
TKK Dissertations in Information and Computer Science

Espoo 2009 TKK-ICS-D12

LOGIC PROGRAMS AND CARDINALITY CONSTRAINTS

Theory and Practice

Tommi Syrjänen

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI

TKK Dissertations in Information and Computer Science

Espoo 2009 TKK-ICS-D12

LOGIC PROGRAMS AND CARDINALITY CONSTRAINTS

Theory and Practice

Tommi Syrjänen

Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of
the Department of Computer Science and Engineering for public examination and debate in Auditorium
T2 at Helsinki University of Technology (Espoo, Finland) on the 20 of March, 2009, at 12 noon.

Helsinki University of Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

Teknillinen korkeakoulu

Informaatio- ja luonnontieteiden tiedekunta

Tietojenkäsittelytieteen laitos

Distribution:

Helsinki University of Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

P.O.Box 5400

FI-02015 TKK

FINLAND

URL: http://ics.tkk.fi

Tel. +358 9 451 1

Fax +358 9 451 3369

E-mail: series@ics.tkk.fi

©c Tommi Syrjänen

ISBN 978-951-22-9762-7 (Print)

ISBN 978-951-22-9763-4 (Online)

ISSN 1797-5050 (Print)

ISSN 1797-5069 (Online)

URL: http://lib.tkk.fi/Diss/2009/isbn9789512297634/

TKK ICS

Espoo 2009

ABSTRACT: Answer set programming (ASP) is a method for solving hard
problems using computational logic. We describe a problem as a set of
formulas of a declarative logical language in such way that the solutions
correspond to the models (answer sets) of the set and then use a general-
purpose inference engine to find the answer sets.

In this work we define an ASP language, cardinality constraint pro-
grams (CCP). The language extends normal logic programs by adding
cardinality and conditional literals as well as choice rules. These exten-
sions allow us to represent many if not most NP-complete problems in a
concise and intuitive way. The language is defined in two phases where
we first introduce a simple basic language and then define the constructs
of the full language in terms of translations to the basic language.

The language has a declarative formal semantics that is based on the
stable model semantics of normal logic programs. The semantics of a
program with variables is defined via its ground instantiation. In addition
of using the Herbrand instantiation a program can be instantiated with
respect to some other universe, which makes it possible to have a direct
support for interpreted functions in the semantics.

The semantics is undecidable in the general case. We identify a syntac-
tic subclass of CCPs, namely omega-restricted programs, that are decid-
able even when function symbols are allowed. The stable models of such
programs are created by a finite relevant instantiation that we can always
compute. We analyze the computational complexity of omega-restricted
programs and show that deciding whether a program has a stable model
is 2-NEXP-complete. We identify further subclasses of programs that
are NP- and NEXP-complete in the same sense. We also present an
algorithm for instantiating omega-restricted programs.

We discuss programming methodology and show how we can create
uniform CCP encodings for different problems using the generate-and-
test methodology. We examine how we can combine ASP with traditional
programming languages by treating an ASP solver as an oracle.

As an extended case study we examine how we can solve AI planning
problems using ASP. We present a systematic translation from an action
language planning formalism into CCPs and give encodings for three sam-
ple planning domains. We also examine how we can add domain-specific
knowledge to the encodings to make them more efficient in practice.

KEYWORDS: Computational Logic, Logic Programming, Answer Set Pro-
gramming, Stable Model Semantics, Cardinality Constraints, Planning

TIIVISTELMÄ: Vastausjoukko-ohjelmointi (answer set programming,
ASP) on menetelmä laskennallisesti vaativien ongelmien ratkaisemiseksi
matemaattisella logiikalla. Ongelma esitetään jonkin loogisen kielen lause-
joukkona siten, että sen ratkaisut vastaavat lausejoukon malleja. Mallien
laskemiseen käytetään yleiskäyttöistä päättelykonetta.

Työssä määritellään ASP-kieli, kardinaliteettirajoiteohjelmat (cardi-
nality constraint programs, CCP), joka laajentaa logiikkaohjelmia lisää-
mällä niihin kardinaliteetti- ja ehdolliset literaalit sekä valintasäännöt.
Laajennusten avulla voidaan muodostaa suurelle osalle NP-täydellisiä
ongelmia tiivis ja intuitiivisesti selkeä esitys.

Kieli määritellään kahdessa vaiheessa. Ensimmäiseksi esitetään yksin-
kertainen peruskieli ja sen semantiikka. Täyden kielen rakenteet määritel-
lään kääntämällä ne peruskielen rakenteiksi.

Kielen semantiikka perustuu logiikkaohjelmien stabiilien mallien se-
mantiikkaan. Muuttujallisen ohjelman semantiikka määräytyy sen ins-
tantiaation kautta. Tavanomaisen Herbrand-instantiaation lisäksi ins-
tantiaatio voidaan tehdä jonkin toisen universumin suhteen, jolloin siihen
voidaan suoraan upottaa tulkitut funktiosymbolit.

Stabiilien mallien semantiikka CCP-ohjelmille ei ole ratkeava yleisessä
tapauksessa. Tämän vuoksi työssä määritellään kielelle ratkeava aliluok-
ka, omega-rajoitetut ohjelmat, joiden stabiilien mallien määräämiseen
riittää instantiaation äärellinen osajoukko. Työssä esitetään algoritmi,
jolla voidaan tuottaa instantiaation oleellinen osa.

Työssä analysoidaan omega-rajoitettujen ohjelmien laskennallista vaa-
tivuutta. Yleisessä tapauksessa ohjelmat ovat 2-NEXP-täydellisiä, mut-
ta niille määritellään myös NP- ja NEXP-täydelliset alaluokat.

Työssä tarkastellaan yleiskäyttöisten CCP-ohjelmien laatimiseen liit-
tyviä käytännön seikkoja ja esitetään ”arvaa ja tarkista” -periaattee-
seen pohjautuva menetelmä ongelmien esittämiseen. Lisäksi esitetään
menetelmä, jolla ASP-ohjelma voidaan yhdistää perinteisellä kielellä kir-
joitettuun ohjelmaan käyttämällä ASP-toteutusta oraakkelina.

Laajana sovellusesimerkkinä tarkastellaan ASP-ohjelmien käyttämis-
tä suunnitteluongelmien ratkaisemiseen. Ongelma formalisoidaan suun-
nittelukuvauskielellä, joka puolestaan käännetään systemaattisesti CCP-
ohjelmaksi. Työssä esitetään kolmen suunnitteluongelman logiikkaohjel-
makäännökset. Lisäksi tarkastellaan, miten ongelman erityispiirteet voi-
daan ottaa huomioon ohjelmaa laadittaessa, jotta sen mallit voitaisiin
laskea mahdollisimman tehokkaasti.

AVAINSANAT: Laskennallinen logiikka, logiikkaohjelmointi, vastausjoukko-
ohjelmointi, stabiilien mallien semantiikka, kardinaliteettirajoitteet, suun-
nittelu

CONTENTS

1 Introduction 2
1.1 Logic Programming and ASP 3
1.2 Cardinality Constraint Programs 4
1.3 Scientific Contributions . 6
1.4 Related Work . 7
1.5 Outline of the Work . 9

2 Cardinality Constraint Programs 12
2.1 Syntax . 12
2.2 Notational Conventions . 15

3 The Stable Model Semantics 18
3.1 Normal Logic Programs 18
3.2 Satisfaction and Classical Models 19
3.3 Reducts . 19
3.4 The Provability Operator 22
3.5 The Stable Model Semantics of Ground Programs 25
3.6 Some Properties of Cardinality Constraint Programs . . . 27
3.7 Programs with Variables 29
3.8 Interpreted Function Symbols 33
3.9 The Standard Interpretation 39

4 Omega-Restricted Programs 43
4.1 Basic Concepts . 44
4.2 Dependency Graphs . 45
4.3 Omega-Stratification . 47
4.4 Domain Predicates . 48
4.5 Omega-Valuation and Restriction 50
4.6 Computing Domain Predicates 51

5 Decidability of Omega-Restricted Programs 55
5.1 Stratum Programs . 56
5.2 Uniqueness of Domain Program 60
5.3 Relevant Instantiation . 60
5.4 Domain Models . 62
5.5 Finiteness of Domain Models 62
5.6 Stable Models of Omega-Restricted Programs 63
5.7 Putting it All Together . 64
5.8 Instantiation as a Database Operation 66

6 Computational Complexity 74
6.1 Basics of Computational Complexity 75
6.2 Relationship of model and instantiation 76
6.3 Turing Machine Translation 77
6.4 The Turing Machine Encoding 79
6.5 Preliminaries for Complexity Proofs 86

CONTENTS vii

6.6 Complexity Results . 91
6.7 The Function Version of Model 101

7 The Full Language 107
7.1 Language Design . 107
7.2 The Full Language Syntax 118
7.3 Transformations . 119
7.4 Further Extensions . 127

8 Implementation Issues 132
8.1 A Hierarchy of Languages 132
8.2 Overview of the Implementation Architecture 133
8.3 Instantiating Rules . 135
8.4 Domain Computation . 147
8.5 The smodels rules . 155

9 Programming Methodology 157
9.1 Generate and Test Method 157
9.2 Uniform Encodings . 158
9.3 Using Answer Set Solvers as Oracles 163
9.4 On Optimization . 166

10 Encoding Planning Problems 173
10.1 General Approach . 173
10.2 Different Forms of Planning 174
10.3 Formalizing Planning . 174
10.4 Translating Action Language B to ASP 181
10.5 Issues on Parallel Planning 191
10.6 Introducing Variables . 197
10.7 Plan Generation . 206
10.8 More on Planning Variants 207
10.9 Two Planning Examples 210

11 Conclusions 223

Bibliography 225

Index 243

viii CONTENTS

List of Figures

3.1 From the Herbrand universe to an arbitrary universe . . . 33
4.1 The dependency graph of the Hamiltonian cycle program. 46
4.2 A strict ω-stratification of the Hamiltonian cycle program . 48
4.3 An example of SCC graph formation. 52
4.4 An algorithm for creating an ω-stratification 53
4.5 A sample SCC graph and its stratification 53
5.1 A naive algorithm for testing the existence of a stable

model of an ω-restricted CCPs. 65
5.2 A naive algorithm for computing the Datalog semantics . . 69
6.1 Complexity classes . 76
6.2 A naive algorithm for solving Instantiation 90
6.3 The search tree from Example 6.7.1 103
6.4 A search Tree for Example 6.7.2 106
7.1 The process of computing answer sets 107
7.2 The principle of uniform encodings 109
7.3 A non-modular transformation 109
7.4 A modular transformation 110
8.1 Computing answer sets . 132
8.2 The language hierarchy . 133
8.3 General level architecture 134
8.4 The instantiation algorithm 134
8.5 Overview of rule instantiation 135
8.6 Instantiating rules . 136
8.7 Instantiating local variables 142
8.8 Domain computation . 148
8.9 Algorithm for Computing the Domain Model 148
8.10 Visiting the strongly connected components 149
9.1 Example of Vertex Coloring. 158
9.2 The basic oracle algorithm 163
9.3 The general form for using an oracle 164
9.4 An algorithm for computing functional Maxsat 164
9.5 Oracle with exclusion sets 165
9.6 A naive way of computing all answer sets 165
9.7 Solving 2-Quantified Boolean Formulas 166
9.8 Sample search trees . 167
9.9 A cross-sum/Kakuro puzzle and a solution 168
9.10 Kakuro input encoding . 168
9.11 Two choices that fix a unique solution. 171
10.1 Solving planning problems 173
10.2 The LTS corresponding to a two-block Blocks World . 178
10.3 The action language translation in a nutshell 182
10.4 The “Sussman Anomaly” Blocks World instance 185
10.5 The action description for Blocks World 199
10.6 A naive algorithm for plan generation 207
10.7 A vacuum world example 211
10.8 The dynamic laws of Vacuum World 214

LIST OF FIGURES ix

10.9 The static laws of Vacuum World 215
10.10A Sokoban instance and an optimal solution 216
10.11An example of Sokoban segments 217

x LIST OF FIGURES

PREFACE

The history of formal logic goes back to the 4th century BC. For the vast
majority of that time logicians have made their proofs by hand, first by
using Aristotelean syllogisms, and after the advances of the 19th century
with truth tables or axiom schemata. These methods are laborious and
can be used only for small examples—the truth table of a formula with
only six propositional atoms already has 64 rows and each additional
atom doubles its size.

Computational logic is a young branch of logic whose ultimate purpose
is to solve practical problems with mathematical logic. The formaliza-
tions of most problems are far too large to be examined by hand as they
often have thousands, hundreds of thousands, or even millions of atoms.
We can tackle such formalizations only with the help of a computer.

The workflow for solving problems with computational logic is that
we first identify what are the most important properties of our problem
domain and express them using some logical language. Then, we use
some general purpose solver to compute our answer. From the viewpoint
of a common user the solver is a black box: a formalization goes in and
the answers come out. The user does not need to know much about the
internal details of the solver.

This work examines computational logic in the form of answer set
programming (ASP) that is an offshoot of logic programming. We look
at the issues that arise in defining, implementing, and using an answer
set language.

I’m thankful to my advisor Professor Ilkka Niemelä for the opportu-
nity to work on this interesting topic in the Laboratory for Theoretical
Computer Science that recently got reorganized into the Department of
Information and Computer Science. I am grateful for Professors Torsten
Schaub (University of Potsdam) and Wolfgang Faber (University of Cal-
abria) for their helpful comments on the manuscript and for Professor
Vladimir Lifschitz (University of Texas at Austin) for kindly agreeing to
be the opponent.

I would also like to thank my colleagues and friends, both those who
work in the laboratory and those who are elsewhere, as well as my family
and relatives. In particular, I would like to thank Elina for having a
commendable amount of patience for dealing with a logician.

My work was funded by the Helsinki Graduate School in Computer
Science and Engineering (HeCSE) and the Academy of Finland (Project
numbers 122399, 211025, 53695, and 43963).

PREFACE xi

¨

PREFACE 1

1 INTRODUCTION

Answer set programming (ASP) [130, 15, 60, 114, 143] is a way to solve
problems using mathematical logic: we express our problem using some
declarative and decidable logical language and then use a general pur-
pose inference engine to find the solutions. ASP differs from traditional
programming in that we do not write algorithms to manipulate data but
instead define the properties of a correct answer. ASP has been used to
solve problems such as AI planning [82], product configuration [177, 187],
and bounded model checking [95, 96].

For example, consider a puzzle by Raymond Smullyan [176] about the
Island of Knights and Knaves where every person either tells the truth
(a knight) always or lies (a knave):

A stranger met two inhabitants of the island. ”At least one of
us is a knave,” said the first one. Are they knights or knaves?

The ASP approach to solve this puzzle is to express it using some logical
language. If we choose classical propositional logic to do it, we get the
one-line encoding:

TA ↔ (¬TA ∨ ¬TB) (1.1)

where TA denotes that A is truth-teller and TB denotes the same for B.
We can now find the models of (1.1) by either computing them by hand
or we can use one of the many existing implementations of propositional
logic to do it. Either way we find out that there is exactly one model:
{TA,¬TB}: the person who answered is a knight and the other one is a
knave.

This small toy example illustrates the basic operating principle of ASP:
encode the problem using logic so that its solutions correspond to the
models of the encoding and then let some black box compute them. As
the name “answer set” hints at, we usually represent the models as sets of
atoms. The general method of using programs to describe the solutions
is called declarative programming [122].

We used propositional logic as our language in the example and noth-
ing prevents us from using it with larger problems. However, in practical
problems we often meet properties that are cumbersome to model under
classical logic so most existing ASP systems operate under some other
semantics. Most of them are based on some variant of the stable model
semantics [84] of logic programming.1

Conceptually ASP is close to constraint programming [123] (CP) that
operates under the same declarative principles. In a CP program we have
a set of variables and a set of possible values for every variable, and we
want to find a way to assign a value for every variable such that the
requirements of the problem are satisfied. In fact, we could even fit ASP

1The current ASP implementations include Smodels [148], DLV [111], Assat [119],
clasp [79] Cmodels [5], NoMoRe [2], ASPPS [52], and SAG [120]. Of these ASPPS
is based on extended propositional satisfiability and the others are founded on the
stable model semantics.

2 1. INTRODUCTION

into the CP framework by defining each atom to be a variable with two
possible values, true and false, and expressing the semantics of a program
in terms of CP constraints. There are practical reasons why we do not
want to do that. The ASP and CP semantics are different enough that it
is cumbersome to express one in terms of another and they have different
strengths and weaknesses.

1.1 LOGIC PROGRAMMING AND ASP

The origins of logic programming [121] lay in the article The Semantics of
Predicate Logic as a Programming Language by van Emden and Kowal-
ski [204] that was published in the Journal of ACM in 1976. In it they
gave a formal semantics for the Prolog language [33]. The semantics was
based on the predicate calculus and it expressed Prolog query evaluation
as predicate logic theorem proving. Prolog is Turing-complete,2 which
means that we can solve any solvable problem with it, and it is still the
best-known logic programming language.

Answer set programming takes a different approach.3 Instead of hav-
ing a language that can solve everything, we use a special purpose lan-
guage that we can use to solve the specific problems that we are interested
in elegantly and efficiently.

In particular, many if not most NP-complete problems [78, 152] have
simple and natural encodings as ASP programs. This class is the most
famous complexity class. Intuitively, it contains problems where finding
a solution is difficult but checking whether a given solution candidate is
correct is easy.4

1.1.1 Properties of an ASP Language

A special purpose language should give good support for writing pro-
grams in its application domain. ASP is best suited for problems for
which it is difficult to write an efficient traditional algorithm but whose
correct solutions are easy to define. Three important properties that an
ASP language should have are:

1. possibility for uniform encodings;

2. syntax expressive enough to facilitate compact and intuitive encod-
ings; and

3. a semantics that gives intuitively correct answers.

2A language is Turing-complete if it is possible to simulate the computations of
an arbitrary Turing machine using a program written with it. See Section 6.3 for one
possible formal definition of Turing machines.

3There has been some work [11, 25] on Turing-complete ASP formalisms, but the
actual implementations are firmly entrenched in some lower complexity class.

4See Section 6.1 for further information on complexity classes and their formal
definitions.

1. INTRODUCTION 3

Uniform Encodings
An ASP program P is a uniform encoding for a problem [171, 60, 130] if
we can use it unaltered for solving all instances of the problem. We get
a solution for a given instance by combining P with a set of facts that
describes the instance and then finding an answer set of the combined
program. A uniform encoding is much more convenient in practice than
a non-uniform one. Not all logical formalisms enable uniform encodings,
for example, with propositional logic we usually have to create a separate
encoding for every problem instance.

Expressive Syntax
When we examine NP-complete problems [78], we find that their defi-
nitions often contain similar elements. For example, consider the three
well-known graph problems:

• Vertex Cover: does a graph have a k-element subset of vertices
such that least one end of each edge is in it;

• Clique: does a graph have a complete k-vertex subgraph; and

• Independent Set: does a graph have a k-element subset such
that no two vertices in it are connected by an edge.

The common feature in these three problems is that we are interested
in finding a subset of a specified size that satisfies the constraints of
the problem. We want that our language is strong enough that we can
express this property and other similar common ones concisely.

Clean Semantics
The semantics of an ASP language should be simple enough that a pro-
grammer can easily understand what the answer sets of a program will
be. This characterization is inherently subjective—different people find
different things intuitive.

Also, if the basic semantics is simple, it is more straightforward to
write a solver for it. The internal data structures can be made simpler
and more efficient. This is important since ASP allows us to have simple
programs for hard problems. A solver has to be efficient enough that we
can find the answer sets in reasonable time.

1.2 CARDINALITY CONSTRAINT PROGRAMS

In this work we examine ASP in the context of the stable model semantics
for cardinality constraint programs (CCP). The language is expressive
enough to admit concise encodings for many NP-complete problems [198]
while still having simple semantics. We consider both theoretical prop-
erties of the formalism and the practice of writing ASP encodings for
different types of problems. We will use the term “stable model” when
we discuss cardinality constraint programs specifically and “answer set”
when discussing ASP in general.

4 1. INTRODUCTION

Cardinality constraint programs extend normal logic programs. A
normal program consists of rules of the form:

H ← L1, . . . , Ln

The intuition is that if all literals Li in the body of the rule are true, then
the atom H in the head has to be true, also. What this means precisely
depends on the semantics we use.

We can express a large number of problems nicely using normal logic
programs, but sometimes we run into conditions that cannot be expressed
compactly. The problem of finding a subset of a specified size is one of
them and a straightforward encoding for selecting k items out of n needs(

n
k

)
rules to express it.5

In cardinality constraint programs we extend the syntax of normal
programs so that we get concise encodings for more problems. The ex-
tensions allow us to express, among other things:

• disjunctive conditions in rule bodies;

• conjunctions and disjunctions6 in the rule head; and

• existential and universal quantification over finite relations in rule
bodies.

The two most important additions to the syntax are cardinality atoms
and conditional literals. A cardinality atom has the form:

L {l1, . . . , ln} U

and it is true if the number of true literals in the set {l1, . . . , ln} is between
the lower (L) and upper (U) bounds. A conditional literal has the form
a(X) : d(X) and it denotes the set of atoms a(X) for which it holds that
d(X) is true.7 For example, the cardinality atom:

k {X.in-subset(X) : in-set(X)} k

expresses the condition that a subset has exactly k elements when the
predicate in-set(X) defines what elements belong to the set and the pred-
icate in-subset(X) defines the subset. The notation X. tells us that X is
local to the conditional literal and its scope does not extend outside it.

Cardinality atoms are just one of the possible ways to extend the
normal logic programs.8 They have an intuitively clean semantics and

5When we have a set of atoms E = {e1, . . . , en}, the rule:

k-true← e1, . . . , ek,not ek+1, . . . ,not en

states that there are k true atoms if the atoms {e1, . . . , ek} are true and all others are
false. However, if e1 is false and en is true, this rule does not recognize it. We need a
similar rule for every k element subset of E.

6However, our semantics is not disjunctive logic programming [60] in the technical
sense of the term.

7The formal definition that is presented in Section 3.7 is a bit more complex.
8We will examine several others in Chapter 7.

1. INTRODUCTION 5

they can be used to model a great number of constructs that occur in
practical problems.

Most of the earlier work on programs with cardinality atoms [146, 179,
145, 175] has concentrated on variable-free programs and variables have
received only little attention [193]. In this work we examine variables
and interpreted function symbols with more detail.

Having both an expressive language and a semantics that can be im-
plemented in a straightforward way are two goals that are difficult to
reconcile, since adding more features to the language adds complications
to the solver design.

In this work we take a two-phase approach. We first define a simple
basic language, and then define the full language as its extension. The
semantics of the extensions are defined via translations back to the ba-
sic language. This approach makes it possible for us to have both an
expressive language and a relatively simple implementation.

1.3 SCIENTIFIC CONTRIBUTIONS

We define the syntax and semantics of cardinality constraint programs
that is an answer set programming language including cardinality atoms
and conditional literals.

We first define a simple basic language and the constructs of the full
language are defined as transformations back to the basic language. The
basic language is defined so that it is possible to do the transformations
on the level of programs with variables in such a way that it does not
add new atoms into the instantiation of the program.9

The semantics is initially defined for ground programs and a program
with variables is handled by first instantiating it into a ground program.
The novelty of our approach is that we allow instantiation with respect
to an arbitrary universe instead of using the standard Herbrand universe
of program. This makes it possible to incorporate interpreted function
symbols directly into the semantics. We define a standard interpretation
that extends the Herbrand instantiation of a program by adding arith-
metic operations as well as interpreted constants that can be used to
parametrize programs.

We identify a subclass of the language, ω-restricted programs, that is
decidable even when we use the Herbrand interpretation of the function
symbols.10 We prove this by showing that we need to consider only a
finite subset of the infinite Herbrand instantiation when computing the
answer sets of a program and we show how we can compute this relevant
instantiation. We examine how we can interpret the instantiation process
in terms of relational database operations analogously to the Datalog [26]

9More precisely, we do not add atoms that may increase the search space of pro-
gram. In some transformations we introduce a couple of auxiliary atoms that have
the property that after we have instantiated the program, we can decide their truth
values in linear time with respect to the size of the instantiation and thus we can
remove them from the program with a small amount of preprocessing.

10The full language is not decidable under the Herbrand interpretation.

6 1. INTRODUCTION

language.

We analyze the computational complexity of the language. We exam-
ine the complexity of both instantiation and model existence for four sub-
classes of ω-restricted programs. Additionally, we examine the functional
problem of finding an answer set. We introduce an abstract framework for
comparing the amount of effort that it takes to compute answer sets of dif-
ferent programs. This framework applies the concept of backdoors [209]
from the propositional satisfiability research to logic programs.

We examine how we can create a practical instantiator for ω-restricted
programs under the standard interpretation. The general architecture of
the instantiator is based on compiler technology [1]. There is a front-end
that translates the user programs into an internal representation and
a back-end that instantiates the program. We present an instantiation
algorithm that is based on the relational data model and prove that it is
correct.

We present several practical examples for using cardinality constraint
programs to model different problems. The encodings are uniform [130]
and are based on the generate and test method [141]. There is a complete
example on how we can create efficient encodings by reducing the search
space that a solver has to examine while searching for answer sets.

We also present a framework for integrating answer set programming
into traditional programming systems where a solver is used as an ora-
cle [200, 152] that can be called from a conventional program.

Finally, we give an extended application example by showing how we
can express planning problems with cardinality constraint programs. We
use an extended version of the action language B [88] as the planning
formalism and give a systematic translation from it to logic programs
and prove that it is correct.

We discuss several issues that have to be considered when designing
planning encodings that allow parallelism in domains that are not inher-
ently parallel and briefly examine how the translation can be extended
to cover constructs that are present in different action languages.

We give three concrete examples for planning encodings. Two of them
are relatively simple and we can directly utilize the translation. The third
example shows how we can use domain-specific knowledge to optimize the
encoding so that it is more efficient in practice.

1.4 RELATED WORK

1.4.1 Aggregates

The cardinality atoms are a form of aggregate literals [107] that combine
the truth values of a set of literals into one aggregate value. The purpose
of aggregates is to allow the programmer to write programs that are
more concise and intuitive than a corresponding normal logic program
would be. There has been much research on different types of aggregate
literals [107, 42, 43, 129, 69, 126, 183, 154, 182, 65, 67]. We will discuss
these semantics in Section 7.1.6 after we have defined our basic semantics.

1. INTRODUCTION 7

1.4.2 Conditional Literals

Conditional literals [197] allow us to define sets of literals in a concise
way. Similar syntax has been used for defining aggregates [42, 126] as
well as in defining parametric connectives [155]. We will examine these
constructs in more detail in Section 7.1.4.

1.4.3 Function Symbols

Standard arithmetic operators are the most commonly used function
symbols in ASP systems. They are often seen as notational shortcuts [111]
that could be replaced by defining explicitly suitable predicates.

The parametric external predicates of Ianni et al. [19] can be used
to create behavior similar to our interpreted functions. An external
predicate symbol #p is associated with an oracle function fp that tells
whether the external predicate is true or not. For example, with an atom
#sum(1, 2, 3) the function fsum(1, 2, 3) returns true and with #sum(1, 2, 4)
it returns false. An oracle function is essentially the same as our inter-
pretation function. The main difference between these approaches is that
function symbols can be nested more easily than external predicates.

While logic programming formalisms with function symbols are gener-
ally undecidable, the finitary programs [11, 10, 6] of Bonatti are decidable
with respect to ground queries. We will examine those programs in Sec-
tion 7.1.7.

1.4.4 Computational Complexity

Dantsin et al. [37] analyzed the computational complexity of normal and
disjunctive logic programs, while Faber and Leone [67] examined the
complexity of aggregates. In this work we extend these results to the ω-
restricted programs. In the complexity proofs we use a direct reduct from
Turing machines. A similar Turing machine encoding for ASP has been
presented by Marek and Remmel [127]. Our encoding is a bit simpler
than the previous one.

1.4.5 Language Translations

The expressive power of an ASP system can be increased by defining a
new language whose programs are then translated into original language
programs. In this work we use this concept in two ways: the full language
is translated into the basic language and an AI planning action language
is translated into the full language.

The idea of building a more expressive language on top of a less ex-
pressive one is well-known in ASP research. For example, the approach
has been used for express nested expressions [118], diagnosis computa-
tion [53], disjunctive programs with inheritance [14], multiple different
preference semantics [41, 58, 13], and even logical puzzles [74]. Also, the
template programs of Calimeri and Ianni [20] work in essentially the same
way.

8 1. INTRODUCTION

1.4.6 Instantiation

When we examine the implementation of CCPs, we concentrate on the
problem of instantiating a program. Faber et al. [66, 36, 35] have done
work on applying deductive database techniques for ASP instantiation,
and the XSB team [161, 24] has integrated ASP solvers into a conven-
tional logic programming system that instantiates a program as a part of
model computation, and Gebser et al. [81] have implemented an instan-
tiator for λ-restricted programs.

We will examine this body of work in Section 8.4.3.

1.4.7 Planning

Our largest programming example is a translation from an action lan-
guage [88] to CCPs. Several similar translations [136, 56, 49] have been
presented in literature. We will examine these translations in Section 10.

1.4.8 Semantics Integration

Aggregates are one way to add more expressive power to an ASP lan-
guage. Another way to make the systems more expressive is to combine
more than one formal semantics into a single framework. Apart from a
brief informal excursion to oracles in Section 9.3 we do not examine this
approach in this work.

Several examples of semantics integration have been published. Eiter
et al. [61] give a general framework for that and use it to combine de-
scription logics with disjunctive logic programs [62]. Similarly, there has
been work on combining ASP with traditional constraint programming
techniques [7, 138].

1.4.9 Other Semantics

In our work we examine ASP in the form of extensions to the stable
model semantics of normal logic programs. This is not the only option
and some other semantics have been used for ASP. For example, East
and Truszczyński [52] add propositional schemata to propositional sat-
isfiability and Denecker et al. [44, 211] work with the logic of inductive
definitions. Pearce et al. [153, 149] examine ASP in the context of equi-
librium logic.

1.5 OUTLINE OF THE WORK

Now we will examine how this work is structured.

Chapter 2. Here we will define the basic syntax for cardinality con-
straint programs. The basic building blocks of logic programs are
predicate symbols, terms, atoms, literals, and rules. The features
specific to CCPs are conditional literals, cardinality atoms, and
choice rules.

1. INTRODUCTION 9

Chapter 3. Here we define the stable model semantics for CCPs. We
first examine ground programs and then extend the definition to
cover also variables. The semantics is defined in terms of a reduct
where we start with a set of atoms that we assume are true and
simplify the program with respect to that set. If the logical closure
of the simplified program coincides with our set of assumptions, we
have found a stable model.

We add variables to our programs via Herbrand instantiation. A
rule with variables stands for all the variable-free instances that
we can generate by substituting the variables with terms of the
Herbrand universe of the program.

We also examine how we can add interpreted function symbols to
our semantics. We leave the realm of Herbrand terms and introduce
a way how we can use function symbols to perform some actual
computation during the program instantiation.

Chapter 4. The problem with Herbrand instantiation is that it is infi-
nite if a program has any non-constant function symbols in it and
the question whether there exists any stable model becomes unde-
cidable.

Here we define a subclass of CCPs that have the property that only
a finite part of the instantiation is relevant and consequently the
stable models are finite and decidable. The program class is the
ω-restricted programs. Their general idea is that the program is
divided into two parts: domain and non-domain. In most cases the
non-domain predicates are used to encode the actual problem itself
and the domain predicates give all relevant variable bindings for
the problem instances.

Chapter 5. Most of this technical section is devoted on proving that
the ω-restricted CCPs are decidable. In Section 4 we define ω-
restriction in terms of ω-stratification. Most nonempty CCPs have
an infinite number of ω-stratifications but we show that they are
all equivalent in the sense that they lead to the same set of domain
predicates. We define the concept of related instantiation that al-
lows to discard irrelevant rules from the Herbrand instantiation and
prove that the relevant instantiation is finite for all ω-restricted pro-
grams and also give a simple algorithm for computing them.

We conclude this section by examining how we can treat instanti-
ation as a database operation.

Chapter 6. In this section we examine the computational complexity
of ω-restricted CCPs. It turns out that they are very complex. We
define two different problems, Instantiation and Model. The
first one examines how difficult it is to instantiate a program and
the second one asks if a program has any stable models at all.

We show that if we do not use non-constant function symbols in
our programs, then the stable model semantics for ω-restricted pro-
grams is as easy or complex as it is for normal logic programs. On

10 1. INTRODUCTION

the other hand, adding function symbols causes potentially double-
exponential increase in complexity.

We also examine the function version of Model where we want to
compute the models and not only determine their existence.

Chapter 7. Here we define the full CCP language. We define the new
features as transformations to the basic language. In this section
we also examine the design criteria of the language and compare it
with related work.

Chapter 8. In this section we examine the issues that arise when we
implement an instantiator for CCPs. We describe the structure of
an instantiator and present one simple algorithm that can be used
to compute the relevant instantiation. The final instantiation is in
a form that can be used together with the smodels solver.

Chapter 9. In this section we present a general programming method-
ology for ASP and give several examples of how it can be used.
The encodings that we use are uniform, which means that we have
one program that expresses the constraints of the problem domain
and the specific problem instances are defined using simple sets of
facts. The encodings are based on the generate-and-test method.

We also examine how we can use ASP solvers as a part of ordinary
programs. The idea is that we treat them like oracles that give
answers to NP-queries.

Chapter 10. We examine one ASP application area in detail, namely,
planning. We give a translation from a planning domain specifica-
tion language into CCPs. We also examine three simple planning
domains to see which kind of considerations we have to make when
encoding them.

1. INTRODUCTION 11

2 CARDINALITY CONSTRAINT PROGRAMS

Our approach is that we define the cardinality constraint logic programs
(CCPs) in two stages: a simple basic language and a full language that
is built on it. The idea is that the basic language is simple enough to
allow us to analyze its properties and to implement it efficiently. Then,
the full language adds more expressive power that makes it easier to
design programs. After the programmer has written an encoding with
the full language, the ASP system will automatically translate it into the
corresponding basic language program that is then given to a solver.

In this section we define the syntax of the basic language. These
definitions are based on the one presented in [193] but the notations are
simplified and changed to conform with [194].

We will examine the design criteria of the language in detail in Sec-
tion 7.1. The most important criterion is that we want to be able to do
the translation from the full to the basic language on the level of pro-
grams with variables, so we include enough features to the basic language
to allow us to do this.

The three most important additions to the syntax of normal logic
programs are cardinality atoms that allow us to do basic computation
based on numbers of true literals, conditional literals that allow us to
define sets of basic literals in a compact manner, and choice rules that
we use to generate the answer set candidates.

We will introduce several different subclasses of cardinality constraint
programs. Table 2.1 contains a list of those subclasses as well as a short
verbal description. These classes will be defined formally when we meet
them.

2.1 SYNTAX

The syntactic elements that we use are terms, atoms and basic literals,
conditional and cardinality literals, and rules.

2.1.1 Terms

A term is either a variable or an m-ary function term f(t1, . . . , tm)
where f is an m-ary function symbol and t1, . . ., tm are terms. A 0-ary
function symbol is also called a constant . Constants and variables are
atomic terms terms while terms of the form f(t1, . . . , tm) where m > 0
are compound terms .

We use the standard logic programming convention that all variables
start with an upper case letter and all other terms are function symbols.
Thus, X, Y , and Cost are variables while a, c, and 1 are constants. A
term is ground if it does not contain any variables.

When we have a function symbol that corresponds to some standard
mathematical function, we will often write the term using standard math-
ematical notation. Thus, we may use X + Y instead of +(X, Y).

12 2. CARDINALITY CONSTRAINT PROGRAMS

Language Abbr. Description
Basic programs CCP Programs formed using the basic constructs
Full programs FCCP Programs using the full cardinality literal

syntax
Extended ECCP The full language that is
programs further extended with strong negation and

weight literals.
Augmented ACCP Basic programs that are extended with
programs integral ranges
Simple programs SCCP Basic programs where all cardinality atom

bounds are integers.
Proper programs Programs with a finite number of predicate

symbols
ω-Restricted
programs

A decidable subclass of CCPs where each
variable that occurs in a rule has to also oc-
cur in a domain predicate in its body.

Positive Programs without any kind of negations in
programs them.
Stratified Programs that do not have negative recursion
programs on the level of predicate symbols
Locally Programs that do not have negative recursion
stratified on the level of atoms
programs

Table 2.1: Language glossary

2.1.2 Atoms and Literals

An atom is of the form:
p(t1, . . . , tn)

where p is an n-ary predicate symbol (denoted p/n) and the arguments
t1, . . ., tn are terms. We will use A to denote an arbitrary atom when we
are not interested in its arguments, and pred(A) to denote the predicate
symbol of A. The symbol > denotes a special atom that is always true
and ⊥ denotes an atom that is always false.

A basic literal is either an atom A or its negation not(A). The former
are called positive literals and the latter negative literals . We usually
leave out the parenthesis from the negative literals when writing CCPs.
We use L to denote a basic literal and L its complement1 when their
arguments are not relevant.

2.1.3 Conditional Literals

A conditional literal L is of the form:

X.L : A (2.1)

where the main literal L is a basic literal, the condition A is an atom,
and X is a set of local variables . If X = ∅, we write (2.1) simply as L : A

1So A = not(A) and not(A) = A.

2. CARDINALITY CONSTRAINT PROGRAMS 13

and if X is a singleton set, we leave out the braces surrounding it. For
example, p(Y) : >, X.a(X) : b(X), and {X, Y }.q(X, Y) : d(X, Y) are all
conditional literals. We will often write a conditional literal of the form
∅.L : > as L. These uses may be detected by context: if a basic literal
occurs in a position where a conditional literal should occur, then it is a
shorthand for the conditional literal.

The intuition is that the condition A controls when the literal L is
included in a rule: if A is true, then L is taken in, and if not, L is
discarded. We can think that a non-ground literal {X}.p(X) : d(X)
represents the set of atoms {p(a) | d(a) is true}. We will give a formal
definition for this in Section 3.7. A ground conditional literal is essentially
equivalent to a conjunction L ∧ A in its standard usage. However, we
will see a language extension in Section 7.3.5 that makes it behave like
an implication A→ L.

For all conditional literals L = L : A we use lit(L) = L and cond(L) =
A to denote the main literal and the condition, respectively.

2.1.4 Cardinality Atoms and Literals

A cardinality atom C is of the form:

Card(b, S) (2.2)

where the bound b is a term and S is a set of conditional literals. The
intuition is that C is true if at least b literals in S are true. The set
of positive conditional literals in S is denoted by pos(C) and the set of
negative conditional literals by neg(C). A cardinality literal C is either a
cardinality atom C or its negation not(C).

A cardinality atom is simple if b is an integer. For example, the
Card(2, {X.a(X) : d(X)}) is simple but Card(t + 1, {X.a(X) : d(X)}) is
not.

We will often write cardinality literals using the more compact syntax
of the Smodels system [148] where Card(b, S) is denoted as b S. For
example, Card(1, {a, not b}) is written as 1 {a, not b}.

2.1.5 Rules

Cardinality constraint programs have two kinds of rules, basic and choice
rules. A basic rule is of the form:

A← C1, . . . , Cn (2.3)

where the head A is an atom and Ci in its body are cardinality literals.
The rule (2.3) encodes the fact that if all literals in the body are true,
then the head must also be true. If the body is empty (n = 0), then we
call a basic rule fact since its head has to be always true. If there are no
negative cardinality literals in the rule body, the rule is positive.

A choice rule has the form:

{A1, . . . , Am} ← C1, . . . , Cn (2.4)

14 2. CARDINALITY CONSTRAINT PROGRAMS

where Ai are atoms and Ci cardinality literals. The intuition is that if
the rule body is true, then any subsets of atoms in the head may be true.
When defining the stable model semantics, we require that every atom
that is in a stable model has to have a justification for it. An applied
choice rule justifies its head. If an atom does not occur in the head of
any rule with a satisfied body, it has to be false.

A rule with an empty head is a notational shortcut for having a
new atom f as the head as well as an additional cardinality literal
Card(1, {not f}) in the rule body. For example, the rule

← body

becomes

f ← body, Card(1, {not f}) .

The effect of such a rule is to act as a constraint on the models of a
program. If the body of the original rule is satisfied, then the model
candidate is rejected.

We treat the special false atom ⊥ as if there was a rule:

← ⊥

in the program.

2.1.6 Cardinality Constraint Programs

A basic cardinality constraint program (CCP) P is a (possibly countably
infinite) set of rules.

We use Atoms(P) to denote the set of atoms that occur in anywhere
in P and Preds(P) to denote the set of its predicate symbols. For each
predicate symbol p ∈ Preds(P) we use P |p to denote the set of rules
where p occurs in the head.

A CCP P is positive if all literals (basic and cardinality) in it are pos-
itive, simple if all cardinality literals are simple, and proper if Preds(P)
is finite.

In this work we will mostly consider only proper CCPs. This is not
an essential limitation since we can always transform a non-proper pro-
gram P into a proper one: if our program has an infinite number of
predicate symbols p0/0, p1/0, . . ., we can replace them with a new predi-
cate symbol p/1 and constants t0, t1, Wherever we have an atom pi in
the program, we replace it with the atom p(ti). The construction works
in a similar way even if the predicate symbols pi have higher arities.

2.2 NOTATIONAL CONVENTIONS

In this section we define auxiliary notations for rules as well as a no-
tational shortcut for writing cardinality atoms that correspond to basic
literals of normal logic programs.

2. CARDINALITY CONSTRAINT PROGRAMS 15

Notations for Rules
We define some functions that allow us to identify basic literals that are
occurring in a rule. If R = H ← C1, . . . , Cn, not Cn+1, . . . , not Cn+m is a
basic rule. Then:

head(R) = {H}
body+

L(R) = {L | L ∈ pos(Ci) for some i ∈ [1, n]}
body+(R) = {lit(L) | L ∈ body+

L(R)}
body−L(R) = {L | L ∈ neg(Ci) for some 1 ≤ i ≤ n + m}∪

{L | L ∈ pos(Ci) for some n + 1 ≤ i ≤ n + m}
body−(R) = {lit(L) | L ∈ body−L(R)}

If R = {H1, . . . , Hn} ← body is a choice rule, then body+
L(R), body−L(R),

body+(R), and body−(R) are defined as above and:

head(R) = {H1, . . . , Hn} .

The body sets are defined so that all literals that occur purely posi-
tively are contained in sets body+

L(R) and body+(R). The former con-
tains the conditional literals and the latter their main literals. Liter-
als that are under at least one negation symbol are put into the sets
body−L(R) and body−(R). For example, when we have the rule R:

H ← Card(1, {A : >, not B : >}), not Card(1, {C : >, not D : >})
the sets are:

body+
L(R) = {A : >}

body−L(R) = {not B : >, C : >, not D : >}
body+(R) = {A}
body−(R) = {not B, C, not D} .

We will often write a rule H ← C1, . . . , Cn (where H is either A or
{A1, . . . , Am}) as a pair:

〈H, {C1, . . . , Cn}〉 .

This notation is convenient when we want to create rules using some
algorithm.

The notation Atoms(R) denotes the set of all atoms that occur in the
rule R.

2.2.1 Notational Shortcut for Literals

It would be very cumbersome if we had to write out all cardinality lit-
erals in the rule bodies so we adopt yet another notational shortcut. A
basic literal L that occurs in a rule body denotes the cardinality atom
Card(1, {L : >}). For example, the rule:

flies(B)← bird(B), not flightless(B)

stands for the rule:

flies(B)← 1 {bird(B) : >}, 1 {not flightless(B) : >} .

This concludes our basic language. We extend this to the full language
in Section 7.

16 2. CARDINALITY CONSTRAINT PROGRAMS

2.2.2 On Expressions, Formulas, and Variables

Before we can move on to define the semantics for the language we need
to define formally the concepts of expressions and formulas. The main
difference is that we can assign a formula a truth value but that is not
necessarily the case for expressions.

Definition 2.2.1 A formula is either a basic literal, a conditional literal,
a cardinality literal, or a rule.

Definition 2.2.2 An expression is a formula or a term.

We use the notation Var(E) to denote the set of variables that occur
in an expression E. An expression E is ground if and only if Var(E) = ∅.

If a variable is not local, we call it a global variable. This is a bit
of a misnomer since their scope is the rule that they occur in. That is,
we add an implicit foreach quantifier in front of each rule that binds all
global variables in the rule. We take the approach that a variable may
not occur both as a local and a global variable in a rule and we rename
conflicting variables if necessary.

In the case where it is important to make a distinction between local
and global variables that occur in a expression, we denote the sets with
Var1(E) and Varg(E), respectively.

For each atom A = a(t1, . . . , tn) we define the set of first-level variables
Vart(A) as:

Vart(a(t1, . . . , tn)) = {ti | ti is a variable } .

For example, the first-level variables of the atom A = a(X, Y, Y + Z)
are Vart(A) = {X, Y }.

2. CARDINALITY CONSTRAINT PROGRAMS 17

3 THE STABLE MODEL SEMANTICS

In this chapter we define the stable model semantics of CCPs. We start
by examining the simple positive programs and then extend it to cover all
simple ground programs. Finally, we add the variables to the semantics
as well as interpreted function symbols to cover the full basic language.

We define the semantics via reducts in a similar way how Gelfond
and Lifschitz [84] defined the stable model semantics for normal logic
programs. The idea is that we remove all negative literals from the
program with the respect of a set of ground atoms so that in the end we
are left with a positive program that has a unique least model. If that
model happens to coincide with the atom set that we started with, then
it is a stable model of the program.

3.1 NORMAL LOGIC PROGRAMS

A normal logic program has only basic rules and basic literals in it.
We obtain the reduct PM [84] of a program P with respect to a set
of atoms M by:

1. deleting all rules where the body contains a literal not A such that
A ∈M ; and

2. deleting all negative literals from the bodies of the other rules.

The set M is a stable model if and only if it is the least model of PM .
To visualize the process we can think that M contains those things

that we believe are true. If we believe that A is true, then a rule that
depends on its negation is irrelevant and we can discard it. Similarly,
if we believe that A is false, then a literal not A is true and can be
discarded.

Next, we check if M is a justified set of beliefs. We do it by determining
what atoms follow logically from our choices of beliefs. If it happens
that M does not coincide with the least model of the remaining program,
we either have a belief that we cannot support (A ∈ M but not in the
least model of PM) or we do not believe in a thing that we know to be
true (A /∈M but in the least model).

Example 3.1.1 Consider the program P :

a← not b

b← not a .

Let M1 = {a}. Then the reduct PM1 is:

a← .

Its least model is {a} = M1, so M1 is a stable model of P . On the other
hand, if we set M2 = {a, b}, then PM2 = ∅ whose least model is empty
so M2 is not stable.

18 3. THE STABLE MODEL SEMANTICS

3.2 SATISFACTION AND CLASSICAL MODELS

In this section we define what it means when we say that a formula is
satisfied by a set of atoms. The satisfaction relation is built up starting
from atoms and continuing up to rules. In the first case we consider only
simple programs where all cardinality atom bounds are integers. A set
of atoms that satisfies all rules of a program is its model.

Definition 3.2.1 Let M be a set of ground atoms. Then, M satisfies a
ground formula F (denoted M � F) if and only if one of the following
cases holds:

1. F is an atom A and A ∈M or A = >;

2. F is a negative literal not A and A /∈M ;

3. F is a conditional literal L = L : A and both M � L and M � A;

4. F is a cardinality atom Card(b, S) and

b ≤ |{L ∈ S |M � L}| ;

5. F is a negative cardinality literal not Card(b, S) and M 6� Card(b, S);

6. F is a basic rule H ← C1, . . . , Cn and M � H or M 6� Ci for some
1 ≤ i ≤ n; or

7. F is a choice rule {H1, . . . , Hm} ← C1, . . . , Cn.1

We use the standard convention where M satisfies a set S of formulas
if M � F for each F ∈ S.

Definition 3.2.2 Let P be a ground SCCP and M a set of atoms.
Then, M is a model of P (denoted M � P) if and only if for all rules
R ∈ P , M � R. The set of all models of P is denoted with M(P).

A model M of P is a minimal model (denoted MM(P)) if for all
models M ′ of P it holds that M ′ ⊆ M implies that M ′ = M . If P has
only one minimal model, it is called the least model.

When we want to distinguish the models of Definition 3.2.2 from stable
models, we call them classical models. This term comes from interpreting
a rule H ← L1, . . . Ln as an implication L1 ∧ · · · ∧ Ln → H.

3.3 REDUCTS

We define the reduct using a construct that is based on the one pre-
sented for extended programs in [145]. Informally, when we construct
the reduct PM we

1A choice rule is always satisfied because we can choose whether we want to include
the head of the satisfied rule into the model or not.

3. THE STABLE MODEL SEMANTICS 19

1. drop all rules that contain a negative cardinality literal that is not
satisfied by M as well as all negative cardinality literals from the
bodies of remaining rules; and

2. replace all negative conditional literals not A : B where M � not A
by > : B and drop all other negative conditional literals.

The intuition for handling conditional literals is that not A : B is
potentially true if not A is true but we have to check that the condition
is also true. If M 6� not A, we know that not A : B is not satisfied
regardless of the truth value of B and we can drop it.

Definition 3.3.1 (Reduct) Let L = L : A be a ground conditional
literal. Then its reduct LM with respect to the set of atoms M is:

LM =

{L : A}, if L is positive

{> : A}, if L is negative and M � L

∅, if L is negative and M 6� L .

Let C = Card(b, S) be a cardinality atom. Then its reduct CM with
respect to the set of atoms M is:

CM = Card(b, SM)

where
SM =

⋃
L∈S

LM .

Let R = 〈H, {C1, . . . , Cn, not Cn+1, . . . , not Cn+m}〉 be a ground basic
rule. Then, its reduct RM is the set:

RM =

{
{〈H, {CM

1 , . . . , CM
n }〉, if M � not Ci for all n < i ≤ n + m

∅, otherwise .

