micro-rotation images, assuming that the motion parame-
ters are available. The developed methods include the generalised Skilling-Bryan
method, the expectation maximisation with total variation (EMTV) method, the
Bayesian marginalisation method and the dual filtered backprojection (DFBP)
method. The three former approaches are built on a valid statistical framework
that allows a straightforward utilisation of prior knowledge and modelling various
kinds of uncertainty. The last approach is based on the direct Fourier inversion
which is derived from the observed duality of the classical filtered backprojection
(FBP) algorithm. The key features of the reconstruction methods are summarised
as follows:

e The EMTYV algorithm is an efficient tool for determining object density for
both widefield and confocal microscopy. An attraction of this algorithm is
that it provides a closed-form iterative solution with the built-in nonnega-
tivity constraint, although the algorithm is slow in convergence particularly
in the latter iterations. The processing time of the EMTV algorithm can
be measured in tens of minites for the reconstruction size of 100 x 100 x 100
pixels.

e The generalised Skilling-Bryan method can be used to reconstruct ob-
ject density assuming a wide class of measurement noise and object prior
knowledge. As a common characteristic of second-order optimisation, the
Skilling-Bryan method is slow in convergence during the former iterations
but superior in the latter iterations. The hybrid approach that first uses
the EMTYV algorithm and follows by the Skilling-Bryan method, can be
used to speed up the algorithm convergence. The computational time of
the generalised Skilling-Bryan method is in hours.

e The Bayesian marginalisation method can be used to improve the object
reconstruction which suffers from artefacts introduced by the inaccurate
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motion estimates. This method however requires extra computations and
gives only minor improvement when the motion parameters are accurately
recovered. The computing time of this method can be up to tens of hours.

e The DFBP algorithm is a fast and robust method for reconstructing object
from a micro-rotation image series, acquired by a confocal microscope. The
DFBP is attractive for solving the reconstruction problem since it provides
equivalent features to the FBP method including fast computation and
good-quality reconstruction for projections with complete angular coverage.
The computing time of the DFBP method can be measured in minutes.

An important result in the modelling of measurement noise and object pri-
ors is that the resulting reconstruction that assumes the Gaussian noise model
differs slightly from the reconstruction assuming the Poisson model. However,
the selection of object prior is far more important than that of the noise model.
The spatial-derivative priors, such as the TV and the Green’s prior functions,
give clearer and sharper structures than the Gaussian and the entropy priors,
independent of noise models we select; but the difference in reconstruction qual-
ity between the Gaussian and the entropy priors appears fairly small. Further
interesting research in prior modelling should be thus emphasised on the investi-
gation and comparison of various definitions of spatial-derivative prior proposed
by many authors (Verveer et al. 1999, Dey et al. 2006, Vicidomini et al. 2006).

Another essential finding in the micro-rotation technique is its unique imag-
ing characteristic. That is, the 3D optical resolution of micro-rotation imaging
is highly bounded in the tangential directions appeared on the yz planes (that
are orthogonal to the rotation x axis), in contrast to the through-stack imaging
that has bounded resolution in the axial z direction. The resolution limit of both
imaging protocols arises from the same reason: according to the elongation of PSF
in the z-axis, resolution in the direction orthogonal to the image plane is always
worse than that in the direction parallel to the focal plane. In through-stack imag-
ing, most of the researchers have focused to improve the axial resolution by de-
creasing the depth-of-focus using various sophisticated high-resolution techniques
(Gustafsson 1999). However, in micro-rotation imaging, the limited tangential
resolution can be enhanced by enlarging the depth-of-focus using extended depth-
of-focus microscopy (see, for instance, Arnison et al. 2003, Botcherby et al. 2006).
Moreover, increasing the depth-of-focus in micro-rotation imaging not only im-
proves the tangential resolution, but also helps the motion estimation in a way
that the z translation can be ignored and the motion estimation methods become
more powerful due to the better appearance of features on projection images.

In conclusion, the methods proposed in the thesis have been demonstrated as
useful tools for solving object reconstruction in the micro-rotation imaging appli-
cation. A nice aspect of this thesis is that the proposed methods are presented in
a formalism that allows straightforward extension of the ideas to other existing
imaging applications in inverse problems.
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