Let R = 〈{H1, . . . , Hi}, {C1, . . . , Cn, not Cn+1, . . . , not Cn+m}〉 be a choice
rule. Its reduct is the set:

RM = {〈H, {CM
1 , . . . , CM

n }〉 | H ∈ {H1, . . . , Hi} ∩M and

M � not Cj for all n < j ≤ n + m}

The reduct of a ground SCCP P with respect to M is the set:

PM =
⋃

R∈P

RM .

The reducts of conditional literals and rules are defined to be sets since
there is the possibility that we remove one of them altogether.

Example 3.3.1 Let M = {a} and three conditional literals be:

L1 = c : b

L2 = not a : b

L3 = not c : b .

20 3. THE STABLE MODEL SEMANTICS

Then,

LM
1 = {c : b}
LM

2 = ∅
LM

3 = {> : b} .

Since a ∈ M , not a is certainly not true and we remove not a : b alto-
gether. On the other hand, c /∈ M so not c : b may be satisfied so we
replace c with >.

Example 3.3.2 Consider the case where M = {a, b} and C = Card(2, {c :
>, not d : a, not b : e}). Now, CM = Card(2, {c : >,> : a}).

Example 3.3.3 Consider the one-rule program P :

{a} ← 1 {b : >, not c : >}, not 1 {not b : >, c : >}

Let M1 = {a, b}. Then, the reduct PM1 is:

a← 1 {b : >,> : >} .

In the case of the negative cardinality literal we note that

M1 6� Card(1, {not b : >, c : >})

so we keep the rule while removing the negated literal from it.
On the other hand, if we consider M2 = {a, c}, we see that M2 �

Card(1, {not b : >, c : >}) so the negative literal is not satisfied and
PM2 = ∅.

Finally, if M3 = {b}, then PM3 = ∅ even though the negative cardi-
nality literal is satisfied since a /∈M3.

All rules that belong to a reduct of an SCCP contain only positive
literals. All such programs have a unique least model. Our proof is very
similar to the one presented in [204] for normal programs.

Proposition 3.3.1 If P is a positive ground SCCP, then the intersection
M ′ =

⋂
{M |M ∈M(P)} is a model of P .

Proof. The set Atoms(P) of all atoms in P is a classical model of P
so the intersection is not empty and M ′ is well-defined.

Suppose that M ′ is not a model of M . Then, by Definition 3.2.1 there
exists a rule R:

H ← C1, . . . , Cn

in P where M ′ � Ci for all i but H /∈ M ′. Since P is positive, all
cardinality atoms Ci have the form:

Card(b, {A1 : B1, . . . , An : Bn})

and |{Aj : Bj | M ′ � Aj : Bj}| ≥ b for every Ci. Since for all models M
of P it holds that M ′ ⊆M , M � Ci, that is, all cardinality atoms Ci are
true in all models of P .

3. THE STABLE MODEL SEMANTICS 21

As we assumed that H /∈ M ′, there exists at least one model M of P
such that H /∈ M . However, this is a contradiction since then M 6� R
so M is not a model. Thus, M ′ =

⋂
{M |M ∈M(P)} is a model of P .

�
The result that a positive SCCP has a least model follows directly as a

corollary of Proposition 3.3 since the intersection of the models is unique.

Corollary 3.3.1 A positive SCCP has a least model.

Choice rules do not contribute atoms to the least model. When the
body of a choice rule is satisfied, we have a free choice of either adding
the head to a model or leaving it out. If we add it, we get a model that
is not minimal.

3.4 THE PROVABILITY OPERATOR

We can compute the least model of a positive program by using a one-step
provability operator TP that is defined analogously to the one presented
in [204].

Definition 3.4.1 Let P be a positive SCCP. Then, the provability op-
erator TP : Atoms(P)→ Atoms(P) is the function:

TP (S) = {A | A← C1, . . . , Cn ∈ P and S � Ci for all 1 ≤ i ≤ n} .
(3.1)

Given a set S of atoms, the TP operator adds those atoms that are
certainly true to the set TP (S). We do not consider choice rules here
because when the body of a choice rule is satisfied, we have the option
to either include the head or leave it out so a choice rule cannot derive
atoms for the least model.

Proposition 3.4.1 Let P be a positive SCCP. If S1 ⊆ S2, then TP (S1) ⊆
TP (S2), that is, the TP operator is monotone.

Proof. Since P contain only positive literals, it holds that S1 � Ci

implies that S2 � Ci for all cardinality atoms Ci occurring in the program.
Thus, TP (S1) ⊆ TP (S2). �

When we use TP , we start from the empty set and then repeatedly
add all those atoms who occur as heads in basic rules whose bodies are
satisfied by the set. Since TP is monotone, the well-known Kleene’s Fixed
Point Theorem guarantees that we eventually reach the least fixed point
of the operator.

In the programs that we will use in practice we reach this fixpoint after
a finite number of TP applications. However, if the program is infinite
we may have to apply TP a transfinite number of times.

We will now show that all fixpoints of TP are models of P .2

Proposition 3.4.2 If P is a positive SCCP and M is a fixpoint of TP ,
then M is a model of P .

2Note that the converse does not hold, there may be models that are not fixpoints.

22 3. THE STABLE MODEL SEMANTICS

Proof. We prove this via contrapositive by showing that if M is not a
model, then it cannot be a fixpoint of TP . By Definition 3.2.1 M is not
a model of P if P contains a rule:

H ← C1, . . . , Cn

where M � Ci for all i but H /∈ M . However, M is not a fixpoint of TP

since H ∈ TP (M) so TP (M) 6= M . �
We will use the notation len(A, P) to denote the number of times that

the TP operator has to be applied before A is derived into the model.
Before we can define it formally we need to introduce one auxiliary no-
tation.

Definition 3.4.2 Let f : S → S be an operator on some set S. Then,
for all subsets S ′ ⊆ S and all ordinals i:

1. f(S ′) ↑ 0 = S ′;

2. if i is a successor ordinal, then f(S ′) ↑ i = f(f(S ′) ↑ i− 1); and

3. if i is a limit ordinal, then f(S ′) ↑ i = f(S ′′) where

S ′′ =
⋃
j<i

f(S ′ ↑ j) .

Definition 3.4.3 Let P be a positive SCCP, and A be an atom in the
least fixpoint of TP . Then, the derivation length len(A, P) is the least
ordinal i such that TP (∅) ↑ i � A.

By Definition 3.2.1 M � > for each set M so len(>, P) = 0 for every
program P .

We will next prove that the least fixpoint of TP coincides with the
least model of P .

Theorem 3.4.1 If P is a positive SCCP, then the least fixed point of
the operator TP is the least model of P .

Proof. Let P be a positive SCCP, M be its unique least model, and M ′

be the least fixed point of TP . Since M ′ is a model by Proposition 3.4.2
and M is the least model, we get M ⊆M ′.

For proving the other direction we know that there exists some ordi-
nal k such that TP (∅) ↑ k = M ′. Now, we have three possibilities:

(i) k = 0. Then, M ′ = ∅. As M is the intersection of all models,
M = ∅.

(ii) k is a successor ordinal. Suppose that there exists at least one
atom A such that A ∈ M ′ but A /∈ M . We choose A so that
len(A, P) is the smallest possible among such atoms. Since A ∈M ′,
there exists a rule

A← Card(b1, S1), . . . , Card(bn, Sn)

3. THE STABLE MODEL SEMANTICS 23

where all Card(bi, Si) are satisfied in M ′′ = TP (∅) ↑ k − 1. As
A /∈M , we know that M 6� Card(bi, Si) for some i. Since all literals
are positive, this implies that there exists a conditional literal L =
A′ : B′ ∈ Si such that M ′′ � L but M 6� L since otherwise M would
not be a model. However, in this case A′ ∈ M ′ and len(A′, P) <
len(A, P) which contradicts our assumption that A has the shortest
derivation length of all atoms that belong to M ′ but not in M .
Thus, we know that M ′ ⊆M .

(iii) k is a limit ordinal. This case is otherwise identical to (ii) except
that for each cardinality atom Card(bi, Si) there exists some j < k
such that TP (∅) ↑ j � Card(bi, Si) but M 6� Card(bi, Si).

�

Example 3.4.1 Let P be the program:

a←
b← 1 {a : >}
c← 2 {b : >, e : >} .

We can find the least model of P by starting with the empty set and
repeatedly applying TP until we arrive to its fixpoint:

TP (∅) = {a}
TP ({a}) = {a, b}

TP ({a, b}) = {a, b} .

Thus, the least model of P is {a, b}. Here

len(a, P) = 1

len(b, P) = 2 .

Example 3.4.2 Consider the program P :

a←
b← 1 {a : b}

Now,

TP (∅) = {a}
TP ({a}) = {a} = M .

We cannot derive b since M 6� a : b as b /∈M .

Example 3.4.3 We will next examine a program P where we need a
transfinite number of TP applications before we get to the fixpoint:

a0 ←
a1 ← a0

a2 ← a1

a3 ← a2

...

24 3. THE STABLE MODEL SEMANTICS

Every application of TP adds one atom to the model:

TP (∅) ↑ 0 = {a0}
TP (∅) ↑ 1 = {a0, a1}
TP (∅) ↑ 2 = {a0, a1, a2}
TP (∅) ↑ k = {a0, . . . , ak}

...

TP (∅) ↑ ω = {a0, a1, . . .}
TP (∅) ↑ ω + 1 = {a0, a1, . . .}

Thus, every atom belongs in the least model and we need ω steps to reach
it.

3.5 THE STABLE MODEL SEMANTICS OF GROUND PROGRAMS

We are ready to formally define the stable models of ground simple CCPs.
A set of atoms is a stable model of a program if it coincides with the least
model of its reduct.

Definition 3.5.1 (Stable Models) The set of atoms M is a stable
model of a ground SCCP P if and only if M = MM(PM).

Next we study several example programs and their stable models.

Example 3.5.1 Consider the program P :

{a} ← 1 {not b : >}
{b} ← 1 {not a : >}

c← 1 {b : >} .

Consider the first model candidate M1 = {a}. The reduct PM1 is:

a← 1 {> : >}
c← 1 {b : >} .

Since MM(PM1) = {a} = M1, it is a stable model. The reduct with
respect to the set M2 = {b, c} is:

b← 1 {> : >}
c← 1 {b : >} .

and MM(PM2) = M2 so it too is a stable model. The final stable model
M3 = ∅. The reduct is in this case:

c← 1 {b : >} .

The program has also several additional classical models that are not
stable. For example, the reduct of M4 = {a, b, c} is

a← 1 {}
b← 1 {}
c← 1 {b : >}

whose least model is the empty set ∅.

3. THE STABLE MODEL SEMANTICS 25

Example 3.5.2 Consider the one-rule program:

a← 1 {not b : a}

Since b does not occur in the head of any rule, it cannot be true in the
least model of any reduct and we know that it is false in all stable models3

and we are left with two stable model candidates M1 = ∅ and M2 = {a}.
The reduct of both sets is the same:

a← 1 {> : a}

whose least model is ∅. Thus, M1 is stable but M2 is not.

Example 3.5.3 Consider the program P :

{a} ←
← 1 {a : >} .

As we defined in Section 2.1.5, an empty rule head is a shorthand for the
construct:

f ← 1 {a : >}, 1 {not f : >} .

The complete program has three classical models: M1 = ∅, M2 = {a, f},
and M3 = {f}. Next, we check which ones of these are stable. The reduct
PM1 is:

f ← 1 {a : >}, 1 {> : >}
and MM(PM1) = ∅ = M1 so it is a stable model. The reduct PM2 is:

a←
f ← 1 {a : >}, 1 {} .

Since its least model is {a}, it is not stable. Similarly, M3 is not stable
since MM(PM3) = ∅.

Thus, program P has only one stable model, M1, where the body of the
constraint ← 1 {a : >} is not true.

Example 3.5.4 Let P be the program:

{a} ←
b← not 1 {c : a}
c← .

This program has two stable models, M1 = {a, c} and M2 = {b, c}. The
reduct PM1 is:

a←
c←

and the reduct PM2 is:

b←
c← .

3We will later prove this as Theorem 3.6.1.

26 3. THE STABLE MODEL SEMANTICS

3.6 SOME PROPERTIES OF CARDINALITY CONSTRAINT PROGRAMS

We now examine some properties of stable models of SCCPs. The first
thing to note is that even though stable models are not necessarily min-
imal, a stable model is supported in the sense that all atoms in it have
to occur as the head of some rule whose body is also satisfied in the
model. Moreover, each atom has to have a support that has no positive
recursion. We call such support a justification.

After that we show that SCCPs are a natural extension of normal logic
programs in the sense that we have a trivial interpretation of a normal
program as an SCCP.

Atom Support and Justification
We start by expressing the basic property of supporting atoms in models.

Theorem 3.6.1 Let P be a ground SCCP and M one of its stable mod-
els. Then, for each atom A ∈ M there exists a rule R ∈ P such that
A ∈ head(R) and M � body(R).

Proof. Suppose that a supporting rule R does not exist for some atom
A ∈ M . Then, A cannot be derived using the TP M operator so A is not
in the least model of the reduct PM and M is not stable. �

We can strengthen this theorem by noting that we can order the atoms
in a stable model M in such a way that every atom A ∈ M comes after
every atom that occurs positively in the rule that is used to derive it. This
result is essentially the same that is presented for normal logic programs
in [64].

Theorem 3.6.2 Let P be a ground SCCP and M one of its stable mod-
els. Then, there exists a strict total order <M⊂ Atoms(P) × Atoms(P)
such that for all atoms H ∈M there exists a rule R ∈ P where:

1. H ∈ head(R);

2. M � body(R); and

3. for all positive cardinality atoms Card(b, S) ∈ body(R) it holds that

M ′ � Card(b, S), where

M ′ = {A ∈M | A <M H} .

Proof. Let <lex ⊂ Atoms(P) × Atoms(P) be the strict lexicographic
ordering of the atom names of P . We can define the desired strict total
order <M as follows:

<M= {〈A, B〉 | len(A, PM) < len(B, PM)}
∪ {〈A, B〉 | len(A, PM) = len(B, PM) and A <lex B} .

Since both < and <lex are strict total orders, <M is also one. Let Mi =
{A ∈ M | len(A, PM) = i} be the set of atoms that have the derivation
length of i.

3. THE STABLE MODEL SEMANTICS 27

Consider an atom H ∈M . Since M is stable, H is in the least model
of the reduct PM so there is a rule R with the reduct:

H ← Card(b1, S
M
1), . . . , Card(bn, S

M
n)

and Mlen(H,P M)−1 � Card(bi, S
M
i) for all i ∈ [1, n]. This means that

|{L ∈ Si |Mlen(H,P M)−1 � L}| ≥ bi .

The conditional literals in Si that are satisfied by Mlen(H,P M)−1 have two
possible forms:

1. L = A : B. In this case Mlen(H,P M)−1 � A and Mlen(H,P M)−1 � B,
so both len(A, P) < len(H, P) and len(B, P) < len(H, P). Thus,
A <M H and B <M H so {A, B} ⊆M ′ and M ′ � L.

2. L = > : B. In this case it is the reduct of a negative conditional
literal L′ = not A : B such that A /∈ M and Mlen(H,P M)−1 � B. As
before, this implies that B <M H so B ∈ M ′. Furthermore, since
M ′ ⊆M , A /∈M ′ so M ′ � not A and M ′ � L′.

Thus, |{L ∈ Si | M ′ � L}| ≥ bi and M ′ � Card(bi, Si) so <M is a strict
total order that fulfills the conditions of the theorem. �

Correspondence to Normal Logic Programs
In Section 2.2.1 we introduced the notational shortcut of using a basic
literal L to denote the cardinality atom Card(1, {L : >}) in a rule body.
We will now demonstrate that this notation is justified because an SCCP
containing only such literals and basic rules has the same set of stable
models as the corresponding normal logic program.

Proposition 3.6.1 If P is a ground normal logic program and M is its
stable model, then M is a stable model of the ground SCCP P ′ that is
obtained by substituting all literals L in rule bodies of P by the cardinality
atom Card(1, {L : >}).

Proof. Consider a rule from P and its counterpart in P ′:

H ← A1, . . . , An, not B1, . . . , not Bm

H ← Card(1, {A1 : >}), . . . , Card(1, {An : >}),
Card(1, {not B1 : >}), . . . , Card(1, {not Bm : >}) .

When we take the reduct of the first rule with respect to some set of
atoms M where {B1, . . . , Bm} ∩M = ∅ we get the rule:

H ← A1, . . . , An .

The operator TP will derive the head H exactly when all atoms Ai are
true.

The corresponding reduct of the CCP rule is:

H ← Card(1, {A1 : >}), . . . , Card(1, {An : >}),
Card(1, {> : >}), . . . , Card(1, {> : >}) .

28 3. THE STABLE MODEL SEMANTICS

All the cardinality atoms corresponding to the negative literals reduced
into trivially true atoms. Again, the TP ′ operator will derive H exactly
when all Ai are true.

If some atom Bi is true in M , then the reduct of the normal rule is
empty as it is discarded altogether. The reduct of the CCP rule will
contain a cardinality atom Card(1, {}) that is always false in its body, so
the rule cannot be used to derive H.

We see that the least models of both reducts will be the same. This
in turn means that their sets of stable models are also the same. �

3.7 PROGRAMS WITH VARIABLES

A rule with variables denotes the set of ground rules that can be ob-
tained by replacing its variables with ground terms. The process where
we replace the variables is called instantiation. As there are two types of
variables, local and global, the instantiation is defined in two parts. First
the local variables in conditional literals are replaced by their instantia-
tions, and then the same is done for the global variables.

Definition 3.7.1 A universe U is a set of ground terms. The base of
an SCCP P with respect to U is the set of all ground atoms that can be
formed using predicate symbols in P and terms in U .

We start by defining the instantiation in terms of the Herbrand uni-
verse of the program. Later when we add interpreted function symbols
we switch to use different universes.

Definition 3.7.2 The Herbrand universe UH(P) of a cardinality con-
straint program P is the set of all ground terms that can be constructed
using the function symbols that occur in P . The simple Herbrand uni-
verse U s

H(P) is the set of all ground terms that can be constructed using
function symbols that occur as arguments to predicate symbols of P .The
Herbrand base AtomsH(P) is the base of P with respect to U s

H(P).

The difference between simple and standard Herbrand universes is
that we do not include terms that occur as bounds in the simple one.
Even though the bounds were defined to be terms, they do not occur
in the atoms and we do not want to needlessly introduce them when
instantiating rules. The reason why we are willing to accept this addi-
tional complexity in the Herbrand universe definition is that they allow
us more flexibility in defining the bounds when we use interpreted func-
tions. For now, we continue with the assumption that the bounds are
simple integers.

Example 3.7.1 Let P be the program:

p(a)←
p(f(X))← p(X) .

3. THE STABLE MODEL SEMANTICS 29

Then,

U s
H(P) = {a, f(a), f(f(a)), f(f(f(a))), . . .}, and

AtomsH(P) = {p(a), p(f(a)), p(f(f(a))), . . .} .

Definition 3.7.3 (Substitution) A substitution is a function σV,U :
V → U that maps a set of variables V to a universe U . The set of all
substitutions from V to U is denoted by subs(V, U).

In case that V is empty, the only substitution is the empty function
∅ → U .

Definition 3.7.4 (Application) A substitution σV,U applied to a vari-
able v is the term:

vσV,U =

{
σV,U(v), v ∈ V

v, otherwise,

and a substitution σ applied to a function term t = f(t1, . . . , tn) is the
term tσ = f(t1σ, . . . , tnσ). A substitution σ applied to an atom A =
p(t1, . . . , tn) is the atom Aσ = p(t1σ, . . . , t1σ), to a conditional literal
L = X.L : A is the conditional literal X.Lσ : Aσ, and to a cardinality
atom C = Card(b, S) is the cardinality atom Cσ = Card(bσ, {Lσ | L ∈
S}).

Whenever we apply a substitution directly to a conditional literal, we
substitute only global variables. We handle local variables by expanding
them. We replace such literal by the set of all literals that can be formed
by substituting terms in the Herbrand universe for all local variables.
Though, we give the definition in a more general form so that we can
later use an arbitrary universe.

Definition 3.7.5 (Expansion) Let L = X.L : A be a conditional literal
and U be an universe. Then, the expansion E(L, U) of L is the set:

E(L, U) = {Lσ : Aσ | σ ∈ subs(X, U)} .

The expansion of a cardinality atom C = Card(b, S) is

E(C, U) = Card(b, S ′) where

S ′ =
⋃
L∈S

E(L, U) .

Example 3.7.2 Let U = {a, b, c} and L = X.p(X, Y) : q(X). Then,
E(L, U) = {p(a, Y) : q(a), p(b, Y) : q(b), p(c, Y) : q(c)}.

Definition 3.7.6 (Instantiation) Let U be a universe. Then, the in-
stantiation inst(R,U) of a basic rule R = 〈H, {C1, . . . , Cn}〉 is the set of
rules:

inst(R,U) = {〈Hσ, {E(C1, U)σ, . . . , E(Cn, U)σ}〉
| σ ∈ subs(Varg(R), U)}

30 3. THE STABLE MODEL SEMANTICS

The instantiation of a choice rule R = 〈{H0, . . . , Hi}, {C1, . . . , Cn}〉 is the
set of rules:

inst(R,U) = {〈{H0σ, . . . , Hiσ}, {E(C1, U)σ, . . . , E(Cn, U)σ}〉
| σ ∈ subs(Varg(R), U)} .

Definition 3.7.7 (Herbrand Instantiation) The Herbrand instanti-
ation of an SCCP P is the set of rules:

instH(P) =
⋃

R∈P

inst(R,U s
H(P)) .

Example 3.7.3 Let P be the program:

d(a)←
d(b)←

{p(X)} ← 1 {Y.q(X, Y) : d(Y)} .

Now, U s
H(P) = {a, b}. Thus, the expansion of the only conditional literal

is {q(X, a) : d(a), q(X, b) : d(b)}. The complete Herbrand instantiation
of P is then:

d(a)←
d(b)←

{p(a)} ← 1 {q(a, a) : d(a), q(b, a) : d(a)}
{p(b)} ← 1 {q(a, b) : d(b), q(b, b) : d(b)} .

Example 3.7.4 Let P be the program:

s(0)←
s(f(X))← s(X)

{a(X)} ← s(X)

{b(X)} ← s(X)

c(Y)← 1 {X.a(X) : b(X)}, not c(Y) .

Since P has a non-constant function symbol, its simple Herbrand universe
is infinite U s

H(P) = {0, f(0), f(f(0)), . . .}. Its Herbrand instantiation is
also infinite as well as the expansion of L = X.a(X) : b(X):

E(L, P) = {a(0) : b(0), a(f(0)) : b(f(0)), a(f(f(0))) : b(f(f(0))), . . .} .

The Herbrand instantiation includes a countably infinite number of
rules of the form:

c(f i(0))← 1 {a(0) : b(0), a(f(0)) : b(f(0)), . . .}, not c(f i(0))

where there is an infinite number of ground conditional literals in each
cardinality atom.

A set of ground atoms is then a stable model of an SCCP if it is a
stable model of its Herbrand instantiation.

3. THE STABLE MODEL SEMANTICS 31

Definition 3.7.8 (Stable Models) Let P be an SCCP. Then, a set of
atoms M is a stable model of P if and only if M = MM(instH(P)M).
The set of all stable models of P is denoted with SM(P).

Example 3.7.5 Let P be the CCP:

d(0)←
d(1)←

{a(X)} ← d(X) .

Then, P has four stable models: M1 = {d(0), d(1)}, M2 = {d(0), d(1), a(0)},
M3 = {d(0), d(1), a(1)}, and M4 = {d(0), d(1), a(0), a(1)}.

Example 3.7.6 Let P be the program:

even(0)←
even(f(X))← odd(X)

odd(f(X))← even(X) .

Since we have a non-constant function symbol in P , its Herbrand instan-
tiation is infinite. As the program is positive, it has a unique least model
that is:

M = {even(f 2i(0)), odd(f 2i+1(0)) | i ∈ N} .

Example 3.7.7 Consider again the program P from Example 3.7.4. We
can otherwise choose the truth values for a(f i(0)) and b(f i(0)) freely, but
we get a contradiction if both of them are true for some i. In particular,
every set A ⊆ {a(f i(0)) | i ∈ N} is a stable model. Thus, P has an
uncountable number of stable models.

We conclude this section by defining three auxiliary concepts. The
first one is the extension of a predicate symbol.

Definition 3.7.9 (Extension) Let P be a CCP. Then the extension of
a predicate symbol p ∈ Preds(P) in a stable model M of P is the set:

ext(p) = {A | A ∈M and pred(A) = p} .

We often leave out the predicate symbol when we write out the exten-
sion. For example, ext(p) = {p(a, b), p(a, c)} can be written as ext(p) =
{〈a, b〉, 〈a, c〉}.

The second concept is equivalence. For the purpose of most of this
work the simplest possible definition of equivalence is enough and we say
that two programs are equivalent if they have exactly the same stable
models. Other forms of equivalence have been proposed in the litera-
ture [116, 59, 151].

Definition 3.7.10 (Equivalence) Two CCPs P1 and P2 are equivalent
if and only if SM(P1) = SM(P2).

Finally, we define the notion of logical consequences.

32 3. THE STABLE MODEL SEMANTICS

f(a)

plus(1, plus(1, 1))

plus(plus(1,1),1)

plus(1, f(a))

f(a)

3

e

HU
U

Figure 3.1: From the Herbrand universe to an arbitrary universe

Definition 3.7.11 (Logical Consequence) Let P be a CCP. Then, a
ground atom A is a

1. brave consequence of P if there exists a stable model M of P such
that A ∈M ; and

2. cautious consequence of P if and only if A ∈ M for every stable
model M of P .

3.8 INTERPRETED FUNCTION SYMBOLS

In many practical applications we want to use function symbols that are
interpreted . For example, if we have a term t = plus(X, Y) and the values
of X and Y are bound to 1 and 2, respectively, we want to replace t by 3,
not by the Herbrand term plus(1, 2).

To allow us to have interpreted function symbols we have to leave the
realm of the Herbrand terms and instantiate the program with respect
to some other universe U . To see why this is necessary, examine the
program P :

a(1)←
b(plus(X, Y))← a(X), a(Y) .

Its Herbrand universe is:

UH(P) = {1, plus(1, 1), plus(plus(1, 1), 1), plus(1, plus(1, 1)), . . .}

The constant 2 does not occur in the program at all, so if we want to use
the computed value of plus(1, 1), we have to add the new ground term to
the program.

A standard stable model is a subset of the Herbrand base of the pro-
gram and an interpreted stable model is a subset of base of the program
with respect to the universe U .

We do not want to impose any restrictions on the precise nature of U :
it may be the Herbrand universe, some subset of it, or an arbitrary set
of elements.

3. THE STABLE MODEL SEMANTICS 33

3.8.1 Interpretations

An interpretation is a function that maps the terms of Herbrand universe
into elements of U . When we instantiate a program, we replace all ground
Herbrand terms by their interpretations.

Definition 3.8.1 (Interpretation) Let U1 and U2 be universes. Then,
an interpretation I is a function:

I : U1 → U2 .

We will extend the notation I to cover also other expressions. The
idea is that we interpret all terms that occur in the expression. For exam-
ple, I(a(t1, . . . , tn)) = a(I(t1), . . . , I(tn)) and I(Card(b, {L1 . . . , Ln})) =
Card(I(b), {I(L1), . . . , I(Ln)}).

In the following examples we will use the syntax where the symbols
that belong to the universe U are in bold face so that they can be differ-
entiated from the Herbrand terms.

Example 3.8.1 Consider the program P :

s(a)←
q(0)←

s(f(X))← s(X)

q(plus(X, 1))← q(X) .

The Herbrand universe

UH(P) = {a, 0, 1, f(a), f(0), f(1), plus(0, a), plus(0, 0), plus(0, 1), . . .} .

Suppose that we want the symbol f/1 to have the Herbrand interpretation
that is restricted to the constant a while plus/2 denotes the common arith-
metic addition over natural numbers. Then, we can define the universe
to be:

U = UN ∪ Uf ∪ {e}, where

UN = {0,1,2, . . .}
Uf = {a, f(a), f(f(a)), . . .} .

The interpretation I is then:

I(t) =

0, if t = 0

1, if t = 1

I(x) + I(y), if t = plus(x, y) and I(x), I(y) ∈ UN

t(x), if t = f(x) and I(x) = x ∈ Uf

e, otherwise

A Herbrand term that is formed using only numbers and the plus-function
evaluates to the corresponding sum, terms that consist only of symbols
f and a evaluate to themselves, and all other terms map to the error

34 3. THE STABLE MODEL SEMANTICS

term e. The intuition for e is that it is our way of telling which operations
are undefined.

Consider the term t1 = plus(1, plus(1, 1)). Its evaluation proceeds as
follows:

I(plus(1, plus(1, 1))) = I(1) + I(plus(1, 1))

= I(1) + (I(1) + I(1))

= 1 + (1 + 1)

= 1 + 2 = 3 .

On the other hand, the term t2 = plus(1, f(a)) evaluates to the error
term e since I(f(a)) = f(a) /∈ UN.

3.8.2 Interpreted Cardinality Atoms

We first defined our semantics for simple programs where all cardinality
atom bounds were integers and we introduced the concept of a simple
Herbrand universe to hide the complications that arises from more gen-
eral bounds. Our approach for handling cardinality atoms and literals is
that:

1. we instantiate the variables that occur in a cardinality atom; and

2. interpret the resulting ground terms, including the bound.

Example 3.8.2 Consider the cardinality atom

Card(minus(2, 1), {a(plus(1, 1)), b(plus(2, 1))})

and an interpretation I where the functions have the usual arithmetic
definitions. Then,

I(Card(minus(2, 1), {a(plus(1, 1)), b(plus(2, 1))}))
= Card(1, {a(2), b(3)}) .

Now that we can have arbitrary terms in the bounds, we have to
decide what to do with bounds that do not evaluate to integers. The
simplest way to do it is to state that a cardinality atom with a non-integer
bound is always false. This approach has the advantage that it makes
the semantics easy to define since we can use the complete instantiation
without worrying about instances where variables get substituted with
non-numbers.

In Chapter 4 we will work with programs where we have to examine
only a part of the instantiation and there we could take another approach
where we demand that an interpretation has to evaluate all bounds to
integers. This approach is more useful for practical implementations since
it allows us to treat non-integer bounds as errors in the program.

We define I-satisfaction of formulas analogously to Definition 3.2.1.
The only difference is now that we interpret the terms that occur in
them.

3. THE STABLE MODEL SEMANTICS 35

Definition 3.8.2 (I-Satisfaction) Let M be a set of ground atoms.
Then, M I-satisfies a ground formula F (denoted M �I F) if and only
if one of the following cases holds:

1. F is an atom A and I(A) ∈M or A = >;

2. F is a negative literal not A and I(A) /∈M ;

3. F is a conditional literal L = L : A and both M �I L and M �I A;

4. F is a cardinality atom Card(b, S) and

I(b) ≤ |{L ∈ S |M �I L}| ;

5. F is a negative cardinality literal not Card(b, S) and M 6�I Card(b, S);

6. F is a basic rule H ← C1, . . . , Cn and M �I H or M 6�I Ci for some
1 ≤ i ≤ n; or

7. F is a choice rule {H1, . . . , Hm} ← C1, . . . , Cn.

We can then find the least model of a positive CCP with the one-
step provability operator of Definition 3.4.1 by using the �I satisfaction
relation.

3.8.3 Interpreted Instantiation

When we instantiate a program with respect to an interpretation I, we
replace every ground term t that occurs in it with its interpretation I(t).

Definition 3.8.3 (I-Instantiation) Let P be a CCP, U a universe,
and I : UH(P)→ U be an interpretation. Then, the I-instantiation of a
rule R = H ← C1, . . . , Cn ∈ P is the set of rules:

inst(R,U, I) = {I(Hσ)← I(E(C1, U)σ), . . . , I(E(Cn, U)σ) |
σ ∈ subs(Varg(R), UH(P))}

where H is either A or {A1, . . . , An} for some atom A. The I-instantiation
of P is the set:

inst(P, U, I) =
⋃

R∈P

inst(R,U, I) .

Example 3.8.3 Consider Example 3.8.1. The instantiation of the third
rule s(f(X)) ← s(X) can be divided into two parts: those rules that do
not contain the error term e and the rules that have it. The first part
contains the countably infinite set of rules:

s(f(a))← s(a)

s(f(f(a)))← s(f(a))

...

36 3. THE STABLE MODEL SEMANTICS

In the second part we have rules that are of the form:

s(e)← s(e)

s(e)← s(0)

s(e)← s(1)

...

These ground instances result from substitutions where I(f(x)) = e.

As we see from the previous example, mixing evaluated function sym-
bols with Herbrand interpretations generates potentially an infinite num-
ber of spurious rules. We will visit this problem and show how to resolve
it in Chapter 4.

Example 3.8.4 Consider the program:

a(1)←
b(1)←
b(2)←

{c(X)} ← b(X)

d(X)← X {Y.c(Y) : b(Y)}, a(X) .

The ground instances of the final rule are:

d(1)← 1 {c(1), c(2)}, a(1)

d(2)← 2 {c(1), c(2)}, a(2) .

3.8.4 Interpreted Stable Models

We define I-stable models analogously to standard stable models, except
that we use the I-interpretation instead of the Herbrand interpretation.

Definition 3.8.4 (I-Stable Models) Let P be a CCP, U a universe,
and I : UH(P)→ U be an interpretation. Then, a set of atoms M is an
I-stable model of P if and only if M = MM(inst(P, U, I)M).

As we do not impose any restrictions on the nature of I, the set of
I-stable models may be completely different from the set of stable models
under the Herbrand interpretation. It is possible that a program that has
no I-stable models has a Herbrand stable model or vice versa. The next
two examples give concrete examples in both directions.

Example 3.8.5 Let I be an interpretation that maps plus to natural
number addition and P be the program:

a(plus(1, 2))←
b(plus(2, 1))←

← a(X), b(X)

The program P has a stable model under the Herbrand interpretation but
it does not have an I-stable model since I(plus(1, 2)) = I(plus(2, 1)) = 3.

3. THE STABLE MODEL SEMANTICS 37

Example 3.8.6 We now modify the program P so that it will have a
stable model under I but not under the Herbrand interpretation.

a(plus(1, 2))←
b(plus(2, 1))←

f ← a(X), b(X)

← not f .

In spite of this difference there is a connection between the Herbrand
interpretation and an arbitrary one. Every ground term that occurs in
the I-instantiation is the interpretation of at least one Herbrand term.
This means that we can extend the definition of satisfaction to cover any
atoms from the Herbrand base and say that a Herbrand atom p(t1, . . . , tn)
is satisfied in an I-stable model M if and only if p(I(t1), . . . , I(tn)) ∈M .

3.8.5 On the Nature on Interpretations

We allow an interpretation to be an arbitrary function between the uni-
verses. In practice, we want to use functions that

1. can be computed efficiently; and

2. induce a unique instantiation for the program.

The reason for the first property is clear. If we want to compute I-
stable models, we need to be able to compute the interpretation in a
reasonable time.

The reason for the second property is not as obvious since letting the
instantiation depend on the candidate stable model would allow us more
expressive power. There are two main problems with this, a practical
one and a theoretical one.

The practical problem is that we want to compute the stable models
bottom-up by first instantiating the program and then computing the
models. If a program can have more than one instantiation, we may
have to instantiate it separately for each model candidate. This adds a
significant amount of computational effort.

The theoretical problem is that by defining the interpretation suitably
we can use it to induce extra choices to the program. When an instantia-
tion can depend on the model candidate, we cannot guarantee that even
the simplest CCPs have a unique stable model. We illustrate this with
the next example.

Example 3.8.7 Consider the program P :

p(X)← q(X), r(X)

q(a)←
r(b)← .

38 3. THE STABLE MODEL SEMANTICS

The Herbrand instantiation of the program is:

p(a)← q(a), r(a)

p(b)← q(b), r(b)

q(a)←
r(b)← .

Let U = {1,2,3}. Let I(M) be an interpretation athat depends on a
stable model candidate M that is defined as:

I(M)(a) =

{
1, p(1) ∈M

2, p(1) /∈M

I(M)(b) =

{
1, p(1) ∈M

3, p(1) /∈M .

Consider the set M1 = {p(1), q(1), r(1)}. As p(1) is true in it, I(M)(a) =
I(M)(b) = 1 and the interpretation of the Herbrand instantiation is:

p(1)← q(1), r(1)

q(1)←
r(1)←

It has the least model {q(1), r(1), p(1)} = M1 so M1 is I-stable.
Next, consider the set M2 = {q(2), r(3)}. As p(1) /∈M2, the interpre-

tation is now:

I(M)(a) = 2

I(M)(b) = 3

and the instantiation is interpreted as:

p(2)← q(2), r(2)

p(3)← q(3), r(3)

q(2)←
r(3)← .

Its least model agrees with M2 so it is also stable.

Throughout this work we will be using only interpretations where each
program has only one instantiation.

3.9 THE STANDARD INTERPRETATION

We will now present a standard interpretation that we will be using in
the examples of this work. Since the Herbrand universe may be different
for every program, we cannot give a single interpretation that works all
times but instead we give a schema for constructing it.

The basic idea is that the set of function symbols F(P) that occur in
a program P is divided into two parts:

3. THE STABLE MODEL SEMANTICS 39

Function Infix Description
plus/2 X + Y Addition

minus/2 X − Y Subtraction
times/2 X × Y Multiplication
div/2 X/Y Integer Division
mod/2 X mod Y Modulus
pow/2 XY Exponentation
abs/1 — Absolute value

Table 3.1: The arithmetic operations

1. FH(P) containing symbols with the Herbrand interpretation; and

2. FI(P) containing symbols with some other interpretation.

Example 3.9.1 Consider the program P from Example 3.8.1. There we
have:

FH(P) = {a/0, f/1}
FI(P) = {0/0, 1/0, plus/2} .

The constant a and the unary function symbol f have the Herbrand in-
terpretation while the two numeric constants and plus have the standard
arithmetic interpretation.

The interpretation is formed along the principle of Example 3.8.1. We
will introduce a number of arithmetic operators that are evaluated in the
usual way. These operators are shown in Table 3.1.

In addition to the interpreted functions we add also several related
built-in predicates. These predicates implement term equality testing
and other relational comparisons.

3.9.1 The Universe

The target universe U(P) is composed of three parts:

U(P) = Uf (P) ∪ UZ ∪ Uc,

where the different term types are:

1. a set Uf (P) containing all ground terms that can be constructed
using the function symbols of FH(P).

2. a set UZ of integers; and

3. a set Uc of additional constants.

The set Uf (P) is a subset of the Herbrand universe and will usually
contain at least most of the non-numeric constant symbols that occur in
the program. The set Uc contains the error term e. Any of the three
components of the universe may be left out if desired.

40 3. THE STABLE MODEL SEMANTICS

Example 3.9.2 Continuing Example 3.9.1 we have:

Uf (P) = {a, f(a), f(f(a)), . . .}
UZ = Z
Uc = {e} .

Note that there are situations where we do not want to use such a strict
separation between arithmetic and Herbrand functions. For example, we
may have a situation where we want to mix them. For example, if we
have terms of the form f(a, n) where a is a non-numeric constant and n
is a number. Then we want to allow things like writing f(A, X + Y) in
the rules. In these cases we need to define the interpretation in some
other way.

3.9.2 Interpretation Functions

We compose the interpretation Is in parts. We define an auxiliary func-
tion If for every function symbol in f ∈ FI(P) that tells how that symbol
is interpreted.

Definition 3.9.1 The standard interpretation Is : UH(P)→ U(P) of a
CCP P is the function:

Is(t) =

f(x1, . . . , xn), if t = f(t1, . . . , tn), f ∈ FH(P), and

Is(ti) = xi ∈ Uf (P) for all i ∈ [1, n]

If (Is(t1), . . . , Is(tm)), if t = f(t1, . . . , tm) and f ∈ FI(P)

e, otherwise

where If is the interpretation function of f .

Here the idea is that the terms with the Herbrand interpretation will
evaluate to themselves and for the rest of the functions the definition
of If is responsible for handling all possible arguments. Mixed terms
where an arbitrary function symbol occurs inside a Herbrand term are
interpreted as errors.

We will present here an interpretation function only for addition and
multiplication, the rest are defined analogously.

Numbers
We treat numbers that occur in a program as 0-ary interpreted function
symbols. For each number n we define the function:

In() = n .

For example, I5() = 5.

Addition
The interpretation function I+ : U × U → U is defined as follows:

I+(t1, t2) =

{
t1 + t2, if t1, t2 ∈ UZ

e, otherwise .

3. THE STABLE MODEL SEMANTICS 41

< >
≤ ≥
= 6=

Table 3.2: The standard predicate symbols

Multiplication
The interpretation function I× : U × U → U is defined as follows:

I×(t1, t2) =

{
t1 × t2, if t1, t2 ∈ UZ

e, otherwise .

Numerically Interpreted Constants
In many cases, especially when we are working with problems that are
somehow parametrized with numbers, it is useful to set the parameters
in the interpretation. For example, we may have a rule:

← cost(X), greater(X, k)

where we want to set the value of k from outside the program. A conve-
nient way to do it is to include k in the set of interpreted functions and
define Ik to evaluate to the desired value.

3.9.3 Standard Predicate Symbols

Strictly speaking standard predicate symbols are not a part of the stan-
dard interpretation since it handles only terms, but it is useful to have
several relational operators available for use. The standard predicates
are used like other symbols except that their extensions are fixed and de-
pend only on the universe. Formally, we can think that they are defined
by a large set of facts and they may not occur in heads of rules in the
program. The standard predicate symbols are presented in Table 3.2.

The comparison predicates are defined so that they can have both
numbers and other terms as arguments. If both arguments are num-
bers, then they are compared numerically. Otherwise, the comparison
is made lexicographically based on the syntactic representation of the
ground term. For example, aa < ab.

42 3. THE STABLE MODEL SEMANTICS

4 OMEGA-RESTRICTED PROGRAMS

We define the semantics of a program with global variables to coincide
with the stable models of its instantiation. This has the practical ad-
vantage that it allows us to use existing solvers that work with ground
programs. We compute stable models by instantiating the program and
then computing the stable models of the resulting ground program. How-
ever, here we run into the problem that the Herbrand instantiation of a
program is infinite if there is at least one non-constant function symbol.
In these cases we cannot create the complete instantiation to find the
models.

We could hope that we had some method of computing the stable
models without having to compute the full instantiation. Unfortunately,
this hope turns out to be false. Marek et al. [134] showed that the
existence of a stable model for a normal logic programs with function
symbols is undecidable and such programs are essentially a special case
of CCPs.

Theorem 4.0.1 The problem of existence of a stable model of a cardi-
nality constraint program is undecidable in the general case.

Proof. Marek et al. [134] showed that the stable model semantics of
normal logic programs with function symbols is undecidable. By Propo-
sition 3.6.1 each normal logic program corresponds to a CCP. �

We are interested in finding a class of cardinality constraint programs
for which we can guarantee that we can always compute the stable models
and that the models themselves are finite. Moreover, we want the class
to be simple enough that we can easily check whether a program belongs
in it or not. We want that the check itself can be done by just examining
the syntax of the rules.

The idea that we use is based on the well-known concept of range-
restriction [142]. The basic idea of range-restriction is that every variable
that occurs in a rule has to occur also in at least one positive atom in
the rule body. For example, the rule

a(X, Y)← b(X), c(Y), not d(X, Y)

is range-restricted but

a(X, Y)← b(X), not d(X, Y)

is not since Y does not occur in a positive literal in the rule body. Range-
restriction is used to bind values of variables so that we do not have to
instantiate the rule for all ground terms that occur in a program.

The standard range-restriction is not strong enough for our purposes
since it does not ensure finiteness of the models. For example, the pro-
gram

s(a)←
s(f(X))← s(X)

4. OMEGA-RESTRICTED PROGRAMS 43

is range-restricted but has an infinite stable model. Thus, we modify
the concept a bit and introduce ω-restriction [191]. We define a set of
predicate symbols, called domain predicates, in a manner that guarantees
that their extensions are always finite. Every variable that occurs in a
rule has to occur also in a positive domain literal, and since the domain
literals have finite extensions, we know that every rule has only a finite
number of ground instances that may justify atoms in stable models.

In this chapter we consider only proper programs, that is, programs
that have a finite number of predicate symbols. Also, we use the Her-
brand interpretation for the programs. The definitions generalize natu-
rally to the interpreted functions.

4.1 BASIC CONCEPTS

We divide the predicate symbols of a program into two classes: domain
and non-domain predicates. A predicate symbol is a domain predicate
if it meets several syntactic criteria that ensure that its extension is the
same in every stable model of the program. Otherwise, it is a non-domain
predicate.

When a program is instantiated, the domain predicates are used to
prune out rules that have provably unsatisfiable bodies. This way our
instantiation stays finite and we can compute the stable models.

The domain predicates are defined by the largest grounded stratifi-
able [27] subset of the rules in the program. The base case is that every
predicate that is defined using only ground facts is a domain predicate.
Then we form a hierarchy where more complex domain predicates are
defined in the terms of simpler domain predicates without using negative
recursion.

We will now go through one example on an informal level before giving
the formal definitions.

Example 4.1.1 Consider the program P :

a(1)←
a(2)←
b(X)← a(X)

{c(X)} ← b(X) .

Here a/1 is defined using only facts so we immediately know that the
extension of a/1 is {a(1), a(2)} in every stable model of P . Next, since
b/1 depends only on a/1 and b(X) is true if and only if a(x) is true,
we note that it too has a fixed extension and we can use it as a domain
predicate.

On the other hand, the extension of the predicate symbol c/1 is not
fixed and there are four different possibilities: ∅, {c(1)}, {c(2)}, and
{c(1), c(2)}. Thus, we cannot use c/1 as a domain predicate.

In the later part of this section we will use the well-known Hamiltonian
cycle problem as our running example. A Hamiltonian cycle is a path
that visits all nodes of a graph without going through any node twice.

44 4. OMEGA-RESTRICTED PROGRAMS

Example 4.1.2 Let PHC be the following program for computing Hamil-
tonian cycles for undirected graphs:1

{hc(X, Y)} ← edge(X, Y)

← 2 {Y.hc(X, Y) : edge(X, Y)}, vtx(X)

r(Y)← 1 {r(X), initial(X)}, hc(X, Y), edge(X, Y)

← vtx(X), not r(X)

edge(Y,X)← edge(X, Y), vtx(X), vtx(Y) .

This program has a stable model if and only if a graph that is defined
with facts for vtx/1 and edge/2 has a Hamiltonian cycle, and the edges
that belong to the cycle correspond to those atoms hc/2 that are true.

The first rule allows us to select any edge from the graph into the cycle.
The second rule rejects those cycle candidates where two or more edges
leave out of one node. The third rule computes the set of vertices that we
can reach from a given initial vertex along the edges in the cycle and the
fourth rule rejects those candidates that do not visit all vertices. Finally,
the fifth rule ensures that all edges can be traversed in both directions.

With this encoding we do not have a specific rule for asserting that
there should be an incoming edge for every vertex since the reachability
predicate r/1 ensures that we will eventually visit every vertex.

4.2 DEPENDENCY GRAPHS

In this section we define what it means for a predicate to depend on
another. Our definition for the dependency graph differs significantly
from the standard construction so the theoretical results from the normal
logic programs do not carry over. Also, our dependency graph is defined
on the level of predicate symbols while it is often defined on the level of
atoms and ground programs.

The main difference comes in handling negative dependencies. In the
standard definition an atom that occurs in the head of a rule depends
positively on each positive literal that occurs in the body and negatively
on each negative one. If a normal program is positive, it has only one
stable model where the atoms are derived straightforwardly with the TP

operator and an atom that depends positively on itself cannot justify
itself into the model. If an atom depends negatively on itself, it can
cause a choice point where we can either take the atom into a stable
model or leave it out.

In our approach we extend the definition of a negative dependency to
cover also choice rules and conditional literals. A choice rule gives us an
option to either include the head in a model or leave it out. This is a
similar behavior to a normal negative dependency loop, so we make the
head to depend on negatively on itself.

We also add a negative dependency between the main literal and the
condition of a conditional literal. The reason for this is technical. We

1This encoding assumes that for each edge {u, v} in the graph there exists a fact
edge(u, v)← in the program.

4. OMEGA-RESTRICTED PROGRAMS 45

vtx initial

edge

hc

r

positive
negative

Figure 4.1: The dependency graph of the Hamiltonian cycle program.

want to be able to examine each conditional literal C = X.L : A in
isolation. If a program contains function symbols with the Herbrand in-
terpretation, the expansion of C is infinite. However, if the extension of A
is finite in each stable model, there is only a finite number of satisfiable
instances L′ : A′ in it and we can drop out all the unsatisfiable ones
without affecting the set of stable models. We will define the class of ω-
restricted programs in such a way that A cannot occur in the head of any
rule depends on C, either directly or via a longer sequence of rules. Then
we can know that C cannot be used to justify any new instances of A
to a stable model, so we do not have to consider that possibility when
examining it.2 Adding a negative dependency between the main literal
and the condition is a technical trick that will guarantee this result.

Definition 4.2.1 Let P be a cardinality constraint program. Then, the
one-step dependency relation D1(P) ⊆ Preds(P) × Preds(P) is defined
as follows:

D+
1 (P) = {〈pred(H), pred(L)〉 | R ∈ P, H ∈ head(R) and L ∈ body+(R)}

D−
1 (P) = {〈pred(H), pred(L)〉 | R ∈ P, H ∈ head(R) and L ∈ body−(R)}

∪ {〈pred(L), pred(A)〉 | there exists L ∈ L(P) where L = lit(L)

and A = cond(L)}
∪ {〈pred(H), pred(H)〉 | there exists R ∈ P : H ∈ head(R) and

R is a choice rule}
D1(P) = D+

1 (P) ∪D−
1 (P)

We can draw the one-step dependency relation as a directed graph.
For example, the dependency graph of the program in Example 4.1.2 is
shown in Figure 4.1.

We now generalize the one-step dependency relation to a full depen-
dency relation. The intuition is that a predicate p depends on a predi-
cate q if there is a path from p to q in the dependency graph. If at least
one of the arcs between p and q is negative, then p depends negatively
on q.

Definition 4.2.2 A dependency path πP of a logic program P is a se-
quence

πP = 〈p1, p2, . . . , pn〉
2This will be examined further in Chapter 5.

46 4. OMEGA-RESTRICTED PROGRAMS

where pi ∈ Preds(P) for 1 ≤ i ≤ n and 〈pj, pj+1〉 ∈ D1(P) for 1 ≤ j < n.
A path πP is negative (denoted by π−P) if and only if 〈pj, pj+1〉 ∈ D−

1 (P)
for some 1 ≤ j < n. The set of all dependency paths of P is denoted by
ΠP and the set of all negative dependency paths of P is denoted by Π−

P .

Definition 4.2.3 (Dependency Relation) The dependency relation
D(P) ⊆ Preds(P)× Preds(P) of a logic program P is defined as follows:

D(P) = {〈p, q〉 | there exists π ∈ ΠP : π = 〈p, . . . , q〉} .

The negative dependency relation D−(P) ⊆ Preds(P) × Preds(P) of P
is defined as follows:

D−(P) = {〈p, q〉 | there exists π− ∈ Π−
P : π− = 〈p, . . . , q〉} .

4.3 OMEGA-STRATIFICATION

Under the usual definition [3] a program is stratified if we can create a
stratification for it such that a predicate p that depends negatively on a
predicate q is on a higher stratum than q. For example,

a← not b

is stratified since we can put b on the stratum 0 and a on stratum 1. On
the other hand,

a← not b

b← not a

is not since a and b depend negatively on each other.
Now we extend the concept by adding a new stratum for the predicates

that depend negatively on each other.

Definition 4.3.1 (ω-stratification) An ω-stratification of a CCP P is
a function

S : Preds(P)→ N ∪ {ω}

such that:

1. for each 〈p1, p2〉 ∈ D(P) it holds that S(p1) ≥ S(p2); and

2. for each 〈p1, p2〉 ∈ D−(P) it holds that S(p1) > S(p2) or S(p1) =
ω .

We use the convention that ω ≥ ω and ω > n for all n ∈ N. The
first condition asserts that a predicate p1 that depends positively on a
predicate p2 has to be on at least as high a stratum as p2. The second
condition states that if p1 depends negatively on p2, then p1 has to be on
a higher stratum or they both must be in the ω-stratum.

Definition 4.3.2 Let S be an ω-stratification of a CCP P . Then, S is
a strict ω-stratification if and only if

4. OMEGA-RESTRICTED PROGRAMS 47

vtx initial

edge

hc r

0

1

ω

Figure 4.2: A strict ω-stratification of the Hamiltonian cycle program

1. S(p1) > S(p2) whenever 〈p1, p2〉 ∈ D(P), 〈p2, p1〉 /∈ D(P), and
S(p2) < ω;

2. for all p1 ∈ Preds(P) it holds that if S(p1) = ω, then there exists a
predicate p2 ∈ Preds(P) such that S(p2) = ω and 〈p1, p2〉 ∈ D−(P).

Intuitively, a stratification is strict when it assigns all dependent pred-
icates that do not necessarily have to be on a same stratum to different
strata and does not put any predicate into the ω-stratum if that is not
necessary. Later in this section we will present an algorithm that will
compute a strict ω-stratification for an arbitrary cardinality constraint
program P if we are given its dependency graph.

Example 4.3.1 Consider Example 4.1.2. We can construct a strict
ω-stratification S for the program by looking at its dependency graph.
As there are no arcs leading from vtx/1 or initial/1, we set S(vtx) =
S(initial) = 0. As edge/2 depends on vtx, we have S(edge) = 1. As
hc/2 depends negatively on itself and r/1 depends on it, we are forced to
set S(hc) = S(r) = ω.

Example 4.3.2 Consider the program P :

odd(X + 1)← even(X), number(X)

even(X + 1)← odd(X), number(X)

Here we can set S(number) = 0 since it depends on nothing. As odd/1
and even/1 depend on each other positively, we set S(odd) = S(even) = 1
to complete the strict stratification S.

Since the set of predicate symbols Preds(P) of a proper CCP program
is by definition finite, the following proposition immediately follows:

Proposition 4.3.1 The number of non-empty strata in an ω-stratification
of a proper cardinality constraint program is finite.

4.4 DOMAIN PREDICATES

We divide the predicate symbols into two classes, domain predicates that
are on finite strata and non-domain predicates that are on the ω-stratum.

48 4. OMEGA-RESTRICTED PROGRAMS

Definition 4.4.1 (Domain Predicate) Let P be a CCP and S be one
of its strict ω-stratifications S. Then, p ∈ Preds(P) is a domain predicate
under S if and only if S(p) < ω. The set of all domain predicates of P
under S is denoted by DS(P). The set of all non-domain predicates is
denoted by PS(P).

Definition 4.4.2 (Domain Literal) Let P be a CCP and S be one of
its strict ω-stratifications. A constraint literal C = Card(1, {A : >})
that occurs in the body of a rule R ∈ P is a domain literal under S if
and only if A is an atom and S(pred(A)) < S(pred(H)) for all atoms
H ∈ head(R). The set of domain literals that occur in the body of a rule
R is denoted by bodySD(R).

Note that since there is only one basic literal in a domain literal C =
Card(1, {A}), we can extend our pred-notation to cover also them so that
pred(C) = pred(A).

One important thing to notice is that every strict stratification of a
program is equivalent in the sense that they all have the same domain
predicates and all the rules have the same domain literals under them so
we can drop the stratification from our notation and use simply D(P)
and bodyD(R).

Theorem 4.4.1 Let P be a proper CCP and S1, S2 be two of its strict
ω-stratifications. Then for all predicate symbols p ∈ Preds(P) : S1(p) = ω
if and only if S2(p) = ω.

Proof. Suppose that there is p1 ∈ Preds(P) such that S1(p1) = n ∈ N
and S2(p1) = ω for two strict ω-stratifications of P .

By Definition 4.3.1 every predicate symbol that is placed on the ω-
stratum of a strict stratification has to depend negatively on a predicate
symbol that is on the same stratum. Thus, there exists a predicate
symbol p2 such that 〈p1, p2〉 ∈ D−(P) and S2(p2) = ω. Now p2 needs a
similar dependency. Thus, we have a dependency path:

π = 〈p1, p2, p3, . . .〉 ∈ Π−
P

where S2(pi) = ω for all i ∈ N. Since the set of predicate symbols
Preds(P) is by definition finite for proper programs, we cannot have
an infinite non-looping dependency path in Π−

P . Thus, π has the form
〈p1, p2, . . . , pi, . . . , pi〉 ∈ Π−

P where at least one predicate symbol pi de-
pends negatively on itself.

Since 〈pi, pi〉 ∈ D−(P), Condition 2. of Definition 4.3.1 forces that
S1(pi) = ω so S1(p1) = ω, which contradicts our assumption. �

Theorem 4.4.2 Let P be a CCP, S1, S2 be two of its strict ω-stratifi-
cations, and R be a rule in P . Then,

bodyS1
D (R) = bodyS2

D (R) .

Proof. Let C be a literal such that C ∈ bodyS1
D (R) but C /∈ bodyS2

D (R)
and H be an atom in the head of R. Then, by Definition 4.2.3,

〈pred(H), pred(C)〉 ∈ D .

4. OMEGA-RESTRICTED PROGRAMS 49

As C is not a domain literal under S2, we know that S2(pred(C)) ≥
S2(pred(H)). As 〈pred(H), pred(C)〉 ∈ D, Definition 4.3.1 requires that
S2(pred(H)) ≥ S2(pred(C)). Thus, S2(pred(H)) = S2(pred(C))

Suppose that S2(pred(C)) = ω. Then, from Theorem 4.4.1 it follows
that S1(pred(C)) = ω so C /∈ bodyS1

D (R), which contradicts our assump-
tion. Thus, S2(pred(C)) = n for some n ∈ N.

Since S2 is strict and S2(pred(C)) < ω, the condition 1. of Defini-
tion 4.3.2 requires that 〈pred(C), pred(H)〉 ∈ D. However, this implies
that S1(pred(C)) ≥ S1(pred(H)). Thus, S1(pred(C)) = S1(pred(H)) so
C /∈ bodyS1

D (R).

Thus, the assumption that bodyS1
D (R) 6= bodyS2

D (R) leads to a contra-
diction. �

4.5 OMEGA-VALUATION AND RESTRICTION

Next, we will extend the ω-stratification to cover also rules and variables
by defining the concept of an ω-valuation.

Definition 4.5.1 (ω-valuation) The ω-valuation of a rule R under an
ω-stratification S is the function:

Ω(R,S) = min{S(pred(H)) | H ∈ head(R)} .

The ω-valuation of a global variable V in a rule R under an ω-stratification
S is the function:

Ω(V, R,S) = min({S(pred(A)) | A ∈ bodyD(R) and V ∈ Vart(A)} ∪ {ω})

Example 4.5.1 Let S be as defined in Example 4.3.1. Consider the rule
R:

r(Y)← 1 {r(X), initial(X)}, hc(X, Y), edge(X, Y)

Now

Ω(R,S) = S(r) = ω

Ω(X, R,S) = min{S(edge), ω} = 1

Ω(Y,R,S) = min{S(edge), ω} = 1 .

The atom initial(X) does not restrict X even though it is a domain pred-
icate since the constraint atom that it occurs in is not a domain literal.

Definition 4.5.2 (ω-restriction) A conditional literal X.L : A is ω-re-
stricted under a stratification S if and only if X ⊆ Vart(A) and A = >
or S(pred(L)) > S(pred(A)).

A rule is ω-restricted if all conditional literals in it are restricted and
if all global variables that occur in it occur also in a positive body literal
that belongs to a strictly lower stratum than the head. A program is
ω-restricted if all its rules are ω-restricted.

50 4. OMEGA-RESTRICTED PROGRAMS

Definition 4.5.3 A cardinality constraint program P is ω-restricted if
and only if there exists a strict stratification S such that for all rules
r ∈ P it holds that

for all V ∈ Varg(r) : Ω(V, r,S) < Ω(r,S) .

and all conditional literals that occur in P are ω-restricted under S.

Example 4.5.2 Consider the rule R:

s(f(X))← s(X) .

This rule is not ω-restricted since for all stratifications S, Ω(R,S) =
Ω(X, R,S).

Next we show that if the program is ω-restricted under one strict ω-
stratification, it is restricted under all.

Theorem 4.5.1 Let P be a proper CCP and S1 and S2 be two of its
strict ω-stratifications. Then, P is ω-restricted under S1 if and only if it
is ω-restricted under S2.

Proof. Suppose that P is ω-restricted under S1 but not under S2.
Then, there are two possibilities.

1. There exists a conditional literal L = X.L : A in P where L is ω-
restricted under S1 but not under S2. By Definitions 4.2.1 and 4.2.3,
we have 〈pred(L), pred(A)〉 ∈ D−(P). Since L is restricted under
S1, we have S1(pred(L)) > S1(pred(A)) so S1(pred(A)) < ω and
A is a domain predicate. Then by Theorem 4.4.1 S2(pred(A)) <
ω. Now Definition 4.3.1 requires that S2(pred(L)) > S2(pred(A)).
This contradicts the assumption that L is not ω-restricted under
S2.

2. There exists some rule R ∈ P such that R is not ω-restricted under
S2. However, by Theorem 4.4.2 the sets of domain literals are
the same under both stratifications so the literals that restrict the
variables under S1 also restrict them under S2 and we get another
contradiction.

Thus, if P is ω-restricted under one strict ω-stratification, it is restricted
under all of them. �

4.6 COMPUTING DOMAIN PREDICATES

While not all CCPs are ω-restricted, it turns out that all of them have
strict ω-stratifications. We will give an algorithm that creates a strict
ω-stratification of a program P . Since we already proved that all strict
stratifications are equivalent3, it is enough that we find one of them.

3Theorems 4.4.1–4.5.1.

4. OMEGA-RESTRICTED PROGRAMS 51

even(X + 1) ← odd(X), number(X)
odd(X + 1) ← even(X), number(X)
{choose(X)} ← odd(X)

(a) Program

number

even odd

choose

(b) Dependency graph

number

odd
even

choose

(c) SCC graph

Figure 4.3: An example of SCC graph formation.

The algorithm works by computing the strongly connected compo-
nents of the dependency graph and then assigning the components to
different strata. A strongly connected component of a graph is a max-
imal subgraph where there exists a path between each pair of nodes in
the component. Here we divide the components into two classes, positive
and negative. A component is negative if it contains at least one negative
arc and all other components are positive.

Definition 4.6.1 Let P be a cardinality constraint program. Then, its
strongly connected component graph SCC(P) = 〈VP , EP , NP 〉 is defined
as follows:

1. v ∈ VP if and only if the following three conditions hold:

(a) v ⊆ Preds(P);

(b) for all x, y ∈ v it holds that 〈x, y〉 ∈ D(P); and

(c) if x ∈ v and there exists y ∈ Preds(P) such that 〈x, y〉 ∈ D(P)
and 〈y, x〉 ∈ D(P), then also y ∈ v.

2. There is an arc 〈v1, v2〉 ∈ EP if and only if there is x ∈ v1 and
y ∈ v2 such that 〈x, y〉 ∈ EP .

3. NP ⊆ VP such that

NP = {v | there exists x, y ∈ v : 〈x, y〉 ∈ D−(P)} .

The nodes of SCC(P) correspond to the strongly connected compo-
nents of the dependency graph of P . The set NP contains all those

52 4. OMEGA-RESTRICTED PROGRAMS

function create-stratification(Program P)
Let S be an empty stratification
Let G := 〈V, E, N〉 be the SCC graph of P
foreach v ∈ V do

find-stratum(〈V, E, N〉, v, S)
end foreach
return S

end function

function find-stratum(Graph 〈V, E, N〉, Component v, Stratification S)
s := 0
if v ∈ N then s := ω
foreach v′ such that 〈v, v′〉 ∈ E do

s′ := find-stratum(〈V, E, N〉, v′, S)
if s′ ≥ s then s := s′ + 1

end foreach
foreach p ∈ v do

S(p) := s
end foreach
return s

end function

Figure 4.4: An algorithm for creating an ω-stratification

0

0

1

1

2
3 ω ω

Figure 4.5: A sample SCC graph and its stratification

strongly connected components that contain predicates that depend neg-
atively on itself.

The algorithm create-stratification (Figure 4.4) first marks all compo-
nents in NP as belonging to the ω-stratum and then computes a depth-
first search on SCC(P). The nodes of VP that have no successors and do
not belong to NP are allocated on the 0-stratum. If a node v has succes-
sors, then we first compute recursively the strata where they belong and
take the maximum s of them. Then, we assign every predicate symbol
in v to the stratum s+ 1 where we use the convention that ω + 1 = ω. In
Figure 4.5 we see a sample SCC graph where nodes belonging to NP are
colored black and the resulting stratification that the algorithm computes
for it.

We can make this algorithm more efficient by storing the return values
of find-stratum so that we do not have to compute them again if the
computation visits the same component more than once.

Proposition 4.6.1 Let P be a CCP. Then, the result S computed by the

4. OMEGA-RESTRICTED PROGRAMS 53

algorithm create-stratification is a strict ω-stratification of P .

Proof. Suppose that for predicate symbols p1 and p2 it holds that
〈p1, p2〉 ∈ D(P). Then there are two possibilities. If 〈p2, p1〉 ∈ D(P),
both predicates belong to the same SCC and find-stratum assigns the
same stratum for both of them, so S(p1) ≥ S(p2). Otherwise, they
belong to different components and there is an arc in SCC graph from
the component of p1 to the component of p2. As find-stratum assigns a
component to the stratum s + 1 where s is the maximum of the strata of
its successors, we see that S(p1) ≥ S(p2) where the equality holds only
if S(p2) = ω.

Consider the case where 〈p1, p2〉 ∈ D−(P). If 〈p2, p1〉 /∈ D(P), find-
stratum behaves as above and S(p1) > S(p2) or S(p2) = S(p1) = ω. On
the other hand, if 〈p2, p1〉 ∈ D(P), then both p1 and p2 belong to the
same component v ∈ Np so find-stratum assigns both to the ω-stratum.
Thus, S is an ω-stratification.

We see that S is strict since the only time when dependent predicates
p1 and p2 are assigned on the same stratum is when they both depend on
each other or when they both are on the ω-stratum. Moreover, only those
predicates that belong to some v ∈ Np or depend on such a predicate are
assigned to the ω-stratum so also the other requirement of strictness is
met. �

Corollary 4.6.1 Every cardinality constraint program has a strict strat-
ification.

Theorem 4.6.1 The problem of deciding whether a finite cardinality
constraint program is ω-restricted is decidable in polynomial time.

Proof. The SCC graph of a cardinality constraint program P can be
constructed in linear time using, for example, the well-known Tarjan al-
gorithm [172, pp. 481–483]. After that the algorithm create-stratification
creates a strict ω-stratification S for P using a quadratic amount of time.4

After that, we can check that each rule of P is ω-restricted in a linear
time. �

4The algorithm can be modified to achieve a linear time bound by caching results
of find-stratum.

54 4. OMEGA-RESTRICTED PROGRAMS

5 DECIDABILITY OF OMEGA-RESTRICTED PROGRAMS

In this chapter we show that stable models of ω-restricted CCPs are
always finite and the question of their existence is decidable. We do so
by defining the concept of a relevant instantiation. Instead of using the
full Herbrand instantiation that we used in defining the models, we use
one of its subsets where we can guarantee that the set of stable models of
the subset is the same as the corresponding set for the full instantiation.

The key insight to notice is that a Herbrand instantiation can contain
infinitely many rules that have unsatisfiable bodies. Those rules cannot
generate atoms into the model so they can be left out without affecting
the set of stable models. We do not aim to create the smallest possi-
ble instantiation for a program because that would be computationally
intractable.1 Instead, we use a compromise where we examine only the
positive domain literals in the rule bodies. It turns out that the exten-
sions of domain predicates are the same in every stable model of the
program. We discard all those ground instances that contain a domain
literal that is not satisfied by this fixed part of the models.

Example 5.0.1 Consider the ω-restricted program:

a(0)←
b(f(0))←

c(X)← a(X).

The Herbrand instantiation is infinite since it contains a ground rule:

c(f i(0))← a(f i(0))

for every i ∈ N. However, only one of them is relevant since a(0) is the
only body atom that has a rule for it.

We begin by stating the key theorem:

Theorem 5.0.2 The problem of existence of a stable model of an ω-
restricted CCP is decidable.

We devote the rest of the chapter for proving this by presenting a
method for computing the stable models. Informally, the result follows
from the fact that the domain predicates are defined by a subprogram
that is stratifiable in the usual sense. We can compute the extensions
of domain predicates by examining one stratum at a time. Since no
variables are allowed in the 0-stratum, the predicate extensions are all
finite. Then, at each new stratum each variable has to occur in a domain
literal that belongs to a previous stratum and this keeps the number of
ground rules with satisfiable bodies finite. The same thing holds also

1If we have a rule with just one positive atom in its body, we can leave it out if
the literal is false in every answer set of the program. However, the question whether
an atom is true in any stable model is NP-complete even for normal programs [38],
so it is intractable to know whether we can leave it out or not.

5. DECIDABILITY OF OMEGA-RESTRICTED PROGRAMS 55

for conditional literals: their expansion contains only a finite number of
satisfiable literals.

We continue by defining the concepts of stratum programs and domain
models. Then we use relevant instantiation to show that the domain
models are finite. Finally, we put the pieces together by showing that
the stable models of the program coincide with the stable models of the
relevant instantiation of the program.

5.1 STRATUM PROGRAMS

We divide the rules that occur in a program into a number of stratum
programs. The stable models are constructed in parts so that at each step
we instantiate the current stratum program with respect to the atoms
that belong to the least model of the previous strata. We will prove that
all stratum programs have a unique stable model.

Definition 5.1.1 (Stratum Program) Let P be an ω-restricted CCP
and S be its strict ω-stratification. Then, the stratum program P S

k is
defined as follows:

P S
k = {R ∈ P | Ω(R,S) = k} .

A kth partial domain program is a union of first k stratum programs:

P S
≤k =

⋃
i≤k

P S
i .

The domain program P S
D is the program:

P S
D =

⋃
i∈N

P S
i .

Our next step is to prove that the domain program has a unique
stable model that is finite. To prove the uniqueness we introduce the
CCP versions of stratified programs [27] and splitting sets [117].

Splitting Sets
Splitting sets were originally defined by Lifschitz and Turner [117] for
normal logic programs. We can divide a program into two parts: top and
bottom and then express its stable models as combinations of models of
top and bottom programs. Here we generalize the notion to cardinality
constraint programs.

We start by introducing an auxiliary notation for turning a set of
atoms into a set of facts.

Definition 5.1.2 Let M be a set of ground atoms. Then, the set F (M)
of facts is defined as:

F (M) = {〈A, ∅〉 | A ∈M} .

56 5. DECIDABILITY OF OMEGA-RESTRICTED PROGRAMS

Example 5.1.1 Let M = {a, b, c}. Then, F (A) is the program:

a←
b←
c← .

Definition 5.1.3 Let P be a ground CCP. Then, a set of atoms U ⊆
Atoms(P) is a splitting set if and only if for all rules R ∈ P :

head(R) ⊆ U implies that Atoms(R) ⊆ U .

The set BU = {R ∈ P | head(R) ⊆ U} is called the bottom of P with
respect to U and TU = P \BU the top.

A set U is a splitting set of a non-ground CCP P if and only if it is
a splitting set of instH(P).

Next, we introduce a notation for creating a modified top program
based on a stable model of the bottom.

Definition 5.1.4 Let P be a ground CCP, U its splitting set and M a
stable model of the bottom BU . Then

P (U,M) = TU ∪ F (M) .

We can take a stable model for the bottom and then substitute it as
facts back to the program and obtain a stable model of the top.

Lemma 5.1.1 Let P be a ground CCP, U its splitting set, and M a
stable model of BU . If S is a stable model of P (U,M), then S is a stable
model of P .

Proof. Suppose that S is a stable model of P (U,M). First note that
S∩U = M since we added all atoms in M as facts to P (U,M) and there
are no rules that could derive other atoms in U in TU .

Next, by Definition 5.1.3 the bottom BU does not have any atoms
that belong to the top TU , so its reduct BS

U = BM
U so MM(BS

U) =
MM(BM

U) = M = MM(F (M)S).
Thus,

MM(P S) = MM(BS
U ∪ T S

U) = MM(F (M)S ∪ T S
U)

= MM((F (M) ∪ TU)S) = MM(P (U,M)S) = S ,

so S is a stable model of P . �

Lemma 5.1.2 Let P be a ground CCP and U be its splitting set. If S
is a stable model of P , then SB = S ∩ U is a stable model of the bottom
BU and S is a stable model of P (U, SB).

Proof. Let S be a stable model of P , SB = S ∩ U , and ST = S \ SB.
Since BU does not refer to any atoms in the top TU , we have BS

U = BSB
U .

Suppose that SB is not a stable model of BU . Then either

1. SB contains an atom that is not in MM(BSB
U); or

5. DECIDABILITY OF OMEGA-RESTRICTED PROGRAMS 57

2. MM(BSB
U) contains an atom that is not in SB.

Since TU does not have rules for atoms in U , an atom that is in SB

but not in MM(BSB
U) is missing also from MM(BS

U) and thus also from
MM(P S) so S is not a stable model of P . In the other case the extra
atom in MM(BSB

U) is present also in MM(BS
U) and MM(P S) so S is

again not a stable model of P . Thus, SB is a stable model of BU .
Next,

P (U, SB) = TU ∪ F (SB)

and

MM(P (U, SB)S) = MM(T S
U ∪ F (SB)) = MM(T S

U ∪BS
U)

= MM(P S) = S

so S is a stable model of P (U, SB).
�

These two lemmas lead us to the next corollary:

Corollary 5.1.1 Let P be a ground CCP and U be its splitting set. Then
S is a stable model of P if and only if SB = S ∩ U is a stable model of
BU and S is a stable model of P (U, SB).

Stratified Programs
In this section we show that cardinality constraint programs that are
stratified in the usual sense [27] have unique stable models. Since we
have already defined the concept of ω-stratification, we use it as the
building block when defining the standard one: a program is stratified if
its ω-stratum is empty.

Definition 5.1.5 A cardinality constraint program P is stratified if there
exists a strict ω-stratification S where P S

ω = ∅.

The reason why all stratified CCPs have least models is that we can
compute the model from bottom up, starting from the 0-stratum and
advancing one stratum at a time. Whenever we have a negation in the
program, the extensions of the predicate symbols that occur under it
have been already decided. This result holds for all such CCPs, not only
for ω-restricted ones.

Theorem 5.1.1 A stratified CCP P has a unique stable model.

To prove this we first show that a program that has only one possible
reduct has a unique stable model. If every set of atoms generates the
same reduct, then the least model of that reduct is necessarily the unique
stable model.

Lemma 5.1.3 Let P be a ground CCP. If for any sets of atoms M1, M2 ∈
Atoms(P) it holds that PM1 = PM2, then P has a unique stable model.

Proof. Consider the reduct PM1 of some set of atoms M1. By Theo-
rem 3.4.1 there exists the least model M = MM(PM1). Since we assume

58 5. DECIDABILITY OF OMEGA-RESTRICTED PROGRAMS

that PM = PM1 , M = MM(PM) and M is a stable model of P . It is
the only stable model because PM2 = PM for every set of atoms M2. �

Now we can prove Theorem 5.1.1
Proof.[Of Theorem 5.1.1] Let S be an ω-stratification of P that fulfills

the condition of Definition 5.1.5. Next, we prove by induction over the
strata that P has a unique stable model. We do it by showing that all
stratum programs have unique reducts and using Lemma 5.1.3.

First, consider the 0-stratum. By Definition 4.3.1 we know that the
stratum program P S

0 cannot contain any negative literals (neither basic
nor cardinality) and all conditional literals in it have to be of the form
A : > where A is an atom. Additionally, all rules in it are basic rules.

A reduct removes all negative literals from the program. Since they
cannot occur in the 0-stratum, we get the same reduct instH(P S

0) no
matter what set of atoms M we use to create it. Thus, by Lemma 5.1.3
it has a unique stable model M0.

Next, suppose that there exists some k ∈ N such that P S
≤k has a unique

stable model Mk.
Consider the program P S

≤k+1. The set of atoms:

U = {head(R) | R ∈ P≤k}

is a splitting set of P S
≤k+1 where:

B = P S
≤k

T = P S
k+1 .

The set Mk is the only stable model of B. By Corollary 5.1.1 any stable
model of P S

≤k+1 has to agree with Mk with respect to the set U . That is,
if Mk+1 is a stable model of P S

≤k+1, then

Mk ⊆Mk+1 and

Mk+1 ∩ (U \Mk) = ∅ .

Consider a set of atoms M ′ ⊆ Atoms(P S
≤k+1) where Mk ⊆M ′. When we

examine the reduct of P S
≤k+1 with respect to M ′, we note that:

1. All predicate symbols occurring in a negative cardinality literal
not Card(b, S) belong to previous strata and M ′ � not Card(b, S)
exactly when Mk � not Card(b, S).

2. All negative literals occurring in a rule also belong to an earlier stra-
tum and so Card(b, S)M ′

= Card(b, S)Mk for all cardinality atoms
and stable models M ′ of P (T, Mk).

Thus, the reduct instH(P (T, Mk))M ′
is the same for any set M ′ and by

Lemma 5.1.3 P S
≤k+1 has a unique stable model. �

We use the opportunity to also introduce the concept of local stratifi-
cation. We examine the dependencies at the level of instantiated atoms
instead of predicate symbols. A program is locally stratified if its Her-
brand instantiation is stratified. For the purpose of this definition we
will use the notation Dl(P) to denote the dependency relation Dl(P) ⊆

5. DECIDABILITY OF OMEGA-RESTRICTED PROGRAMS 59

Atoms(instH(P))×Atoms(instH(P)) that is defined analogously to Defi-
nition 4.2.3 but over the rules of instH(P) instead of P , and Sl to denote
an ω-stratification based on Dl(P).

Definition 5.1.6 A CCP P is locally stratified if there exists a strict
ω-stratification S of instH(P) such that instH(P)Sω = ∅.

Proposition 5.1.1 A locally stratified CCP P has a unique stable model.

Proof. We can create a stratified CCP P ′ that is equivalent to instH(P)
by replacing all atoms p(t1, . . . , tn) in it by new 0-ary predicate symbol
Pp(t1,...,tn). Essentially, we move the arguments of the predicate into its
name. As P ′ is stratified, it has a unique stable model. �

5.2 UNIQUENESS OF DOMAIN PROGRAM

Even though an ω-restricted CCP may have an infinite number of dif-
ferent ω-stratifications, they all are essentially the same and it does not
matter which one we choose to use since the domain program is the same
under all of them.

Proposition 5.2.1 Let P be an ω-restricted CCP. Then, it has a unique
domain program PD and a unique ω-program Pω.

Proof. This follows directly from Theorem 4.4.1 that states that the
set of domain predicates is the same under every stratification. �

Since the domain program is exactly the stratifiable part of a CCP,
we immediately get the result that it has a unique stable model.

Theorem 5.2.1 Let P be an ω-restricted CCP. Then, the domain pro-
gram PD has a unique stable model.

Proof. By Proposition 5.2.1 the domain program PD does not depend
on the strict ω-stratification S that we choose to use. Since PD contains
exactly those rules that belong to the finite strata under S, it is stratified
in the usual sense. By Theorem 5.1.1 it has a unique stable model. �

5.3 RELEVANT INSTANTIATION

In a relevant instantiation we are given a set of atoms that define the truth
values for domain literals. When we create the instantiation we include
only those ground instances where all domain literals are satisfied by the
set.

Definition 5.3.1 Let P be a CCP, U a universe, and M a set of atoms.
Then, the relevant expansion Er(L, U, M) of a conditional literal L =
X.L : A is the set:

Er(L, U, M) = { Lσ : Aσ | σ ∈ subs(X, U) and

∃σ′ ∈ subs(Var(L) \X, UH(P)) : M � Aσσ′}

60 5. DECIDABILITY OF OMEGA-RESTRICTED PROGRAMS

and the relevant expansion of a cardinality constraint C = Card(b, S) is
the constraint:

Er(C, U, M) = Card(b, {Er(L, U, M) | L ∈ S}) .

Example 5.3.1 Let U = {1, 2, 3}, M = {d(1, 1), d(2, 2)}, and C =
Card(1, {X.a(X, Y) : d(X, Y)}). Then, the relevant expansion of C is:

Er(C, U, M) = Card(1, {a(1, Y) : d(1, Y), a(2, Y) : d(2, Y)}) .

The third possibility, a(3, Y) : d(3, Y) is not included since there is no
atom of the form d(3, y) in M .

Definition 5.3.2 The relevant instantiation of a rule R = 〈H, {C1, . . . , Cn}〉
with respect to a set of atoms M and a universe U is the set of rules:

instHr(R,U,M) = {〈Hσ, {Er(C1, U, M)σ, . . . , Er(Cn, U, M)σ}〉 |
σ ∈ subs(Var(P), U) and M � bodyD(Rσ)}

where H is either A or {A1, . . . , An} where A and Ai are atoms.

Definition 5.3.3 The relevant Herbrand instantiation of a program P
is the set of rules:

instHr(P, M) =
⋃

R∈P

instHr(R,UH(P), M) .

Note that if the set M is finite, then also the relevant instantiation is
finite. We will be using this result later so we formally proof it.

Lemma 5.3.1 Let R = H ← C1, . . . , Cn be rule in a CCP P and M be
a finite set of atoms. Then, instHr(R,UH(P), M) is finite.

Proof. There are two possible sources of infinity in instHr(R,UH(P), M):

1. a conditional literal may have an infinite expansion; and

2. there may be an infinite number of relevant ground instances of R.

First, note that for a ground conditional literal L′ : A′ to belong to
the expansion of a conditional literal X.L : A, there have to be two
substitutions σ and σ′ such that L′ = Lσ and Aσσ′ ∈ M . Since M is
finite, it contains only a finite number of ground instances of A so the
number of suitable substitutions is also finite.

Next, all literals in bodyD(Rσ) are ground literals of the form L =
Card(1, {A : >}) so we see that M � L only when A ∈M . Thus, only a
finite number of ground instances may satisfy all domain literals. �

5. DECIDABILITY OF OMEGA-RESTRICTED PROGRAMS 61

5.4 DOMAIN MODELS

Next we define the concept of domain models and partial domain models.
The (k + 1)th partial domain model is the stable model of the relevant
instantiation of the kth partial domain program, and the domain model
is the union of all partial domain models. We will later prove that the
domain model is the unique stable model of the domain program.

Definition 5.4.1 (Domain Model) Let P be an ω-restricted CCP and
S be its strict ω-stratification. Then, the partial domain models DS

k are
defined as follows:

DS
0 = MM(P S

0)

DS
k+1 = MM(instHr(P

S
k+1, D

S
k) ∪ F (DS

k)) .

The domain model DS
ω is defined as

DS
ω =

⋃
i∈N

DS
i .

Note that since all partial domain programs are stratified, they have
unique stable models.

5.5 FINITENESS OF DOMAIN MODELS

We will now show that all partial domain models of finite programs are
finite. Since there is only a finite number of non-empty strata, there are
only a finite number of partial domain models in the union that forms
the domain model so it is also finite.

Theorem 5.5.1 Let P be a finite CCP that is ω-restricted under the
strict ω-stratification S. Then, for all i ∈ N the partial domain model
DS

i is finite.

Proof. We do an induction over the strata of S. In the basic case i = 0
we have DS

i = MM(P S
0) that is finite. Suppose that the claim holds for

some k ≥ 0, that is, DS
k is finite. Then, DS

k+1 = MM(instHr(P
S
k+1, D

S
k)∪

F (DS
k). As our induction hypothesis is that DS

k is finite, we can apply
Lemma 5.3.1 to see that DS

k+1 is finite. �

Theorem 5.5.2 Let P be a finite CCP that is ω-restricted under the
strict ω-stratification S. Then, its domain model DS

ω is finite.

Proof. This theorem follows directly from Theorem 5.5.1 and the fact
that S may have only a finite number of nonempty strata since all finite
programs are proper. �

62 5. DECIDABILITY OF OMEGA-RESTRICTED PROGRAMS

5.6 STABLE MODELS OF OMEGA-RESTRICTED PROGRAMS

In this section we prove that the stable models of a finite ω-restricted
program P coincide with the stable models of the relevant instantiation
of Pω.

We do this in two parts. First, we show that using relevant instanti-
ation instead of the full instantiation for the domain program does not
lose any atoms from the domain model and then we extend it to cover
also the ω-program.

Theorem 5.6.1 Let P be a CCP that is ω-restricted under the ω-strati-
fication S. Then, the domain model DS

ω is the unique stable model of the
domain program PD.

Proof. By Theorem 5.2.1 PD has a unique stable model. Suppose that
MM(instH(PD)) 6= DS

ω .
For the 0-stratum we have that instH(P0) = instHr(P0, ∅) = P0 since

all rules at that stratum have to be ground. Thus, MM(instH(P0)) =
MM(instHr(P0, ∅)).

For the induction hypothesis suppose that there exists some k such
that for all strata i ≤ k it holds that MM(P≤i) = DS

i .
Next, suppose that MM(P≤k+1) 6= DS

k+1. Then, there exists an
atom A over which the two models disagree. By induction hypothesis
DS

k = MM(instH(MM(P≤k))), so

DS
k+1 = MM(instHr(Pk+1, D

S
k) ∪ F (DS

k) ⊆MM(P≤k+1)

since instHr(Pk+1, D
S
k) ⊆ instH(Pi). Thus, A is true in MM(P≤k+1) but

false in DS
k+1. Furthermore, we choose A so that it has the shortest

possible derivation in MM(P≤k+1). Then, there has to be a rule

A← body

in instH(P≤k+1) where body is satisfied in MM(instH(P≤k+1)) but not in
DS

k+1. This implies that there exists a cardinality literal C in body such
that MM(instH(P≤k+1)) � C but DS

k+1 6� C.
This means further that C contains at least one atom B over which

the two models disagree. Since we assumed that the models agree up to
the k-stratum, we know that S(pred(B)) = k + 1. There are now two
possibilities:

1. B ∈ MM(instH(P≤k+1)) but B /∈ DS
k+1. In this case B has a

shorter derivation in instH(P≤k+1) than A, which contradicts our
assumption that A has the shortest derivation.

2. B ∈ DS
k+1 but B /∈MM(instH(P≤k+1)). This is not possible since

we earlier showed that DS
k+1 ⊆MM(instH(P≤k+1)).

As it is not possible to find an atom A over which the two models
disagree, we conclude that

MM(P≤k+1)) = MM(instHr(Pk+1, D
S
k) ∪ F (DS

k)) = DS
k+1 .

5. DECIDABILITY OF OMEGA-RESTRICTED PROGRAMS 63

Thus, MM(instH(PD)) = DS
ω .

�
From this result we immediately get the following corollary:

Corollary 5.6.1 An ω-restricted CCP has a unique domain model.

Since the domain model is unique, we will drop the stratification S
from it and write only Dω.

5.6.1 The Complete Stable Models

The main result of this section is that the set of stable models of a
program stays the same if we use relevant instantiation instead of the
complete one. We show this via splitting sets.

Theorem 5.6.2 Let P be an ω-restricted CCP. Then,

SM(instH(P)) = SM(instHr(Pω, Dω) ∪ F (Dω)).

Proof. The definition of ω-restriction2 requires that no predicate sym-
bol that occurs in the domain program PD appears as a head in Pω. Thus,
the set:

D =
⋃

R∈instH(PD)

head(R)

is a splitting set of P ′ = instH(P). Next, by Theorem 5.6.1 Dω is the
unique stable model of PD. By Corollary 5.1.1 all stable models of P are
stable models of P ′(U,Dω).

Consider a rule R that does not belong to the relevant instantia-
tion. The relevant instantiation was defined so that all rules that are
left out from it contain at least one unsatisfied domain literal. Thus,
Dω 6� bodyD(R), so R is trivially satisfied by all model candidates. This
also means that R cannot be used to justify any atom in the model, so
its existence does not alter the set of stable models in any way and it
may be dropped.

Thus, the stable models of P are determined by instHr(Pω, Dω) ∪
F (Dω). �

5.7 PUTTING IT ALL TOGETHER

Now we have all bits and pieces that we need to prove Theorem 5.0.2.

Theorem 5.0.2 The problem of existence of a stable model of an ω-
restricted CCP is decidable.

Proof. The algorithm in Figure 5.1 presents a naive and inefficient
algorithm for testing the existence of a stable model.

2Definition 4.5.3.

64 5. DECIDABILITY OF OMEGA-RESTRICTED PROGRAMS

function has-stable-model(Program P)
D := ∅
S := create-stratification(P)
i := 0
while Pi is not empty do

PG := PG∪ naive-instantiate-relevant(Pi, D)
D := D ∪MM(PG)
i := i + 1

endwhile
PG := PG∪ naive-instantiate-relevant(Pω, D)
foreach M ∈ 2Atoms(PG) do

if MM(PGM) = M then
return true

endif
endfor
return false

endfunction

function naive-instantiate-relevant(Ruleset R, Atomset D)
S := F (D)
foreach r ∈ R do

S ′ := {instHr(r
′, UH(P), D) | r′ ∈ inst(r, D) and D � bodyD(r′) }

S := S ∪ S ′

end foreach
return S

end function

Figure 5.1: A naive algorithm for testing the existence of a stable model
of an ω-restricted CCPs.

We go through the nonempty finite strata of the program and at each
step we create the relevant instantiation of the current stratum and com-
pute its least model. By Proposition 4.3.1 there is only a finite number
of them.

By Lemma 5.3.1 each relevant instantiation is finite and we can create
them by examining every non-ground rule belonging to a stratum one-
by-one and checking through the previously-computed partial domain
models to see what variable substitutions are possible.

When we have instantiated the current stratum, we compute its sta-
ble model. Since the instantiation is finite, we can do this, for example
by explicitly testing every possible subset of the atoms. Finally, we in-
stantiate the rules of the Pω with respect to the domain model Dω and
systematically go through all subsets of the atoms occurring in the pro-
gram to see if one of them is a stable model. By Theorem 5.6.2 a stable
model of the relevant instantiation instHr(Pω, Dω) ∪ F (Dω) is a stable
model of instH(P). �

5. DECIDABILITY OF OMEGA-RESTRICTED PROGRAMS 65

5.8 INSTANTIATION AS A DATABASE OPERATION

We can interpret the domain predicates of an ω-restricted program as
relations on its Herbrand universe. With this interpretation the stratum
programs correspond closely to Datalog¬ programs. The reason why we
are interested in this interpretation is that we can use standard database
techniques in creating the relevant instantiation in a more efficient man-
ner than the naive algorithms presented in previous sections.

We start by giving a very brief overview of the relational database
model. We do not go deep into details and include the minimum that is
necessary for our purposes.

Relational Database Model
In relational database model [202] we think a database as a set of relations
and all items occur as tuples of the relations. In the database context
we usually think that every component of a tuple has a attribute name
attributed to it. We will take the approach that we use variables as the
names and we write them as the arguments for the sets that occur in the
relations. For example, if the attribute names for the relation R/2 are
X and Y , we write it as R[X, Y].

With this approach we can think that a two-ary predicate symbol p/2
is represented by some relation with two attributes X and Y where the X
corresponds to the first argument of p(X, Y) and Y to the second.

The four fundamental database operations that we are interested in
are projection, renaming, selection, and joining.

Projection
A projection is a function that removes some components from the tuples
of the relation. For example, if we have a relation

R[X, Y, Z] ⊆ A[X]×B[Y]×C[Z] ,

then the projection πX,Y defines the function:

πX,Y (R) = {〈x, y〉 | there existsz : 〈x, y, z〉} .

In this work we use the set semantics for projection. This means that
we get only one tuple 〈x, y〉 into the projection even if there are more
than one possible value for z.

Renaming
In renaming we change some of the attributes names of a relation. A
renaming ρX/Y changes the name of the attribute X to Y but keeps
otherwise the relation intact.

Selection
A selection is an operation that allows us to pick a subset of tuples of
the relation. Formally, we define some predicate P that is then evaluated
over the tuples. The result is the set of tuples that satisfy the predicate.
Formally, a selection σP defines the function:

σP (R) = {t | t ∈ R and P (t) is true } .

66 5. DECIDABILITY OF OMEGA-RESTRICTED PROGRAMS

Natural Join
We often want to combine two ore more relations into one. The most
common way how we do is to use the natural join. The natural join
R ./ S of relations R and S is simplest to describe as the result of the
following algorithm:

1. compute the Cartesian product R× S;

2. from the product select the tuples where all the attributes that
belong to both relations have identical values; and

3. project away the second copy of duplicated attributes.

Formally, a natural join can be defined using a selection and projection
operators.

Example 5.8.1 Suppose that we have two relations, R[X, Y] and S[Y, Z]
that are defined as follows:

R[X, Y] = {〈1, 2〉, 〈1, 3〉, 〈2, 3〉}
S[Y, Z] = {〈2, 1〉, 〈2, 3〉, 〈1, 4〉} .

Then, their natural join T[X, Y, Z] = R[X, Y] ./ S[Y, Z] is the ternary
relation:

T[X, Y, Z] = {〈1, 2, 1〉, 〈1, 2, 3〉} .

Aggregates
An aggregate is a function that computes a value based on a set of tuples.
Most aggregates are relatively simple arithmetic operations computing
sums, averages, and other useful statistics.

Conceptually aggregates are often included in the database relations
as special attributes whose values are computed based on other values.
The advantage of this approach is that it allows us to make selections
based on the aggregate.

Example 5.8.2 Consider again the relation R[X, Y] from Example 5.8.1.
If we want find out how many values occur in the second place of the re-
lations, we can do it with the expression:

count(πY (R)) = count({〈2〉, 〈3〉}) = {〈2〉}

where count is an aggregate that returns a unary relation that contains
only one tuple whose value tells how many different tuples there were.
This version of count illustrates the idea of including aggregates in re-
lation attributes.

In this work we consider only simple aggregates that are monotonic
and not recursively defined. We can always evaluate these kinds of ag-
gregates and get a unique relation as a result [202].

5. DECIDABILITY OF OMEGA-RESTRICTED PROGRAMS 67

Datalog
The Datalog [26] language is essentially a subset of Prolog that was de-
signed as a logic programming interface to relational databases. Plain
Datalog programs are composed using positive normal rules and the pred-
icate symbols are divided into two classes: data and program predicates.3

Data predicates are defined by an existing relational database and may
not occur in the heads of rules, and program predicates define new rela-
tions based on data predicates.

The semantics of plain Datalog is such that each program predicate
symbol p/n defines an n-ary relation Rp where 〈a1, . . . , an〉 ∈ Rp exactly
when p(a1, . . . , an) is true in the least model of the program.

Datalog¬ [27] adds range-restricted stratified negation to the language.
Since stratified programs have a least model, the semantics stays un-
changed.

There is a well-known naive algorithm (Figure 5.2) to compute the se-
mantics of a Datalog program directly [202]. The algorithm is essentially
the same as that we use to compute the least model of a positive simple
program: we start by initializing the relations corresponding to program
predicates with the empty set and then iteratively generate new tuples
to the relations until we reach a fixpoint.

The main workhorse of the algorithm is the function

eval-rule(R, I1, . . . , Ik,Q1, . . . ,Qk)

that takes as its argument a rule R and two sets of relations, Ii for
data predicates and Qi for program predicates, and it then creates an
expression of relational algebra for the program predicate that occurs in
the head of the rule. The expression is essentially a large natural join
over the relations of the body, and then we project it to the variables
that occur in the head.

Example 5.8.3 Suppose that we have the rule:4

p(X, Y, Z)← d1(X, Y), d2(Y, Z)

the body corresponds to the natural join Rd1 ./ Rd2 of the relations cor-
responding to the data predicates d1 and d2, so we set Rp = Rd1 ./ Rd2.

If a program is non-recursive, we can create the relational algebra
expression for every rule and evaluate them in correct order to find the
least model of the Datalog program. However, when we have recursively
defined predicates in our program, we cannot compute the joins directly.

The naive algorithm solves this problem by constructing the relation
iteratively. It starts with the assumption that the relations are empty,
and then in each step it adds those tuples in the relation that occur in the
heads of rules whose bodies are satisfied, in a manner similar to the TP

one-step provability operator. This process is then continued until we
find the least fixed point.

3In the context of database systems data and program predicates are often called
extensional and intensional predicates, respectively.

4Here we use pi for the program predicate symbols and di for the data predicates.

68 5. DECIDABILITY OF OMEGA-RESTRICTED PROGRAMS

function naive-datalog(Datalog Program P)
foreach p ∈ Preds(P) do

Rp := ∅
endfor
repeat

foreach p ∈ Preds(P) do
Qp := Rp

endfor
foreach p ∈ Preds(P) do

Rp := evalP (p, I1, . . . , Ik,Q1, . . . ,Qk)
endfor

until Rp = Qp for all p ∈ Preds(P)
return {Rp | p ∈ Preds(P)}

endfunction

function evalP (Predicate p, Relations Ii, Qi)
Rp := ∅
foreach R ∈ P |p do

Rp := Rp ∪ eval-rule(R, I1, . . . , Ik,Q1, . . . ,Qk)
endforeach
return Rp

endfunction

function eval-rule(Rule R, Relations Ii, Qi)
Create a relational algebra expression E that corresponds to R
Evaluate E with respect to relations Ii and Qi and return it

endfunction

Figure 5.2: A naive algorithm for computing the Datalog semantics

5. DECIDABILITY OF OMEGA-RESTRICTED PROGRAMS 69

Example 5.8.4 Consider the Datalog program that computes the tran-
sitive closure of a binary relation d:

p(X, Y)← d(X, Y) (1)

p(X, Z)← p(X, Y), p(Y, Z) . (2)

Suppose that Rd = {〈1, 2〉, 〈2, 3〉, 〈3, 4〉}. Since (1) depends on purely
data predicates, eval-rule(1) returns always the same relation:

R1 = {〈1, 2〉, 〈2, 3〉, 〈3, 4〉} .

During the first iteration for (2) we start by initializing the auxiliary
relation Q1

p = ∅, so R1
2 = ∅ and R1

p = R1 ∪R1
2 = Rd.

In the next iteration we set Q2
p = R1

p. Now, the join Q2
p ./ Q2

p is:

Q2
p ./ Q2

p = {〈1, 2, 3〉, 〈2, 3, 4〉}

and when we project it to the variables of the head we get the relation:

R2
2 = {〈1, 3〉, 〈2, 4〉}

so we set:
R2

p = {〈1, 2〉, 〈1, 3〉, 〈2, 3〉, 〈2, 4〉, 〈3, 4〉} .

In the next iteration we find that

R3
2 = {〈1, 3〉, 〈1, 4〉, 〈2, 4〉}

and
R3

p = {〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈2, 3〉, 〈2, 4〉, 〈3, 4〉} .

Now we have reached the fixpoint and the algorithm terminates.

The performance of this naive algorithm can be improved in many
ways. For example, it is not necessary to consider the whole relation Rq

at each stage and it is enough to just examine the tuples that were added
to it in the previous stage. This approach gives us the so-called semi-
naive algorithm [202] for Datalog evaluation. Many other improvements
have been proposed [203].

When we have range-restricted stratified negation in a rule body, we
can express it as set difference of relations [202]. This means that we can
use the naive algorithm to evaluate also Datalog¬.

Relations and Cardinality Constraint Programs
We can extend the relational approach to CCPs by substituting a differ-
ent eval-rule algorithm into the naive algorithm. The main problem is
that it is not possible to express cardinality constraints directly with re-
lational algebra when we use variables and conditional literals.5 We can
escape this problem by taking the use of the standard count aggregate.
We have to also handle the conditional literals suitably.

We consider here only positive programs but we can add the negations
in the same way is in Datalog¬.

5In the ground case we can replace a cardinality atom with a corresponding normal
logic program construction.

70 5. DECIDABILITY OF OMEGA-RESTRICTED PROGRAMS

Rules
We create the relation that corresponds to the body of a CCP rule R
using the following steps:

1. find a relation RR,D for domain literals of the rule;

2. construct the relations RL for every conditional literal L in the
rule;

3. select from RR,D all tuples that make all cardinality atoms in the
rule true.

We need the three steps because of conditional literals and cardinality
atoms. We want a set of tuples that correspond to those variable bindings
that satisfy the body of the rule. The relation corresponding to the
domain literals give us the set of all possible instances that the rule can
have, but the rule body may have some additional cardinality atoms in
it. We have to check each tuple in RR,D to see whether it makes all the
remaining cardinality atoms are true or not.

The cardinality atoms may contain conditional literals that have to
be expanded. The most convenient way to represent a conditional lit-
eral is to make a relation out of it that contains one tuple for every
atom that belongs to the expansion6. We combine the relations cor-
responding to conditional literals occurring in a cardinality atom C =
Card(b, {L1, . . . ,Ln}) together as a join RC = RL1 ./ · · · ./ RLn . We
then create a selection of RR,D where we choose those tuples whose join
with RC contains at least b tuples.

Domain Predicate Symbols
We define an n-ary relation Rp for every n-ary domain predicate symbol
in the same way as we have relations for program predicates in Datalog.
A tuple 〈t1, . . . , tn〉 ∈ Rp exactly when p(t1, . . . , tn) is true in the domain
model.

Domain Literals
Every global variable that occurs in an ω-restricted rule has to occur also
in some domain literal in the rule body. We can take the natural join
over the relations of domain literals to get the set of all possible global
variable substitutions, exactly the same way as we can create the relation
for the body of a Datalog program. We use RR,D to denote this join.

Conditional Literals
A conditional literal L = X.p(X) : q(X) denotes the set of atoms {p(t) |
q(t) is true }. This gives us the relational algebra expression for L: we
create the natural join of the two relations Rp and Rq, and then project
it back to the variables of p. We also rename all the local variables so
that we do not get confused when a variable occurs as a local variable in
more than one literal.

6Remember that we are currently considering only positive programs so there are
no negative literals.

5. DECIDABILITY OF OMEGA-RESTRICTED PROGRAMS 71

Formally, if L = {Y1, . . . , Yk}.p(X1, . . . , Xn) : q(X ′
1, . . . , X

′
m) is a con-

ditional literal, the relational algebra expression corresponding to it is:

RL = ρY1/Z1,...,Yn/Zn(πX1,...,Xn(Rp ./ Rq)) .

Cardinality Atoms
A cardinality atom C = Card(b, {L1, . . . ,Ln}) corresponds to a selection:
we create the join of the relations RLi

, and then use the count aggregate
to define the selection.

The relation corresponding to the set of conditional literals is:

RC = RL1 ./ · · · ./ RLn

We define the selection predicate as:

PC(t) = b ≤ count({t} ./ RC) .

We create a different join for every tuple so that we do not mix together
conditional literals corresponding to different global variable bindings.

Finishing Touches
Let R be the rule

H ← C1, . . . , Cn, D1, . . . , Dk .

where bodyD(R) = {D1, . . . , Dk}. Then, the relation RR is:

RR = σPC1
∧···∧PCn

(RR,D) .

Example 5.8.5 We examine a program that has no recursion so that
we can see what the complete relations corresponding to the different
predicates without having to use the naive algorithm.

a(1)←
a(2)←
b(1)←
b(3)←

c(X, Y)←a(X), a(Y)

d(X)←2 {Y.c(X, Y) : a(Y)}, b(X)

In this case the relations corresponding to a/1, b/1, and c/2 correspond
to the Datalog ones:

Ra = {〈1〉, 〈2〉}
Rb = {〈1〉, 〈3〉}
Rc = {〈1, 1〉, 〈2, 1〉, 〈1, 2〉, 〈2, 2〉} .

In the case of d, we have to examine the cardinality atom and the condi-
tional literal in it. For the conditional literal we get:

RL = ρY/Z(πX,Y (Rc[X, Y] ./ Ra[Y])) = ρY/Z({〈1, 1〉, 〈1, 2〉, 〈2, 1〉, 〈2, 2〉}) .

72 5. DECIDABILITY OF OMEGA-RESTRICTED PROGRAMS

From this we get the following selection predicate for the cardinality atom:

PC(t) = 2 ≤ count({t} ./ RL) .

Now the relation

Rd = σPC
(RR,D) = σPC

(Rb) .

Since Rb has two tuples, we have to do the test in the selection two times.
With the tuple 〈1〉 we get

PC(〈1〉) = 2 ≤ count({〈1, 1〉, 〈1, 2〉}) = T .

Conversely, with 〈3〉 we get:

PC(〈3〉) = 2 ≤ count(∅) = F .

Thus, the relation Rd is:
Rd = {〈1〉}

that corresponds to the only global variable binding X/1 that satisfies the
body of the rule.

Relations and Relevant Instantiation
We conclude this section by showing that the relation RR,D corresponds
directly with the set of relevant ground instances of the rule. A ground
instance Rσ belongs in the relevant instantiation if Aσ is true for every
domain literal A in bodyD(R). We now show that every tuple in RR,D
corresponds directly to a substitution that satisfies this condition.

In this proof we examine the complete domain model Dω and the com-
plete relations Rp of domain predicates. We will show later in Chapter 8
that the correspondence holds also when we examine the domain program
one stratum at the time.

Proposition 5.8.1 Let P be an ω-restricted CCP, and R ∈ P be a
rule. Then, 〈a1, . . . , an〉 ∈ RR,D[X1, . . . , Xn] if and only if there exists a
substitution σ ∈ subs({X1, . . . , Xn}, UH(P)) such that

1. σ(Xi) = ci for all 1 ≤ i ≤ n; and

2. Dω � Aσ for every A ∈ bodyD(R).

Proof. First note that we can trivially convert a tuple from RR,D into
a substitution σ and vice versa by defining that σ(Xi) = ai.

Suppose that 〈a1, . . . , an〉 ∈ RR,D[X1, . . . , Xn]. Consider a domain
literal p(c′1, . . . , c

′
m) ∈ bodyD(R). Since the extensions of domain literals

are unique (Theorem 5.2.1) and RR,D was formed as a natural join over
the extensions of the domain literals, Dω � p(c′1, . . . , c

′
m).

Next, suppose that there is some substitution σ where Dω � Aσ for
every A ∈ bodyD(R). Then, the extensions of the domain predicates
contain the ground atoms Aσ, so their natural join RR,D also contains a
corresponding tuple. �

5. DECIDABILITY OF OMEGA-RESTRICTED PROGRAMS 73

Table 6.1: Computational complexity
Variables Functions Instantiation Model

No — — NP-complete
Fixed No P-complete NP-complete

Yes 2-EXP-complete 2-NEXP-complete
Unlimited No EXP-complete NEXP-complete

Yes 2-EXP-complete 2-NEXP-complete

6 COMPUTATIONAL COMPLEXITY

In this chapter we examine the computational complexity of ω-restricted
programs. The results are based on [193, 191] where most of these re-
sults were originally proved. We are mainly interested in two different
problems:

Problem 1: Instantiation. Given an ω-restricted CCP P
and a ground atom p(t1, . . . , tn) where p is a domain predicate,
does Dω � p(t1, . . . , tn) hold?

Problem 2: Model. Does an ω-restricted CPP P have a
stable model?

Intuitively, instantiation tells us how difficult it is to create the
relevant instantiation of a program with variables and model tells how
hard it is to find a stable model.

Throughout this chapter we use only the Herbrand interpretation for
function symbols. We leave out interpreted function symbols since we
may use arbitrarily complex functions and their evaluation can domi-
nate the instantiation process. Thus, we limit ourselves to the simplest
possible case where function evaluation does not significantly affect the
necessary time to solve instantiation or model.

In addition to proving complexity results for the whole class of ω-
restricted programs, we examine how the computational complexity of
instantiation and model changes when we restrict our attention to
some subclasses of programs. We use two parameters to divide the ω-
restricted programs into four classes:

• A rule may contain either an unlimited number of variables or there
is some constant limit d for their number.

• The programs can contain arbitrary function symbols or only 0-ary
constants.

We use the convention that if the number of variables is fixed, each
rule may contain d global variable occurrences and each conditional literal
may have d local variable occurrences. We do this to simplify the proofs.

The main complexity results are presented in Table 6.1. The model
complexity for ground weight constraint programs with the stable model
semantics has been presented in [175] and for normal logic programs
in [131, 38]. Since ω-restricted CCPs are essentially a subclass of the
more general weight constraint rules, the hardness results of [175] apply.

74 6. COMPUTATIONAL COMPLEXITY

6.1 BASICS OF COMPUTATIONAL COMPLEXITY

The field of computational complexity examines how difficult different
problems are to solve. In general, we are interested in asymptotic com-
plexity: how does the effort to solve the problem increase when the size
of the problem instance grows. In this section we present a brief intro-
duction to the complexity theory. A comprehensive introduction can be
found, for example, in Computational Complexity by Christos Papadim-
itriou [152].

We use Turing machines [199] as our underlying form of computation.
A Turing machine has a control unit that can be in different states and
a working tape that acts as a memory during the computation. We will
present a formal definition in Section 6.3 when we examine how they can
be simulated with CCPs.

If we have a Turing machine that solves some problem, we can examine
how much resources it uses in solving different problem instances. The
two most common measurements are time and space. The time complex-
ity tells how many steps the computation lasts and the space complexity
tells many working tape cells are used.

A Turing machine can be time-bounded by some function f(n). If the
input is n symbols long, the machine always halts and gives its answer
after using at most f(n) computation steps to do it. Similarly, a space-
bounded Turing machine always halts and does not use more than f(n)
tape cells during the computation.

For example, a problem is in the class of polynomial time (PTIME
or shorter P) if there exists some Turing machine M and a k ≥ 0 such
that for every input x, the machine M solves the problem and takes at
most |x|k steps to do it.

A problem that has only two possible answers, YES and NO, is a
decision problem. When we work with decision problems it is useful to
interpret a problem P as a set that contains all problem instances for
which the answer is YES. Thus, the notation x ∈ P denotes that the
answer to x is YES and x /∈ P denotes that the answer is NO. This
notation allows us to define the concept of reduction in a simple way. In
particular, 〈P, A〉 ∈ Instantiation denotes that the ground atom A is
in the stable model of PD and P ∈ Model denotes that P has a stable
model.

If we want a more complex answer, we have a function problem. For
example, the problem of finding a stable model M of P is a function
problem. If a decision problem belongs in a complexity class C, then the
corresponding function problem is in the class FC.

Definition 6.1.1 A reduction from a problem P into a problem P ′ is a
function f : P→ P’ such that:

x ∈ P if and only if f(X) ∈ P’ .

The intuition is that we take an instance of a problem P and solve it
by transforming it into an instance of P’ and solving that, instead. In

6. COMPUTATIONAL COMPLEXITY 75

P Polynomial time (nk)
NP Nondeterministic polynomial time

EXP Exponential time (2nk
)

NEXP Nondeterministic exponential time

2-EXP Doubly exponential time (22nk

)
2-NEXP Nondeterministic doubly exponential time

Figure 6.1: Complexity classes

particular, we use polynomial reductions where f has the restriction that
we need to be able to compute f in polynomial time.1

Definition 6.1.2 (Completeness) A problem P is hard with respect
to some complexity class C if all problems in C can be polynomially
reduced to P.

A problem P is complete with respect to some complexity class C if it
is both C-hard and in C.

The final concept that we need is the notion of nondeterministic com-
plexity classes. A nondeterministic Turing machine may have more than
one possible action to execute in each time step so it can have more than
one computation for any given input. The Turing machine accepts the
input (answers “YES”) if at least one of those computations is accepting.

The complexity classes that we need in this section are shown in Fig-
ure 6.1. The class P contains all those problems that can be solved in
polynomial time using deterministic Turing machines and NP extends
that to nondeterministic Turing machines. Currently the most impor-
tant open problem in complexity theory is whether they are the same
class or not. The classes EXP and NEXP contain the problems that
can be solved in an exponential time, and 2-EXP and 2-NEXP contain
the problems that are doubly exponential, that is, their time usage is

bounded by some function of the form 22nk

.
In Chapter Section 9 we present CCPs to solve some problems that

belong to different complexity classes. We will introduce those classes
when we first encounter them.

6.2 RELATIONSHIP OF MODEL AND INSTANTIATION

We start the complexity analysis by noting that model is always at least
as difficult as instantiation since for any program P and ground atom
A we can create a program m(P) such that m(P) has a stable model
only if Dω � A.

Definition 6.2.1 The function m : Instantiation → Model is de-
fined as follows:

m(P) = PD ∪ {← not A} .

1When working with some simpler complexity classes we may need to use different
forms of reductions, but for this work polynomial time reductions are sufficient.

76 6. COMPUTATIONAL COMPLEXITY

Proposition 6.2.1 The function m is a polynomial-time reduction from
Instantiation to Model.

Proof. The algorithm from the proof of Theorem 4.6.1 gives us a way
to compute m(P) in polynomial time, so we have only to prove that the
function preserves solutions.

By Theorem 5.6.1 we know that PD always has a unique stable model.
Thus, the crucial rule is the one that we added to it:

← not A .

This constraint rejects model candidates where A is not true. Since there
is only one candidate model, Dω, the program m(P) has a stable model
exactly when Dω � A. Thus, m is a reduction from Instantiation to
Model. �

6.3 TURING MACHINE TRANSLATION

We establish the complexity hardness results in this work by proving
that the computations of a Turing machine can be simulated by a logic
program. The configurations of the machine are encoded as sets of atoms
and a stable model of the program corresponds to one computation, and
the atoms that are true in it tell what configurations were visited during
the computation.

Since ω-restricted programs are decidable, we cannot simulate an ar-
bitrary Turing machine since as problems that relate to Turing machine
computations are undecidable. This limitation arises from the fact that
all relevant instantiations are finite. A Turing machine can use an un-
limited amount of its work tape so a stable model that captures such a
computation would need to be infinite.

However, when we work with a bounded Turing machine, we know that
there is an upper bound on the amount of resources that the machine
can use. If we give an input x to a Turing machine that is time-bounded
by a function f(n), we know that any computation takes at most f(|x|)
steps to complete and it can use at most the first f(|x|) cells of the tape
since the tape head can move only one cell at a time. This means that it
is enough that our relevant instantiation contains rules for the first f(|x|)
steps and tape cells.

The Turing machine encoding consists of two parts, a fixed one that
implements the transition function of a bounded Turing machine M when
its transition relation is given as a set of facts, and an input-specific part
that encodes the input x of M as well as its working tape.

The crux of the hardness proofs is to show that we have a polyno-
mial reduction from a time-bounded Turing machine M and an input x
to a CCP TM(M, |x|). The fixed part of the encoding needs only ten
rules so it can be constructed in constant time. What we need then is
a way of creating f(|x|) tape cells and time steps using a polynomial
amount of rules. Since we can code the cells and steps as numbers, this
amounts to finding a way to express the first f(|x|) natural numbers with
a polynomial number of rules.

6. COMPUTATIONAL COMPLEXITY 77

In addition of having the encoding TM(M) for deterministic Turing
machines, we will also present an encoding NTM(M) for nondetermin-
istic machines.

Definition 6.3.1 (Turing Machine) A deterministic Turing machine
is a quadruple M = 〈K, Σ, δ, q0〉 where K is a finite set of states, Σ is a
finite alphabet containing the blank symbol t, q0 ∈ K is the initial state
and δ is a transition function δ : K × Σ→ (K ∪ {y, n})× Σ× {l, s, r}.

Definition 6.3.2 A configuration of a Turing machine M = 〈K, Σ, δ, s〉
is a quadruple c = 〈q, α, σ, β〉 where q ∈ K, σ ∈ Σ, and α, β ∈ Σ∗.2

A configuration c = 〈q, α, σ, β〉 yields the configuration c′ = 〈q′, α′, σ′, β′〉
in one step (denoted c `M c′) if and only if one of the following conditions
hold:

1. β′ = σ′′β, α = α′σ′, and δ(q, σ) = 〈q′, σ′′, l〉;

2. β = σ′β′, α′ = ασ′′, and δ(q, σ) = 〈q′, σ′′, r〉; or

3. β′ = β, α′ = α, and δ(q, σ) = 〈q′, σ′, s〉.

A computation of M with an input x ∈ Σ∗ (denoted by M(x)) is a
sequence of configurations 〈c0, c1, c2, . . .〉 where the initial configuration
c0 = 〈q0, ε,t, x〉 and such that for all i ∈ N it holds that ci `M ci+1.

When we run a Turing machine with a given input, there are three
possible results:

1. the machine halts in the state y;

2. the machine halts in the state n; and

3. the machine goes into an infinite loop and never terminates.

We will be using Turing machines whose time use is bounded so the
third possibility cannot happen. If the machine ends up in the state y,
we say that it accepts the input, and if in n, it rejects it.

Definition 6.3.3 A Turing machine M = 〈K, Σ, δ, s〉 terminates on an
input x if and only if M(x) is a finite sequence 〈c0, c1, . . . , cm〉 where cm

does not have any valid successor configuration.
A Turing machine M is time-bounded by a function f(n) if for all

x ∈ Σ∗, the computation M(x) terminates in at most f(|x|) steps.
A Turing machine M accepts an input x if and only if M(x) termi-

nates and the final configuration cm is of the form cm = 〈y, α, σ, β〉 where
σ ∈ Σ and α, β ∈ Σ∗. The set of all strings accepted by M is denoted
with L(M).

A nondeterministic Turing machine is otherwise equivalent to a deter-
ministic one except that instead of having a transition function it has a
transition relation that can contain more than one possible next transi-
tion for any given configuration and it accepts if at least one computation
accepts.

2We may denote a configuration 〈q, α, σ, β〉 with a simpler notation 〈q, ασβ〉.

78 6. COMPUTATIONAL COMPLEXITY

Definition 6.3.4 A nondeterministic Turing machine is a quadruple M =
〈K, Σ, ∆, q0〉 where K is a finite set of states, Σ is a finite alphabet con-
taining the blank symbol t, q0 ∈ K is the initial state and ∆ is a transi-
tion relation ∆ ⊆ K × Σ× (K ∪ {y, n})× Σ× {l, s, r}.

We can use the deterministic definitions of configurations and com-
putations also for the nondeterministic case, but we have to change the
definition of one computational step.

Definition 6.3.5 Let M = 〈K, Σ, ∆, s〉 be a nondeterministic Turing
machine. Then, a configuration c = 〈q, α, σ, β〉 yields the configuration
c′ = 〈q′, α′, σ′, β′〉 if and only if there exists a transition 〈q, σ, q′, σ′′, d〉 ∈
∆ such that one of the following conditions hold:

1. β′ = σ′′β, α = α′σ′, and d = l;

2. β = σ′β′, α′ = ασ′′, and d = r; or

3. β′ = β, α′ = α, σ′ = σ′′, and d = s.

Finally, we formalize the nondeterministic acceptance condition.

Definition 6.3.6 A nondeterministic Turing machine M = 〈K, Σ, ∆, s〉
accepts an input x ∈ Σ∗ if and only if there is a computation 〈c0, . . . , cm〉
where c0 is the initial configuration 〈s,tx〉, cm is of the form 〈y, α, σ, β〉
where σ ∈ Σ and α, β ∈ Σ∗ and ci `M ci+1 for all 0 ≤ i ≤ m.

6.4 THE TURING MACHINE ENCODING

We will now examine how we can represent Turing machines as logic
programs. We first present the encoding for deterministic machines and
then modify it to get a representation of nondeterministic machines.

6.4.1 The Rules of the Encoding

Predicate Symbols
We encode the states of a Turing machine M using the predicate sym-
bol state(q), the alphabet using symbol(σ), and the transitions using
transition(q1, σ1, q2, σ2, d), where d ∈ {l, s, r} denoting left, stationary,
and right, respectively.

The tape cells are defined using the predicate cell/1 and the time steps
with time/1. An atom at-cell(σ, c, t) denotes that the tape cell c contains
the symbol σ at the time step t. An atom reads(c, t) denotes that the
tape head is positioned over the cell c at the step t. Finally, an atom
in-state(q, t) denotes that the machine is in state q at step t.

Computation Steps
We start by identifying which transition we take at each computation
step. For this we use an auxiliary predicate take(Q1, S1, Q2, S2, D, T) to
denote that we take the transition 〈Q1, S1, Q2, S2, D〉 at the time step T .

6. COMPUTATIONAL COMPLEXITY 79

take(Q1, S1, Q2, S2, D, T)← transition(Q1, S1, Q2, S2, D),

in-state(Q1, T), reads(C, T), (6.1)

at-cell(S1, C, T), time(T), cell(C) .

Once we know which transition to take, we use three rules to execute
the computation step. First, we write the correct symbol to the current
cell:

at-cell(S2, C, T ′)← transition(Q1, S1, Q2, S2, D),

take(Q1, S1, Q2, S2, D, T),

reads(C, T), next(T, T ′), cell(C) .

Then, we change to the new state:

in-state(Q2, T
′)← transition(Q1, S1, Q2, S2, D),

take(Q1, S1, Q2, S2, D, T), next(T, T ′)

Finally, we move the tape head to the correct direction:

reads(C ′, T ′)← transition(Q1, S1, Q2, S2, D),

take(Q1, S1, Q2, S2, D, T), reads(C, T),

next-cell(C, D,C ′), next(T, T ′) .

The rules above handle the cell where the tape head is currently po-
sitioned. In addition, we have to assert that the state of the other tape
cells stays constant:

at-cell(S, C, T ′)← at-cell(S, C, T), not reads(C, T),

cell(C), next(T, T ′), symbol(S) .

Tape Cell Adjacency Relation
The predicate next-cell/3 connects the adjacent tape cells together so
that the tape head can be moved to the correct direction:

next-cell(C1, r, C2)← next(C1, C2)

next-cell(C1, l, C2)← next(C2, C1)

next-cell(C, s, C)← cell(C) .

(6.2)

Halting States
Finally, we want to recognize whether the Turing machine halts in an
accepting state or not:

accept← in-state(y, T), time(T)

rejecct← in-state(n, T), time(T) .
(6.3)

80 6. COMPUTATIONAL COMPLEXITY

Numerals
We do not give here the rules for the predicates time/1, cell/1, next/2
that encode the time steps, tape cells, and the successor relation. Instead,
in the following complexity proofs we show how we can define them with
a polynomial number of rules using tools that are available for the four
different ω-restricted program classes.

The encodings will be based on numerals. That is, we show how we
can create numbers from 0 to f(n) where f(n) is the upper bound for
computation length and then use them for identifying time steps and
tape cells.

Initial Configuration
When a Turing machine starts its operation with an input x = x1x2 · · ·xn,
the symbols of the input are positioned in the first n positions of the tape
and all other cells are empty.

We encode this using the rules:

at-cell(x1, t1, t0)←
...

at-cell(xn, tn, t0)←
part-of-input(t1)←

...

part-of-input(tn)←
where the terms ti are representations of first n + 1 numerals.

All tape cells that are not part of the input are empty:

at-cell(t, C, t0)← cell(C), not part-of-input(C) .

The Turing machine starts from the initial state and the tape head
is over the first tape cell, reading the empty symbol that precedes the
actual input:

in-state(q0, t0, x1, t1)← .

Nondeterministic Turing Machines
We can generalize the translation to allow nondeterministic Turing ma-
chines by forcing the machine to choose between possible transitions at
all computation steps. We can do this by changing the rule for take/6 to
choose exactly one of the possible transitions:

{take(Q1, S1, Q2, S2, D, T)} ← transition(Q1, S1, Q2, S2, D),

in-state(Q1, T), reads(C, T),

at-cell(S1, C, T), time(T), cell(C)

← 2 {{Q1, S1, Q2, S2, D}.take(Q1, S1, Q2, S2, D, T) :

transition(Q1, S1, Q2, S2, D)},
time(T)

← not 1 {{Q1, S1, Q2, S2, D}.take(Q1, S1, Q2, S2, D, T) :

transition(Q1, S1, Q2, S2, D)},
time(T)

6. COMPUTATIONAL COMPLEXITY 81

All other rules in NTM(M) are equal to the corresponding rules
of TM(M).

A similar translation for normal logic programs has been presented
earlier by V. W. Marek and J. B. Remmel in [127].

6.4.2 Correctness of Turing Machine Simulation

In this section we argue that the Turing machine translation that we
presented is correct. We will choose one possible representation for the
numerals and then show that the least model of the translation corre-
sponds exactly to the computation of a bounded Turing machine.

Completing the Translation
We examine a version of the Turing machine simulation program where
we encode the cell positions with integers. We will call that machine with
the name TM(M, n) where n is the bound on the number of computation
steps for the machine M . In this case the rules that correspond to the
initial configuration for a given input x = x1x2 · · ·xm will be:

at-cell(x1, 1, 0)←
part-of-input(1)←
at-cell(x2, 2, 0)←

part-of-input(2)←
...

at-cell(xm, m, 0)←
part-of-input(m)← .

The definitions for time/1, cell/1, and next/2 will be based on the bound
of the computation time:

number(1)←
...

number(n)←
next(0, 1)←

...

next(n− 1, n)←
time(X)← number(X)

cell(X)←number(X) .

At the beginning we are in the initial state q0 and look at the empty
symbol preceding the actual input:

in-state(q0, 0)←
reads(0, 0)←

Even though the formal definition of Turing machines implies a com-
putation tape that extends infinitely to one direction, we need only a
finite subset of the tape since the number of cells that a bounded Turing
machine is restricted by the bound.

82 6. COMPUTATIONAL COMPLEXITY

Uniqueness of Stable Models
First we show that TM(M, n) has only one stable model. We do it by
showing that it is locally stratified.

Proposition 6.4.1 Let M be a Turing machine. Then, the program
TM(M, n) has a unique stable model.

Proof. By Proposition 5.1.1 a locally stratified CCP has a unique
stable model. We now show that there are no negative cycles among
atoms in instH(TM(M, n)).

Only two rules have negative literals in them. The first is:

at-cell(S, C, T ′)← at-cell(S, C, T), not reads(C, T),

cell(C), next(T, T ′), symbol(S)

The dependency graph of TM(M, n) contains a negative cycle:

at-cell→ reads→ take→ at-cell

so we see that TM(M, n) is not stratified. When we examine the heads
of the rules that participate in the cycle, we see that the cycle has the
form:

at-cell(S, C, T + 2)→ reads(C, T + 1)→ take(Q1, S1, Q2, S2, D, T)

→ at-cell(S, C, T)

When we instantiate this, we get a number of dependency paths of the
form:

at-cell(s, p, n)→ reads(p, n− 1)→ take(q1, s1, q2, s2, d, n− 2)

→ at-cell(s, p, n− 2)→ reads(p, n− 3)→ · · ·
→ at-cell(s, p, 2)→ reads(p, 1)→ take(q1, s1, q2, s2, d, 0)

→ at-cell(s, p, 0) .

As the sequences have no cycles, they are locally stratified.
The other rule with a negative literal is:

at-cell(t, C, 0)← cell(C), not part-of-input(C) .

Since part-of-input/1 is defined using only facts, this rule causes no cycles
in the dependency graph.

As no ground atom depends negatively on itself, TM(M, n) is locally
stratified. Thus, it has a unique stable model. �

This result does not hold for the translation for nondeterministic Tur-
ing machines. Such machines can have more than one computation on
a given input so the corresponding translation has more than one stable
model and it cannot be locally stratified.

Deterministic Simulation
We will now complete the argument that the stable model of TM(M)
corresponds to the computation of M .

6. COMPUTATIONAL COMPLEXITY 83

Proposition 6.4.2 Let M = 〈K, Σ, δ, q0〉 be a deterministic Turing ma-
chine that is time-bounded by a function f(n) and x ∈ Σ∗ be its input.
Then, x ∈ L(M) if and only if accept is true in the stable model of
TM(M, f(|x|)).

Proof. The program TM(M, n) has a unique stable model by Propo-
sition 6.4.1 and we define it with C.3 Let C(k) denote the subset of C:

C(k) = {at-cell(σ, i, k) | at-cell(σ, i, k) ∈ C}
∪ {in-state(s, k) | in-state(s, k) ∈ C}
∪ {reads(c, k) | reads(c, k) ∈ C} .

Next we show that the atoms in each set C(k) correspond to the config-
uration ck = 〈s, α, σ, β〉 of M at the computation step k. That is, there
is exactly one atom at-cell(σ, i, k) for each i and σ is the same symbol
that occurs in the ith tape cell in ck. Also, there is exactly one atom
in-state(s, k) and one atom reads(p, k) where s and p are the same as the
state and the position of the tape head of M at ck.

Consider first k = 0. Since the zero does not have any precedessors in
the next/2 relation, the only rules for atoms in C(0) are those that were
defined as facts and with the rule:

at-cell(t, C, 0)← cell(C), not part-of-input(C) .

The atoms at-cell(σ, i, 0) where i ∈ [1, |x|] correspond to the input sym-
bols xi and for all other tape cells we have an atom at-cell(t, i, 0) ∈ C(0).
Similarly, the only atoms for in-state/2 and reads/2 were defined by facts
that set the state to the initial state s and tape head position to the cell
0. Thus, C(0) corresponds to the initial configuration 〈s,tx〉.

Next, suppose that for some k ≥ 0 it holds that C(k) corresponds to
the configuration ck. We now consider the set C(k + 1).

Consider the predicate take/6. It has only one rule in TM(M, n),
namely:

take(Q1, S1, Q2, S2, D, T)← transition(Q1, S1, Q2, S2, D),

in-state(Q1, T), reads(C, T), (6.4)

at-cell(S1, C, T), time(T), cell(C) .

By induction hypothesis the set C(k) corresponds to the configuration ck.
This means that there is exactly one atom in-state(q, k), one reads(p, k),
and one at-cell(s, p, k) in it and they correspond to the state, tape head
position, and the symbol that is under the tape head in ck. As M is deter-
ministic, there is exactly one fact 〈transition(q, s, q′, s′, d), ∅〉 in TM(M, n).
When we examine the ground instances of (6.4) where T = k, we see that
exactly one of them has a satisfied body in C(k) so we can derive the
atom take(q, s, q′, s′, d, k) into C, and that atom corresponds to the tran-
sition δk that M took at ck.

3Here we depart from our usual convention of denoting models with M because
we need that symbol to denote the Turing machine.

84 6. COMPUTATIONAL COMPLEXITY

The ground rules that are used to derive the atoms for at-cell/3 are
instances of the rules:

at-cell(S2, C, T ′)← transition(Q1, S1, Q2, S2, D),

take(Q1, S1, Q2, S2, D, T), (6.5)

reads(C, T), next(T, T ′)

at-cell(S, C, T ′)← at-cell(S, C, T), not reads(C, T),

cell(C), next(T, T ′), symbol(S) (6.6)

Since there is only one atom take/6 and one atom reads/2 true for the
time step k in C, there is only one ground instance of (6.5) where T = k,
T ′ = k + 1, and the body is satisfied by C(k). We use that instance to
derive the atom at-cell(s′, p, k + 1) into C(k + 1).

For all other cells it holds that not reads(p, k) is true, so (6.6) derives
the atom at-cell(s, p, k+1) whenever at-cell(s, p, k) ∈ C(k). By induction
hypothesis there is only one such an atom for each cell, so C(k + 1)
will contain exactly one atom at-cell/3 for every tape cell and the tape
contents is the same as in the previous step except for the cell that was
under the tape head that now contains the symbol that the transition
wrote to it.

The only rule for in-state/2 is:

in-state(Q2, T
′)← transition(Q1, S1, Q2, S2, D),

take(Q1, S1, Q2, S2, D, T), next(T, T ′), cell(C) .

As there is only one atom for take/6 with T = k true in C(k), this rule
derives exactly one atom in-state(q′, k + 1) to C(k + 1) where the new
state corresponds to the transition that M took at ck.

Finally, the rule for reads/2 is:

reads(C ′, T ′)← transition(Q1, S1, Q2, S2, D),

take(Q1, S1, Q2, S2, D, T), reads(C, T),

next-cell(C, D,C ′), time(T) .

Again, there is only one instance whose body is satisfied so we get only
one atom reads(p′, k + 1) ∈ C(k + 1). The value of p′ is defined by the
predicate next-cell/3 whose extension contains atoms of three forms:

next-cell(p, s, p),

next-cell(p, l, p− 1), and

next-cell(p− 1, r, p) .

Thus, if the direction component of the transition is s, p′ = p, if it is l,
p′ = p− 1, and if r, p′ = p + 1. Thus, the tape head ends up in the cell
that corresponds to the location at ck+1. Here it is important to note
that since M is time-bounded by f(|x|), it cannot visit any cell that is
further from the beginning than f(|x|) so all possible cells are included
in cell/1 instances. Thus, we see that C(k + 1) corresponds to ck+1.

Finally, consider the rule for accept:

accept← in-state(y, T), time(T) .

6. COMPUTATIONAL COMPLEXITY 85

We see that we include accept in C exactly when M enters the state y.
We showed that in-state/2 corresponds to the states that M visits during
the computation, so we derive accept exactly when M accepts x. �

Nondeterministic Simulation
Next, we argue that also the non-deterministic Turing machine simulation
is correct.

Proposition 6.4.3 Let M = 〈K, Σ, ∆, s〉 be a nondeterministic Turing
machine and x ∈ Σ∗. Then, x ∈ L(M) if and only if NTM(M, f(|x|))
has a stable model C such that accept ∈ C.

Proof. By Proposition 6.4.2 we know that TM(M, n) simulates a
deterministic Turing machine. The program NTM(M, n) is otherwise
the same as TM(M, n) except that instead of having only one applicable
ground instance for take/6 at any given time step, we now have a choice
of more than one transition. The rules for take/6 are:

{take(Q1, S1, Q2, S2, D, T)} ← transition(Q1, S1, Q2, S2, D),

in-state(Q1, T), reads(C, T),

at-cell(S1, C, T), time(T), cell(C)

← 2 {{Q1, S1, S2, S2, D}.take(Q1, S1, Q2, S2, D, T) :

transition(Q1, S1, Q2, S2, D)},
time(T)

← not 1 {{Q1, S1, S2, S2, D}.take(Q1, S1, Q2, S2, D, T) :

transition(Q1, S1, Q2, S2, D)},
time(T)

Consider a stable model C of NTM(M, n). Let the sets C(k) be defined
as in the proof of Proposition 6.4.2, and suppose that up to some i, the
sets C(n), n ≤ i correspond to one computation 〈c0, . . . , cn〉 of M(x).4

Now there is again exactly one at-cell(σ, p, n) in C(n) for every tape
cell, one reads(p, n), and one in-state(q, n). Thus, the first rule for take/6
allows us to derive any atoms of the form take(q, σ, q′, σ′, d, n) into C.
The second rule forbids us from including two of them, and the third rule
forces us to add at least one. Thus, we get exactly one atom take/6 into C.
An argument similar to the one presented in the proof of Proposition 6.4.2
allows us to conclude that C(n+1) corresponds to the configuration cn+1.

If there are no atoms take/6 available, then the stable model candidate
is discarded. This is the situation where a Turing machine has no appli-
cable transitions. As the machine does not end in the accepting state, it
is a rejecting computation so the behavior is correct. �

6.5 PRELIMINARIES FOR COMPLEXITY PROOFS

In this section we build constructs that we will use in the complexity
proofs. We divide our proofs into two parts, inclusion and hardness.

4The basic case of c0 is identical with the deterministic one.

86 6. COMPUTATIONAL COMPLEXITY

When proving inclusion, we show that the problem belongs to some
complexity class. We establish it by showing that the size of the relevant
instantiation of a program does not grow faster than some upper bound
and that we can compute the domain model Dω in a time that is poly-
nomial with respect to the size of the instantiation.5 We use the Turing
machine translation that was introduced in the previous section for the
hardness proofs.

In this section we first define formally what the size of a program means
and then we present algorithms for Instantiation and Model. The
algorithm for Instantiation works in a time that is polynomial with
respect to the size of the Herbrand instantiation, and that for Model is
the nondeterministic variant of it.

6.5.1 Size of a Program

Before presenting the results we have to define what the size of a program
means. There are several possibilities that we could use. For example,
we could count the number of rules or the number of basic literals in the
programs. There are situations where both above choices are suitable for
practical purposes. However, with ω-restricted programs they do hide
one source of complexity since also the size of the terms may increase
when symbolic functions are used.

Definition 6.5.1 The size of a term t is defined inductively as follows:

1. size(c) = 1 for all 0-ary constants c; and

2. size(f(t1, . . . , tn)) = 1+
∑n

i=1 size(ti) for all n-ary terms f(t1, . . . , tn),
n > 0.

For an atom A = p(t1, . . . , tn) or a negative literal not A:

size(A) = size(not A) = 1 +
n∑

i=1

size(ti) .

The size of a conditional literal L = X.L : A is:

size(L) = size(L) + size(A) .

For a cardinality atom C = Card(b, S):

size(C) = size(not C) = 1 +
∑
L∈S

size(L) .

The size of a rule R is:

size(R) =
∑

H∈head(R)

size(H) +
∑

C∈body(R)

size(C) .

The size of a program P is:

size(P) =
∑
R∈P

size(R) .

5We use a quadratic algorithm in this section but we can compute the domain
model in linear time with respect to the instantiation using a Dowling-Gallier-type [51]
algorithm [174].

6. COMPUTATIONAL COMPLEXITY 87

Example 6.5.1 Consider the program P :

R1 : a(1) ←
R2 : b(f(X), X) ← a(X)
R3 : c ← 1 {{X, Y }.d(X, Y) : b(X, Y)} .

Here size(R1) = 2, size(R2) = 6, size(R3) = 8, so size(P) = 2+6+8 = 16.

To make our proofs simpler we will overestimate the program sizes. We
will assume that every literal and non-constant function symbol occurring
in a program has the same number of arguments. In effect, we pad them
by adding enough new arguments to make them to have the same arity
as the term or predicate symbol that has the maximum number of them.
Another assumption is that every rule has as many atoms occurring in the
conditional literals in its body. Again, we can add irrelevant conditional
literals to the rule bodies to make this so.

Definition 6.5.2 Let P be an ω-restricted program. Then, its approxi-
mated size is defined to be:

sizeA(P) = m · d · ` · T (6.7)

where:

• m is the number of rules in P ;

• d is the maximum arity of predicates and non-constant function
symbols in P or 1, whichever is larger;

• ` is the number of atoms that occur in each rule; and

• T is the maximum size of a term that occurs in P .

Proposition 6.5.1 Let P be an ω-restricted program. Then,

size(P) ≤ sizeA(P) .

Proof. Note that for every rule R, size(R) is the sum of the sizes of
atoms that occur anywhere in it. Let there be `′ such atoms and suppose
further that the largest of them has d′ arguments and that the largest
term that occurs in it is of size T ′. Thus, size(R) ≤ `′ · d′ · T ′ ≤ ` · d · T
and size(P) ≤ sizeA(P). � If we can establish an upper bound for
sizeA(P), then we know that it is also an upper bound for the size of P .

Sources of the Size Explosion
When we instantiate a program P , the size explosion of instHr(P) comes
mainly from two sources:

1. Creating new terms using function symbols with rules of the form:

p(f(X, Y))← d(X), d(Y)

If the extension of d/1 has c different ground terms, then instan-
tiating this rule generates c2 new ground terms that may then be
used when instantiating rules that depend on p/1.

88 6. COMPUTATIONAL COMPLEXITY

2. Constructing the Cartesian product of existing ground terms using
rules of the form:

p(X1, . . . , Xn)← d(X1), . . . , d(Xn) .

Instantiating a rule of this form results in tn ground instances
where t is the size of the extension of d/1.

There is one factor more that increases the size of the instantiated
program but whose contribution is small compared with the two cases
above:

3. When a function symbol f is applied to the terms t1, . . ., tn, then
the size of the new term is the sum of the sizes of the argument
terms.

6.5.2 Algorithms for INSTANTIATION and MODEL

We can solve Instantiation with the algorithm presented in Figure 6.2.
The algorithm is based on the function naive-instantiate-relevant from
Section 5.7.

Proposition 6.5.2 The algorithm instantiation(P , A) returns true if
and only if Dω � A.

Proof. We have already show in the proof of Theorem 5.0.2 that the
set D that instantiation computes is the domain model of P . Since A is
a ground atom, D satisfies A if and only if A ∈ D. �

We will use this naive algorithm to prove inclusion results. The key
point to note is that its time complexity is polynomial with respect to
the size of the relevant instantiation of the program. Note that this
does not give us a polynomial algorithm for Instantiation since the
instantiation may be exponential in size with respect to the size of the
original program.

Proposition 6.5.3 The time complexity of instantiation(P , A) is poly-
nomial with respect to the size of instHr(P).

Proof. By Theorem 4.6.1 we can compute a strict ω-stratification for P
and check if it is ω-restricted in polynomial time with respect to the size
of P , so the first part of instantiation is polynomial also with respect to
instHr(P) since size(P) ≤ size(instHr(P)) for all P .

Next, we go through the finite strata of P in a while loop where we
examine every strata once. The number of strata is linear with respect
to Preds(P) so this loop is executed a linear number of times. Inside the
loop we have two operations, computing the relevant instantiation and
finding its least model.

We can use the one-step provability operator to compute the least
model of a stratum program Pi. The first step is that we remove all
negative literals from its relevant instantiation instHr(Pi, Di). We can do
this in linear time with respect to size(instHr(Pi, Di)) using the construct
from the proof of Theorem 5.1.1. Each iteration of TP takes a linear time

6. COMPUTATIONAL COMPLEXITY 89

function instantiation(Program P , Ground Atom A)
D := ∅
S := create-stratification(P)
if not is-restricted(P , S) then

return false
endif
i := 0
while Pi is not empty do

PG := naive-instantiate-relevant(Pi, D)
D := D ∪MM(PG)
i := i + 1

endwhile
if A ∈ D then

return true
else

return false
endfunction

function naive-instantiate-relevant(Ruleset R, Atomset D)
S := F (D)
foreach r ∈ R do

S ′ := {r′ ∈ inst(r, D) | D � bodyD(r′)}
S := S ∪ S ′

end foreach
return S

end function

Figure 6.2: A naive algorithm for solving Instantiation

90 6. COMPUTATIONAL COMPLEXITY

with respect to size(instHr(Pi, Di)). In the worst case every atom from
instHr(Pi, Di) belongs to the least model and we have to derive each of
them with a separate TP operation. This means that this step takes
O(size(instHr(Pi, Di))

2) time.
Finally, we need to examine naive-instantiate-relevant. In that func-

tion we have a loop that examines all rules in it one at a time and creates
its relevant instantiation. We can do it by creating the relation RR that
corresponds to the body of the rule R. To do this, we need to compute
the relation RR,D that corresponds to the domain literals of R. We can
do it in a time that is linear to the size of RD and that in turn is linear
with respect to instHr(R). Note that we do not have to consider the
complete instantiation of R since RR,D contains all those instances that
satisfy the domain literals.

Putting all these steps together we see that the time to solve instan-
tiation(P , A) is polynomial with respect to size(instHr(Pi, Di)). �

We can modify the instantiation algorithm to get a nondeterminis-
tic algorithm for Model. We instantiate the program, guess a stable
model, and then verify that the model is correct. This takes time that is
polynomial with respect to the size of the instantiation.

Proposition 6.5.4 The time complexity for Model(P) is nondeter-
ministic polynomial with the respect to size(instHr(P)).

Proof. We can create the complete relevant instantiation of P analo-
gously to the algorithm instantiation. By Proposition 6.5.3 this can be
done in a time that is polynomial with respect to size(instHr(P)). Next,
we nondeterministically guess a model candidate M . We can do this in
a time that is linear with respect to size(instHr(P)). We then compute
the reduct instHr(P)M and find its least model. Both of these operations
can be done in a time that is polynomial with respect to size(instHr(P)).

�

6.6 COMPLEXITY RESULTS

Now, we go through the four different classes of ω-restricted programs
one by one.

Theorem 6.6.1 Instantiation of an ω-restricted program is P-com-
plete when the number d of variables occurring in each rule is fixed and
there are no non-constant function symbols in it.

Proof. We construct the proof in two parts:

(a) Inclusion. Let P be a program with d distinct variables. First
we note that all ground terms that may occur in the relevant in-
stantiation instHr(Pi) of some stratum program Pi have to occur
somewhere in P since non-constant function symbols are not al-
lowed. Thus, each rule in P may have at most nd ground instances
where n is the number of different constants that occur in P . Sim-
ilarity, the relevant expansion of a conditional literal may have at

6. COMPUTATIONAL COMPLEXITY 91

most nd basic literals in it so the total size of the instantiation is
polynomial in the size of the program P and by Proposition 6.5.3
it can be computed in polynomial time.

(b) Hardness. The problem of deciding whether an atom A belongs to
the least model of a ground stratified normal logic program P is
P-complete [38]. Such programs are a special case of ω-restricted
programs (Proposition 3.6.1). Thus, it is P-hard to decide whether
Dω � A.

�

Theorem 6.6.2 Model for an ω-restricted program with a fixed num-
ber d of variables and no non-constant function symbols is NP-complete.

Proof.

(a) Inclusion. As we saw in the previous proof, the instantiation of a
fixed-variable ω-restricted program can be computed in polynomial
time and it has a polynomial number of rules. By Proposition 6.5.4
we can determine whether it has a stable model in nondeterministic
polynomial time.

(b) Hardness. Model for ground normal logic programs is NP-comp-
lete [131] and they are a special case of ω-restricted programs
(Proposition 3.6.1).

�

Theorem 6.6.3 Instantiation of an unlimited-variable ω-restricted
program is EXP-complete if no non-constant function symbols are al-
lowed.

Proof.

(a) Inclusion. Consider an ω-restricted program P and let sizeA(P) =
n. Suppose that there are c different ground terms in P . We now
prove by induction over d = 1, 2, . . . where d is the maximum num-
ber of variables in rules and conditional literals that the maximum
size of the instantiation of P is:

sizeA(instHr(P)) ≤ md`c2d ≤ dn2n+2

where m is the number of rules and ` the number of literals in each
rule and sizeA(P) = n = md`. (Since no new ground terms are
generated during the instantiation, the maximum term length T is
constant and may be left out of consideration.) We will also show
that dn2n+2 grows asymptotically slower than 2n2

to show that the
problem is in EXP.

We divide our analysis in two parts. First, we show that the number
of ground instances of rules in instHr(P) is at most mcd, and then
we show that each such a rule may have at most `cd ground literals
in it.

92 6. COMPUTATIONAL COMPLEXITY

Consider a single rule R. In the basic case d = 1 we see that it may
have at most c instances that are obtained by substituting the sole
variable by each ground term at a time. So,

|instHr(R)| ≤ c .

Next, suppose that for all programs that have at most k different
variables X1, . . ., Xk in them, |instHr(R)| ≤ ck for each rule R.

Consider the case where d = k+1. Here we can do the instantiation
of a rule R in two steps:

1. first instantiate only the variable Xk+1 and leave the other
variables still in place; and

2. instantiate variables X1, . . ., Xk in the rules that were pro-
duced in the previous step.

The first step directly corresponds to the basic case d = 1, so we see
that we can get at most c partially instantiated rules. By induction
hypothesis, each one of them may have at most ck ground instances
and:

|instHr(R)| ≤ ck · c = ck+1

so we have established that a single rule may have at most cd in-
stances. As P has m rules, the total number of instantiated rules
in instHr(P) is:

|instHr(P)| ≤ mcd .

We can make exactly the same induction to show that the expansion
of a conditional literal occurring in the rule body may contain at
most cd atoms in it, so the body of an instantiated rule may contain
at most `cd literals, each having the size d. Combining these two
figures we get:

size(instHr(P)) ≤ sizeA(P) = (mcd) · (d`cd) = md`c2d ≤ dn2d+2 .

The last inequality holds since m ≤ n, ` ≤ n, and also necessarily
c ≤ n.

Since also d is linear to the size of n, the size of the ground in-
stantiation grows O(n2n+3). When we compare the growth rates of
f(n) = n2n+3 and g(n) = 2n2

, we see that:

lg f(n) = (2n + 3) lg n

lg g(n) = n2

and conclude that g(n) grows asymptotically faster than f(n) since
lg is a monotonic function and n2 grows faster than (2n + 3) lg n.
Thus, n2n+3 = O(2n2

) and the size of the ground instantiation
of P is bounded from above by an exponential function. Thus,
instantiation is in EXP.

6. COMPUTATIONAL COMPLEXITY 93

(b) Hardness. First we note that a deterministic EXP-time Turing
machine M uses at most 2nk

time steps for some fixed k when the
length of the input is n. We have to show that we can generate an
exponential number of atoms representing time steps and tape cells
using a program whose size is polynomial with respect to the size
of M . To do this, we need to implement an nk-bit binary counter
that runs from 0 to 2nk − 1. This can be done by encoding the
numbers as vectors of binary variables:

number(X1, . . . , Xnk)← bit(X1), . . . , bit(Xnk) . (6.8)

The predicate bit/1 is auxiliary with the extension {0, 1}. The
successor relation can be encoded with the rule:

next(X1, . . . , Xnk , Y1, . . . , Ynk)← add(X1, 1, Y1, C1),

add(X2, C1, Y2, C2),

...

add(Xnk , Cnk−1, Ynk , Cnk)

(6.9)

where add/4 encodes one-bit addition and is defined using the fol-
lowing four facts:

add(0, 1, 1, 0)← add(0, 0, 0, 0)←
add(1, 0, 1, 0)← add(1, 1, 0, 1)← .

(6.10)

Now the time steps and tape positions can be defined in terms of
numbers:

time(X1, . . . , Xnk)← number(X1, . . . , Xnk)

cell(X1, . . . , Xnk)← number(X1, . . . , Xnk) .
(6.11)

Finally, we replace all references to time/1 and cell/1 by time/nk

and cell/nk and add all necessary domain predicates to the rule
bodies.

�

Theorem 6.6.4 Model of an unlimited-variable ω-restricted program
is NEXP-complete if no non-constant function symbols are allowed.

Proof. We can prove inclusion as in Theorem 6.6.2. For hardness, we
can use the nondeterministic Turing machine program and construct the
instance facts as in the proof of Theorem 6.6.3. �

When we consider instantiation with unlimited function symbols,
the binary counter construction in the hardness direction is quite con-
voluted. Thus, we prepare the way for it by proving a simpler result,
namely, that instantiation is EXP-hard for such programs.

Lemma 6.6.1 Instantiation of a fixed-variable ω-restricted program P
that uses non-constant function symbols is EXP-hard, if the number of
variables in each rule is d ≥ 8 and there are at least two different non-
constant function symbols available.

94 6. COMPUTATIONAL COMPLEXITY

Proof. We need to construct a counter from 0 up to 2nk−1. We do this
by encoding an m-bit binary number x as a function b1(b2(· · · bm(0) · · ·))
where bi is f if the ith bit of x is 0 and t if it is 1. The m-bit binary
numbers can be generated recursively from (m − 1)-bit numbers by the
following two rules:

numberm(t(X))← numberm−1(X)

numberm(f(X))← numberm−1(X)
(6.12)

Here we need m+ 1 different number predicates since otherwise the rules
would not be ω-restricted. As the basic case of the recursion, we define
one 0-bit number as:

number0(0)← . (6.13)

The successor relation can also be defined recursively:

nexti+1(t(X), t(Y))← nexti(X, Y)

nexti+1(f(X), f(Y))← nexti(X, Y)

nexti+1(f(X), t(Y))← lasti(X), firsti(Y)

(6.14)

where lasti/1 and firsti/1 are defined as:

lasti(t
i(0))←

firsti(f
i(0))← .

(6.15)

The translation uses 7nk + 3 rules to create all nk-bit numbers so we
now have a polynomial reduction from EXP-time Turing machines to
ω-restricted programs using only function symbols and the proof is com-
plete. �

Theorem 6.6.5 Instantiation of a fixed-variable ω-restricted program
that uses non-constant function symbols is 2-EXP-complete, if the max-
imum number of variables occuring in a rule or a literal set is d ≥ 8.

Before we present the proof of the theorem we define four lemmas that
help us manage the inclusion size of the proof. With these lemmas we
break the size of the ground instantiation into its component pieces.

Lemma 6.6.2 Let P be an ω-restricted program where the maximum
arity of a function symbol is d and whose largest ground term has the
size T . Then, the size of the largest term that occurs in instHr(P) is
bounded above by 2sdsT where s is the number of nonempty strata in P .

Proof. We prove by induction over the number of strata that the
largest ground term ti that occurs in the relevant instantiation of the
stratum program Pi is at most 2idiT .

As the basic case we note that all rules on the 0-stratum are ground,
so size(t0) = T ≤ 20d0T . Next, suppose that the claim holds for all strata
up to k. As the maximum arity of a function symbol is d, the largest
possible term on the k + 1-stratum is:

tk+1 = f(tk, . . . , tk︸ ︷︷ ︸)

d times

6. COMPUTATIONAL COMPLEXITY 95

where f is a function symbol of maximal arity. We see that:

size(tk+1) = d · size(tk) + 1

≤ 2d · size(tk) .

Here we use the induction hypothesis to note that:

2d · size(tk) = 2d · 2kdkT = 2k+1dk+1T

and the induction is complete. �

Lemma 6.6.3 If P is an ω-restricted program such that at most ci ground
atoms are true in the union of answer sets

⋃
j∈[0,i] Mi of the first i+1 stra-

tum programs Pj, then for each rule R ∈ Pi+1 it holds that |instHr(R)| ≤
cd
i where d is the number of global variables in R.

Proof. Each global variable that occurs in R has to occur also in
a positive domain literal in the rule body that belongs to some stratum
j ≤ i so there are at most cj variable substitutions that satisfy it. As there
are d variables, the rule has at most cd

i ground instances with satisfiable
bodies. �

Lemma 6.6.4 Let P be a cardinality constraint program with s nonempty
strata with m rules each. Then, instHr(P) has less than 2ds

mds+1
ground

rules if the number of variables d > 1.

Proof. We prove a slightly stronger claim. Let ci be the number of
ground atoms that are true in the union of answer sets

⋃
j∈[0,i] Mi of the

first i + 1 stratum programs Pj. Then,

ci ≤ 2
Pi−1

j=0 dj ·m
Pi

j=0 dj

when i > 0 and d > 1. We prove this by induction over the number of
strata in P . First, we note that

c0 ≤ m

c1 ≤ m ·md + m = md+1 + m

≤ 2md+1 = 2
P0

i=0 di ·m
P1

i=0 di

The value for c0 comes from the fact that all rules on the 0-stratum are
ground and for c1 we note that there are m rules on 1-stratum and by
Lemma 6.6.3 each of them may have at most cd

0 instances. Next, suppose
that the claim holds for all strata up to some k.

Each of the m rules in the k+1-stratum may have at most cd
k instances,

so:
ck+1 = m · cd

k + ck ≤ 2m · cd
k .

Next, we use the induction hypothesis to replace ck by its upper bound
and get:

ck+1 ≤ m(2
Pk−1

i=0 di ·m
Pk

j=0 dj

)d + 2
Pk−1

i=0 di ·m
Pk

j=0 dj

≤ 2m(2
Pk−1

i=0 di ·m
Pk

j=0 dj

)d .

96 6. COMPUTATIONAL COMPLEXITY

When we perform the outermost exponentation we get:

2m(2
Pk−1

i=0 di ·m
Pk

j=0 dk

)d = 2m · 2d
Pk−1

i=0 di ·md
Pk

j=0 dj

= 2m · 2
Pk−1

i=0 ddi ·m
Pk

j=0 ddj

= 2m · 2
Pk−1

i=0 di+1 ·m
Pk

j=0 dj+1

= 2m · 2
Pk

i=1 di ·m
Pk+1

j=1 dj

= 21+
Pk

i=1 di ·m1+
Pk+1

j=1 dj

= 2
Pk

i=0 di ·m
Pk+1

j=0 dj

and the induction is complete. We can simplify the final expression by
noting that:

k∑
i=0

di =
1− dk+1

1− d
< dk+1

when d > 1 so we get the upper bound 2ds ·mds+1
for the number of rules

in instHr(P). �

Lemma 6.6.5 The expansion of a conditional literal L that occurs in a
rule on the k-stratum of an ω-restricted program contains at most 2dk ·
mdk+1

basic literals where m is the number of rules per strata and d the
number of local variables in L.

Proof. First we note that if L has d local variables, then there are at
most cd

k−1 basic literals in the expansion of L where ck−1 is the number
of ground atoms that can be derived using rules on the first k strata. By
Lemma 6.6.4 we know that ck ≤ 2dk ·mdk+1

. �
Now we are ready to give our proof of Theorem 6.6.5.
Proof. [of Theorem 6.6.5]

(a) Inclusion. Without a loss of generality we may assume that there
are s strata with m rules each in a program P . Since the number of
variables d is fixed in this case, we ignore it from the size definition
and use sizeA(P) = n = sm`T where ` is the number of basic
literals in each rule and T the size of the largest term occurring
in P .

Let m′, `′, and T ′ denote the number of rules, basic literals, and
maximum term size of instHr(P). By Lemmas 6.6.2–6.6.5 we know
that:

m′ ≤ 2ds

mds+1

`′ ≤ 2ds

mds+1

`

T ′ ≤ 2sdsT .

Thus, the total size of the instantiation is:

sizeA(instHr(P)) ≤ 2ds

mds+1 · 2ds

mds+1

` · 2sdsT .

As each of s, m, `, d, and T are less than n, we get that:

sizeA(instHr(P)) ≤ 2nn

nnn+1 · 2nn

nnn+1

n · 2nnnn .

6. COMPUTATIONAL COMPLEXITY 97

When we rearrange the terms we see that:

sizeA(instHr(P)) ≤ 22nn+nn2nn+1+n+2 ≤ n4nn+1+n+2 (6.16)

when n ≥ 2. We now compare the growth rate of f(n) = n4nn+1+n+2dn

to the growth rate of g(n) = 22n2

:

lg f(n) = (4nn+1 + n + 2) lg n ≤ 5nn+1 lg n

lg(5nn+1 lg n) = lg 5 + (n + 1) lg n + lg lg n

lg g(n) = 2n2

lg lg g(n) = n2 .

As n2 grows strictly faster than n lg n + lg lg n, we know that

sizeA(instHr(P)) = O(22n2

)

so instantiation is in 2-EXP.

(b) Hardness. We have to construct a binary counter running from

0 to 22nk

for a given nk. We follow the example of the proof of
Lemma 6.6.1 and implement the numbers as terms. However, in
this case we start with n rules:

number0(0)←
...

number0(n)←

Then, we create the further levels of numbers using:

numberi+1(f(X, Y))← numberi(X), numberi(Y) . (6.17)

The intuition is that number1 is seen as an n2-base number, number2

as (n2)2 = n4 base, and so on. At the total we will have nk different
levels.

Let ci be the size of the extension of numberi/1. Here we see that:

c0 = n

c1 = n2

c2 = (n2)2 = n4

...

ci = (ci−1)
2 = n2i

...

cnk = n2nk

Thus, we can create n2nk

different terms using nk + n rules. As

22nk

≤ n2nk

, we now see that it is enough to model all necessary

98 6. COMPUTATIONAL COMPLEXITY

integers. Next, we have only to show that we can handle the arith-
metic of the terms by defining the successor relation. We start by
defining n ground facts for the basic case:

next0(i, i + 1)←

and continuing with a recursive definition:

nexti+1(f(X, Y), f(X, Z))← numberi(X), nexti(Y, Z)

nexti+1(f(X, L), f(Y, F))← firsti(F), lasti(L), nexti(X, Y) .

Finally, we have:

first0(0)←
last0(n)←

firsti+1(f(X, X))← firsti(X)

lasti+1(f(X, X))← lasti(X)

and the proof is complete.

�
We now present a simple example program that illustrates the doubly-

exponential growth of ground instantiation.

Example 6.6.1 Consider the following program P with two variables:

d0(0)←
d0(1)←

d1(f(X, Y))← d0(X), d0(Y)

d1(t(X, Y)) ← d0(X), d0(Y)

d2(f(X, Y))← d1(X), d1(Y)

d2(t(X, Y)) ← d1(X), d1(Y)

d3(f(X, Y))← d2(X), d2(Y)

d3(t(X, Y)) ← d2(X), d2(Y) .

Each of the predicate symbols belong to a stratum by itself. The number
of rules in the ground instantiations of the four strata are:

|instHr(P0)| = 2 = 221−1

|instHr(P1)| = 2 · |instHr(P0)|2 = 2 · 22 = 8 = 222−1

|instHr(P2)| = 2 · |instHr(P1)|2 = 2 · 82 = 128 = 223−1

|instHr(P3)| = 2 · |instHr(P2)|2 = 2 · 1282 = 32768 = 224−1 .

If we add a fifth predicate d4/1 and identical rules for it, then it will have
2 · 327682 = 2, 147, 483, 648 = 231 = 225−1 instances.

On the other hand, if we add a new ground fact d0(2) ← and a rule
di+1(h(X, Y)) ← di(X), di(Y) for each three other strata, then the sizes

6. COMPUTATIONAL COMPLEXITY 99

of the instantiations will be:

|instHr(P0)| = 3 = 321−1

|instHr(P1)| = 3 · |instHr(P0)|2 = 3 · 32 = 27 = 322−1

|instHr(P2)| = 3 · |instHr(P1)|2 = 3 · 272 = 2187 = 323−1

|instHr(P3)| = 3 · |instHr(P2)|2 = 3 · 21872 = 14, 348, 907 = 324−1 .

Thus, we see that if there are n strata and n rules in each stratum, then
there are n2k−1 ground instances on the kth stratum, so there are in total:

n∑
k=1

n2k−1

instances. In this sum the final term n2n−1 dominates the value and we
can say that it grows O(n2n

).

Theorem 6.6.6 Model for a fixed-variable ω-restricted program that
uses function symbols is 2-NEXP-complete, if d ≥ 8.

Proof. As in Theorem 6.6.4. �

Theorem 6.6.7 Instantiation of an ω-restricted program is 2-EXP-
complete.

Proof.

(a) Inclusion. By Theorem 6.6.5 sizeA(instHr(P)) is bounded from
above with:

sizeA(instHr(P)) ≤ n4dn+1+1

The same result holds also in this case, but here d is not fixed but
is linear to n. Thus,

sizeA(instHr(P)) ≤ n4nn+1+1

and further:

lg n4nn+1+1 = (4nn+1 + 1) lg n ≤ (5nn+1) lg n

lg(5nn+1 lg n) = lg 5 + (n + 1) lg n + lg lg n .

As n lg n + lg lg n = O(n2), we see again that size(instHr(P)) =

O(22n2

) and the proof is complete.

(b) Hardness. Follows directly from Theorem 6.6.5.

�

Theorem 6.6.8 Model for an ω-restricted program is 2-NEXP-com-
plete.

Proof. As in Theorem 6.6.4. �

100 6. COMPUTATIONAL COMPLEXITY

6.7 THE FUNCTION VERSION OF MODEL

In most cases we are not content to find out whether a CCP has a stable
model or not. Instead, the atoms that are true in a stable model give us
the answer to our problem. This means that we are usually solving the
function version of Model.

Problem 3: Functional Model. Given a cardinality
constraint program P , either find a stable model M ∈ SM(P)
or prove that one does not exist.

As Model is NP-complete for ground CCPs, Functional Model
is FNP-complete6 for them. What this means in practice is that all
currently known algorithms for it have an exponential worst-case be-
havior. However, experiments have shown that the typical instances for
NP-complete problems are easy to solve and the computationally hard
cases are relatively rare [29, 139]. In this section we examine how we can
estimate the effort that we have to expend to compute answer sets.

Many different algorithms [174, 5, 119, 80, 2, 39] have been presented
for computing answer sets of logic programs under different semantics.
This is an important research area that cannot be treated adequately
within the space of this work. Instead, we work on an abstract level and
treat the algorithms as determinized Turing machines that solve NP-
problems. The idea is to characterize the difficulty for finding a stable
model in terms of the nondeterministic choices that a program has to
make while constructing the stable model.

Definition 6.7.1 A CCP-solver A is an algorithm that takes an ω-
restricted cardinality constraint program P as its input and returns either

1. a stable model M ∈ SM(P) if P is satisfiable; or

2. false if P is unsatisfiable.

6.7.1 Determinizing Turing Machines

It is a well-known fact that we can always transform a nondeterminis-
tic Turing machine into a deterministic one [199]. We go systematically
through all possible computations of the machine, examining every com-
bination of nondeterministic choices one at a time. The price of remov-
ing guesses from an algorithm is an exponential increase of computation
time. If a nondeterministic Turing machine makes n binary choices when
processing the input x, there are 2n possible computations that the cor-
responding deterministic machine has to examine with the same input.

We can visualize the computations of a nondeterministic Turing ma-
chine M as a tree where the configurations of the machine form the nodes
and a node c′ is a successor of a node c if c `M c′. These trees are usu-
ally called computation trees. If a node has two or more successors we
call it a choice point . A computation tree is complete if it contains all

6Problems that are FNP-complete are often called NP search problems.

6. COMPUTATIONAL COMPLEXITY 101

configurations that M may reach with a given input, and it is accepting
if it contains a branch that leads into an accepting state. In the context
of function problems we use the terms search tree and solution [167] to
describe computation trees and accepting branches, respectively.

6.7.2 Computing FUNCTIONAL MODEL

The simplest nondeterministic algorithm for Functional Model is to
guess the truth value for every ground atom, and then check whether the
candidate is a stable model or not. The algorithm has-stable-model from
Figure 5.1 in Section 5.7 that examines every subset of atoms in turn is
essentially the determinized version of this idea.

This algorithm is not suitable for practical use. The problem is that
the search space is far too large. A program whose relevant instantiation
has n ground atoms has 2n possible truth assignments. Most non-trivial
programs will have thousands of atoms, and there exist examples with
hundreds of thousands or even millions of atoms. It would be completely
unfeasible to try to solve such instances if we always had to examine
every possible combination. Practical solvers work by combining making
choices with truth value propagation.

A partial solver7 is an algorithm that takes as its input a program P
and a partial truth assignment I = 〈I+, I−〉 where I+ contains those
atoms that are set true, I− those that are false, and the rest of the atoms
are undefined. It then uses some set of propagation rules to extend I to
cover more atoms.

Definition 6.7.2 A partial CCP-solver A is an algorithm that takes as
its input a CCP P and a partial truth assignment 〈I+, I−〉 where I+ ∩
I− = ∅, and returns a pair 〈M+, M−〉 where

1. I+ ⊆M+ and I− ⊆M−; and

2. for all stable models M ∈ SM(P) it holds that if I+ ⊆ M and
I− ∩M = ∅, then M+ ⊆M and M− ∩M = ∅.

We can think of the computation of an ASP solver as a procedure
where we first guess the truth value of an atom and then call a partial
solver to compute the consequences of this choice. If the sets M+ and M−

that it returns are not disjoint, we have a contradiction where some atom
has to be at the same time both true and false, so we reject our choice
and try the other value. If M+ and M− together cover all atoms of the
program, we have found an answer set. If neither of these things happen,
we continue by guessing the value of the next atom.

In this work we follow the convention of Williams et. al. [209] and
consider partial solvers that use propagation rules that can be computed
in polynomial time. Practical ASP solvers usually use only rules that can
be computed in in linear or quadratic time [174].

7Partial solvers are also called sub-solvers.

102 6. COMPUTATIONAL COMPLEXITY

a

¬b

c

¬d

¬a

b

¬c

d

Figure 6.3: The search tree from Example 6.7.1

Example 6.7.1 Consider the program P :

a← not b

b← not a

c← a

d← b .

Suppose that we have a partial solver that uses the following two propa-
gation rules:

(1) If the body of a basic rule is true, make its head true; and

(2) If all rules for an atom have provably unsatisfied bodies, make it
false.

This program has four atoms, so the size of the search space is 24 = 16
truth assignments. However, we have effectively only one choice here.

Suppose that we make the guess that a is true. From this we can infer:

1. not b using (2);

2. c using (1); and

3. not d using (2).

Choosing one truth value was enough to determine the truth values of all
other atoms. We can check that {a, c} = M = MM(PM) so it is really
a stable model.

The same thing happens if we start by guessing that a is false. Then,
(1) allows us to infer b and then d, and (2) lets us to conclude that c is
false.

Figure 6.3 shows the search tree for this example. If we had made the
initial choice over b, we would have got a search tree that is isomorphic
to the given one.

If we make the initial choice over c or d, we cannot propagate any
information and have to make additional choices.8 This shows that the
order of choices has an impact on the search tree size.

8This is a limitation of our choice of propagation rules. If we include rules that
allow backwards propagation from the head of the rule to the literals in the body [174],
then choosing the value for c or d is also enough to completely determine the stable
model.

6. COMPUTATIONAL COMPLEXITY 103

6.7.3 Effective Search Space Sizes

Next, we examine how we can limit the number of nondeterministic
choices that we need to make.

Williams et. al. [209] proposed the concept of backdoor variables for
describing the complexity of propositional logic Sat problems.9 A set
of propositional atoms is a backdoor for a Sat instance if setting their
truth values allows us to solve the remaining subproblem in a polynomial
time.

For example, the set {a} is a backdoor for the program in Exam-
ple 6.7.1 in this sense. After we chose a truth value for a, we could find
the truth values for other atoms in a linear time. Different solvers use
different propagation rules so they can have different sets of backdoors.

Definition 6.7.3 Let P be a ground CCP and A a partial CCP-solver.
A set B ⊆ Atoms(P) is a backdoor for A in P if and only if for each
subset I ⊆ B it holds that A(I, B \ I) = 〈M+, M−〉 where M+ is a stable
model.

This definition corresponds to the notion of strong backdoor of [209].10

Backdoors give us a better worst-case estimate on how difficult it is
to find a stable model for a program P . If a program P has an m-atom
backdoor for A and the solver is aware of the backdoor, then we can
solve P in O(2m) time instead of O(2n) where n is the number of all
atoms. We make the choices over the atoms in the backdoor and then
call A to compute the truth values of the rest of the atoms in polynomial
time.

Unfortunately, finding a backdoor is not easy. Deciding whether a
SAT instance has a backdoor of size m is NP-hard [45] in the general
case. However, there are several classes of backdoors that we can identify
syntactically from a program.

Proposition 6.7.1 Let P be a finite ground CCP and S ⊆ P be the
least set containing:

1. every atom A that occurs in the head of a choice rule in P ; and

2. every atom B that occurs in a negative literal in P .

Then, S is a backdoor for some partial CCP-solver A.

Proof. We will now describe the partial CCP-solver A for which S is
a backdoor. The partial solver takes as its arguments P and the partial
truth assignment 〈M, S \M〉. It works in two phases:

1. compute the reduct PM ; and

2. compute the least model M ′ = MM(PM).

9In Sat we want to find out if a propositional logic formula is satisfiable or not.
For the formal definition see Section 9.2.1.

10A weak backdoor in SAT is a set of atoms that have at least one truth assignment
that allows us to solve the resulting problem in polynomial time.

104 6. COMPUTATIONAL COMPLEXITY

The set M ′ is a stable model of P if it holds that M ⊆M ′ and M ′∩ (S \
M) = ∅. To see this note that M and M ′ agree on the atoms of S so the
reduct PM ′

= PM . Thus, M ′ = MM(PM) = MM(PM ′
).

We can create the reduct PM in linear time with respect to the size of P
and find its least model in O(n2) time with the provability operator TP M .

�
We can get a slightly smaller backdoor by leaving out from S those

negative atoms B that do not occur in a negative dependency cycle [174].
When we compute the reduct we do it only for the atoms that occur
in S and leave all other negative literals in place. This leaves us with a
stratified program that has unique least model that we can compute in
quadratic time [144].

Corollary 6.7.1 We can decide whether a finite ground CCP has a sta-
ble model in O(2m) where m is the number of atoms that occur either in
the heads of choice rules or in negative literals that take part in negative
cycles of the dependency graph of the program.

This gives us a heuristics for writing programs: we can lower the worst
case complexity for model generation by reducing the number of atoms
in the set S.

The backdoor that we get this way is not necessarily the smallest back-
door that a program has. For example, for the program in Example 6.7.1
we get S = {a, b} while each atom is a backdoor by itself.

6.7.4 More on Choice Points

The size of a backdoor gives us an upper bound for the size of the search
tree of the program when the solver that we are using recognizes it. This
tells us only how much effort we have to expend in the worst case. In
the extreme case where all truth assignments of the backdoor lead to a
stable model we can find one in a linear time.11

The order in which we make the choices can have a large impact in
computational efficiency. It is possible that with some orders we get an
exponentially larger search tree than with other orders [34]. Also, even
if we have identified a backdoor it may be useful to make choices over
atoms that do not belong to it because sometimes choosing the truth
value of a non-backdoor atom may in its turn fix the values of more than
one atom in the backdoor [105].

There is a difference in finding all answer sets or just one of them. If
we want to find only one answer set, we can stop after encountering the
first solution while we have to explore the whole search tree if we want to
get all answer sets. If we search for one answer set, we can get lucky and
make a good guess early in the computation and enter a branch where
we find a model quickly. Also, we might possibly use some propagation
rules that preserve only satisfiability of the program and not all answer
sets. With these kinds of rules we could conceivably find one answer set
quickly at the cost of losing all other answer sets.

11Supposing that the propagation rules can be executed in a linear time.

6. COMPUTATIONAL COMPLEXITY 105

a

b

¬c

d ¬d

¬a

¬b

c

¬d

Figure 6.4: A search Tree for Example 6.7.2

Example 6.7.2 Consider the program:

{a} ←
b← a

c← not b

{d} ← b

← d, not c .

Here we have a backdoor {a, d}, the atoms that occur in the heads of the
choice rules. Even though b and c occur negatively, we do not have to
include them in the backdoor since the negations are stratified.

We see a complete search tree in Figure 6.4. The black inner nodes
correspond to choice points and white to points where the truth value
is determined by earlier choices using the two propagation rules from
Example 6.7.1.

When there are two atoms in the backdoor, the maximum size of the
search tree is 22 = 4 branches. In this case we have only three branches
since we have a choice on the value of d only if b is true.

106 6. COMPUTATIONAL COMPLEXITY

Full
Language
Program

Basic
Program

Ground
Program

Answer
Sets

Transform Instantiate Solve

Figure 7.1: The process of computing answer sets

7 THE FULL LANGUAGE

When we write actual answer set programs, we want to have a language
that has enough expressive power to allow us to use simple and natural
encodings. However, when we are writing a solver engine that actually
computes the answer sets, we want the language to be relatively simple
so that we can create a more efficient implementation.

The way how we address this dilemma in this work is to divide the
language into two parts:

1. A basic language that contains the basic primitives; and

2. A full language that provides a richer feature set for to the pro-
grammer.

The programmer uses the features of the full language to write encod-
ings for problems. The ASP system then translates the program into a
basic language program that is then given as input to the solver. This
process is illustrated in Figure 7.1 and we see more on this approach in
Chapter 8.

The Basic Language
We use the ω-restricted cardinality constraint programs that we have
defined in the previous chapters as our basic language and every full
language program will be translated into some set of ω-restricted rules.

The basic language takes a role that is similar to the role of inter-
nal representation in standard compiler technology [1]. There we have a
front-end that reads in an input program and creates its internal repre-
sentation, and then a back-end creates the object code from it.

The Full Language
The full language adds several features to the basic CCPs that we have
found to be useful in expressing a wide variety of problems. We do not
define a separate semantics for the full language but instead we give it in
the terms of the translation to basic programs. A set of ground atoms is
a stable model of a full program if and only if it is a stable model of the
translated program.

7.1 LANGUAGE DESIGN

We want to construct the languages so that there is a close connection
between the full and basic language. The basic language should have

7. THE FULL LANGUAGE 107

primitives that allow us to implement the features of the full language in
a concise and intuitively clear manner.

When considering what language constructs to include as primitives in
the basic language and what we leave as extensions we had four principal
criteria in mind:

1. we should be able to translate full programs to basic programs on
the level of programs with variables;

2. the translations should be modular;

3. the translations should be concise; and

4. the translations should not increase the size of the Herbrand base
of the instantiated program.

Our transformations satisfy these criteria quite well, but it turned out
that there were two constructs where we had to make a compromise be-
tween our goals of keeping the basic language simple and the transforma-
tions elegant. The two problematic cases were upper bounds for negative
cardinality literals (Section 7.3.2) and integral ranges (Section 7.3.6).

7.1.1 On Importance of Variables and Modularity

With ASP we want to use uniform encodings [171, 60, 130] as much
as possible. The basic intuition of such an encoding is that we have one
program with variables that we can use to solve all instances of a problem.
Each instance is defined by a set of facts that combined with the rules of
the encoding give its answer.1 This idea is shown in Figure 7.2.

When we work with such encodings, we usually do not know what
specific problem instances we want to solve so we have only the rules with
variables available to us. We want to be able to intuitively understand
what the rules of a program mean even when we do not have any ground
instances to examine.

We also want to be able to compose the problem encodings from
smaller pieces in a modular fashion [151] and to replace a program frag-
ment with an equivalent one without having to worry about the effects
of ground instances and extensions of domain literals.

This idea is closely connected with modularity of transformations [100].
A transformation τ is modular if τ(P1 ∪ P2) = τ(P1) ∪ τ(P2) for every
program P1 and P2. If our translation is modular, then we can compute
it in parts. We first translate the uniform encoding, and then when we
get the instance facts we translate them separately.2 If a transformation
is not modular, then we have to add the facts to the encoding before
doing the translation. The differences between these two approaches are
illustrated in Figures 7.3 and 7.4.

The transformations that we use are modular on the level of individual
rules. That is, we can translate the program one rule at a time. If we

1The nature of these encodings is examined in detail in Chapter 9.
2Though, in practice we do not have to translate facts since they are already given

as basic programs.

108 7. THE FULL LANGUAGE

Uniform Encoding

Instance 1

Instance 2

Instance 3

Facts 1

Facts 2

Facts 3

Answer

Answer

Answer

Formalize

Formalize

Formalize

Solve

Solve

Solve

Problem
domain

Logic
Programs

Figure 7.2: The principle of uniform encodings

Encoding

Facts 1

Facts 2

Facts 3

Encoding+
Facts 1

Encoding+
Facts 2

Encoding+
Facts 3

Translation

Translation

Translation

Transform

Transform

Transform

Full Language
Basic Language

Figure 7.3: A non-modular transformation

7. THE FULL LANGUAGE 109

Encoding

Combined

Combined

Combined

Translation

Facts 1

Facts 2

Facts 3

Transform

Full Language
Basic Language

Figure 7.4: A modular transformation

110 7. THE FULL LANGUAGE

then want to replace one rule with another, we need to transform only
that rule to get the basic program.

7.1.2 On the Size of the Translation

Our size-related criteria come from practical considerations. A trans-
lation should not significantly increase the size of the program or its
Herbrand base.

The consideration for the Herbrand base comes from the fact that each
new atom that we add to it doubles the number of interpretations of the
program and in the worst case also the time that it takes us to find a stable
model also doubles. In practice the increase is usually not so great but
generally the fewer relevant instances the non-domain predicates have,
the faster it is to compute models.

With domain predicates the increase is not as drastic as long as we
do not use them to create new terms. This is because the domain model
is simple to compute compared with computing the models of the ω-
program and adding a new domain predicate will not usually increase
the size of the Herbrand base of the non-domain part of the program.
This means that in our transformations we are willing to introduce new
domain predicates since the benefits of a clearer transformation and sim-
pler representation are in practice greater than the possible losses in
computational efficiency.

Most of our transformations add a constant number of new literals
or rules to the program. There are two exceptions for this. We need a
linear number of new rules when we remove full cardinality atoms from
the heads of rules, and when we transform a negative cardinality literal
that has an upper bound, we have to make a choice of whether we want
to add a linear number of new atoms into the Herbrand base of the
program or potentially an exponential number of new rules. We examine
this further in Section 7.3.2.

7.1.3 On Domain Predicates

In this work we demand that all variables occur in domain literals in the
rule bodies. This is more limited than the standard range-restriction [142]
that demands only that each variable should occur in some positive do-
main literal. This approach has the advantage that it makes it possible
to compute a reasonably small instantiation in a reasonably fast time.
This will be examined further in Section 8.4.3

How do we define and use domain predicates in practice? With uni-
form encodings we have one program that encodes the constraints of the
problem and the individual instances are given as sets of facts. In the
vast majority of cases the predicates that are defined in the instance files
are domain predicates. We often want to use them to define additional
domain predicates.

In a way, we can think that domain predicates assign types to variables.
Logic programs have traditionally had little or no type checking and it
is the responsibility of the programmer to ensure that the predicates are

7. THE FULL LANGUAGE 111

Union D1 ∪D2: union(X)← d1(X)
union(X)← d2(X)

Intersection D1 ∩D2: intersect(X)← d1(X), d2(X)
Difference D1 \D2: diff(X)← d1(X), not d2(X)

Table 7.1: Set Operations on Domains

Composition R1 ◦R2: comp(X, Z)← r1(X, Y), r2(Y, Z)
Projection: proj(X, Y)← r(X, Y, Z)
Transitive closure R∗: tc(X, Y)← r(X, Y)

tc(X, Z)← r(X, Y), tc(Y, Z), d(Z)
Symmetric closure R ∪R−: sc(X, Y)← r(X, Y)

sc(X, Y)← r(Y,X)

Table 7.2: Operations on Relations

used correctly. Domain predicates that are used as type predicates give
us a rudimentary type system for ASP languages. The lparse instantiator
has a support for domain declarations. For example, the declaration:

#domain d(X)

defines a domain for the variable X. This is implemented by adding the
literal d(X) to every rule that contains the variable X.

A programmer can construct complex domains from simple ones with
rules. Table 7.1 shows how to implement the basic set operations on
domains and Table 7.2 do the same for relations.

Example 7.1.1 Consider the problem of computing the transitive clo-
sure of a relation R ⊆ D × D. If we are given both the relation R and
the set D as facts of predicates r/2 and d/1, then we can compute the
transitive closure with the rules:

tc(X, Y)← r(X, Y)

tc(X, Z)← r(X, Y), tc(Y, Z), d(Z) .

Here r(X, Y) gives types for X and Y in both rules and d(Z) does the
same for Z. The predicate tc/2 is also a domain predicate and can be
used in other rules.

If d/1 is not given as facts, we can define it directly from r/2 with the
rules:

d(X)← r(X, Y)

d(Y)← r(X, Y) .

7.1.4 On Literal Types

We have two types of negative literals in our basic language which raises
the question of whether both of them are necessary or if one of them can
be expressed in the terms of the other. On the surface it seems that they
are redundant since for all ground cardinality literals it holds that:

M � Card(b, S) iff M � not Card(bM , {L | L ∈ S})

112 7. THE FULL LANGUAGE

where bM = |S| − b + 1. For example, the cardinality literal

not Card(1, {b, not c, not d})

is satisfied by the same sets of atoms as:

Card(3, {not b, c, d}) .

However, we can do this translation only for ground programs. If we
have a cardinality literal C = not Card(b, {X.a(X) : d(X)}), we do not
know how many atoms belong to the set before we have instantiated
d(X). Thus, we cannot replace C by an equivalent positive literal when
we work on the level of uniform encodings.

Conditional Literals
A conditional literal X.p(X) : q(X) allows us to define a set of literals in
a compact manner. These literals were originally introduced in the lparse
version 0.99.30 [197]. In Section 7.3.4 we extend the syntax to allow a
conjunction of literals in the condition.

The dlv system [111] has symbolic sets that can be used the same
purpose. A symbolic set has the form {X : S} where X is a list of local
variables and S is a conjunction of literals. Intuitively, a symbolic set
works like a conditional literal with the difference that it is replaced by
a set of tuples instead of a set of basic literals. Thus, {X : p(X)∧ q(X)}
behaves in the same way as X.p(X) : q(X) does. However, the semantics
is not the same since symbolic sets can represent also multisets instead
of sets. When they are used in this capability their semantics is difficult
to capture with conditional literals.

Parametric connectives [155] are another similar construct. A para-
metric connective is either a disjunction

∨
{L : C} or a conjunction∧

{L : C} where L is a basic literal and C is a conjunction of basic
literals.

The intuitive meaning of
∨
{p(X) : q(X)} is that it is instantiated

into a disjunction p(t1)∨ · · · ∨ p(tn) where q(ti) is true for all ti. Thus, it
behaves in a similar way to a cardinality atom Card(1, {X.p(X) : q(X)}).
However, in [155] a parametric disjunction may occur only in a rule head
and not in the body.

We do not allow cardinality atoms in the head of a rule in our basic
language but in this section we will extend our syntax to include them
in the full language. With this we can simulate the syntax of parametric
disjunctions. However, the semantics is different since the parametric
disjunctions use the semantics of disjunctive Datalog [60].

A parametric conjunction
∧
{p(X) : q(X)} is instantiated in the same

way as the disjunction except that the resulting literals are added to the
rule body. This acts as n universal quantification ∀X.q(X)→ p(x). For
example, if we have:

h←
∧
{p(X) : q(X)}

where the extension of q/1 is {q(0), q(1)}, then the rule is instantiated
as:

h← p(0), p(1) .

7. THE FULL LANGUAGE 113

If the extension of q/1 is empty, then the rule instantiates as a fact for h.

We allow conditional literals to be used in a similar way in the full
language. A conditional literal X.p(X) : d(X) that occurs directly in a
rule body is seen to represent a cardinality atom that is true when p(X)
is true for every X for which d(X) is true. We examine this construct in
more detail in Section 7.3.5.

7.1.5 On Rule Types

We have three types of rules in the language, basic and choice rules and
constraints:

a←body

{a} ←body

←body

We chose to include basic and choice rules as primitives and then imple-
ment constraints in terms of basic rules. This is not the only possibility
since it is possible to express a basic rule with a choice rule and a con-
straint:

{a} ←body

←body, not a .

With this approach we could define a stable model so that a set is a stable
model if it is the least model of the reduct and it additionally satisfies
all constraints. Our choice of having basic rules instead of constraints
is largely pragmatic as in general it is easier to handle single rules than
pairs of rules.

If we are willing to add new atoms to the program we do not need
choice rules and can do with basic rules only. If we have a rule:

{a, b} ← body ,

then the corresponding basic rule construct is:

a← not a′, body

a′ ← not a

b← not b′, body

b′ ← not b .

The problem here is that we will essentially double the size of the ground
instantiation of a program. Choice rules are convenient from the knowl-
edge-representation point of view because in many if not most problems
their semantics corresponds to the intuitive concept of choices. We have
found that students who are introduced to ASP find it easier to use
choice rules than the traditional even-loop construction in creating the
programs.

114 7. THE FULL LANGUAGE

7.1.6 On Aggregates

Cardinality literals are one form of more general aggregate literals [107,
42, 43, 129, 69, 126, 183, 154, 182, 65, 67]. An aggregate literal combines
the truth values of a set of literals into one aggregate value. In most cases
the aggregates are defined in terms of weighted literals. We will see one
full example of such an aggregate later in Section 7.4.1 where we will
introduce weight atoms. In this discussion we will use the set of literals
S = {a1, a3, a5, a7} where each atom ai has the weight i.

Possible aggregate types include maximum, average, and parity, among
others. A maximum atom max(b, S) is satisfied if the maximum weight
among the true literals in S exceeds the bound b. For example, the set
{a3, a5} satisfies the atom max(4, S), but {a1, a3} does not. A parity
aggregate atom even(S) is satisfied if an even number of literals in S are
true. For example, {a1, a5} satisfies it but {a1} does not. An average ag-
gregate behaves similarly to max/2 except that it uses the average weight
instead of the maximum.

It is also possible to use other relations in place of greater-than. For
example, we might say that a cardinality atom is true if exactly three
literals in it are true. In fact, some definitions [129, 126] allow the use of
arbitrary sets in the aggregates.

What is the reason that cardinality constraint programs are based on
specifically on cardinality atoms and not other aggregates? Part of the
reason is historic since they are the first form of aggregate literals that
were implemented for an answer set programming system [179]. Another
reason is that they are well-behaved. In Chapter 3 we could use the
traditional definition [204] of the one-step provability operator TP directly
for programs that contained cardinality atoms. This property is not
satisfied by all possible aggregates. To see why this happens consider the
following example that uses parity aggregates:

Example 7.1.2 Let P be a program:

a← even({a, b, c})
b← even({a, b, c})
c← even({a, b, c})

If we try to apply the one-step provability operator to this program, we
get the sequence:

TP (∅) = {a, b, c}
TP ({a, b, c}) = ∅

...

The TP operator does not stabilize to a fixpoint but instead oscillates
between two values.

The essential difference between Card(b, S) and even(S) is that Card/2
is monotone while even/1 is not: if M � Card(b, S), then for all sets

7. THE FULL LANGUAGE 115

M ′ ⊇M it holds that M ′ � Card(b, S). We saw in the previous example
that this does not hold for parity aggregates.

If we want to allow non-monotone aggregates, we have to define their
semantics in a different way. The standard approach [107] is to treat
them like negative literals: when reducing the program we replace all
satisfied aggregates by > and unsatisfied by ⊥. However, in this case we
have to be careful with the definitions since otherwise we may end with
a situation where an atom justifies itself via an aggregate. For example,
if have the rule:

a← Card(1, {a}) (7.1)

then its reduct with respect to M1 = {a} is

a← >

with the least model {a}— a is true because a is true. This problem can
be avoided by admitting only set-inclusion minimal justified models as
answer sets [21, 42, 69]. In the above rule M2 = ∅ is also a stable model
and M2 ⊂M1 so we reject M1.

This approach causes a problem with choice rules because choice rules
produce answer sets that are not minimal. For example, if we added a
new rule to the previous example to get:

a← Card(1, {a})
{b} ←

we still have only one minimal answer set: ∅. In effect, we lost the answer
set {b}.

Another approach for nonmonotonic aggregates is presented by Son
et. al. [183, 182] where the semantics is not defined in terms of reducts
but instead the provability operator TP is defined using the concept of
conditional satisfaction. A set of atoms R satisfies an aggregate A condi-
tionally with respect to a set of atoms S if R satisfies A and all sets R′,
R ⊆ R′ ⊆ S satisfy A. The one-step provability operator is then defined
to have two arguments, R and S and it derives a new atom if the body
is conditionally satisfied by R with respect to S. Including the set S in
TP removes the need for constructing an explicit reduct for it.

When we apply this semantics to (7.1), we find that:

TP (∅, ∅) = ∅
TP (∅, {a}) = ∅

so ∅ is the only answer set. Even though Son et. al. allow a rule to have
an arbitrary aggregate in the head, they restrict TP so that only basic
rules can generate atoms to models. Thus, this approach as presented
in [183] is also incompatible with choice rules.

Marek et. al. [126] define semantics for monotone aggregates by us-
ing a non-deterministic provability operator where TP selects one set of
atoms that satisfies the head of the rule and makes them true. This ap-
proach allows the use of monotone aggregates in the rule heads without
causing any problems. We could have used this approach for defining the
semantics of cardinality constraint logic programs but we wanted to keep
the basic language as simple as possible in this work.

116 7. THE FULL LANGUAGE

7.1.7 On Function Symbols

Marek et al. [134] showed that the stable model semantics of normal logic
programs is undecidable when function symbols are allowed.3 There has
been some work in identifying classes of programs where at least some
questions are decidable. One such a formalism is finitary programs of
Bonatti [11].

A normal logic program is finitary if and only if:

1. every ground atom in its Herbrand instantiation depends only on
a finite number of atoms; and

2. only a finite number of ground atoms take part in odd loops.4

Bonatti proves that given such a program P and a ground atom A, the
question whether A is a true in some stable model of P (or in all stable
models) is decidable.

To see this note that the question whether a normal program has a
stable model at all can be decided by examining the odd loops of the
program [70]. If there is only a finite number of atoms participating in
such loops, we can systematically check through all possible truth value
combinations for them to see if we have one or more stable models. Next,
if an atom A depends only on a finite number of atoms, we can check
whether it can be deduced by examining only rules for those atoms.

A relevant instantiation of a finitary program P with respect to an
atom A contains all rules for A and the atoms that it depends on as well
as all instances of odd loops. By definition the instantiation is finite so
we can compute its stable models and see if A is true.

The finitary programs are closer to conventional logic programming
languages than to most ASP languages. It is possible that a finitary
program has an infinite stable model. For example, the program:

p(0)←
p(s(X))← p(X)

is finitary but has a unique infinite stable model. This means that with
finitary programs we have to write programs so that we can guarantee
that the interesting part of the stable model is finite. On the other hand,
ω-restricted programs have guaranteed finite stable models.

Several questions about finitary programs are undecidable [11]. For
example, the question whether some instance of a non-ground atom A is
true is semi-decidable. Also, the question whether a normal logic program
is finitary or not is undecidable in the general case. Bonatti identifies a
syntactic class of programs that are finitary.

3In fact, they showed that when negative literals are allowed, the stable model
semantics spans the whole arithmetic hierarchy [40].

4An odd loop is a negative loop that contains an odd number of atoms in the
dependency graph of the Herbrand instantiation of a program.

7. THE FULL LANGUAGE 117

7.2 THE FULL LANGUAGE SYNTAX

We now introduce the syntax of the full language. We use the same
classes of syntactic elements as we did for basic programs in Chapter 2.
We will elaborate on the nature of the new elements when we introduce
translations for them.

Terms
A term is either a variable, a function term, or a range t1 . . t2 where t1
and t2 are ground terms as defined in the basic language.

The set of function symbols includes the arithmetic operators from
the standard interpretation5 as well as a function symbol norm/1 and
possibly a set of command line constants that are constants that are
interpreted as numbers.

Literals
A basic literal is either an atom A or its negation not(A). A conditional
literal L is of the form:

X.L : A1 ∧ · · · ∧ An

where the main literal L is a basic literal, the Ai in the condition are
atoms, and X is a set of local variables.

A cardinality atom C is either Card(l, S) where the bound l is a term
that is not a range or Cardu(l, u, S) where the lower bound l and the
upper bound u are terms that are not ranges and S is a set of conditional
literals. The intuition is now that the number of true literals in S has to
be between l and u, inclusive. A cardinality literal C is either a positive
cardinality atom C or a negative cardinality literal not C.

Rules and Programs
A rule is either a basic rule, a choice rule, or an extended rule of the
form:

C0 ← C1, . . . , Cn
where the head C0 is a cardinality atom and Ci in the body are cardinality
literals. A full-language cardinality constraint program (FCCP) is a set
of rules.

Syntactic Sugar
A basic literal L that occurs by itself in a rule body is interpreted as a
shorter way to write the cardinality atom Card(1, {L : >}).

A conditional literal X.L : A may occur in a rule body by itself if
Var(A) ⊆ X and then it is a shortcut for the cardinality atom

Card(norm(pred(A)), {X.L : A}) .

The interpretation of norm will be defined later in Section 7.3.8.
For example, the rule:

maximum(X)← {Y }.less-equal(Y,X) : d(Y), d(X)

5Table 3.1 on page 40.

118 7. THE FULL LANGUAGE

is a notational shortcut for the rule:

maximum(X)← Card(norm(d/1), {Y.less-equal(Y,X) : d(Y)}),
Card(1, {d(X) : >}) .

7.3 TRANSFORMATIONS

We define the semantics of the full language by defining a translation
from the full language into basic programs. The idea is that we define a
number of functions that each transform one feature of the full language
into a corresponding basic construct, and then we compose all the partial
transformations into one.

7.3.1 On Notations

We use the notations CCP and FCCP to denote the whole classes of basic
and full language programs, respectively.

For rules we will use the variant notation where 〈H, {C1, . . . , Cn}〉
stands for the rule H ← C1, . . . , Cn in the transformations.

The transformation that we are going to define is denoted with T and
it is a function T : FCCP → CCP. It is constructed as a composition of
component transformations that are functions T c : FCCP→ FCCP that
produce a program that contains only those features that are present in
the basic language followed by a trivial mapping T i : FCCP→ CCP that
just interprets the program as a basic program.

When we define the component transformations, we use similar no-
tations to define auxiliary constructs. If a function T c transforms the
full language feature c, then T c

R is an auxiliary that translates a single
rule, T c

C is an auxiliary for handling cardinality literals, and T c
L is for

conditional literals.
We will need an auxiliary notation for creating an atom that has a

sequence of variables as its arguments.

Definition 7.3.1 If V = 〈V1, . . . , Vn〉 is a sequence of variables and p is
an n-ary predicate symbol, then p(V) denotes the atom p(V1, . . . , Vn).

For example, if V = 〈X, Y 〉, then p(V) is the atom p(X, Y). In case
we have a set of variables, then we start by putting the variables in the
lexicographic order. Thus, if S = {X, Y, A}, then p(S) = p(A, X, Y).

7.3.2 Upper and Lower Bounds for Cardinality Atoms

It is useful to be able to state also the upper limit for the number of
literals that are true in cardinality atoms. For example, in a planning
problem we might want to express a condition that a taxi may have
between one to four passengers. One way to model this would is:

← not 1 {P.passenger(T, P) : person(P)} 4, taxi(T) .

7. THE FULL LANGUAGE 119

We can remove the upper bound from a cardinality literal by replacing
it by a pair of literals with only a lower bound. However, we have to
handle positive and negative literals separately. This is because a positive
literal is expressing a conjunction (the number is at least lower bound
and at most upper bound) while a negative one expresses a disjunction
(the number is either smaller than the lower bound or greater than the
upper bound). In the positive case we put both of the new literals to
the same rule body, but in the negative case we have to put them into
different rules.

If Cardu(l, u, S) is a positive cardinality literal with both lower and
upper bounds, we can represent it with a pair of cardinality literals:

Card(l, S)

not Card(u + 1, S).

For example, the rule:

ok← 1 {X.chosen(X) : option(X)} 3

is translated to:

ok← 1 {X.chosen(X) : option(X)}, not 4 {X.chosen(X) : option(X)} .

We translate a negative cardinality literal not Cardu(l, u, S)

not Card(l, S)

Card(u + 1, S) .

In this case we take two copies of the original rule and place one new
cardinality literal to both. For our previous example we get two rules:

← not 1 {P.passenger(T, P) : person(P)}, taxi(T)

← 5 {P.passenger(T, P) : person(P)}, taxi(T) .

When we have n negative cardinality atoms with both bounds in a
rule, we have to create 2n copies of the rule, one for every possible com-
bination. While this may result in a rather large explosion on the size
of the program, it is not a serious problem in practice since we usually
have only one or at most two cardinality literals that are not equivalent
to basic literals in a rule body.

Definition 7.3.2 The function T u: FCCP → FCCP is defined as:

T u(P) =
⋃

R∈P

T u
R (R)

where T u
R (R) is defined as:

T u
R (〈H, {C1, . . . , Cn}〉) = {〈H, {C ′1, . . . , C ′n}〉 | C ′i ∈ T u

C (Ci)}

and T u
C (C) is defined as:

T u
C (C) =

{{Card(l, S), not Card(u + 1, S)}}, if C = Cardu(l, u, S)

{{not Card(l, S)}, {Card(u + 1, S)}}, if C = not Cardu(l, u, S)

{C}, otherwise .

120 7. THE FULL LANGUAGE

The final case corresponds to the case where we have ordinary cardi-
nality literals with only lower bounds.

There is an alternative translation for removing the upper bounds
that we can use if we are willing to relax the condition that a translation
should not introduce new atoms into the non-domain Herbrand base of
the program. Consider again the rule:

ok← 1 {X.chosen(X) : option(X)} 3

We add a new rule for the upper bound to get the alternative translation:

ok← 1 {X.chosen(X) : option(X)}, not p

p← 4 {X.chosen(X) : option(X)}

where p is a new atom. If the cardinality atom has any global variables
in it, we add them as the arguments of the new atom. In this case we
have to add also the domain literals to the body of the new rule. For
example,

q(Y)← 1 {X.r(X, Y) : d(X)} 2, d(Y)

is translated to:

q(Y)← 1 {X.r(X, Y) : d(X)}, not p(Y), d(Y)

p(Y)← 3 {X.r(X, Y) : d(X)}, d(Y) .

This translation avoids the exponential worst-case size increase of Def-
inition 7.3.2 but the cost is that we get a new ground atom into the non-
domain Herbrand base for every ground instance of every upper bound
that occurs in a rule.

7.3.3 Full Cardinality Atoms in Rule Heads

In many cases we would like to have cardinality atoms in the rule heads.
For example, the condition of the Hamilton cycle problem that each
vertex in a graph has to have exactly one outgoing edge in the cycle can
be expressed as:

1 {Y.hc(X, Y) : edge(X, Y)} 1← vtx(X) .

We translate this to two rules, one choice rule and a constraint:

{hc(X, Y)} ← edge(X, Y), vtx(X) .

← not 1 {Y.hc(X, Y) : edge(X, Y)} 1, vtx(X) .

If we have more than one conditional literal in the head of the rule,
we create a new choice rule for each one.

The formal definition of this transformation is straightforward.

Definition 7.3.3 The function Th: FCCP → FCCP is defined as:

T h(P) =
⋃

R∈P

T h
R (R)

7. THE FULL LANGUAGE 121

where T h
R (R) of an extended rule R = 〈C, body〉 with a cardinality atom

C = Cardu(b, u, {L1, . . . ,Ln}) as its head is:

T h
R (R) = {〈{L}, {A} ∪ body〉 | L : A ∈ C}

∪ 〈⊥, {not C} ∪ body〉 .

The T h
R (R) of an ordinary rule R = 〈H, body〉 is the identity function

T h
R (R) = 〈H, body〉.

7.3.4 Multiple Conditions in Conditional Literals

it is often useful to have more than one atom as the condition of a con-
ditional literal. This is particularly useful if we have built-in predicates
that define basic relations such as equality or less-than. We can trans-
late these by adding a new atom that combines all the conditions in its
definition. For example, if we have a conditional literal:

Y.choose(X, Y) : option(Y) ∧ greater(Y, 10)

we translate it to:
Y.choose(X, Y) : d(Y)

and a new rule:

d(Y)← option(Y), greater(Y, 10) .

In case of ω-restricted programs there is still one consideration that
we have to address: If the conditions contain global variables, we need
to add domain literals for them to the rule body, too. For example, if we
have the rule:

ok(X)← 2 {Y.chosen(X, Y) : option(X, Y) ∧ greater(Y, Z)},
choice(X), limit(Z)

we have to add also the atoms limit(Z) and choice(X) to the body of the
new rule to get:

ok(X)← 2 {Y.chosen(X, Y) : d(X, Y, Z)},
choice(X), limit(Z)

d(X, Y, Z)← option(X, Y), greater(Y, 10), limit(Z), choice(X) .

Note that d/3 is a domain predicate. Since a domain predicate has a
fixed extension, adding one does not introduce new choices to the pro-
gram so it is computationally cheaper than adding a new non-domain
predicate symbol.

Definition 7.3.4 Let L = X.L : A1 ∧ · · · ∧ An where n > 1 be a condi-
tional literal, V =

⋃
i∈[1,n] Var(Ai) be the set of variables occurring in the

condition, and dL be a |V |-ary predicate symbol. Then

T ∧
L (L) = X.L : dL(V)

SL(L) = {〈dL(V), {A1, . . . , An}〉} .

122 7. THE FULL LANGUAGE

When L = X.L : A, T ∧
L (L) = L and SL(L) = ∅.

Let C = Card(b, S) be a cardinality atom. Then,

T ∧
C (C) = Card(b, {T ∧

L (L) | L ∈ S})

SC(C) =
⋃
L∈S

SL(L)

Let R = 〈C0, {C1, . . . , Cn}〉 be a rule. Then,

T ∧
r (R) = {〈T ∧

C (C0), {T ∧
C (C1), . . . , T ∧

C (Cn)}〉}

∪ {〈H, B ∪ bodyD(R)〉 | 〈H, B〉 ∈
⋃

i∈[0,m]

SC(Ci)}

The transformation T ∧ : FCCP → FCCP is defined as:

T ∧(P) =
⋃

R∈P

T ∧
r (R) .

7.3.5 Conditional Literals in Rule Bodies

We can use a conditional literal to express existential quantification. For
example, in many contexts we can interpret Card(1, {X.a(X) : b(X)})
as saying “there exists X such that a(X) and b(X) are true”. In the full
language we allow those literals to occur in rule bodies by themselves and
we can express the universal quantification with them.

For example, we can express the statement that X is the maximum of
a total order with the rule:

maximum(X)← {Y }.less-equal(Y,X) : d(Y), d(X) .

Earlier, we defined this to be equivalent to

maximum(X)← Card(norm(d/1), {Y.less-equal(Y,X) : d(Y)}),
Card(1, {d(X) : >}) .

Supposing that our elements are natural numbers from zero to two, we
get the ground instances:6

maximum(0)← Card(3, {less-equal(0, 0), less-equal(1, 0), less-equal(2, 0)})
maximum(1)← Card(3, {less-equal(0, 1), less-equal(1, 1), less-equal(2, 1)})
maximum(2)← Card(3, {less-equal(0, 2), less-equal(1, 2), less-equal(2, 2)})

Supposing that we use the standard definition for less-than-or-equal, only
the last rule has a true body and maximum(2) is the only atom that we
can derive with them.

When defining this construct (p. 118) we limited ourselves to condi-
tional literals that have only one condition and we had the additional
limitation that all variables in it have to be local. The reason for these
limitations is technical: the norm function takes as its input a domain

6With the domain predicate left out for clarity.

7. THE FULL LANGUAGE 123

predicate symbol and it returns the size of its extension. If there is more
than one condition, then we do not have a unique predicate symbol any-
more to give us the bound for the literal. If the condition contains global
variables, then the bound that we get with norm may be too large.

These limitations are not essential. We imposed them so that we did
not have to worry about special cases in the definition of T . We can add
both multiple conditions and global variables with the construct that we
used in defining T ∧ in Section 7.3.4.

There is one alluring candidate translation where we could escape
this limitation directly. We could say that X.a(X) : d(X) denotes the
negative cardinality literal not 1 {not a(X) : d(X)}. This translation
corresponds to the classical equivalence of ∀x.p(X) and ¬∃x¬p(x). Under
classical logic it would work flawlessly, but it has an undesirable side effect
under the stable model semantics: the double negation can be used to
justify atoms. For example, the program:

a← not 1 {not a : >}

has two stable models {a} and ∅. This means that under this interpreta-
tion we could not use the construct to express the condition “a(y) is true
if ∀x.p(x, y) holds.”

7.3.6 Integral Ranges

An integral range has the form l . . u where l and u are terms that are
interpreted as integers. They are mostly used to define a large number
of facts with one rule. For example, the fact:

number(1 . . k)←

corresponds to the set of facts:

number(1)←
...

number(k)← .

The behavior of a range depends on whether it is used in the head or
in the body of a rule. In the head the natural interpretation is that it
represents a disjunction while in the body a conjunction is more intuitive
meaning. For example,

h← 2 {a(1..k)}
corresponds to

h← 2 {a(1), a(2), . . . , a(k)} .

In the translation we replace a range by a new variable and a new
unary domain predicate, and then define facts for that predicate.

For example, if we have a rule:

grid(1..5, 1..3)← ,

we replace it by
grid(X, Y)← dx(X), dy(Y)

124 7. THE FULL LANGUAGE

and the facts defining the atoms dx(1), . . . , dx(5), dy(1), . . . , dy(3).
As in the first example, at least one of the bounds is usually an inter-

preted constant. This means that we cannot do the actual transforma-
tion until we know its interpretation so we have to do this transformation
when we instantiate the program.

In the formal definition we construct the transformation from bottom-
up, starting at the level of ranges themselves. The notations T r denote
the transformed expressions, the sets V contain the new variables, and
the sets D contain the new domain literals we need.

Definition 7.3.5 Let t be a term. Then, T r
t is defined as:

T r
t (t) =

{
Vt, t = l . . u and Vt is a new variable

t, otherwise .

Let A = p(t1, . . . , tn) be an atom. Then, T r
A is defined as:

T r
A(A) = p(T r(t1), . . . , T r(tn))

and the sets V (A) and D(A) are defined as follows:

V (A) = {Vti | ti = l . . u, 1 ≤ i ≤ n}
D(A) = {dti(Vti) | ti = l . . u, 1 ≤ i ≤ n} .

For a negative basic literal L = not A, T r
L (L) = not T r

A(A), V (L) =
V (A), and D(L) = D(A). Let L = X.L : A be a conditional literal.
Then, V (L) = V (L)∪V (A), D(L) = D(L)∪D(A) T r

L (L) = X ∪V (L)∪
D(A).T r

L (L) : T r
A(A) ∧ (

∧
{A ∈ D(L)}), .

Let C = Card(b, S) be a cardinality atom, then we have

T r
C (C) = Card(b, {T r

L (L) : L ∈ S})

and for a negative cardinality literal C = not C, T r
C (C) = not T r

C (C).
For a rule R = 〈H, {C1, . . . , Cn}〉,

T r
R(R) = 〈TA(H), {T r

C (C1), . . . , T r
C (Cn)} ∪D(H)〉 .

Let the transform T r : FCCP → FCCP be the function:

T r(P) =
⋃

R∈P

T ∧(T r
R) ∪ Fr(DR)

where

Fr(DR) = {〈dti(n), ∅〉 |dti(Vpi
) ∈ DR(R), ti = l . . u,

and I(l) ≤ n ≤ I(u)} .

Example 7.3.1 Consider the rule:

a(1 . . 3, X)← 2 {Y.b(Y, 1..2) : d(Y)}, d(X) .

On the atom level the transformations for the two ranges are:

T r
A(a(1 . . 3, X)) = a(V1 . . 3, X)

T r
A(b(Y, 1 . . 2)) = b(Y, V1 . . 2)

7. THE FULL LANGUAGE 125

The sets of new variables and domain literals are:

V (a(1 . . 3, X)) = {V1 . . 3}
V (b(Y, 1 . . 2)) = {V1 . . 2}

D(a(1 . . 3, X)) = {d1 . . 3(V1 . . 3)}
V (b(Y, 1 . . 2)) = {d1 . . 2(V1 . . 2)} .

The complete transformation T r
R(R) of the rule is:

a(V1 . . 3, X)← 2 {{Y, V1 . . 2}.b(Y, V1 . . 2) : d(Y) ∧ d1 . . 2(V1 . . 2)},
d(X), d1 . . 3(V1 . . 3)

d1 . . 3(1)←
d1 . . 3(2)←
d1 . . 3(3)←
d1 . . 2(1)←
d1 . . 2(2)← .

Integral ranges do not fit nicely into our two-level language definition
but they are too useful in practice to be left out. Almost all of our
problem encodings in Chapters 9 and 10 use ranges to define some of the
domain predicates.

The problem is that whenever we have interpreted constants in range
definitions, we cannot transform them until we know what values those
constants take and we do not find that out until we are handling actual
problem instances. We could escape the problem by introducing ranges
directly into the basic language but that would complicate its definition.

Luckily, the problem is largely cosmetic as the semantics of ranges
is intuitive and the transformation itself is simple enough that it does
not cause any practical problems if we defer transforming them until
immediately before the instantiation.

However, this causes another problem since we added the new domains
in the rule body were as conditions for the conditional literals. This
means that we have to remove them. We usually do the removing multiple
conditions as the first step of the translation as we need to get them out
of rule heads before we can process the heads further. Luckily, multiple
conditions in rule bodies do not cause any semantic trouble so we just
wrap the T r

R(r) operations inside a T ∧(R) operation that completes the
translation.

7.3.7 The Complete Transformation

The transformation from the full language to the basic language is defined
as a large composition of the previously defined component parts.

We do the composition in the order that we

1. remove multiple conditions (T ∧);

2. remove cardinality atoms from rule heads (T h);

3. remove upper bounds from cardinality atoms (T u); and

126 7. THE FULL LANGUAGE

4. remove ranges (T r); and

After doing these translations we are left with a full language program
that contains only elements that are present in basic programs. Then, we
just add a trivial partial function T i : FCCP → CCP where T i(P) = P
for all P that are CCPs and that is undefined for all other programs.

Definition 7.3.6 Let T : FCCP → CCP be the function:

T (P) = T r(T u(T h(T ∧(P)))) .

Here the order of the functions in the composition is relevant. For
example, T u that removes upper bounds from cardinality literals assumes
that T h has been already applied to remove any cardinality atoms that
occur in the head of some rule.

7.3.8 Augmenting Standard Interpretation

We will augment the standard interpretation (Section 3.9) with another
interpreted function symbol, norm/1. This function takes as its sole
argument a domain predicate symbol, and it then returns the size of its
extension in the domain model.

For example, consider the program.

p(1)←
p(2)←

q(norm(p))←

In this example norm(p) = 2 since the extension of p in the domain model
is {p(1), p(2)}. Thus, the program has the stable model {p(1), p(2), q(2)}.

The definition of norm/1 has the same form as the definitions pre-
sented in Section 3.9.

Definition 7.3.7 The interpretation function I|| : U → U is defined as:

I||(t) =

n, if there is a predicate symbol t ∈ PD(P) and the size

of the extension of t is n in the domain model Dω of P ;

e, otherwise .

7.4 FURTHER EXTENSIONS

In this section we present two further extensions to the language. The
first one is a weight literal that generalizes the notion of a cardinality
atom. The second one is classical negation that introduces a new way of
handling negations in programs.

7.4.1 Weight Literals and Rules

The cardinality atoms may be generalized to weight atoms [179]. There
every literal in the atom has a weight defined for it and the atom is

7. THE FULL LANGUAGE 127

satisfied if the sum of the weights of the satisfied literals exceeds the
bound. We use the syntax:

Weight(b, S)

where b is again an integral bound and S = {L1 = w1, . . . ,Ln = wn}
where wi are non-negative integral weights of the literals Li. We also use
the notation w(Li) = wi. The alternate Smodels syntax for a weight
atom is:

b [L1 = w1, . . . ,Ln = wn] .

Let S be any set of weighted literals. Then, we use w(S) to denote
the sum of weights of literals in S:

w(S) =
∑
L∈S

w(L) .

A weight atom is satisfied when the sum of the weights of satisfied literals
exceeds the bound:

M � Weight(b, S) if and only if w({L ∈ S |M � L}) ≥ b .

The reducts for weighted conditional literals and weight atoms are
defined analogously to the unweighted ones.

Definition 7.4.1 (Modified from Def. 3.3.1) Let L = L : A = w be
a weighted conditional literal. Then, its reduct LM respect to the set of
atoms M is:

LM =

{L : A = w}, if L is positive

{> : A = w}, if L is negative and M � L

∅, if L is negative and M 6� L .

LetW = Weight(b, S) be a weight atom. Then its reductWM with respect
to the set of atoms M is:

WM = Weight(b, SM)

where
SM =

⋃
L∈S

LM .

When we further extend weight atoms to allow the use of variables
in both bounds and weights itself, we get even more expressivity. For
example, we can use them to get a uniform encoding for the Knapsack
problem that is tricky to do in ASP without weights.

Example 7.4.1 Problem 4: Knapsack. Given a set of
objects O = 〈o1, . . . , on〉 that each have a weight wi and a
value vi attached to them and two integers c and t, decide
whether there exists a subset K ⊆ O of objects such that the
sum of values of objects in K is at least t while their total
weight is at most c.

128 7. THE FULL LANGUAGE

This problem can be solved with the program:

{{X, W, V }.in(X) : object(X, W, V)} ←
← C + 1 [{X, W, V }.in(X) : object(X, W, V) = W], capacity(C)

← [{X, W, V }.in(X) : object(X, W, V) = V] T − 1, target(T) .

An atom object(x, w, v) denotes that x is an object with a weight of w
and a value of v. The first rule gives us a free choice over all objects,
and the second one weeds out all those model candidates that exceed the
carrying capacity of the knapsack. The final rule rejects those candidates
where the value is not great enough.

In this work we consider only weights that are not negative. This is
because negative weights add a new source of non-monotonicity to the
programs. For example, consider the weight atom W = Weight(1, {a =
1, b = −1}). Now, {a} � W but {a, b} 6� W even though all literals in it
are positive.

Niemelä et.al. [147, 145] eliminated negative weights from weight lit-
erals by making the observation that a negative weight is essentially a
penalty for having that literal true. If an atom A carries a penalty of
−w with it, we can turn it around and say that not A has the bonus of
w and by increasing the bounds by the same amount. However, Ferraris
and Lifschitz [72] have identified situations where this approach leads to
unintuitive results.

Example 7.4.2 Consider the program P1:

a← 1 [b = 0]

b← 1 [a = 0] .

This program has only one stable model, M = ∅. If we lower both the
bounds and the weights by one, we would expect to get a program equiv-
alent to this one. However, the program P2:

a← 0 [b = −1]

b← 0 [a = −1]

is translated into P ′
2:

a← 1 [not b = 1]

b← 1 [not a = 1] .

This program has two stable models, M1 = {a} and M2 = {b}.

The main reason for this unintuitive behavior is that turning a positive
literal into a negative one potentially introduces a choice point to the
program.

7.4.2 Strong Negation

The standard form of negation that is used in answer set programming
is the default negation: we assume by default that the a literal not A
is true if we cannot show that A is true. The second type of negation
is called strong negation7: a literal ¬A is true if we can prove that A is

7Strong negation is also called classical negation.

7. THE FULL LANGUAGE 129

false.
One example that shows the conceptual difference between the default

and strong negations is the railroad crossing problem [85]. We want to
cross the tracks only if a train is not coming. A naive way to model it
using default negation would uses rules of the form:

cross-tracks← not train-coming

train-coming← observe-train, not empty-tracks .

The problem here is that not train-coming is true whenever observe-train
is false. If we fail to do the observation for some reason, we conclude that
it is safe to cross the tracks.

If we use the strong negation:

cross-tracks← ¬train-coming

we have to explicitly prove that ¬train-coming is true before crossing.
For example, we might have a rule:

¬train-coming← observe-train, empty-tracks .

We will use strong negation in several examples in Chapter 10.
We will implement a strong negation ¬A by defining a new atom A′ to

act as the negation of the A and then adding a rule to forbid both A and
A′ from being true. For example, the previous train crossing example
becomes:

cross-tracks← train-coming’

train-coming’← observe-train, empty-tracks

← train-coming, train-coming’ .

When a program has variables, we work with the same principle, but
we have to also handle the domain literals that occur in rule bodies. For
example, we would translate the rule:

¬p(X)← not p(X), d(X)

into

p′(X)← not p(X), d(X)

← p(X), p′(X), d(X) .

We do this for every rule that has a strong negation in the head.
This approach differs from the original definition of strong negation in

the context of stable model semantics. Gelfond and Lifschitz [85] allow
a program to have a unique inconsistent stable model that contains all
atoms if the program is inconsistent. For example, the program:

a←
¬a←

has a unique stable model {a,¬a} under semantics of [85] but it does not
have a stable model under the above translation.

130 7. THE FULL LANGUAGE

The reason for this difference is mainly pragmatic: it is not easy to
construct a translation that would admit the inconsistent stable model
only when the program does not have any consistent stable models. If we
did not want to add a great number of atoms and rules in the program,
we would likely have to use some completely altered proof system.

In most practical applications there is no appreciable difference be-
tween a program with no stable models and a program with an incon-
sistent stable model—we do not have a valid solution for our problem in
either case.

7. THE FULL LANGUAGE 131

Instantiate Compute
Answer Sets

P instH(P) Answer Sets

Figure 8.1: Computing answer sets

8 IMPLEMENTATION ISSUES

In this chapter we examine issues relating to implementing ω-restricted
CCPs. Some of these subjects have been touched before in Chapters
4 and 7 but here we go into more detail.

We can divide the problem of finding the answer sets of a program
into two stages: instantiation and model generation that are illustrated
in Figure 8.1. In the first stage we create the relevant instantiation of
the problem and in the second stage we compute the answer sets of
the instantiation. Most current ASP systems work with this bottom-up
principle.

In this work we will concentrate on instantiation. Our goal is to ex-
amine how we can start from a full language user program and translate
it to a set of ground rules that can be given as an input to some inference
engine.

We will continue by first examining the roles of the full and basic lan-
guages in more detail and how they correspond to the front- and back-
ends of compiler technology. Then, we continue with an overview of the
implementation architecture. In Sections 8.4 and 8.3 we present algo-
rithms for computing the domain model and the relevant instantiation
of an ω-restricted program. We then conclude this section by examining
how we can generate rules that can be used with smodels.

8.1 A HIERARCHY OF LANGUAGES

When we are implementing ω-restricted cardinality constraint programs,
we work with several different languages. The idea is that we have a
hierarchy of languages (see Figure 8.2) with different expressive powers.
At each level we use a transformation that rewrites the program in terms
of the next simpler language.

The user writes his or her program using the full language. The system
translates it into a basic program that is then instantiated. In the last
phase we give the instantiated program to some answer set solver.

This hierarchical approach makes it possible to have a relatively simple
implementation for the full language since every individual transforma-
tion is simple. Also, it allows us to substitute different transformations
and tools in the process if we need to extend the semantics or want to
use different solvers to do the actual answer set computation. We also
can add rule rewriting to different phases of program processing. In rule

132 8. IMPLEMENTATION ISSUES

Extended
Programs

Augmented
Basic
Programs

Ground
Rules

P
τ(P)instH(τ(P))

P ′
Smodels Rules

CNF Clauses

Figure 8.2: The language hierarchy

rewriting we substitute one or more rules of the program with rules that
are logically equivalent but that can be processed more efficiently.

Conceptually we can liken the languages to different phases of a com-
piler [1]. A compiler is divided into two parts, a front end that reads
in the user program and transforms it into an internal representation.
Then, a back end takes the internal representation and creates the object
code from it. With many compilers it is possible to combine different
front ends with different back ends. For example, the free gcc-compiler1

has front ends for compiling C, Fortran, Java, and several other pro-
gramming languages, and back ends for generating code for almost all
computer architectures in current use.

We use basic programs that are augmented with integral ranges as
our internal representation. We call these augmented basic programs
(ACCP). We treat the integral ranges as a special case because they
are semantically complex enough that they are cumbersome to add to
the basic language but that cannot be translated until we know what
values our numerically interpreted constants take.

Our front end takes in the user program and translates it into the
internal representation. The back end then instantiates it and translates
it into a form accepted by the inference engine.

In this work we translate the instantiated rules into a form that can
be used with smodels [174]. This translation is simple since smodels rules
are essentially a subset of our ground basic rules. If we want to use some
other solver, we can do it by using a different back end. For example,
we could translate ground programs into propositional clauses and use a
SAT solver to compute the answer sets [101].

8.2 OVERVIEW OF THE IMPLEMENTATION ARCHITECTURE

We will now examine the two phases of program instantiation. The
general architecture for the instantiator is shown in Figure 8.3. The
front end reads in the program and transforms it into a basic program
and the back end instantiates it into a set of ground rules.

1Gnu Compiler Collection, available at http://gcc.gnu.org.

8. IMPLEMENTATION ISSUES 133

Parser
Domain
ComputerTransformer Instantiator

Front
End

Back
End

Figure 8.3: General level architecture

function instantiate(Program P)
D := create-domain-model(P)
PG := instantiate-nondomain(P , D)

return PG ∪ F (D)
endfunction

function instantiate-nondomain(Program P , Domain Model D)
PG = ∅
foreach p ∈ P(P) do

PG := PG ∪ instantiate-relevant(p, D)
endfor
return PG

endfunction

Figure 8.4: The instantiation algorithm

8.2.1 Front End

Parser
The parser reads in the user program and constructs a tree-representation
of the full language program. At the same time it creates a number of
symbol tables where every predicate and function symbol is stored with
their arities as well as every constant and variable. The parser is also
responsible for catching syntax errors that occur in the program.

Transformer
The transformer takes the tree-representation generated by the parser
and applies the transformations from Chapter 7 to create the correspond-
ing basic program. When a transformation creates new rules, they are
kept together so that we can later instantiate them at the same time.

8.2.2 Back End

Figure 8.4 shows a simple pseudo-code algorithm for the back end of
the implementation. The algorithm first computes the domain model of
the program, and then instantiates all rules for non-domain predicates.
Finally, it returns the instantiated rules as well as the domain model
expressed as facts.

134 8. IMPLEMENTATION ISSUES

Instantiate
Global
Variables

Expand
Conditional
Literals

Output
Rule

Figure 8.5: Overview of rule instantiation

Domain Computer
The first part of the back end is the domain computer . It first identifies
the domain predicates of the program and then computes the domain
model. The domain computer also checks that all rules in the program
are ω-restricted.

In the current implementation the domain computer uses the instan-
tiator during domain computation to create the relevant instantiations
of the domain predicates.

Instantiator
The instantiator goes through all rules of non-domain predicates and
instantiates them. The global variables are instantiated first, and then
the local variables are expanded.

8.3 INSTANTIATING RULES

We start our detailed discussion by examining what happens when we
instantiate a rule. In this section we assume that we have already com-
puted the domain model somehow.2

When we instantiate the rules, the general approach is that we first
instantiate all global variables of the rule and only after that expand the
local variables. This process is illustrated in Figure 8.5.

In Figure 8.6 we see an algorithm for creating the relevant instantiation
of a predicate symbol. This algorithm works in one pass and it visits each
rule only once and creates its full instantiation at the same time.

We examine how the algorithm works in detail in Section 8.3.3. Before
we can do it, we have to describe auxiliary functions for handling domain
predicates and variable bindings.

8.3.1 Variable Bindings

Each global variable that occurs in a rule has some domain literal that
sets its value. When a variable occurs in more than one domain literal,
we choose one of them to be the setter. Which choice we take depends
on the nature of the extensions of the domain literals. We will visit this
question again later in this section.

We will examine the domain literals bodyD(R) in a fixed order where
each literal binds its variables that have not been bound by previous

2The details for computing the domain model are given in Section 8.4.

8. IMPLEMENTATION ISSUES 135

function instantiate-relevant(Predicate Symbol p, Domain Model D)
Let P = ∅
foreach rule R of p do

if R has global variables then
P := P ∪ instantiate-rule(R,D)

else
P := P ∪ {instantiate-local(R,D)}

endif
endfor
return P

endfunction

function instantiate-rule(Rule R, Domain Model D)
Let L be an array of literals
Let P = ∅
L := choose-order(bodyD(R))
k := 1
σ := ∅
while k > 0 do

I := get-next-instance(L[k], σ,D)
if I = null then

reset-instances(L[k])
k := k − 1
if k > 0 then

σ := remove-binding(L[k], σ)
endif

elseif can-bind(L[k], I, σ)
σ := bind-variables(L[k], I, σ)
if k = |L| then

P := P ∪ {instantiate-local(R, σ)}
σ := remove-binding(L[k], σ)

else
k := k + 1

endif
endif

endwhile
return P

endfunction

Figure 8.6: Instantiating rules

136 8. IMPLEMENTATION ISSUES

literals. We use the array notation to denote this order where L[1] is the
first domain literal L1 and L[|bodyD(R)|] the last one.

When an iterator returns a new ground instance, we use it to bind the
variables that the literal sets. Before we call the iterator the next time
we have to clear the existing bindings. We use three different functions
for this process:

• can-bind(L, I, σ): checks whether the new ground instance I of
the domain predicate L is compatible with the existing variable
substitution σ;

• bind-variables(L, I, σ): returns a new substitution that extends σ
by binding the variables of L into the corresponding terms of the
ground instance I; and

• remove-binding(L, σ): removes those bindings from σ that were
introduced by the domain literal L and leaves bindings that existed
before intact.

These functions are straightforward to implement and we can simply
think of the bindings as a set of variable-value pairs so we do not go
deeply into their details.

The current implementation defines a substitution as an array where
we have one cell for every variable. The contents of a variable binding are
then stored in the cell and unbound variables are denoted by a special
null value.

8.3.2 Interface to the Domain Model

The functions instantiate-rule and instantiate-local need an interface to
the domain model. We do it by defining iterators that go through the
extensions of the domainq predicates. The iterators have to have two
operators defined for them:

1. get-next-instance that returns the next ground instance of a domain
predicate; and

2. reset-instances that returns an iterator back to the start.

As long as we have these two functions available, we can choose the
actual implementation quite freely. We will examine briefly three possible
approaches.

Get Next Instance
The function get-next-instance(L, σ, D) returns the next ground instance
of the domain literal L, or null if there are no more instances. The
function takes also the existing variable bindings σ as input so that it
can use them to guide the iteration.

The simplest possible iterator, get-next-instance0 does not use σ at all
but instead always returns the complete extension one instance at a time.

Another possibility is that we choose one of the variables that occurs in
a domain literal to be an index value [202]. We examine the substitution σ

8. IMPLEMENTATION ISSUES 137

Iteration get-next-instance0 get-next-instance1 get-next-instancen

1 d3(1, 1, 1) d3(1, 1, 1) d3(1, 2, 1)
2 d3(1, 2, 1) d3(1, 2, 1) d3(1, 2, 2)
3 d3(1, 2, 2) d3(1, 2, 2) null
4 d3(2, 1, 1) null
5 null

Table 8.1: Example behavior of the different iterators

to see what value the index has, and then return only those instances
where the value is the same as the existing binding. We call this approach
get-next-instance1.

The third possibility is that the iterator examines all existing variable
bindings and returns those instances where they are all satisfied. We call
it get-next-instancen.

Example 8.3.1 Suppose that we are instantiating the rule:

p(X, Y)← d1(X), d2(X, Y), d3(X, Y, Z)

with the existing variable bindings X/1 and Y/2, and we want to iterate
through the extension of d3 that is:

ext(d3) = {〈1, 1, 1〉, 〈1, 2, 1〉, 〈1, 2, 2〉, 〈2, 1, 1〉} .

The values that the three different iterators return are shown in Table 8.1.
It is assumed that get-next-instance1 uses the variable X as its index
value.

There is a trade off in using the different approaches. A simple itera-
tor finds the next ground instance quickly but it also generates a number
of spurious instances that are not compatible with the existing variable
bindings. A complex iterator takes a longer time to evaluate but it pro-
duces less or even none incompatible instances.

The current implementation uses all three of these basic iterators,
though, only a limited form of get-next-instancen is used. We divide the
domain literals into three classes:

1. literals with no existing variable bindings;

2. literals that are partially instantiated; and

3. literals that are already fully instantiated.

For the domain literals in the first class we use get-next-instance0 and
for the second class we use get-next-instance1. The domain literals that
belong to the third class do not create new instances but instead prune
out existing variable bindings. When we have bound all variables of such
a literal, we can just check whether that instance occurs in its extension.

When we use get-next-instance1, we have to choose which argument
position to use for the index. Creating an index for a relation is a com-
putationally heavy operation [202] and we do not want to create more

138 8. IMPLEMENTATION ISSUES

indices than necessary. When we examine a domain literal, we try to pick
a position that has a preexisting index. If there is no such a position,
we choose the first variable that has an existing binding and create an
index for it. As a special case we prefer those argument positions with
constants instead of variables.

Example 8.3.2 Suppose that a program P has the following rule:

{p(X, Y)} ← d1(X), d2(Y,X, Z), d3(X, Y, Z)

and that we use the ordering where the domain literals are examined in
the order that they occur in the rule body.

For this rule we choose get-next-instance0 for d1 since d1 sets the
value for X. The next literal d2 is partially instantiated so we use
get-next-instance1. Now we do not have a choice on the index value
as X is the only bound variable. Thus, we create an index for the second
argument position of d2/3.

This literal binds both of the remaining variables, so the only thing
that is left for d3 is to check whether the ground instance d3(X, Y, Z)σ is
true or not.

Suppose that P has also the rule:

{r(X, Y, Z)} ← d1(X), d4(Y), d2(X, Y, Z) .

Here we use get-next-instance0 for both d1 and d4, and get-next-instance1

for d2. Now we can choose to use either X or Y as the index variable.
Since we already used the second argument position as the index for the
previous rule, we use it again and take Y as the index variable.

8.3.3 Instantiate Relevant

The function instantiate-relevant combines together the ground instances
of every rule for a given predicate symbol p. If a rule R does not have any
global variables at all, we just instantiate its local variables and add the
result to the instantiation. If it has global variables, we call instantiate-
rule(R) to create the instantiation.

The function returns the set of ground instances of rules for p as its
result. In practice, we often do not want to keep the whole set in memory
at the same time, unless we want to do some additional rule rewriting
later. Instead, we can output the rule as soon as it is instantiated and
then forget it. This saves memory during the execution as we do not
need to store the complete instantiation at the same time.

8.3.4 Instantiate Rule

The function instantiate-rule takes as its input one rule and it then in-
stantiates the global variables that occur in it before passing the partial
substitution on to other functions that handle the local variables.

In the first part of the function we put the domain literals in some
order and store them in the array L, and the main loop goes through L

8. IMPLEMENTATION ISSUES 139

k I σ Action
1 d1(1) ∅ Bind X/1, advance k
2 d2(1, 1) {X/1} Bind Y/1, advance k
3 d3(1, 2, 1) {X/1, Y/1} Incompatible Y
3 null {X/1, Y/1} Backtrack k, clear Y
2 d2(1, 2) {X/1} Bind Y/2, advance k
3 d3(1, 2, 1) {X/1, Y/2} Bind Z/1, call instantiate-local for

p(1, 2)← d1(1), d2(1, 2), d3(1, 2, 1),
clear Z.

3 null {X/1, Y/2} Backtrack k, clear Y
2 d2(2, 1) {X/1} Incompatible X
2 null {X/1, Y/2} Backtrack k, clear X
1 null ∅ Algorithm complete

Table 8.2: Example of the instantiate-rule Algorithm

one literal at a time. The variable k is an index to the array that keeps
track on which literal we are currently examining.

In the beginning of the loop we generate one ground instance of L[k]
and store it into the variable I. If such a value exists, we first check if it
is compatible with our existing variable binding. If so, we bind the free
variables and advance to the domain literal k+1 unless we are already at
the value k = |L| and have values for all global variables. Then we call
instantiate-local to handle the local variables. We then add the resulting
rule to the instantiation, clear the latest variable bindings, and return to
the beginning of the loop without altering k.

If the instance I is not compatible with existing bindings, we go back
to the beginning of the loop and try again.

If I = null, we have gone through the complete extensions of L[k] and
have to backtrack. We reset the iterator of L[k] and remove the variable
bindings introduced by L[k−1]. The reason why we remove the bindings
of the previous literal is that at the kth level we are trying to extend the
bindings that were generated in the first k − 1th levels. If that fails, we
have to remove the latest binding so that we can set new values for those
variables and then try again at the kth level.

Example 8.3.3 Consider again the rule:

p(X, Y)← d1(X), d2(X, Y), d3(X, Y, Z)

Suppose that this time the extensions of the domain literals are:

ext(d1) = {d1(1)}
ext(d2) = {d2(1, 1), d2(1, 2), d2(2, 1)}
ext(d3) = {d3(1, 2, 1)}

and we again go through them in the numerical order.3 Table 8.2 shows
the steps that instantiate-rule takes while working on this rule when we
use the simplest iterator.

3In this case it would be most efficient to handle d3 first since it has only one
instance and it gives values for all variables at the same time.

140 8. IMPLEMENTATION ISSUES

8.3.5 Ordering Domain Literals

The algorithm instantiate-rule in Figure 8.6 computes the join of the
extensions of domain literals in the rule body one tuple at a time.4 The
order that we choose for the literals is very important for practical perfor-
mance since the number of computation steps we take in the main loop
is dependent on the size of the intermediate products of the join. Here it
is possible to use standard database algorithms for deciding a good join
ordering [202, 110, 68]. We do not go into the details of such algorithms
and only give an example that illustrates why the order matters and give
a couple of simple heuristics for deciding it.

Example 8.3.4 Suppose that we want to instantiate the rule:

p(X, Z)← d1(X), d2(Y), d3(X, Y, Z)

where the extensions of the domain predicates are:

ext(d1) = {d1(x) | x ∈ [1 . . 1000]}
ext(d2) = {d2(y) | y ∈ [1 . . 1000]}
ext(d3) = {d3(x, y, z) | x, y, z ∈ [1 . . 10]}

This rule has 10 · 10 · 10 = 1000 relevant instances. With the ordering
〈d1, d2, d3〉 we essentially first create the Cartesian product Rd1 × Rd2

whose size is |Rd1| · |Rd1| = 1, 000, 000 even though only 100 tuples from
it are compatible with the extension of d3.

However, if we choose to handle d3 first we do not have to examine
any superfluous tuples at all and we may handle d1 and d2 in either order.

The current implementation uses the following heuristics to determine
the order:

1. Sort the domain literals in order 〈A1, A2, . . . , An〉 in such a way
that ext(pred(Ai)) ≤ ext(pred(Ai+1)) for all 1 ≤ i < n .

2. If the extensions of Ai and Ai+1 are as large and Ai+1 binds more
variables than Ai, swap their places.

3. If all variables of a literal Ai are bound by earlier literals 〈A1, . . . , Ak〉
(k < i), then move Ai into the (k+1)th position and shift the other
literals by one to make space for it.

These heuristics do not guarantee that the join order is optimal and
it is possible to construct an example where we have to do a lot of un-
necessary work compared with an optimal order.

Example 8.3.5 Consider the rule:

h(V, X, Y, Z)← d1(X, V), d2(X, Y, Z), d3(Y)

4This is proved in Section 8.3.9.

8. IMPLEMENTATION ISSUES 141

function instantiate-local(Rule R, Substitution σ, Domain Model D)
Let S be the set of conditional literals in R
E := ∅
foreach L : A ∈ S do

E := E ∪ expand-condition(L : A, σ, D)
endforeach
R′ := replace-conditionals(Rσ, S, E)
return R′

endfunction

function expand-condition(Conditional Literal L : A, Substitution σ,
Domain Model D)

E := ∅
I := get-next-instance(A, σ,D)
while I 6= null do

if can-bind(A, I, σ) then
σ′ := bind-variables(A, I, σ)
E := E ∪ {Lσ′ : Aσ′}

endif
I := get-next-instance(A, σ)

endwhile
return E

endif

Figure 8.7: Instantiating local variables

where the sizes of the extensions of the domain literals di are:

|ext(d1)| = |ext(d2)| = 1000

|ext(d3)| = 10000

The extensions of d1 and d2 are as large so the heuristics chooses d2 first
since it binds three variables while d1 binds only two. Even though d3 has
the largest extension, it is moved to the second position since all its lone
variable has already been bound while d1 still has a free variable. The
complete order is then:

〈d2, d3, d1〉 .

8.3.6 Instantiate Local

The function instantiate-local goes through every conditional literal in
the rule R, expands it and replaces the conditional literals with their
expansions.

The literal expansion works in an analogous way to instantiate-rule,
except that in this case we have only one literal to consider.5 We iterate

5Note that we can implement the extension of having multiple conditions in a
conditional literal (Section 7.3.4) also by changing expand-literal to go through all of
them in a similar way how instantiate-rule handles multiple domain literals.

142 8. IMPLEMENTATION ISSUES

through the extension of the condition and add the compatible ground
instances of the main literal to the expansion.

The auxiliary function replace-conditionals(R,S, E) replaces all con-
ditional literals in the set S by their expansions E.

Example 8.3.6 Consider the rule:

← 1 {Y.p(X, Y) : d2(X, Y)}, d1(X) .

where the extensions of the domain predicates are as in Example 8.3.3.
Calling instantiate-rule we get the global variable binding X/1. When

we go over the extension of d2 with get-next-instance1, we find that the
two compatible instances are d2(1, 1) and d2(1, 2), so we get the set:

E = {p(1, 1) : d2(1, 1), p(1, 2) : d2(1, 2)}

This gives us the ground instance:

← 1 {p(1, 1) : d2(1, 1), p(1, 2) : d2(1, 2)}, d1(1) .

In practice, we already know that both conditions are true so we could
leave them out and instead use the ground instance:

← 1 {p(1, 1), p(1, 2)}, d1(1) .

8.3.7 Handling Function Symbols

We left out the handling of function symbols from the pseudocode for
instantiate-rule in Figure 8.6. In this section we examine how we can
implement them.

Interpretation Functions
We write an interpretation function evalf for every function symbol f in
our language. The implementation contains such functions for all built-in
function symbols of the standard interpretation 3.9 and there is a simple
application programming interface that allows a user to define his or her
own functions.

Compound Terms
We introduce a new variable Xt for every compound term t that occurs
in a rule. Then, we replace every occurrence of t with Xt and add the
built-in predicate Xt = t to the rule body.

Example 8.3.7 Consider the rule:

p1(X, X + Y)← d1(X), d2(Y), p2(X + Y) ,

where d1 and d2 are the domain literals. We translate this into:

p1(X, XX+Y)← d1(X), d2(Y), XX+Y = X + Y, p2(XX+Y) .

The main reason why we use this two-step approach is that it makes
it easy to apply substitutions to literals. As the substitutions are imple-
mented as an array S of constant terms, we can just look at the contents
of S[i] when we want to substitute the variable Xi.

8. IMPLEMENTATION ISSUES 143

Herbrand Interpretations
If a function symbol f/n has the Herbrand interpretation, its interpre-
tation function creates a new ground term f(t1, . . . , tn) based on the
existing variable bindings.

When we store f(t1, . . . , tn) in the array S of variable bindings, we
transform the n-ary compound term into the 0-ary constant f(t1, . . . , tn).
This is again done to simplify applying the substitutions.

Built-In Predicates
The standard interpretation defines built-in predicates for the usual re-
lational operators (=, 6=, <, etc.). We define an interpretation functions
evalp for each built-in predicate symbol analogously to the case of built-in
functions. A function call evalp(t1, t2) returns true if p(t1, t2) is true, and
false otherwise.

During instantiation we use built-in predicates as a test and discard
all ground instances for which evalp(t1, t2) returns false.

We want to evaluate these predicates as soon as possible. This means
that if the last variable in p(t1, t2) is bound on the kth iteration of
instantiate-rule, then we call evalp before we proceed to the (k + 1)th
iteration.

Example 8.3.8 Consider the rule:

p(X, Y, Z)← d1(X), d2(Y), d3(Z), X > 2, X < Y + 1

with the domain literal ordering 〈d1, d2, d3〉. In this rule we can evaluate
X > 2 immediately after we bind X and X < Y + 1 when we have bound
both X and Y .

This means that we do not have to find a value for Y unless X is
greater than 2. Similarly, we do not have to iterate over d3 if X > Y .

8.3.8 Improving the Algorithm

The instantiate-rule algorithm is simple and easy to implement and it
allows us to handle all rules in the program in an uniform way. How-
ever, there are situations where its performance is less than optimal. In
this section we identify several of these cases and discuss how we could
improve the behavior.

Superfluous Ground Instances
The instantiate-rule algorithm may create more ground instances than
necessary. It may create rules that are essentially duplicates of each other
as well as rules whose bodies cannot be satisfied in any stable model of
the program.

For example, consider the rule:

p(X)← d(X, Y) .

Here p(X) will be true if there is at least one Y for which d(X, Y) is
true but the algorithm will instantiate this rule for every distinct value

144 8. IMPLEMENTATION ISSUES

of Y . We could handle these by adopting the standard techniques for
computing projections of joins [203].

The second possibility is that when we have a recursive domain pred-
icate, we may create a large number of rules whose bodies cannot be
satisfied. Suppose that we have a domain predicate p that is defined
with the rules:

d(0..1000)←
p(0)←

p(X + 1)← p(X), d(X), X > 1

The body of the second rule is not satisfied for any value of X, but we
still create a ground instance for all of them. Unfortunately, we cannot
do much for this weakness unless we want to make drastic changes in the
algorithm.

The function instantiate-rule looks at only one rule at a time. The
advantage of this feature is that we need to examine each rule just once
during instantiation. The cost that we have to pay is that we cannot
detect these kinds of dependencies between rules.

Rule Rewriting
In some problem domains we have many rules that have a similar or even
the same set of domain literals. If we examine each such a rule separately,
we have to create the same natural join many times. For example, if we
have the rules:

p(X, Y, Z)← not q(X, Y, Z), d1(X, Y), d2(Y, Z)

q(X, Y, Z)← not p(X, Y, Z), d1(X, Y), d2(Y, Z) ,

we have to create the join d1 ./ d2 separately for both rules.
In rule rewriting we replace a rule with another that is computationally

more efficient. In the above example we might define a new domain
predicate:

d3(X, Y, Z)← d1(X, Y), d2(Y, Z)

and rewrite the two rules into:

p(X, Y, Z)← not q(X, Y, Z), d3(X, Y, Z)

q(X, Y, Z)← not p(X, Y, Z), d3(X, Y, Z) .

One thing to note is that when we restrict rewriting to the domain
literals, we do not get any new ground atoms into the non-domain part of
the instantiation. This means that the instantiation-time optimizations
do not make the task of finding answer sets more difficult.

There are many standard techniques [202, 203] that can be applied to
identify the common parts of the domains of the rules and to evaluate
whether the savings that we get outweigh the costs inherent in computing
and storing the extension of the new predicate.

In cases where several rules have identical domain literals, we do not
need to create and store a new domain predicate explicitly. Instead, we
can alter instantiate-rule so that we instantiate all of them at the same
time. Whenever we find a ground instance, we call instantiate-local for
every rule before advancing to the next instance.

8. IMPLEMENTATION ISSUES 145

Backjumping
In the main loop of instantiate-rule we always backtrack one level of
variable bindings at the time. This may cause a problem if we chose a
poor order for the domain literals. If it happens that the first variable
binding that we made conflicts with the last binding, we have to create
the complete natural join in the middle in vain.

It should be possible to augment the algorithm to support backjump-
ing [8, 163] where we remove more than one variable binding at one time.
Consider the rule:

p(X, Y, Z)← d1(X), d2(Y), d3(X, Y, Z)

with the domain predicate extensions:

d1 : {d1(1), d1(2)}
d2 : {d2(1), d2(2)}
d3 : {d3(2, 2, 2)}

Suppose that we first bind X to 1 and then Y to the same value. Then
we notice that there are no compatible instances for d3. Moreover, it has
no instances at all that agree with the value for X so there is no need to
consider the second possible value for Y and we can instead remove the
bindings for both X and Y at the same time.

8.3.9 Correctness of Rule Instantiation Algorithm

The instantiation algorithm differs from the formal definition of the se-
mantics in that we handle global and local variables in a different order.

The formal definitions of Chapter 3 are ordered so that we first expand
the conditional literals and only after that instantiate the global variables.
In practice, it is more efficient to do it in the other order: when we know
the values of the global variables, we can restrict the number of ground
instances of the main literal of the conditional literal and create only
those instances that are compatible with the existing bindings.

Next, we argue formally that the function instantiate-rule(R, D) pro-
duces the relevant instantiation of the rule R. In Section 5.8 we defined
a relation RR,D over the domain literals of a rule R and showed that a
tuple 〈a1, . . . , an〉 ∈ RR,D exactly when there is a corresponding ground
rule in the relevant instantiation of the rule.

We can think that instantiate-rule creates a relation over the exten-
sions of the domain predicates one tuple at a time. We show that this
relation is actually the same relation as RR,D. Thus, instantiate-rule
creates all the substitutions for global variables that satisfy all domain
literals.

Then, the function instantiate-local computes the evaluation of the
conditional literals that occur in the rule. We show that a ground con-
ditional literal Lσ : Aσ is in the set E that expand-condition computes
for X.L : A exactly when Dω � Aσ and σ agrees with the global variable
bindings.

146 8. IMPLEMENTATION ISSUES

Definition 8.3.1 Let P be an ω-restricted program, R ∈ P be a rule
where Varg(R) = {X1, . . . , Xk}, {p1, . . . , pn} be the set of predicate sym-
bols occurring in its domain literals, and Σ be the set of substitutions
produced by instantiate-rule(R,Dω). Then, the relation RI [X1, . . . , Xk]
is defined as follows:

〈a1, . . . , ak〉 ∈ RI [X1, . . . , Xk] if and only if there

exists σ ∈ Σ such that σ(Xi) = ai for 1 ≤ i ≤ k .

Proposition 8.3.1 If P is an ω-restricted program, then RI = RR,D for
all rules R ∈ P .

Proof. Suppose that 〈a1, . . . , ak〉 ∈ RR,D. By Proposition 5.8.1 there
exists a substitution σ such that σ(Xi) = ai for all 1 ≤ i ≤ k and
Dω � Aσ for all A ∈ bodyD(R).

Let 〈A1, . . . , An〉 be an ordering of the domain literals in bodyD(R).
Since Dω � A1σ, get-next-instance(A1, ∅, Dω) eventually returns a sub-
stitution σ1 such that σ1 = σ|Var(A1).

6 Similarly, as Dω � A2σ, get-next-
instance(A2, σ1, Dω) eventually returns σ2 such that σ2 = σ|(Var(A1) ∪
Var(A2)). Continuing this, we eventually find a substitution σn = σ, so
〈a1, . . . , ak〉 ∈ RI .

Conversely, if 〈a1, . . . , ak〉 ∈ RI , we have found an admissible combi-
nation of ground instances for 〈A1, . . . , An〉. So, we have a substitution σ
such that Dω � Ai for all domain literals Ai. Applying Proposition 5.8.1
again we conclude that 〈a1, . . . , ak〉 ∈ RR,D. �

Proposition 8.3.2 Let P be an ω-restricted program, R ∈ P a rule in
it and X.L : A be a conditional literal in R. Then, a ground conditional
literal L′ : A′ belongs to the set E computed by expand-condition(L, σ,
Dω) if and only if there exists a substitution σX ∈ subs(X, UH(P)) such
that Dω � AσXσ and L′ = σXσ.

Proof. Suppose that a ground conditional literal L′ : A′ ∈ E. This is
possible only if there exists a substitution σ′ such that it is the result of
the function call bind-variables(A, I, σ) where I is a ground instance of
Aσ in Dω. Thus, Dω � Aσσ′. Since Var(σ) ∩ Var(σ′) = ∅ and since σ
and σ′ are ground substitutions, we can reorder them to get Dω � Aσ′σ.
Finally, we restrict σ′ to the set of local variables X to get σX = σ′|X.
Now Dω � AσXσ

Next, suppose that there is a ground instance A′ ∈ Dω where A′ =
AσXσ. As σX and σ do not operate on same variables, we can reorder
them to get Dω � AσσX . So the test can-bind(A, I, σ) succeeds for the
ground instance I = AσσX , so bind-variables(A, I, σ) returns σ′ = σσX

and we add Lσ′ : Aσ′ into E. �

8.4 DOMAIN COMPUTATION

We will now examine how we can compute the domain model of a CCP.
We already saw an algorithm for identifying the domain predicates and

6Where σ|X denotes the restriction of σ to the variables of the set X.

8. IMPLEMENTATION ISSUES 147

Create
Dependency
Graph

Create
SCC
Graph

Create
ω-stratification

Compute
Domain
Models

Figure 8.8: Domain computation

function create-domain-model(Program P)
Graph G := create-dependency-graph(P)
Graph S := create-SCC-graph(G)
Domain Model D := visit-components(P , G)
return D

endfunction

Figure 8.9: Algorithm for Computing the Domain Model

computing the domain model in Section 4.4. Another way to do it would
be to use Datalog-style relation evaluation to create the domain model in
a way similar to the one presented in Section 5.8 after we have identified
the domain program.

In this section we present a third method that uses the instantiate-
relevant function as a part of the domain computation. We examine
one strongly connected component of the dependency graph at a time,
instantiate the rules that occur in it, compute its least model, and add
it to the domain model.

This approach has the advantage that it allows the back end to handle
all rules in a program in a uniform way. We go through the rules one by
one instantiating them, and then either compute the least model if the
rule happens to belong to the domain program or output the rule if it
belongs to the ω-program.

However, this approach has also the disadvantage that when we have
recursive domain predicates, we may end up doing unnecessary work
instantiating rules whose bodies are never satisfied. This is a weakness
that does not occur in algorithms based on database techniques.

The general approach for the domain computation is shown in Fig-
ure 8.8. It consists of four phases:

1. creating the dependency graph;

2. creating the SCC graph;

3. creating an ω-stratification; and

4. computing the domain model.

The first two phases are straightforward. We create the dependency
graph by going systematically through all rules in the program and adding
all positive and negative dependencies that we encounter. Then, we

148 8. IMPLEMENTATION ISSUES

Let visited be an array with |V | elements
Let is-domain be an array with |V | elements
Set visited[v] := false for all v ∈ V
Set is-domain[v] := false for all v ∈ V
function visit-components(Program P , SCCGraph S = 〈V, E, N〉)

Let D := ∅ be a domain model
foreach v ∈ V do

if visited [v] = false then
D := D ∪ visit(v, D, S)

endif
endfor
return D

endfunction

function visit(Component v, Domain Model D, SCCGraph S = 〈V, E, N〉)
visited [v] := true
domain := true
foreach v′ such that 〈v, v′〉 ∈ E do

D := visit(v′, D, S)
if is-domain[v′] = false then

domain := false
endif

endfor
if v /∈ N and domain = true

is-domain[v] := true
D := D ∪ compute-extensions(v, D)

endif
return D

endfunction

function compute-extensions(Component v, Domain Model D)
P := ∅
foreach p ∈ v do

P := P ∪ instantiate-relevant(p, D)
endfor
M := least-model(P)
D := D ∪M
return D

endfunction

Figure 8.10: Visiting the strongly connected components

8. IMPLEMENTATION ISSUES 149

create the strongly connected component graph (SCC graph) using the
Tarjan’s algorithm [172, pp. 481–483].

In practice, we are not interested in creating a full ω-stratification.
When we instantiate the program, we do not need to know exactly which
strata any given predicate symbol belongs to. What we want to ensure
is that when we instantiate a domain predicate symbol p, we have al-
ready created the partial domain models for all predicate symbols that p
depends on. Thus, we can combine the last two phases in one. This
algorithm is shown in Figure 8.9.

8.4.1 Traversing the SCC Graph

Figure 8.10 shows the algorithm that we use to compute the domain
model based on the strongly connected component graph.

We do a depth-first search through the strongly connected component
graph of the program where we first process all successors of a compo-
nent before examining that component itself. This is the same idea that
we used in Section 4.6 to create a strict ω-stratification for a program.
The difference is that here we compute the partial domain model that
corresponds to a component as soon as we have finished working with its
successors.

The practical effect that this causes is that our strict ω-stratification
is no longer minimal in the sense that it assigns all predicate symbols
to as low stratum as possible. Instead, every component that consists
of domain predicates becomes its own stratum. By Theorem 4.4.1 every
strict ω-stratification is equivalent so this change does not cause any
problems.

Global Arrays
Figure 8.10 shows that we have defined two auxiliary arrays as global
variables. There is no particular reason why they could not be carried
along as parameters for the visit function except that it would make the
pseudo-code more difficult to read. The two global arrays are:

• visited holds status information for every vertex of the SCC graph S.
Its role is to ensure that we visit every component only once. We
set the values of visited[v] to false for every v ∈ V at the begin-
ning of the algorithm, and then set it true when we first enter the
component during the computation.

• is-domain is an array of truth values that tells whether the predicate
symbols belonging to that component are domain predicates or not.
We initialize this value to false at the beginning and then set it
true if we find out that the component contains domain predicates.

Visit Components
The function visit-components is a simple driver function that ensures
that we go through every strongly connected component of the SCC
graph.

150 8. IMPLEMENTATION ISSUES

Visit
The function visit checks whether a given strongly connected compo-
nent v contains domain predicate symbols.

The first thing that we do entering the function is to mark that the
component v is visited. Next, we define an auxiliary variable domain
and set it true. The intuition is that if the value of the variable is still
true at the end of the computation, we are possibly dealing with domain
predicates.

Next, we recursively visit every successor of the component that we
are examining. If it turns out that at least one of them is non-domain,
we set the variable domain to false to signify that this component is also
non-domain.

Finally, we check whether the component contains a negative arc. If
we do not have such an arc and domain is still true, we mark in the
is-domain array that this component belongs to the domain program
and we proceed to compute the extensions of its predicate symbols. If
the component has a negative arc, it contains negative recursion so it has
to belong to the ω-stratum.

Compute Extensions
The function compute-extensions takes as its argument a strongly con-
nected component v and it computes the extensions of the domain predi-
cates belonging in it and stores them into the partial domain model. This
function first instantiates all of the predicate symbols using the function
instantiate-relevant and then calls a function least-model to compute the
least model.

Least Model
The function least-model computes the least models of the stratum pro-
grams. We have already seen one way that we could use to do it, namely
the modified naive-datalog algorithm from Section 5.8 or one of its more
advanced derivatives [203].

In the current implementation we do it in a slightly different way. We
compute the full relevant instantiation of the stratum program, then use
the expand algorithm from the smodels inference engine [174] to compute
the least model of the instantiation.

The expand algorithm takes as its input a set of ground smodels rules
as well as a partial truth assignment, and it computes the deductive
closure of the rules. The algorithm was designed by Patrik Simons and it
is based on the linear-time Dowling-Gallier algorithm [51] for computing
the least model of a positive normal logic program. Since the algorithm
is relatively complex, we do not present its details here and they are
published in [174, p. 30].

8.4.2 Correctness of Domain Computation

In the previous section we showed that if we have computed the domain
model Dω, then instantiate-relevant(p, Dω) computes the relevant instan-
tiation for the predicate symbol p. However, we use the same function

8. IMPLEMENTATION ISSUES 151

in create-domain-model to create Dω. At the first glance of it we have
here circular reasoning: instantiate-relevant works correctly if we have
already computed the thing that we want to compute with it.

Notice that instantiate-relevant call in compute-extensions takes a par-
tial domain model D as its second argument. By the time we examine
a domain predicate p that belongs to the kth stratum, we have already
computed the partial domain model Dk−1, so we know the full extensions
of all domain literals that occur in rules for p and so we can create their
relevant instantiations. The next proposition examines this issue with a
bit more rigor:

Proposition 8.4.1 Let P be an ω-restricted CCP, S its strict ω-strati-
fication, and A a ground atom. If S(pred(A)) = k, then DS

k � A if and
only if DS

ω � A where Dk is its kth partial domain model.

Proof. First, by Definition 5.4.1, DS
k ⊆ DS

ω so if DS
k � A, then DS

ω � A.
If DS

k 6� A but DS
ω � A, then that there is some k′ > k such that DS

k′ � A.
Since all rules for A occur on the kth strata, P S

k′ does not contain any rule
with A in the head. This causes a contradiction since in Theorem 3.6.1
we proved that every atom that is true needs a supporting rule. �

8.4.3 Other Possible Approaches

Our method for instantiating a program is not the only possible way and
there are other possible approaches.

Database Domain Computation
We could handle the domain computation by traditional database tech-
niques [202, 203, 36] and then use instantiate-rule only for the non-
domain part of the program.

In essence, we could interpret the domain program as a Datalog pro-
gram that has been extended with stratified negation and positive car-
dinality atoms and compute the domain model with deductive database
algorithms. We saw a naive algorithm for doing this for ordinary Datalog
programs in Section 5.8.

The Discarded Negations Method
It is possible to discard instantiate-rule completely and compute the com-
plete instantiation with deductive database methods [161, 68]. The prob-
lem that we have to overcome is that the predicates that are defined in
terms of negative recursion do not have unique relations that we could
attach to them.

The simplest solution is that we temporarily drop all negative literals
that take part in a negative cycle in the dependency graph of the program.
The resulting program is stratified and we can use standard algorithms
to compute its least model. This least model contains all those atoms
that we could plausibly derive using the rules of the original program.

Then, we return the negative literals back in place and create those
ground instances of the rules where every literal in the rule body is true
in the approximated model.

152 8. IMPLEMENTATION ISSUES

Example 8.4.1 Consider the program:

d(1)←
d(2)←
e(3)←

p(X)← d(X), not q(X)

q(X)← d(X), not p(X) .

Using the discarded negations method we would first transform the two
non-ground rules into:

p(X)← d(X)

q(X)← d(X)

This gives us the approximated model:

M = {d(1), d(2), e(3), p(1), p(2), q(1), q(2)} .

We can now return the negative literals to the rule bodies and generate
the ground instances for p(1), p(2), q(1), and q(2). Since neither p(3)
nor q(3) are in M , we do not need to add the corresponding ground rules
to the instantiation.

In practice, we do not need to explicitly separate the instantiation
and computation of the approximated model. Instead, we can create a
ground instance of a rule at the same time as we add its head to the
approximated model.

This approach often computes smaller ground instantiation that in-
stantiate-rule, since it considers also the extensions of non-domain predi-
cates in the pruning phase when it decides what instances to include and
what leave out. The price that we pay for the more compact instantia-
tion is that the algorithm is more complex to implement and it does not
create the instantiation in one pass over the rules.

It should be noted that this algorithm does not guarantee a minimal
instantiation. It is possible to construct a program where we create a
large number of spurious rules. If a rule has a literal in its body that is
false in every stable model of the program, it is trivially satisfied and it
can never justify any atoms into the stable models so it can be left out.
The question whether some literal is true in any stable model of a ground
program is NP-complete so the problem of deciding if a rule is needed
or not is at least that difficult.

Domain Literals and Constraint Satisfaction
In instantiate-rule we find the relevant substitutions using the relational
model for domain literals. We could interpret the computation also as a
constraint satisfaction problem.

A constraint satisfaction problem (CSP) consists of a set of vari-
ables X = {X1, . . . , Xn}, a set of values V (Xi) = {a1, . . . , an} for ev-
ery variable Xi, and a set of constraints C = {C1, . . . , Ck} where each
Ci ⊆ X1 × · · · × Xn is a relation that defines acceptable value com-
binations. The goal is to find the set of tuples 〈a1, . . . , an〉 such that
ai ∈ V (Xi) for all i ∈ [1, n] and 〈a1, . . . , an〉 ∈ Ci for all Ci ∈ C.

8. IMPLEMENTATION ISSUES 153

When we express the instantiation problem in CSP terms we take the
set of global variables of a rule as our set of variables. The constraints
are the relations Rp of domain literals that occur in the body.7 We have
two choices on how we define the sets of possible values for variables.
We can either take the Herbrand universe of the program as the starting
point for each variable Xi, or we can compute the intersection of the
projections πXi

(Rp). The latter approach is likely to be more efficient
in practice and it also allows us to handle function symbols with the
Herbrand interpretation.

In practice, there is no great theoretical divide between using the
database and CSP approaches. The answer for a constraint satisfaction
problem is a relation and in this case the relation will be the same RR,D
that we create with database algorithms. In fact, we could interpret
instantiate-relevant as a CSP algorithm that does not create explicit
representations for the sets of values.

Lambda-Restricted Programs
A program is λ-restricted [81] if it is possible to create a level-mapping λ :
Preds(P) → N of its predicate symbols such that every variable that
occurs in a rule occurs in a positive literal that belongs in a strictly lower
level than the head.

For example, if we have a program:

a(1)←
b(X)← a(X), c(X)

c(X)← b(X) ,

there is a level mapping λ(a) = 0, λ(b) = 1, and λ(c) = 2 that satisfies
the condition. This program is not ω-restricted since b/1 and c/1 depend
on each other so S(c) = S(b) and the last rule does not have a domain
literal. Even though b/1 and c/1 depend on each other, the instances of
both of them are restricted by the instances of a/1.

The λ-restriction is a generalization of ω-restriction since every strict
ω-stratification is a valid λ-mapping. It is possible to create an ω-
restricted program that is equivalent to a given λ-restricted one by in-
troducing suitable domain literals to the bodies of rules that are not
ω-restricted. In the above example we could add a(X) to the body of
the last rule to restrict it. However, if the non ω-restricted rules intro-
duce new terms to the program, then we have to introduce new domain
predicates to catch the new terms. For example, if we have:

b(f(X))← a(X), not c(X)

c(X)← b(X) ,

7In practical situations we do not usually define the constraints to range over the
Cartesian product of all variables. Instead, we use only some subset of the variables.
when we test whether a tuple satisfies such a constraint we project the relevant values
from the tuple and do the check with only them.

154 8. IMPLEMENTATION ISSUES

we have to define a new domain predicate d to get:

d(f(X))← a(X)

b(f(X))← a(X), not c(X)

c(X)← d(X), b(X) .

The GrinGo instantiatior [81] implements a back-jumping algorithm
for grounding λ-restricted programs. It augments the back-jumping with
binder splitting. A binder is the λ-restriction equivalent of a domain
literal; a positive atom that gives the bindings for a variable.

The idea of binder splitting is to reduce the number of rules by remov-
ing irrelevant ground instances. For example, if we have the rule:

a(X)← d(X, Y), not b(X) ,

we will get a ground instance for every different value of Y for which
d(X, Y) is true. In binder splitting we replace d(X, Y) by a pair of
literals d(X,), d(X, Y) where d(X,) represents the projection of d/2 to
its first argument. When instantiating

a(X)← d(X,), d(X, Y), not b(X) ,

we can jump back to d(X,) immediately after finding one instance for
d(X, Y) and we do not have to examine its other instances.

We can get the same effect in ω-restricted programs by defining a new
predicate symbol d′/1 for the projection. d/2 and by replacing d(X, Y)
with it:

a(X)← d′(X), not b(X)

d′(X)← d(X, Y) .

8.5 THE smodels RULES

The rules that the instantiator provides are ground CCP rules. When we
want to use the smodels engine to compute the stable models of CCP pro-
grams, we have to translate them into a form that smodels understands.

8.5.1 Rule Types

The smodels inference engine uses four different kinds of ground rules [174].
The rule types are simplified forms of cardinality constraint rules where
there may be at most one cardinality or weight atom in each rule.

Basic Rules
A smodels basic rule is a ground normal logic program rule:

h← a1, . . . , an, not b1, . . . , not bm

where h, ai, and bi are all atoms. Constraints with empty heads are
handled by substituting the atom ⊥ to the head and then rejecting every
model candidate where ⊥ is true.

8. IMPLEMENTATION ISSUES 155

Choice Rules
A smodels choice rule is a ground rule:

{h1, . . . , hk} ← a1, . . . , an, not b1, . . . , not bm

where hi, ai, and bi are all atoms. Note that an smodels choice rule
cannot have any cardinality atoms in its body.

Constraint Rule
A smodels constraint rule is a ground rule:

h← Card(1, {a1, . . . , an, not b1, . . . , not bm})

where h, ai, and bi are all atoms. Each constraint rule has to have a
single atom as the head and exactly one constraint atom in the body.

Weight Rule
A smodels weight rule is a ground rule:

h←Weight(1, {a1, . . . , an, not b1, . . . , not bm})

where h, ai, and bi are all atoms. As was the case of constraint rules,
weight rules need to have exactly one weight atom in the body.

8.5.2 Rule Translation

There are three possible reasons why a ground rule R produced by
instantiate-rule might not be an smodels rule:

1. R may be a choice rule that has cardinality literals in the rule body;

2. R may be a basic rule containing more than one cardinality atom
in the body; or

3. R may contain negative cardinality literals in the body.

We can handle all three cases with one transformation. Let R be a
ground rule:

{H1, . . . , Hn} ← C1, . . . , Cn, not Cn+1, . . . , not Cn+m

where Hi are basic atoms and Ci are cardinality atoms. Then, for each
cardinality atom Ci we create a new ground atom ci, and replace R with
the n + m + 1 smodels rules:

{H1, . . . , Hn} ← c1, . . . , cn, not cn+1, . . . , not cn+m

c1 ← C1

...

cn+m ← Cn+m .

156 8. IMPLEMENTATION ISSUES

9 PROGRAMMING METHODOLOGY

In this chapter we examine some general principles that we can use to
construct cardinality constraint logic programs. Most of the ideas can be
applied to other answer set formalisms with little modification.

In general, CCPs are most suitable for modeling problems whose deci-
sion versions are NP-complete. If a problem has an efficient polynomial-
time algorithm, then expressing it using an NP-complete formalism such
as ground CCPs may be counter-productive. Similarly, if the problem
falls outside NP, solving it with a single program often results in a com-
plex and unintuitive program.1 From a practical viewpoint it is often
simpler to solve the problem using an algorithm that includes a CCP-
solver as an NP-oracle [200, 152]. For example, the PSPACE-complete
problem of finding an optimal plan can be reduced into solving a series
of NP-complete problems of finding a plan of a specific length.

9.1 GENERATE AND TEST METHOD

Writing answer set programs using the generate and test method [141,
60] makes them often easier to create, understand, and debug. In ASP
context it means that we divide our problem into two parts:

1. a generator that creates all possible solution candidates; and

2. a tester that checks whether a particular candidate is, indeed, a
valid solution.

How we write the generator depends on what ASP semantics we are
using. With cardinality constraint programs the natural way is to use
choice rules.

In the very simplest form an encoding has two rules. One choice
rule that allows us to choose a set of atoms into the answer set, and one
constraint that rejects those solutions that are not valid. These programs
have the general form of:

{X.choose(X) : option(X)} ←
← choose(X), invalid-choice(X) .

We will now examine how we can express the well-known graph vertex
coloring problem with this approach.

Problem 5: Vertex Coloring. Given a graph G =
〈V, E〉 and a set of colors C, is it possible to assign a color
for each vertex such that all adjacent vertices have different
colors?

1With the exception that many Σ2
P -complete problems have also natural ASP

encodings when we use a formalism based on disjunctive logic programs [37].

9. PROGRAMMING METHODOLOGY 157

Graph Facts Stable Model

a b

c d

vtx(a); vtx(b); vtx(c); vtx(d);

edge(a, b); edge(a, c); edge(b, c);

edge(b, d); edge(c, d); color(r);

color(g); color(b)

{has-color(a, g),

has-color(b, r),

has-color(c, b),

has-color(d, g)}

Figure 9.1: Example of Vertex Coloring.

Example 9.1.1 We can encode Vertex Coloring with the following
program:

1 {C.has-color(V, C) : color(C)} 1← vtx(V)

← edge(X, Y), has-color(X, C), has-color(Y,C) .

The first rule is the generator that creates answer set candidates where
every vertex is colored with one color. The second rule tests that no
adjacent nodes have the same color.

The predicate symbols vtx/1, edge/2, and color/1 are part of the input
and they define the particular problem instance that we are trying to
solve. Figure 9.1 shows an example of finding a 3-coloring for a four
vertex graph.

In more involved examples both the generator and the tester can be
more complex. We then include basic rules that define the necessary
auxiliary predicates. There are two main uses for the auxiliaries:

1. definition of the tester rules can be difficult or even impossible
without them; and

2. they allow us to have tighter definitions for the generator.

For example, when we defined the Hamiltonian cycle encoding in Ex-
ample 4.1.2, we had to define the reachability predicate r/1 because we
needed it to check whether the cycle visits every node.

The second reason is closely related to the search spaces of the pro-
gram. The fewer answer set candidates that we can derive with rules of
the generator, the smaller the search space is.

9.2 UNIFORM ENCODINGS

A problem encoding is uniform [171, 60, 130] if we can use it to solve
all instances of the problem: we have a non-ground program P that
encodes the constraints of the problem, and each problem instance is
defined as a set of ground facts. We can form uniform ASP encodings
for all NP search problems.

The main advantage of using a uniform encoding is modularity. We
can often create a program by partitioning it into subproblems and then
combining their encodings. This is much easier to do when the encod-
ings are uniform and then we can also replace a component by another
logically equivalent one.

158 9. PROGRAMMING METHODOLOGY

It is customary to divide the predicate symbols that occur in a program
into two classes: data and program predicates [26]. The data predicates
are fixed and are given as input to the program in the form of facts while
program predicates act upon the data. This division is not the same as
the division between domain and non-domain predicates since we will
often define additional domain predicates in terms of data predicates.

When we have a uniform encoding for a problem P, we use P(I) to
denote the program that we get from combining the facts that define an
instance I of P to the encoding. The encodings will often have parameters
that are defined using interpreted function symbols. In these cases we
add the parameters to the program name so that P(I, k) denotes the
program for the instance I where a numeric parameter has the value k.

9.2.1 Examples

We now give several examples for uniform encodings of problems. We
have already seen a couple of them: the encoding for Vertex Coloring
in Example 9.1.1, the Hamiltonian Cycle encoding in Example 4.1.2,
and the Turing machine simulation in Section 6.4.

Next, we examine three different variants of the propositional logic
satisfiability problem, Sat, Boolean Sat, and Maxsat. In the first
variant we examine the satisfiability of a set of clauses, then we extend it
to cover arbitrary boolean formulas, and finally we examine the problem
of finding a truth assignment that satisfies the greatest number of clauses
in a possibly inconsistent clause set.

Sat
Since the satisfaction problem (Sat) of propositional logic is the canoni-
cal example of NP-complete problems, we examine its encoding in detail.

Problem 6: Sat. Let F be a propositional logic formula
in conjunctive normal form. The problem is to determine
whether F satisfiable.

We suppose that F is given as a set of facts of the form atom(a),
clause(c), pos(c, a) and neg(c, b). The first two predicates define what
atoms and clauses there are in the formula, while the next two encode
what positive and negative literals belong to the clauses.

Encoding 6: Sat.

{A.true(A) : atom(A)} ← (1)

sat(C)← clause(C), pos(C, A), true(A) (2)

sat(C)← clause(C), neg(C, B), not true(B) (3)

← clause(C), not sat(C) . (4)

The rule (1) creates all possible truth assignments for the atoms, while
(2) and (3) assert that a clause is satisfied if some literal in it is true.
Finally, (4) states that it is an error if some clause is not satisfied.

9. PROGRAMMING METHODOLOGY 159

Now, we argue that this translation is correct and that the program
Sat(F) that we get by adding the instance as facts to (1)–(4) has a
stable model M if and only if the set of clauses F has a satisfying truth
assignment V where V = {A | true(A) ∈ M}. This is an example how
we can prove problem encodings correct. We will not give proofs for the
other problems in this section.

Proposition 9.2.1 Let F be a propositional logic formula in a conjunc-
tive normal form. Then F is satisfiable if and only if the program Sat(F)
has a stable model.

Proof. First, suppose that sat(F) has a stable model M and consider
the set of propositional atoms V = {a | true(a) ∈M}. Rule (4) of sat(F)
demands that the atom sat(c) ∈M for every clause c. By Theorem 3.6.2
each such an atom has to have a justification in M . There are two ways
to derive sat(c):

1. there is a propositional atom a such that pos(c, a) and true(a) are
true in M ; or

2. there is a propositional atom b such that neg(c, b) ∈M but true(b) /∈
M .

In the first case c has a positive literal a and a ∈ V so V � c. Similarly,
in the second case c has a negative literal ¬b and b /∈ V so V � c. Thus,
V is a model of F .

Conversely, suppose that V is a model of F and let I(F) denote the
set of instance atoms:

I(F) = {p(t1, . . . , tn) | p ∈ {clause, pos, neg, atom} and

〈p(t1, . . . , tn), ∅〉 ∈ sat(F)} .

Consider the set M of ground atoms:

M = {true(a) | a ∈ V} ∪ {sat(c) | clause(c) ∈ I(F)} ∪ I(F)

We now examine the reduct instH(P (F))M . First, note that all atoms
in I(F) were defined with ground facts so its atoms are trivially in the
least model of the reduct.

Next, the reduct of the rule (1) is the set of facts:

{〈true(a), ∅〉 | a ∈ V}

and the reduct of (3) is the set of rules:

{〈sat(c), {clause(c), neg(c, b)}〉 | b /∈ V}

while the reducts of the remaining rules contain all possible variable
substitutions.

Consider a clause c. Since V is a model of F , there is a literal l ∈ c
such that V � l. If l = not b is negative, then b /∈ V so the reduct contains
a rule:

sat(c)← clause(c), neg(c, b)

160 9. PROGRAMMING METHODOLOGY

and we get sat(c) into the least model.
If l = A is positive, then we have a rule:

sat(c)← clause(c), pos(c, a), true(a)

whose body is satisfied in the least model since true(a) is true as a ∈ V
and we again get sat(c) into the least model. Thus,

MM(instH(P (F))M) = M

so M is a stable model of sat(F). �

Boolean Sat
In Sat we examined only propositional logic formulas that were in con-
junctive normal form. Now we generalize this to boolean formulas that
are formed with the full set of standard connectives: disjunction (∨),
conjunction (∧), negation (¬), implication (→), and equivalence (↔).

Problem 7: Boolean Sat. Let F be a propositional logic
formula. The problem is to find if F satisfiable.

We construct the encoding by breaking F into its subformulas and
defining a new atom for each such a formula. We do this using a func-
tion t(F) that translates a boolean formula into a set of facts. During
the translation we assign a unique identifier i(F) for every subformula.

Definition 9.2.1 Let F be a boolean formula, then the translation t(F)
is defined as follows.

1. If F = A for some propositional atom A, then

t(A) = {atom(i(A))←}

where i(A) is a unique identifier for the atom A.

2. If F = ¬α, then

t(¬α) = {negate(i(F), i(α))←} ∪ t(α)

where i(F) and i(α) are the identifiers of the corresponding subfor-
mulas.

3. If F = α ∧ β, then

t(F) = {and(i(F), i(α), i(β))←} ∪ t(α) ∪ t(β) .

4. If F = α ∨ β, then

t(F) = {or(i(F), i(α), i(β))←} ∪ t(α) ∪ t(β) .

5. If F = α→ β, then

t(F) = {implies(i(F), i(α), i(β))←} ∪ t(α) ∪ t(β) .

9. PROGRAMMING METHODOLOGY 161

6. If F = α↔ β, then

t(F) = {equal(i(F), i(α), i(β))←} ∪ t(α) ∪ t(β) .

In addition to the facts t(F), we need to specify which subformula
corresponds to the complete formula F . For this we add an extra fact
formula(i(F))←.

Example 9.2.1 Let F = (A ∨ ¬B) ∧ (B → C). Then, the translation
t(F) is the set of facts:

atom(a) ← negate(1, b) ←
atom(b) ← or(2, a, 1) ←
atom(c) ← implies(3, b, c) ←

and(4, 2, 3) ← formula(4) ←

We first assign truth values to all propositional atoms using the same
method as in the previous example, and then we propagate the truth
values to compute the truth valuations of the subformulas of the instance.

Encoding 7: Boolean Sat.

{A.true(A) : atom(A)} ←
true(F)← negate(F, F1), not true(F1)

true(F)← and(F, F1, F2), true(F1), true(F2)

true(F)← or(F, F1, F2), true(F1)

true(F)← or(F, F1, F2), true(F2)

true(F)← implies(F, F1, F2), not true(F1)

true(F)← implies(F, F1, F2), true(F2)

true(F)← equal(F, F1, F2), true(F1), true(F2)

true(F)← equal(F, F1, F2), not true(F1), not true(F2)

← formula(F), not true(F)

Now, if F is satisfiable, then its encoding has a stable model M and
the atoms true(f) give us a valuation V that satisfies F . In particular,
for all atoms a occurring in F it holds that V(a) = T if and only if
true(i(a)) ∈ M . Similarly, if M is a stable model of the encoding, it
corresponds to a model of F .

Maxsat
Problem 8: Maxsat. Let C be a set of clauses and k be an
integer. Is there a truth assignment that satisfies at least k
clauses?

This problem can be solved using a program that is essentially equiv-
alent to the one for Sat with the exception that instead of having a
constraint to weed out assignments that are not models, we define an up-
per limit k and say that it is an error if less than k clauses are satisfied.

162 9. PROGRAMMING METHODOLOGY

function oracle(Program P)
if P has an answer set M then

return 〈sat, M〉
else

return 〈unsat, ∅〉
endif

endfunction

Figure 9.2: The basic oracle algorithm

Encoding 8: Maxsat.

{A.true(A) : atom(A)} ←
sat(C)← clause(C), pos(C, A), true(A)

sat(C)← clause(C), neg(C, B), not true(B)

← {C.sat(C) : clause(C)} k − 1 .

The program maxsat(F, k) has a stable model M if and only if F has
a truth assignment that satisfies at least k clauses. The satisfying truth
assignment is the set of atoms {A | atom(A) ∈M}.

In the next section we see how we can solve the functional variant of
this problem using the oracle method.

9.3 USING ANSWER SET SOLVERS AS ORACLES

The answer set formalisms that are in common use are not Turing-
complete. This means that we cannot use them for general program-
ming. When we want to use ASP as a part of an application, we do it
by embedding an ASP solver into the application and calling it from the
program to create the answer sets that we want.

When designing the algorithms that make use of the ASP solver we
can think that the solver takes the role of an oracle [200, 152]. In the
theory of computation an oracle is a hypothetical machine that can solve
some particular problem. We encode the interesting problem as an ASP
program, and then use the solver as black box that gives us one or more
answer sets of the program.

Basic Oracle
Figure 9.2 shows the basic form of an oracle. We give an ASP program
to the oracle, and it then returns a pair 〈R,S〉 where R ∈ {sat, unsat}
tells whether the program has an answer set at all and S is one of its
answer sets if they exist. If there are no answer sets at all, we set S = ∅.

Using the Oracle
Figure 9.3 shows the general form how we can use the oracle. If we
want to solve a problem P, we start by writing a uniform encoding P
for it. Then, we write a function create-facts(I) that takes as its input

9. PROGRAMMING METHODOLOGY 163

function solve-problem(Instance I)
Let P be a uniform encoding for the problem
PI := create-facts(I)
〈R,M〉 := oracle(P ∪ PI)
if R = unsat then

return unsat
else

return interpret(M)
endif

endfunction

Figure 9.3: The general form for using an oracle

function functional-maxsat(ClauseSet F)
Let P (k) be the Maxsat encoding of F
upper := |F |
lower := 0
while lower < upper do

k := d(upper - lower) / 2e
〈R,M〉 = oracle(P (k))
if R = sat then

lower := k
else

upper = k − 1
endif

endwhile
return lower

endfunction

Figure 9.4: An algorithm for computing functional Maxsat

an instance I of P and it returns a set of facts PI that corresponds
to I. We then call the oracle with the program P ∪PI to find an answer
set M . Finally, we extract the answer from M using another function
interpret(M) that translates the answer back to the terms of our original
problem.

Example 9.3.1 In the functional version of Maxsat (Problem 8) we
have a set of clauses F and we want to find out how many of them we can
satisfy at the same time. We see an algorithm to compute this Figure 9.4.
We do a binary search over the possible values of k and then return the
largest value that left us with a satisfiable program.

Oracle with Exclusion
We may want to use the oracle to find answer sets that have some specific
properties. We can do it by modifying the encoding to reject answer set
candidates that do not have the properties.

In the simplest case we have some set M = {L1, . . . , Ln} of basic

164 9. PROGRAMMING METHODOLOGY

function oraclewe(Program P , Exclusions E)
P ′ := P ∪ {〈⊥, M〉 |M ∈ E}
return oracle(P’)

endfunction

Figure 9.5: Oracle with exclusion sets

function all-answer-sets(Program P)
SM := ∅
〈R,M〉 := oracle(P)
while R 6= unsat do

M ′ = M ∪ {not A | A ∈ Atoms(P) \M}
SM := SM ∪ {M ′}
〈R,M〉 := oraclewe(M,SM)

endwhile
return SM

endfunction

Figure 9.6: A naive way of computing all answer sets

literals that we do not want to be true at the same time. We can reject
the undesired answer sets by adding a rule:

← L1, . . . , Ln

to the program. In Figure 9.5 we see an algorithm oraclewe that general-
izes this to a set of sets of literals to exclude.

We can use oraclewe to compute all answer sets of a program. A naive
algorithm for this is shown in Figure 9.6. The idea is that we compute
the answers sets one at a time, and each time we find one we add it to the
set of exclusions. In practice, this algorithm has two major weaknesses.
First, it always starts the answer set computation from the beginning.
Most ASP systems have an option to compute all answer sets and it is
usually more efficient to use that directly. The second weakness is that
a program can have an exponential number of answer sets. This leads to
a worst case exponential space use in the algorithm.

Two-Program Oracles
As our final example we consider the interleaved two-program construc-
tion [102, 13] that allows us to use NP-encodings for Σ2

P problems.2

As an example we encode the Σ2
P -complete problem of deciding whether

a 2-quantified boolean formula is satisfiable [152] using this method.3

Problem 9: 2-Quantified Boolean Formulas. A 2-
quantified boolean formula (QBF2) has the form:

∃X1∀X2.f(X1, X2)

2The class Σ2
P contains problems that can be solved in a nonderminstic polynomial

time if we have an access to an NP-oracle.
3Numerous direct algorithms for solving QBFs have been presented in litera-

ture [17].

9. PROGRAMMING METHODOLOGY 165

function QBF (Formula F, Variables X1)
Let P1 := Boolean Sat(F)
Let P2 := Boolean Sat(¬F)
E := ∅
〈R,M〉 := oracle(P1)
while R 6= unsat do

E := E ∪M
P ′ := P2 ∪ {〈true(a), ∅〉 | a ∈M ∩X1}

∪ {〈⊥, {true(a)}〉 | a ∈ X1 \M}
〈R′, M ′〉 := oracle(P ′)
if R′ = unsat then

return 〈sat, M ∩X1〉
endif
〈R,M〉 := oraclewe(P1, E)

endwhile
return 〈unsat, ∅〉

endfunction

Figure 9.7: Solving 2-Quantified Boolean Formulas

where f(X1, X2) is a boolean formula over two sets of propo-
sitional atoms X1 and X2. The problem is to decide whether
there exists a truth assignment for atoms in X1 such that
f(X1, X2) is true for all truth assignments of X2.

Example 9.3.2 Suppose that we have a 2-QBF Q = ∃X1∀X2.f(X1, X2)
where X1 = {x1, . . . , xn}. The key for solving the problem is to note that
a truth assignment σ = {x1/v1, . . . , xn/vn} fulfills the conditions of the
definition if

1. f(X1, X2)σ is satisfiable; but

2. ¬f(X1, X2)σ is unsatisfiable.

This gives us the algorithm shown in Figure 9.7: we first find a classical
model M for f(X1, X2). Then, we add new rules to the encoding of
¬f(X1, X2) to fix the values of X1 to agree with M . For each atom
a ∈M ∩X1 we add the rule true(a)← and for the atoms a ∈ X1 \M we
add a constraint ⊥ ← true(a). If the resulting program has no answer
sets, then ¬f(X1, X2)σ is not satisfiable, so we have found a model for Q.
If it has an answer set, we go on to examine the next model candidate.

This same idea can be used for all Σ2
P problems. We create two pro-

grams P1 and P2, and the problem has a solution if P1 has an answer set
but P2 has not. Before we call the solver for P2 we modify it to take into
the account the answer set that we found in the earlier step.

9.4 ON OPTIMIZATION

It is very common that two different encodings for a problem that are
logically equivalent have vastly different performance characteristics in

166 9. PROGRAMMING METHODOLOGY

(a) Full tree (b) Pruned tree (c) Optimized tree

Figure 9.8: Sample search trees

actual use.
Computing answer sets of a program is a difficult operation because we

are usually working on NP-hard problems. In difficult problem instances
the solver can make a poor choice early in the computation and then
spend a lot of time examining a part of the search space that does not
contain any answer sets at all [93].

Consider the search tree shown in Figure 9.8a. There the idea is that
the program has only one answer set that is found at the very leftmost
part of the tree while all other branches end in contradictions. If the
solver chooses to first explore the right branch, then it has to do a lot of
futile work before it can backtrack to the correct branch.

We can often improve the performance of the solver by adding some
extra constraints that prune out whole branches of the search tree. Fig-
ure 9.8b illustrates what happens when we add a constraint that imme-
diately causes a contradiction whenever we take a right branch. The
resulting tree is significantly smaller than the full tree.

Every ground atom that we have in the program can in the worst case
double the size of the search. This makes it worthwhile to create the
encoding in a way that the size of its non-domain Herbrand base is as
small as possible. Figure 9.8c shows how get even smaller tree when we
can remove one of the atoms from the program.

At this point there are no comprehensive guides for optimizing answer
set programs. It is likely that there is no single approach that always
would lead to the most efficient encoding. For example, it is possible
that sometimes adding a new atom may allow us to define new constraints
to prune out the search space so we get a more efficient encoding even
though its Herbrand base is larger. It can also happen that adding a new
constraint increases the running time because processing it takes some
time and it removes so small portions of the search space that it could
have been explored faster.

Our practical experience has been that using the following procedure
leads to reasonably efficient encodings:

1. Create a working encoding in the most straightforward way as pos-
sible.

2. Define new domain predicates that allow tighter definitions for rules
in the generator in the sense that we get less candidate answer sets.

3. Add new constraints to prune out parts of search space that can
be guaranteed to not contain valid solutions.

9. PROGRAMMING METHODOLOGY 167

–

14

–

5

–

10
4

–
7

6
21

–

–

14

–

5

–

10
4

– 1 3
7

6
2 5

21
– 7 2 4 8

6 2

Figure 9.9: A cross-sum/Kakuro puzzle and a solution

6
–

line-data(i, 6, 3)
in-line(i, x, y)
in-line(i, x + 1, y)
in-line(i, x + 2, y)

Figure 9.10: Kakuro input encoding

9.4.1 Optimization Example: Kakuro Puzzles

We now examine how we could develop iteratively an encoding for kakuro
(cross sum) puzzles. In a kakuro puzzle we have to find a way to place
a number from the interval 1–9 to each square of a grid so that the rows
and columns sum to given totals. There is an additional restriction that
each total may contain each number at most one time. Figure 9.9 shows
an example puzzle and one of its solutions.4

The first question is how to represent the puzzle. We take here the
simple way out and suppose that the lines and what squares belong to
them are already identified in the input. Our actual implementation
combines a Perl program with and a CCP to compute the line data.

We assign a unique identifier l for every line and then use the predicates
line-data/3 and in-line/3 to identify the line totals and which squares
belong to which lines. Figure 9.10 shows an one example line and its
encoding as facts. Here x and y are the coordinates of the leftmost
square.

Direct Encoding
In the straightforward encoding we first choose a number for every square
of the grid:

1 {N.has-number(N, X, Y) : number(N)} 1← square(X, Y) .

Next, it is an error if the sum of a line is too big. We use a weight
constraint to compute the sums:

← T + 1 [{N, X, Y }.has-number(N, X, Y) :

number(N) ∧ in-line(I, X, Y) = N],

line-data(I, T, L) .

4This is a poor quality example since it has more than one solution. A well-formed
kakuro puzzle has a unique answer that can be found without having to resort to
guessing.

168 9. PROGRAMMING METHODOLOGY

It is also an error if a line has a too small sum:

← [{N, X, Y }.has-number(N, X, Y) :

number(N) ∧ in-line(I, X, Y) = N] T − 1,

line-data(I, T,Len) .

Finally, no line can contain the same number two times:

← 2 {{X, Y }.has-number(N, X, Y) : in-line(I, X, Y)},
number(N), line(I) .

Optimized Encoding
We can improve this encoding by noticing that we are generating a great
number of spurious choices. Consider the line from Figure 9.10. The
line is three squares long and its total is 6. The only combination of
three different numbers with that sum is 1 + 2 + 3 = 6 so we know that
the squares contain some permutation of those numbers. However, our
encoding contains rules for placing all numbers to them. The constraints
prune out immediately the model candidates with too large numbers, but
it adds a small amount of unnecessary work for the solver.

We can compute all possible sums in advance and make the choice
over only the numbers that can occur in combinations that fit in a given
line. Since each non-zero digit may occur zero or one times in a line,
we have 29 − 1 = 511 possible combinations. We use the predicates
combination(id, sum, length) and in-combination(id, n) to define them.
For example, the example of 1 + 2 + 3 would be represented with:

combination(id, 6, 3)←
in-combination(id, 1)←
in-combination(id, 2)←
in-combination(id, 3)← .

Since the combinations are always the same, we add them as facts to the
problem encoding.

We start by choosing which combinations can occur in a given line:

p-combination(I, C)← line-data(I, T, L), combination(C, T, L) .

Each number that belongs to a possible combination can occur in any of
the squares of the line:

p-number(N, X, Y)← in-line(I, X, Y), p-combination(I, C),

in-combination(C, N) .

We choose one combination for every line:

1 {C.has-combination(I, C) : p-combination(I, C)} 1← line(I)

and one number for every square:

1 {N.has-number(N, X, Y) : p-number(N, X, Y)} 1← square(X, Y) .

9. PROGRAMMING METHODOLOGY 169

Encoding Small Large
Atoms Rules Atoms Rules

Direct
Complete 252 275 11420 12629
Non-domain 195 211 9041 10250
Optimized
Complete 3478 4116 25051 30218
Non-domain 185 605 6576 9965

Table 9.1: Instantiation sizes for the Kakuro examples

We have to also ensure that the number that we chose actually belongs
to the correct combinations:

←has-number(N, X, Y), has-combination(I, C),

in-line(I, X, Y), not in-combination(C, N) .

Finally, we have to check that one number does not occur twice in a
line:

← 2 {has-number(N, X, Y) : in-line(I, X, Y)},
p-combination(I, C), in-combination(C, N) .

Comparing Encodings
The Tables 9.1 and 9.2 show how the two encodings compare with each
other in case of two examples. The small example is the one given in
Figure 9.9 and the large example is a huge puzzle with 350 lines and 880
squares that was that was created by Paul A. Grosse5

When we examine the sizes of the ground instantiation we consider two
cases: whether we include the complete relevant instantiation or only the
non-domain part. Since computing the domain model is straightforward
and we already need to do it to create the relevant instantiation, we
usually leave the domain program out when we finally call an ASP solver
to compute the answer sets.

Instance Sizes The first thing to note in Table 9.1 is that in the case of
optimized encoding the size of the domain program is much larger than
the size of the non-domain program. This is because we compute the
set of numbers that can occur in a given square as a part of the domain
program.

In both examples the non-domain part of the optimized encoding has
fewer atoms. This is as expected as now we have there only those number
choices that can fit in a given place instead of trying to place any number
there. In the small example the direct encoding has marginally fewer
rules, but in the large one we see the amount of savings that we get from
the optimizations.

5Puzzle identifier 20060327, downloaded from http://www.grosse.is-a-
geek.com/kakbig.html .

170 9. PROGRAMMING METHODOLOGY

Encoding System One Solution All Solutions
Small Large Small Large

Direct smodels 2 595 13 992
clasp 32 27465 160 27484
clasp-lh 24 7248 91 7256

Optimized smodels 3 0 10 0
clasp 25 106 59 151
clasp-lh 2 0 10 0

Table 9.2: Search tree sizes of Kakuro examples with smodels-2.32 and
clasp-1.1.0. For clasp the figures are with and without lookahead but
otherwise it was run with the default options.

3

4

-

14

-

5

-

10
4

-
7

6
21

-

Figure 9.11: Two choices that fix a unique solution.

Search Tree Sizes The Table 9.2 compares the search trees for the
encodings that were computed using the smodels [174] and clasp [79]
solvers.

Smodels combines a DPLL-style [39] branching search with an exten-
sive set of propagation rules that are described in detail in [174]. Clasp
extends branching search with conflict-driven clause learning. For clasp
we tested the cases with and without the lookahead heuristics.

There are eleven correct solutions for the small example. The least
number of choices that we have to make before the values of the other
squares are determined is two. Figure 9.11 shows one pair of two numbers
that together fix the other numbers.

We found a solution with an optimal number of choices in two cases:
using smodels with the direct encoding and using clasp with lookahead
on the optimized encoding. Here smodels made one unnecessary choice
with the optimized encoding. This is probably because adding the new
rules for choosing the combinations of numbers misled the heuristics.

When we wanted to find all valid solutions, the optimized encoding was
strictly better in all test cases. With the optimized encoding both smodels
and clasp with lookahead found the solutions in an optimal number of
choices. Both solvers had to explore unsatisfiable parts of the search tree
when the direct encoding was used.

The advantages of optimization become clear with the large example.
The large example has only one solution and both smodels and clasp
with lookahead could find it without making any choices at all, while
clasp without lookahead needed a bit over 100 choices. With the direct

9. PROGRAMMING METHODOLOGY 171

encoding smodels needed almost 600 choices, clasp with lookahead needed
7,000, and clasp without lookahead almost 30,000. This example shows
that there can be very large differences in search spaces when we use
different encodings for a problem.

172 9. PROGRAMMING METHODOLOGY

Problem

Action
Description

Logic
Program

Answer
SetPlan

Formalize
Translate

Solve

Translate
Interpret

Action
Languages

Logic
Programs

Figure 10.1: Solving planning problems

10 ENCODING PLANNING PROBLEMS

In this chapter we examine in detail how we can model planning problems
using cardinality constraint programs. In a planning problem we have
to find a way to reach a goal. For example, the problem might be that
we have a set of packages that we have to deliver to different addresses
in a city and we want to find out the fastest way to deliver them to the
correct destinations.

Much work has been published on answer set planning [87, 114, 115,
47, 57, 55, 54, 48, 104, 173, 156, 23, 136, 57, 49]. We will here show
a general set of techniques that can then be applied to automatically
translate higher-level description languages into cardinality constraint
programs. This is not a new idea by itself and it is exactly what most
ASP planners do in practice. We present here a translation that uses the
features of cardinality constraint programs. Our approach is similar to
the translation to disjunctive logic programs that is used in the DLVK

planning system [57, 56].

10.1 GENERAL APPROACH

When we want to solve a real-world planning problem, our first step is
to abstract it to the level that we can express it with a suitable planning
definition formalism. In this work we use action language [135] based
formalisms for this.

Next, we translate the action language description into a cardinality
constraint program and use an answer set solver to find an answer set
for it. From this answer set we extract the atoms that correspond to the
plan and translate them back into action language terms.

Finally, we examine what real-world actions we have to take to execute
the plan. This process is shown in Figure 10.1.

10. ENCODING PLANNING PROBLEMS 173

10.2 DIFFERENT FORMS OF PLANNING

There are many different forms of planning problems. The first major di-
vision is between sequential and parallel planning. In sequential planning
we can make only one operation at the time while in parallel planning we
can make multiple actions at the same time as long as they are not mu-
tually incompatible. There are several possible ways how we can define
this incompatibility, and we will examine more about them later.

The second division is temporal and non-temporal. In non-temporal
planning each action takes the same time to execute no matter how com-
plex it is. In temporal planning the actions can take different durations
to execute.

Third division is between static and dynamic domains. In static do-
mains only the operations that are taken can change the world state,
but in dynamic domains the world may change independently from the
actions taken.

The fourth thing to consider is whether the domain is complete or
incomplete knowledge world. In complete knowledge domains we can
access the values of all state predicates all time during the planning.
If the values of some predicates are unknown, then it is an incomplete
knowledge planning domain.

The fifth division is whether the actions are conditional or uncondi-
tional. An action is conditional if it can have different effects based on the
state of the world when it is executed. If we additionally have an incom-
plete world, then we can say that a conditional action is nondeterministic
as we might not know what effect the action will have.

The sixth division is whether the actions are weighted or unweighted.
In weighted planning each action has a different cost associated to it and
we want to find a plan with smallest possible total cost.

In this work we concentrate on parallel planning in non-temporal static
worlds with complete knowledge but we make small excursions to other
forms of planning.

10.3 FORMALIZING PLANNING

Planning domains are usually defined using either some derivative of
STRIPS [73] planning domain description language such as PDDL [137]
or an action language [135, 88, 92, 91, 57]. In answer set planning this
description is then translated—either by hand or automatically—to an
ASP program that is then used to find the actual plans.

We use the action language B [88] as our underlying formalism. We
select this language because it is the simplest action language that in-
cludes static laws. We want the basic language to be simple so that the
translation into CCPs is straightforward and we want to include static
laws because they are very convenient in modeling planning domains.
We will examine some aspects of more complex action languages later in
Section 10.8.

174 10. ENCODING PLANNING PROBLEMS

10.3.1 The Action Language B

There are two different kinds of entities in an action language: actions
and fluents. Fluents encode the state of the world and actions describe
how we can change it.

Definition 10.3.1 An action signature S = 〈A,F〉 consists of a set A
of elementary actions and a set F of fluents.

An action description over an action signature contains dynamic and
static laws. A dynamic law describes how an action works, and a static
law describes a condition that has to hold in every state of the planning
domain.

Definition 10.3.2 (B) An action description D = 〈S,Ls,Ld〉 is a triple
consisting of an action signature S = 〈A,F〉, a set Ls of static laws, and
a set Ld of dynamic laws, where a static law is of the form:

L if F

where L is a literal and F is a conjunction of literals that are formed
using fluents from F , and a dynamic law is of the form:

A causes L if F

where A ∈ A, L is a literal, F is a conjunction of literals formed using
fluents from F .

We use two special fluents in our action description, > and ⊥ where
> is a fluent that is always true and ⊥ is always false. We treat them as
if we had the following two static laws defined for them:

>
⊥ if ¬> .

Furthermore, when we have a construct of the form L if >, we leave the
conditional part out. For example, A causes L if > is written simply
as A causes L.

Definition 10.3.3 Let L = A causes L if F1 ∧ · · · ∧ Fn be a dynamic
law, then its effect eff(L) and conditions cond(L) are defined as follows:

eff(L) = L

cond(L) = {F1, . . . , Fn} .

A planning instance consists of an initial state and a goal condition.
We start from the initial state and try to find a sequence of actions
that leads to some state that satisfies the goal condition. Since we work
with complete knowledge domains, we demand that the initial state is
completely specified.

Definition 10.3.4 Let S be a set of propositional atoms. Then, a set
S ′ of literals on S is complete if for every atom A ∈ S either A ∈ S ′ or
¬A ∈ S ′.

10. ENCODING PLANNING PROBLEMS 175

Definition 10.3.5 A B-instance is a triple I = 〈D, SI , G〉 where D =
〈S,Ls,Ld〉 is an action description, an initial state SI and a goal condi-
tion G where SI is a complete consistent set of literals on F and G is a
conjunction of literals from F .

The Blocks World Example
In the Blocks World [210, 98] planning domain the universe consists
of a table, a crane, and a set of blocks. The state of the world consists
of a description where the blocks lie. They can be either on the table
or stacked on top of each other. The only possible operation is that the
crane picks up one block and puts it either on the table or on top of
another block. Both the block that is moved and the destination block
must be the topmost ones of their stacks. It is assumed that the table
has enough space to contain all blocks and it will never get full. The
effect of the operation is that the block moves to the destination. A plan
is a sequence of crane operations that lead to the desired goal state.

Suppose that we have a Blocks World instance with n blocks.
The action signature for it contains fluents of the form: oni,j and blockedi

where i ∈ {1, . . . , n} and j ∈ {1, . . . , n, t} where t denotes the table. The
set of action names contains all combinations of movei,j where i and j
are defined as before and i 6= j. From now on we will use the predicate
logic syntax and write on(i, j) instead of oni,j and move(i, j) instead of
movei,j.

For each block i and place j where i 6= j we have a dynamic law stating
that if both i and j are unblocked, we can move i to the top of j:

move(i, j) causes on(i, j) if ¬blocked(i) ∧ ¬blocked(j) .

A block that moves leaves its current location:

move(i, j) causes ¬on(i, k) if on(i, k) .

This law has the side effect that it prevents us from moving a block that
is on the table to another position on the table. Since such moves cannot
help us to reach the goal, this is a useful optimization. However, if we
wanted to include such moves, we would need to leave out all those laws
where k = t.

Finally, we demand that a block that moves has to remain unblocked
throughout the move. We need this law for a technical reason to make it
possible to create parallel plans. We want to avoid a case where we enter
a consistent but nonsensical state where a block i is on the top of j while
j is on the top of i. Demanding that a moving block stays unblocked
prevents us from creating a cycle of blocks.1

move(i, j) causes ¬blocked(i) .

A block that has another block on top of it is blocked:

blocked(j) if on(i, j) .

1We discuss this further in Section 10.5.

176 10. ENCODING PLANNING PROBLEMS

We need static laws that ensure that our state stays consistent. First, a
block can be in only one place:

⊥ if on(i, j) ∧ on(i, k) ∧ j 6= k .

Second, there cannot be more than one block directly on the top of
another:

⊥ if on(i, j) ∧ on(k, j) ∧ i 6= k ∧ j 6= t .

Finally, we assert that the table is unblocked:

¬blocked(t) .

10.3.2 Semantics of B

The semantics of action languages are defined in terms of labeled tran-
sition systems (LTS). In effect, an LTS is a finite automaton where we
associate a set of propositional atoms to each state.

Definition 10.3.6 A labeled transition system L = 〈S,T,R,P,V〉 con-
sists of a finite set of states S, a set of transition labels T, a transition
relation R ⊆ S×T×S, a set of propositional atoms P, and a valuation
V : S→ 2P.

A labeled transition system is deterministic if for each state S and a
label T , there is at most one transition 〈S, T, S ′〉 ∈ R. We will consider
only deterministic planning domains in this work.

We will assume that the states are complete. That is, an atom p
is true in a state S if p ∈ V(S) and ¬p is true if p /∈ V(S). The
valuation V generalizes naturally to arbitrary boolean formulas over P
and we use S � f to denote that the formula f is true in S.

Each action description corresponds to an LTS. Before we define that
LTS formally, we need to introduce the concept of logical closure.

Definition 10.3.7 A set S of literals is closed under a set of static laws
Ls if for each law L if F ∈ Ls it holds that if S � F , then S � L. The
set CnLs(S) denotes the smallest consistent set of literals that contains S
and is closed under Ls.

We leave out the subscript from Cn when it is clear from context what
the static laws are. Note that we can compute the closure Cn(S) using
a modified form of the one-step provability operator from Section 3.4.

When defining the LTS we have to be a bit careful since we defined the
valuation to contain only positive atoms while we have both positive and
negative fluents in action descriptions. When we have a set of literals S,
we use S+ to denote the positive literals in it.

Definition 10.3.8 An action description D = 〈〈A,F〉,Ls,Ld〉 induces
an LTS L(D) = 〈S,T,R,P,V〉 where:

1. P = F ;

2. T = 2A;

10. ENCODING PLANNING PROBLEMS 177

move(a, b)

move(a, t)

move(b, a)

move(b, t)

a bb

a

a

b
S0 S1 S2

Figure 10.2: The LTS corresponding to a two-block Blocks World

3. S contains all complete consistent sets of literals S over P that are
closed under Ls;

4. V(S) = S+; and

5. R contains all triples 〈S,A, S ′〉 such that S, S ′ ∈ S, A ∈ T and

S ′ = CnLs(E(A, S) ∪ (S ∩ S ′)) (10.1)

where E(A, S) is the set:

E(A, S) =
⋃

A∈A

{L | A causes L if F ∈ Ld and S � F} .

An action A = {A1, . . . , An} of the LTS corresponds to taking the
elementary actions Ai of the action description in parallel. We usually
leave the brackets out when there is only one elementary action in an
action.

The intuition behind (10.1) is that there are three types of literals in
the new state: direct changes that come from the dynamic laws, indirect
changes that come from the static laws, and literals that keep their values
by inertia. The new state should be the closure of the direct effects
E(A, S) and the set of literals S ∩ S ′ that keep their values under the
static laws.

Definition 10.3.9 Given a B-instance I = 〈D, SI , G〉 and its induced
LTS L(I), a plan is a sequence of actions {A1, . . . ,An} such that there
exists a sequence of states 〈S1, . . . , Sn+1〉 where

1. 〈Si,Ai, Si+1〉 ∈ R for all i ∈ [1, n] ;

2. S1 = SI ; and

3. Sn � G.

A B-instance is satisfiable if and only if it has a plan. A plan is sequen-
tial if |Ai| ≤ 1 for all i ∈ [1, n] and parallel, otherwise.

Continuing the Blocks World example
Figure 10.2 shows the LTS corresponding to the Blocks World with
two blocks. There are three states that we are interested in: S0, S1, and

178 10. ENCODING PLANNING PROBLEMS

S2.
2 The positive parts of the states are :

V(S0) = {on(a, b), on(b, t), blocked(b)}
V(S1) = {on(a, t), on(b, t)}
V(S2) = {on(a, t), on(b, a), blocked(a)} .

To see that move(a, b) leads to S0 from S1 we need to examine the dy-
namic and static laws of the action description.

E({move(a, b)}, S1) = {on(a, b),¬on(a, t),¬blocked(a)} .

The intersection of the two states is:

S0 ∩ S1 = {on(b, t),¬blocked(t)}

Thus, we need to find the closure of:

S ′ = E({move(a, b)}, S1) ∪ (S0 ∩ S1)

= {on(a, b),¬on(a, t),¬blocked(a), on(b, t),¬blocked(t)} .

The static law blocked(b) if on(a, b) forces us to add blocked(b) to the set,
but no other static law has a satisfied body. Thus, the positive part of
the closure is:

Cn(S ′) = {on(a, b), on(b, t), blocked(b)} = S1 .

The other transitions work in the same way. The action move(a, t) cannot
be taken in the state S1 since

{on(a, t),¬on(a, t)} ∈ E(move(a, t), S1)

so the set of effects is not consistent.
Note that in this small example there are no parallel transitions. Try-

ing to apply A = {move(a, b),move(b, a)} leads into an inconsistency
since

¬blocked(a) ∈ E(move(a, b), S1) and

blocked(a) ∈ Cn(E(move(b, a), S1)) .

10.3.3 On Preconditions and Effects

In STRIPS [73] based planning formalisms there are two kinds of condi-
tions for actions:

1. A precondition that has to be satisfied before we can execute an
action; and

2. A condition for effect that controls whether we apply some partic-
ular effect of an executed action.

2The positive part of the fourth closed set of literals is
{on(a, b), on(b, a), blocked(a), blocked(b)} that is nonsensical. We leave it out
since it is not reachable from any other state.

10. ENCODING PLANNING PROBLEMS 179

We have only conditional effects in the formal semantics of B. When
we take an elementary action A, we look through all of its dynamic laws
A causes L if F and add L to the effects if F is true in the current
state.

This approach has one conceptual problem. When all dynamic laws
for A have unsatisfied conditions F , then the set of active effects E(A, S)
is empty. Then, for each action A = {A1, . . . , An} it holds that E(A, S) =
E(A∪ {A}, S) so we can arbitrarily choose to either include A or not in
the plan without affecting its validity.

For example, suppose that we have an elementary action move(x, a, b)
that moves an object x from a to b and in our current state x is not at a.
The set of its active effects is empty and by the semantics we can choose
to include it in the action at that step. Then, when we have the plan
we need to filter the empty actions out from it so that we do not try to
actually move x from a when it is not there.

We will use the convention that an action cannot contain any elemen-
tary actions with an empty set of active effects. We call them no-op
actions.

Definition 10.3.10 An elementary action A is no-op in a state S if
and only if E({A}, S) = ∅. A plan is proper if no action in it contains
a no-op elementary action.

It is easy to see that if a B-instance is satisfiable, then it has a proper
plan.

Lemma 10.3.1 If a B-instance has a plan, then it has a proper plan.

Proof. Let p = 〈A1, . . . ,An〉 be a minimum length plan of the instance
and 〈S1, . . . , Sn+1〉 the corresponding sequence of states. Consider the
sequence p′ = 〈A′

1, . . . ,A
′
n〉 where

A′
i = {A | A ∈ Ai and E(A, Si) 6= ∅} .

Now E(A′
i, Si) = E(Ai, Si), so p′ is also a plan. By construction p′

is proper if A′
i 6= ∅ for all i. Suppose that this is not the case. Then,

E(Ai, Si) = ∅ so Si+1 = Si. This means that 〈A1, . . . ,Ai−1,Ai+1, . . . ,An〉
is a plan which contradicts our assumption that p has a minimum length.

�
It is often more convenient to formalize a planning domain if we have

explicit preconditions. We can simulate them using the conditional effects
by adding the precondition into the condition of every dynamic law of
an action. For example, the precondition for the Blocks World move
action is that both blocks should be unblocked, so we include that in all
three dynamic laws for move:

move(i, j) causes on(i, j) if ¬blocked(i) ∧ ¬blocked(j)

move(i, j) causes ¬on(i, k) if on(i, k) ∧ ¬blocked(i) ∧ ¬blocked(j)

move(i, j) causes ¬blocked(i) if ¬blocked(i) ∧ ¬blocked(j) .

We will use the convention that we interpret the common part of
the conditions of an action as the precondition and the other parts as
conditional effects.

180 10. ENCODING PLANNING PROBLEMS

Definition 10.3.11 Let D = 〈〈A,F〉,Ls,Ld〉 be an action description,
A ∈ A be an elementary action in it, and LA the set of dynamic laws
for A. Then, the precondition PA of A is the set:

PA =
⋂
L∈LA

cond(L)

and the set of conditional effects EA of A is the set of pairs:

EA = {〈L, C1 ∧ · · · ∧ Cn〉 |
A causes L if C1 ∧ · · · ∧ Cn ∧ F1 ∧ · · · ∧ Fm ∈ LA

and PA = {F1, . . . , Fm}} .

10.3.4 Computational Complexity of Planning

Different forms of planning belong to different complexity levels. We will
be examining the two following problems.

Problem 10: Planning. Does a B-instance 〈D, SI , G〉
have a plan?

Problem 11: Bounded Planning. Does a B-instance
〈D, SI , G〉 have a plan that is at most t steps long?

The general Planning is PSPACE-complete for the STRIPS plan-
ning definition language in the propositional case [18]. Since B can ex-
press STRIPS descriptions, we know that it is PSPACE-hard for B-
planning.

Turner [201] analyzed an action-based formalism and showed that
Bounded Planning is NP-complete for polynomial-length plans when
the domain has complete knowledge and deterministic actions. The B
action descriptions can be translated to Turner’s formalism in polynomial
time and vice versa, so Bonded Planning is also NP-complete for the
same domains.

We will define our encodings for Bounded Planning. We then solve
Planning by using Bounded Planning as an oracle that is called with
different values for the time bound t.

10.4 TRANSLATING ACTION LANGUAGE B TO ASP

In this section we show how we can translate B to cardinality constraint
programs. We take as an input a B-instance together with an integer t
and construct a program whose answer sets correspond to the plans that
are at most t steps long.

In the translation we have to choose how to represent fluents and
actions as well as how to implement the changes in states when we take
an action.

10. ENCODING PLANNING PROBLEMS 181

Translating Action Languages

1. Every fluent F is represented with t atoms fluentF (i)
where i encodes the time information.

2. Every action A is represented with t atoms actionA(i).
An atom actionA(i) is true when A is taken on the ith
time step.

3. All dynamic laws A causes L if F for an action A are
considered together. The literals Fi that occur in the
conditions of all laws become the precondition of A. The
rest of the literals F ′ become specific conditions for the
particular effects L.

The rules for an action have the form:

{actionA(i)} ←precondition(i)

fluentL(i + 1)← action(i), condition(i) .

4. A static law L if F is encoded with rules:

fluentL(i)← fluentF (i) .

5. The inertia of a fluent F is defined with rules of the
form:

fluentF (i + 1)← fluentF (i), not ¬fluentF (i + 1)

¬fluentF (i + 1)← ¬fluentF (i), not fluentF (i + 1) .

6. The initial state SI = {F1, . . . , Fn} is encoded as:

fluentF1
(1)←

...

fluentFn
(1)← .

7. The goal condition G = {F1, . . . , Fn} is encoded with:

← not fluentF1
(t + 1)

...

← not fluentFn
(t + 1)

Figure 10.3: The action language translation in a nutshell

182 10. ENCODING PLANNING PROBLEMS

10.4.1 Fluents

We have to be able to tell when a fluent is true or false so we add a new
argument to the predicate symbols to encode the time information.

Definition 10.4.1 Let F be a set of fluents and i an integer. Then,
the planning translation tl(F, i) of F ∈ F is the atom fluentF (i), and
the translation of a literal ¬F is the literal ¬fluentF (i). If S is a set of
literals on F , then

tl(S, i) = {tl(L, i) | L ∈ S} .

If F∧ = F1 ∧ · · ·Fn is a conjunction of literals on F , then

tl(F∧, i) = {tl(Fk, i) | k ∈ [1, n]} .

The intuition is that the argument i tells when exactly the fluent is
true.

In the examples we will be using a syntax that is more readable. As
we mentioned before, a fluent onx,y is customarily written as on(x, y).
We will augment this custom by adding the time parameter directly to
the argument list of on so we use on(x, y, i) instead of fluentonx,y

(i).

Inertia
According to our semantics, a fluent keeps its value if an action does not
change it. This property is called inertia. We can encode this property
with rules of the form:

fluent(i + 1)← fluent(i), not ¬fluent(i + 1)

¬fluent(i + 1)← ¬fluent(i), not fluent(i + 1)

If fluent(i) is true, then we set fluent(i + 1) true unless some action
that we take has ¬fluent(i + 1) among its direct effects or indirect con-
sequences.

Definition 10.4.2 Let F be a set of fluents and t an integer. Then, the
inertia translation inertia(F, t) of a fluent F ∈ F is the set of rules:

inertia(F, t) = {〈tl(F, i + 1), {tl(F, i), not ¬tl(F, i + 1)}〉 | 1 ≤ i ≤ t}∪
{〈¬tl(F, i + 1), {¬tl(F, i), not tl(F, i + 1)}〉 | 1 ≤ i ≤ t}

The inertia translation inertia(F , t) is the set

inertia(F , t) =
⋃

F∈F

inertia(F, t) .

Strong Negation
When we use strong negation in a CCP, we can have the case where
neither L nor ¬L is true in an answer set. In this planning formalization
we are working with completely defined states, so we add rules that force
¬L to be true if L is false. However, we can encode many if not most
planning domains without having to use strong negations. In those cases
we can leave the totalizing rules out of the encoding.

10. ENCODING PLANNING PROBLEMS 183

Definition 10.4.3 Let F be a set of fluents and t an integer. Then, the
totalizing translation total(F, t) of a fluent F ∈ F is the set of rules:

total(F, t) = {〈¬tl(F, i), {not tl(F, I)}〉 | 1 ≤ i ≤ t}

The translation total(F , t) is the set:

total(F , t) =
⋃

F∈F

total(F, t) .

10.4.2 Actions

We add the time information to the actions in exactly the same way as we
do with the fluents. Formally, we will have atoms of the form actionA(i),
but in practice we will use the elementary action as the predicate symbol
and add the time information as the final argument. For example, an
action movea,b is represented with move(a, b, i) instead of actionmovea,b

(i).
We use the following general form to encode actions:

{action(i)} ← preconditions(i)

effect(i + 1)← action(i), condition(i) .

The intuition is that if the preconditions hold at the time step i, then we
can choose to take an action, but we do not have to do so. If we choose
to take the action, then all those effects whose conditions are currently
satisfied will be true at step i + 1.

Definition 10.4.4 Let A be a set of elementary actions and i be an
integer. Then, the planning translation tl(A, i) of A ∈ A is the atom
actionA(i) and tl(A, i) = {tl(A, i) | A ∈ A}.

Definition 10.4.5 Let D = 〈〈A,F〉,Ls,Ld〉 be an action description
and t be an integer.

Then, the action translation act(A, t) of an elementary action A ∈ A
is the set of rules:

act(A, t) = {〈{tl(A, i)}, tl(PA, i)〉 | 1 ≤ i ≤ t}∪
{〈tl(L, i + 1), {tl(A, i)} ∪ tl(C, i)〉 | 〈L, C〉 ∈ EA, 1 ≤ i ≤ t} .

The planning translation acts(Ld, t) is the set:

acts(Ld, t) =
⋃

A∈A

act(A, t) .

Example 10.4.1 Consider the move(a, b) action from Blocks World
when we have only two blocks. The translation act(move(a, b), t) is the
set of rules:

{move(a, b, i)} ← ¬blocked(a, i),¬blocked(b, i)

on(a, b, i + 1)←move(a, b, i)

¬on(a, table, i + 1)← move(a, b, i), on(a, table, i)

¬blocked(a, i + 1)← move(a, b, i)

where i ranges from 1 to t.

184 10. ENCODING PLANNING PROBLEMS

A

C

B

⇒
A

C

B

Figure 10.4: The “Sussman Anomaly” Blocks World instance

10.4.3 Static Laws

Static laws are straightforward to encode, since they can be directly
mapped into basic rules. A law L if F becomes:

fluentL(i)← fluentF (i)

where i ranges over all time steps.

Definition 10.4.6 Let Ls be a set of static laws and t an integer . Then,
the planning translation law(S, t) of a static law S = L if F∧ ∈ Ls is:

law(S, t) = {〈tl(L, i), tl(F∧, i)〉 | 1 ≤ i ≤ t} .

The translation laws(Ls, t) is the set:

laws(Ls, t) =
⋃

S∈Ls

law(S, t) .

When we translate the static laws for a t step planning instance, we
want to create the rules up to the time step t + 1. This ensures that the
world state will be consistent also after we take the last action.

10.4.4 Putting Everything Together

When we have a B encoding, we can create a corresponding ground CCP
by putting together all previous translations.

Definition 10.4.7 Let D = 〈〈A,F〉,Ls,Ld〉 be an action description
and t an integer. Then, tl(D, t) is the ground CCP:

tl(D, t) = acts(Ld, t) ∪ laws(Ls, t + 1) ∪ inertia(F , t) ∪ total(F , t + 1) .

When we have a planning instance, we add the initial and goal states
to the translation of the domain. We make all fluents that belong to the
initial state true at the time step 1 and we add constraints to ensure that
all fluents in the final state are true at the time step t + 1.

Definition 10.4.8 Let I = 〈D, SI , G〉 be a B-instance and t is an inte-
ger. Then, tl(D, SI , G, t) is the ground CCP:

tl(D, SI , G, t) = tl(D, t) ∪ {〈tl(F, 1), ∅〉 | F ∈ SI}∪
{〈⊥, {not tl(F, t + 1)}〉 | F ∈ G} .

10. ENCODING PLANNING PROBLEMS 185

Example 10.4.2 Consider the Blocks World instance from Figure 10.4.3.
The translation of the initial state is:

on(c, a, 1)←
on(a, table, 1)←
on(b, table, 1)←

When we want to find a three-step plan, the translation of the goal con-
dition becomes:

← not on(a, b, 4)

← not on(b, c, 4)

← not on(c, table, 4) .

10.4.5 Correctness of the Translation

Next, we show that our translation from B to logic programs is correct.
We do it in two steps. First we prove that if a B-instance 〈D, SI , G〉 has
a plan, then the translation tl(D, SI , G, t) has a stable model for some t.
Next, we show that if the translation has a stable model, then there exists
a corresponding plan.

Theorem 10.4.1 If a B-instance I = 〈D, SI , G〉 is satisfiable, then there
exists t ∈ N such that the translation tl(D, SI , G, t) has a stable model.

Proof. By Lemma 10.3.1 I has a proper plan {A1, . . . ,An} and an
associated sequence of states 〈S1, . . . , Sn+1〉 where SI = S1 and Sn+1 � G.

We now argue that tl(D, SI , G, n) has a stable model. In particular,
the model is:

M = {tl(A, k) | A ∈ Ak, 1 ≤ k ≤ n}∪{tl(L, k) | L ∈ Sk, 1 ≤ k ≤ n+1} .

We start by noting that since all states Sk satisfy the static laws of the
action description, M satisfies all constraints that belong to laws(D).

Next, we define t + 1 sets Uk that contain all fluents that belong to
time step k or earlier and all actions up to k − 1.

Uk = {tl(F, i) | F ∈ F and 1 ≤ i ≤ k}
∪ {tl(A, i) | A ∈ A and 1 ≤ i ≤ k − 1} .

As no atom in P depends on atoms that occur in later time steps, each
set Uk is a splitting set on P . Moreover, when M ′ is a stable model of
the bottom program BUk

, the set Uk+1 is a splitting set for the modified
top program P (Uk, M

′) = TUk
∪ F (M ′).

Thus, by Corollary 5.1.1 we can split any stable model M ′ of P into
a sequence of t + 1 sets 〈M1, . . . ,Mt+1〉 where Mk ⊂ Mk+1 for all k ≤ t,
M ′ = Mt+1, and each Mk is a stable model of BUk

. We now show by
induction that we can find such a sequence for M .

3This example is called the Sussman Anomaly because Gerald Sussman noticed
that the original STRIPS planner could not solve it at all [185].

186 10. ENCODING PLANNING PROBLEMS

In the base case k = 1 we have the set M1 = {tl(L, 1) | L ∈ S1}.
The fluents that belong to the initial state are given as the set of facts
F1 = {〈tl(F, 1), ∅〉 | F ∈ SI}. Since SI is consistent and complete,
F1 = M1.

Next, suppose that the claim holds up to some n < t and consider
k = n + 1. The set Mn+1 can be divided into two distinct sets Mn+1 =
Mn ∪M ′

n+1. Since Un is a splitting set also for BUn+1 and by induction
hypothesis Mn is a stable model of BUn , so we have to consider only the
rules in B = BUn+1 \BUn .

Since the plan is proper and we could execute An, we know that Sn

satisfies the precondition PA for each action A ∈ An. Thus, the body of
the rule:

{tl(A, n)} ← tl(PA, n)

is satisfied and we have a justification to include tl(A, n) in the stable
model.

For each effect 〈L, C〉 ∈ EA we have the rule:

tl(L, n + 1)← tl(A, n), tl(C, n) .

If Sn � C, then tl(C, n) ∈ Mn by induction hypothesis and this rule
derives the atom tl(L, n + 1) ∈ Mn+1. On the other hand, if Sn 6� C,
tl(C, n) /∈Mn so this rule cannot incorrectly add the head into Mn+1.

The program P has the following inertia rules for each fluent tl(F, n+1)

tl(F, n + 1)← tl(F, n), not ¬tl(F, n + 1)

¬tl(F, n)← ¬tl(F, n), not ¬tl(F, n + 1) .

If F ∈ Sn, tl(F, n) ∈Mn. Unless we derived ¬tl(F, n) because 〈¬F, C〉 ∈
EA for some action A ∈ An, we can use the first rule to derive tl(F, n +
1) ∈ Mn+1. The second rule ensures the same for ¬F . Thus, Mn+1 is a
stable model of BUn+1 and M is a stable model of tl(D, SI , G, n).

�

Theorem 10.4.2 If tl(D, SI , G, t) has a stable model, then I = 〈D, SI , G〉
is a satisfiable B-instance.

Proof. Let M be a stable model of P = tl(D, S0, G, t). We define the
set Ak for all 1 ≤ k ≤ t:

Ak = {A | tl(A, k) ∈M} .

Next, we argue that the sequence

p = 〈A1, . . . ,At〉

is a plan for I.
Consider the sets:

Mk = {tl(L, k) | L is a fluent literal and 1 ≤ k ≤ t + 1}
Sk = {L | tl(L, k) ∈Mk} .

We have to show that:

10. ENCODING PLANNING PROBLEMS 187

1. all sets Sk are states in L(I);

2. 〈Sk,Ak, Sk+1〉 ∈ R;

3. S1 = SI ; and

4. St+1 � G.

Conditions 3. and 4. follow directly from the construction of P .
Next, we prove that if Sk and Sk+1 are states, then 〈Sk,Ak, Sk+1〉 is a

transition in the induced LTS L(I).
First we consider the base case k = 1. By Theorem 3.6.2 every atom

in a stable model has to have a justification. Since the only way to derive
an atom tl(A, 1) is with a rule of the form:

{tl(A, 1)} ← tl(PA, 1)

where PA is the precondition of A, we know that S1 � PA. Consider a
conditional effect 〈L, C〉 ∈ EA. If S1 � C, then the body of:

tl(L, 2)← tl(A, 1), tl(C, 1) (10.2)

is true so tl(L, 2) ∈M2. Thus, E(A1, S1) ⊆ S2.
Next, consider a static law

L if F

If M2 � tl(F, 2), then the body of the rule:

tl(L, 2)← tl(F, 2) (10.3)

is true and tl(L, 2) ∈M2. Thus, S2 is closed under the static laws.
If M2 contains a literal L that was not derived by rules of the form (10.2)

or (10.3), then it was added there by a rule in inertia(F , 2) of the form:

tl(L, 2)← tl(L, 1), not tl(L, 2) . (10.4)

Thus, L ∈ S1 ∩ S2. Putting this together we see that:

S2 = Cn(E(A1, S1) ∪ (S1 ∩ S2))

so 〈S1,A1, S2〉 ∈ R provided that S2 is a valid state of L(I).
Suppose that there is some n such that for each k ≤ n it holds that

〈Sk,Ak, Sk+1〉 ∈ R whenever Sk and Sk+1 are states.
When k = n + 1, we can use exactly the same argument that we used

for the base case to show that 〈sk+1,Ak+1, Sk+2〉 ∈ R.
We now conclude the proof by arguing that each Sk is a state. Since

M is a stable model, Mk and thus Sk is consistent. We already proved
that Sk is closed under the static laws. It is also complete because S1

is required to be complete and the rules for inertia guarantee that every
literal has a truth value in each following step.

�

188 10. ENCODING PLANNING PROBLEMS

10.4.6 Related Work

In this section we compare our translation to other systematic transla-
tions from action languages to computational logic formalisms that have
been presented in literature [136, 49, 23, 56].

Causal Theories
McCain and Turner [136] presented the first systematic action language
translation where they encoded causal theories into propositional logic.
A causal theory [135] consists of rules of the form:

F ⇒ G

where F and G are propositional formulas. The intended meaning is that
if F is true, then there is a cause for G to be true. If a theory is finite and
every head G of a rule in it is a literal, then it is definite. Intuitively, an
interpretation of a theory is causally explained if every literal that is true
in it is caused by some rule whose body is true in the interpretation.4

McCain and Turner [136] present a translation from definite causal
theories into propositional satisfiability where they use an analogue of
Clark’s completion [32] to handle explanations.

For each atom A in a theory the translation includes n atoms A(i)
where i contains the time information. A causal law then becomes an
implication:

F (i)→ G(i + 1) .

Since every true literal has to have an explanation, there has to be a
formula:

G(i + 1)↔ (F1(i) ∨ · · · ∨ Fn(i)) (10.5)

where F1, . . ., Fn are the bodies of the rules that contain G in the head.
Intuitively, this formula says that if G is true at a time step i + 1, then
some of its causes has to be true at the time step i.

A definite causal rule F ⇒ G can be expressed as a dynamic law:

AF causes G if F

where AF is a new action name. Thus, definite causal theories corre-
spond to action descriptions that contain only dynamic laws and we can
represent them using our translation. Since stable models are justified,
we do not need an equivalent of (10.5) as G(i + 1) may be true only if it
occurs in the head of a rule with a satisfied body.

Normal Logic Programs
Our translation was originally inspired by the one that Lifschitz [113]
presented for normal logic programs. In it a dynamic law :

A causes L if F

is translated into:

L(T2)← A(T1), F (T1), next(T1, T2)

4For the complete formal semantics, see [135].

10. ENCODING PLANNING PROBLEMS 189

where next/2 encodes the successor relation among time steps. This rule
has essentially the same form as our corresponding rule. Similarly, the
static laws are encoded in a similar way.

The translation includes generator rules that allow us to choose the
truth values of both the fluents and actions freely by including rules of
the form:

F (T)← not F ′(T)

F ′(T)← not F (T)

A(T)← not A′(T)

A′(T)← not A(T)

for each fluent F and action A. Here F ′ is an atom that denotes the
strong negation ¬F . These rules make it possible to always execute an
action unless some other rule explicitly forbids it and they make every
fluent non-inertial unless otherwise specified.

The rules for inertia have the form:

F (T2)← F (T1), not F ′(T2), next(T1, T2)

F ′(T2)← F ′(T1), not F (T2), next(T1, T2) .

Again, these rules are essentially the same as ours.
There are two main differences between our tl and the normal logic

program encoding:

1. we add an explicit precondition to control when we can include an
atom tl(A, i) in an answer set; and

2. we do not have rules that allow an arbitrary truth value choice for
fluents by default.

Adding explicit preconditions removes no-op actions from the plans mak-
ing them easier to interpret. Also, having an arbitrary truth value choice
can increase the effective search space size since they are defined also for
inertial fluents that do not need them.

Doğandanğ et. al. [49, 50] presented a modified version of Lifschitz’s
translation. They added a direct support for different fluent types.5

The translation of a fluent F is an atom holds(F, I) where I is the time
information, and the translation of an action A is the atom occurs(A, I).

Then, a dynamic law:

A causes L if F

is translated as:

holds(L, I + 1)← occurs(A, I), holds(F, I) .

This is essentially the same as Lifschitz’s or our corresponding rule. The
encoding has also generator rules that give a free choice of both fluents
and actions.

5We will examine these fluent variants in Section 10.8.1.

190 10. ENCODING PLANNING PROBLEMS

Different properties of fluents are specified with additional predicate
symbols. For example, inertialFluent(F) denotes that F is inertial, and
defaultTrue(F) states that F should default to true unless some other
law causes it to be false. The rules for inertia are:

holds(F, I + 1)← holds(F, I), not ¬holds(F, I + 1), inertialFluent(F)

¬holds(F, I + 1)← ¬holds(F, I), not holds(F, I + 1), inertialFluent(F) .

The only real difference between this and the other inertial rules is it
has an explicit atom inertialFluent(F) in the body to control when it is
applied.

Using only one predicate symbol for all fluents and one for all actions
has the advantage that it makes it easy to define properties for groups of
fluents or actions. The downside is that it makes it more difficult to use
domain-specific knowledge to optimize the encoding of some fluent.

Disjunctive Logic Programs
In a disjunctive logic program [60] rules have the form:

A1 ∨ · · · ∨ An ← body

where Ai are literals. The semantics is such that I is an answer set if and
only if it is a minimal model of the reduct P I that is taken in the same
way as in normal logic programs (See Section 3.1).

Eiter et. al. present a translation [56] from the action language K
to disjunctive logic programs. The language K is designed to support
incomplete knowledge and default negation.

Our translation is very similar to the one presented in [56]. The main
difference is that we extract the common part of the conditions of dy-
namic laws into a precondition.

The K-language supports explicit preconditions in the form of exe-
cutable declarations. A statement:

executable A if P

is translated into the disjunctive rule:

A(I) ∨ ¬A(I)← P (I)

where I is again the time information. A rule of this form imposes a
choice of including either A(I) or ¬A(I) into the program if P (I) is true.

Within the scope of the B language, the handling of choices and pre-
conditions are the only noticeable differences between our translation and
the one in [56]. However, later we will see a couple of examples of cases
where we use cardinality atoms to get concise translations of some action
language features.

10.5 ISSUES ON PARALLEL PLANNING

There are two different kinds of parallelism in action descriptions. An
action A = {A1, A2} can either represent a situation where two different

10. ENCODING PLANNING PROBLEMS 191

actors take A1 and A2 concurrently, or a situation where a single actor
executes them in some order.

For example, in Blocks World we have only one crane so if take the
action A = {move(i, j),move(m, n)}, we actually execute the elementary
actions in some sequential order. This kind of a representation where we
allow an actor to take more than one independent action at the same
step is essential to computational efficiency [106]. The more time steps
we have in a plan, the larger our search space is, so cutting down the
plan length reduces the effort needed for finding an answer. Intuitively,
we are at the same time examining all sequential plans that contain the
actions from A in some order.

The problem that we face is that a parallel plan 〈A1, . . . ,An〉 might
not correspond to any sequential plan at all.

Example 10.5.1 Consider the action description:

A1 causes F1 if ¬F2

A2 causes F2 if ¬F1

Both elementary actions are executable in the state S = {¬F1,¬F2}, and
E({A1, A2}, S) = {F1, F2} that is a consistent set satisfying all static
laws. However, if we first take A1, we end up in a state {F1,¬F2} and
A2 is not executable there. Similarly, taking A2 first leads to {¬F1, F2}
and we cannot execute A1.

In the rest of this section we examine how we can ensure that a parallel
plan p = 〈A1, . . . ,An〉 corresponds to some linear plan.

Definition 10.5.1 Let I be an action instance and 〈S,T,R,P,V〉 be
its induced LTS. A linearization of an action A = {A1, . . . , An} in a
state S1 ∈ S is a sequence of actions 〈A′

1, . . . , A
′
n〉 such that there exists

a sequence of states 〈S1, . . . , Sn+1〉 where 〈Si, {A1}, Si+1〉 ∈ R for all
i ∈ [1, n] and 〈S1,A, Sn+1〉.

A linearization of a plan 〈A1, . . . ,Am〉 is a sequence of actions

〈A′
11, . . . , A

′
1n1

, . . . , A′
m1, . . . , A

′
mnm
〉

where each subsequence 〈A′
i1, . . . , A

′
ini
〉 is a linearization of Ai.

Problem 12: Linearization. Does a plan of a B-instance
have a linearization?

There have been two general approaches for the linearization problem:
universal [28, 106] and existential [47, 166] step plans. Under universal
step semantics we demand that every linearization of a plan has to be a
correct sequential plan while under existential step semantics it is enough
if at least one linearization is a correct plan. In this section we consider
mostly universal step plans.

Our basic approach is that we try to handle the possible problems
at the level of action descriptions: when we need plans that can be lin-
earized, we create a description that guarantees it.

192 10. ENCODING PLANNING PROBLEMS

10.5.1 Possible Problem Sources

If we want to create an action description for a sequential domain that
allows parallel planning, we have to consider several things that can pre-
vent linearization of a parallel plan:

1. two actions may have contradictory effects;

2. one of the actions may invalidate a precondition of another; and

3. applying actions in parallel may lead us into a state that we could
not reach with any linearization of the compound action.

Strictly speaking 2. could be seen as a special case of 3 but we treat
it separately since it can occur in practically all planning domains, even
in those that are inherently parallel.

We will next examine these three problem sources.

10.5.2 Contradictions

The semantics of B automatically handles cases where two elementary
actions A1 and A2 have F and ¬F among their effects. States have to
be consistent, so trying to take both actions at the same time fails.

A situation is more complex when two different fluents are used to
model one object in the planning. For example, if we can move an ob-
ject O from place A to place B, we have the fluents at(o, a) and at(o, b). A
parallel planner does not know how we interpret the fluents, so unless we
do something to prevent it, it can generate plans where at(o, a)∧ at(o, b)
is true in some state.

We prune out these undesired states by adding suitable static laws.
We do this while encoding the planning domain with B. The language is
not expressive enough for us to deduce these axioms automatically, and
it is the responsibility of the programmer to find all relevant laws.

The problem of having one object at two different places at the same
time can be resolved with static laws of the form:

⊥ if at(o, x) ∧ at(o, y) ∧ x 6= y .

10.5.3 Invalidating Preconditions

Suppose that we have a parallel action A = {A1, A2} where A1 removes
a precondition of A2. Then, A is not a universal step since A2 is not
executable after we take A1. However, it is an existential step since we
can take them in order 〈A2, A1〉. If A2 also removes a precondition of A1,
then we do not have any linearization at all.

Example 10.5.2 The Vacuum World6 contains rooms and vacuum
cleaners, and two of its actions are clean(v, l) where the cleaner v cleans
the room r and move(v, x, y) where v moves from x to y.

6See Section 10.9.1 for the complete description of Vacuum World.

10. ENCODING PLANNING PROBLEMS 193

The preconditions of cleaning a room are that the cleaner is in the
room and the room is dirty7 and the effect is that the room changes to
not dirty.

Consider the parallel action:

A = {clean(v, kitchen),move(v, kitchen, hall)} .

Suppose that we execute it in a state:

S1 = {at(v, kitchen),¬at(v, hall)dirty(kitchen), dirty(hall)}

executing A leads us to the state:

S2 = {¬at(v, hall), at(v, hall),¬dirty(kitchen), dirty(hall)} .

There are two linearizations for A:

A1 = 〈clean(v, kitchen),move(v, kitchen, hall)〉
A2 = 〈move(v, kitchen, hall), clean(v, kitchen)〉 .

Only A1 is valid since in A2 we try to clean a room where v is not located.
Thus, A is an existential step plan for cleaning the two rooms but it is
not universal step.

In general, if we want that our plan is a universal step plan, we have
to forbid parallel actions where this happens. In many planning domains
we can do it automatically: if an action does not explicitly remove its
precondition, we demand that it has to hold at the next state. This
is essentially the same condition that Graphplan [9] uses for deciding
whether two actions can be taken at the same time.

We can often do this enforcing by adding the precondition to the effects
of the action. Thus, in Vacuum World we demand that a cleaner
stays in the room that it cleans and in Blocks World we demand
that ¬blocked(a) holds after we take move(a, b). In the next section we
examine what to do when this approach does not work.

10.5.4 On Plans that cannot be Linearized

Just checking whether an action invalidates the precondition of another
is enough for Graphplan since it has no static laws. However, with action
languages it is possible that static laws rule out linearizations of some
parallel actions.

Example 10.5.3 Consider the action description:

A1 causes F1 if ¬F1

A2 causes F2 if ¬F2

⊥ if F1 ∧ ¬F2

⊥ if ¬F1 ∧ F2 .

7In the complete description the cleaner also has to be plugged into a wall socket.

194 10. ENCODING PLANNING PROBLEMS

Both A1 and A2 are executable in S = {¬F1,¬F2} and E({A1, A2}, S) =
{F1, F2} that is a consistent set. However, the linearization 〈A1, A2〉 fails
because the first static law forbids states where F1 is true and F2 is not
and the second static law rules out the linearization 〈A2, A1〉 in the same
way.

This behavior, in which we need to take a set of actions at the same
time can be used to model synchronization in inherently parallel planning
domains. However, it is undesirable if we want to find plans that can be
linearized.

The problems arise when we have an action A = {A1, . . . , An} such
that 〈S,A, S ′〉 ∈ R for some states S and S ′ but there is some subset
A′ ⊂ A such that S has no successor with A′.

We next describe three possible approaches that we can take:

1. we can work with a syntactically restricted subset of B where every
plan is guaranteed to be linearizable;

2. we add new fluents that force that problematic actions are taken
sequentially; or

3. we can use a two-program construction where we first find a can-
didate parallel plan and then check if we can linearize its steps.

We will now examine these three conditions.

Syntactic Restrictions
The problem in Example 10.5.3 arose from the non-monotonicity of the
static laws:

⊥ if F1 ∧ ¬F2

⊥ if ¬F1 ∧ F2 .

These laws are satisfied by8 S0 = ∅ and S1 = {F1, F2} but not by any
state S ′, S0 ⊂ S ′ ⊂ S1.

This kind of a situation cannot happen if the static laws contain only
positive fluents. For those action descriptions it holds that Cn(E(A, S)) ⊆
Cn(E(A′, S)) whenever A ⊆ A′. So, if Cn(E(A, S)) is inconsistent, then
Cn(E(A′, S)) is also. Thus, we cannot have a situation where some sub-
set of a consistent action is inconsistent.

Restricting the language to contain only positive fluents in static laws
is a sufficient but not necessary condition to guarantee linearization. We
will see this in the next section where we examine forced linearizations.

Forcing Linearization
Another approach is that we can identify which parallel actions A =
{A1, . . . , An} cause the linearization problem and then change the action
description so that A is no longer an executable action. This is a com-
putationally heavy operation since in the worst case we have to examine
every subset of A to see whether it can cause the problem.

8Here we write only the positive literals of the states for clarity.

10. ENCODING PLANNING PROBLEMS 195

When we have identified such an action A = {A1, . . . , An}, we define
a new fluent Fij for each pair i and j where 1 ≤ i < j ≤ n, and we add
new dynamic laws:

Ai causes Fij

Aj causes ¬Fij

for each fluent Fij. Since now the set E({Ai, Aj}, S) is not consistent,
we cannot take Ai and Aj at the same time.

Example 10.5.4 Consider the action description:

A1 causes F1 if ¬F1

A2 causes F2 if ¬F2

A3 causes F3 if ¬F3

⊥ if F1 ∧ ¬F2

⊥ if ¬F1 ∧ F2 .

With three elementary actions we have seven possible non-empty parallel
actions. Of those, the ones that contain both A1 and A2 are problematic
but A3 can be taken together with either of them. Thus, we modify the
action description by adding the two new dynamic laws:

A1 causes F12

A2 causes ¬F12 .

Now, {A1, A2} and {A1, A2, A3} are no longer executable actions since
their effects are inconsistent.. .

This change is overly cautious because it always forces a complete
linearization of the problematic elementary actions. For example, some-
times the problem manifests only if we take three or more actions at the
same time but this construct forbids also taking two actions.

Note that we could do this same thing easier in the logic program
transformation by adding the rules:

← 2 {tl(A1, i), . . . , tl(An, i)}

for each problematic action {A1, . . . , An}.

Checking for Linearization
The third option that we have is to use a two-program oracle construction
in the same way that [23] uses it for conformant planning. Note that
with this approach it is simpler to use existential step semantics instead
of universal step.

We first use an NP-oracle to find an n-step parallel plan 〈A1, . . . ,An〉
that goes through states 〈SI , . . . , Sn+1〉. Then, we use n calls to the oracle
where we ask it to find a sequential plan from Si to Si+1 using only the
elementary actions from Ai. Thus, we can find a sequential plan with
n + 1 NP-queries [166].

196 10. ENCODING PLANNING PROBLEMS

Here we are transforming one large NP-query into a number of smaller
NP-queries and we hope that solving the n + 1 small queries is easier
than solving the large one.

If we want to use universal step semantics, we have to formulate the
second question as: ”Is it possible that we do not reach Si+1 with some
ordering of the actions?” This translates the additional oracle calls into
co-NP-queries.

10.6 INTRODUCING VARIABLES

In the language B our fluents and actions are propositional atoms even
though we used the predicate syntax in writing them. There is no reason
why we should not make predicates an intrinsic feature of the language.
We will now define a predicate version BP of B. Our approach is similar
to the one in [56].

Predicate Signatures
We will use typed predicates. We divide the elements of the universe into
types and then assign a type to each argument position of a predicate
symbol and say that only those elements that belong to that particular
type can occur in that place. We will allow an element to belong to many
types at the same time because that will make problem encoding easier.

Definition 10.6.1 A predicate signature is a tuple S = 〈T ,A,F , f〉
where T is a set of type identifiers, A and F are sets of predicate sym-
bols,9 and f is a function that assigns a tuple 〈t1, . . . , tn〉 of type identi-
fiers for every n-ary predicate symbol in A ∪ F .

A BP atom is of the form p(V1, . . . , Vn) where p ∈ A∪F . An atom is
an action atom if p ∈ A and a fluent atom if p ∈ F .

Example 10.6.1 The predicate signature for Blocks World is

S = 〈T ,A,F〉
T = {object}
A = {move/2}
F = {on/2, blocked/1, is-block/1, equal/2}
f = {move 7→ 〈object, object〉,

on 7→ 〈object, object〉,
blocked 7→ 〈object〉}
is-block 7→ 〈object〉
equal 7→ 〈object, object〉} .

The set of fluents is otherwise the same as before except that this time
we have to add an explicit equality predicate. The simplest way to do so
is to add it as a new fluent.

9We assume that the sets of action and fluent predicate symbols are disjoint.

10. ENCODING PLANNING PROBLEMS 197

Example 10.6.2 In the Vacuum World we have to clean a multi-
room apartment with a vacuum cleaner. Here we describe only the types
and the actions of the domain. For the complete description of the do-
main see Section 10.9.1 on page 211. In the vacuum world we have three
kinds of objects: cleaners, rooms, and power sockets and we define a type
for all of them. The actions that are available to us are moving a cleaner
to a different room, cleaning the room that the cleaner is in, and either
plugging or unplugging a cleaner from a socket.

T = {cleaner, socket, room}
A = {move/3, clean/2, plug/2, unplug/2}
f = {move 7→ 〈cleaner, room, room〉,

clean 7→ 〈cleaner, room〉
plug 7→ 〈cleaner, socket〉
unplug 7→ 〈cleaner, socket〉} .

Action Descriptions
The BP action descriptions are defined in the same way as in simple B.

Definition 10.6.2 (BP) A BP action description D = 〈S,Ls,Ld〉 is a
triple consisting of a predicate signature S = 〈T ,A,F , f〉, a set Ls of
static laws, and a set Ld of dynamic laws, where a static law is of the
form

L if F

where L is a fluent literal on S and F is a conjunction of fluent literals,
and a dynamic law is of the form

A causes L if F

where A is an action atom, L is a fluent atom and F is a conjunction of
fluent literals.

An expression is either an atom (action or fluent), a literal, a con-
junction of fluent literals, or a static or a dynamic law.

We do not have any constants in BP action descriptions and all terms
are variables. The reason for this is that it makes definition of the seman-
tics simpler as we do not have to worry about constant interpretation.
However, we can simulate constants by using a suitable fluent that is true
for only one element.

Example 10.6.3 When creating a BP encoding for the Blocks World
we can reuse the coding from Example 10.4.1 and replace the arguments
of the predicates with variables. In addition, we have to add is-block(X)
as an additional precondition for move(X, Y) so that we do not try to
move the table. We also add a static law that prevents us from placing a
block on top of itself. The complete encoding is shown in Figure 10.5.

198 10. ENCODING PLANNING PROBLEMS

move(X, Y) causes on(X, Y)

if ¬blocked(X) ∧ ¬blocked(Y) ∧ is-block(X)

move(X, Y) causes ¬on(X, Z)

if on(X, Z) ∧ ¬blocked(X) ∧ ¬blocked(Y) ∧ is-block(X)

move(X, Y) causes ¬blocked(X)

if ¬blocked(X) ∧ ¬blocked(Y) ∧ is-block(X)

¬blocked(X) if ¬is-block(X)

blocked(X) if on(Y,X) ∧ is-block(X)

⊥ if on(X, Y) ∧ on(Z, Y) ∧ ¬equal(X, Z) ∧ is-block(Y)

⊥ if on(X, X)

⊥ if on(X, Y) ∧ on(X, Z) ∧ ¬equal(Y, Z)

equal(X, X) if >
is-block(X) if ¬equal(X, table)

Figure 10.5: The action description for Blocks World

Structures
An action description in BP acts as a uniform encoding for the particular
planning domain. The individual planning instances are then defined in
terms of structures where we define what objects belong to the types.

Definition 10.6.3 A BP -structure I = 〈S, U, fT 〉 consists of a predicate
signature S = 〈T ,A,F , f〉, a set of elements U , and a function fT : T →
2U that assigns a subset of U for every type identifier in S. An I-atom
has the form p(e1, . . . , en) where p ∈ A∪F , f(p) = 〈T1, . . . , Tn〉, and for
all i ∈ [1, n] it holds that ei ∈ FT (Ti).

Definition 10.6.4 A BP planning instance 〈D, I, SI , SG〉 consists of a
BP action description, a initial state SI and a goal condition SG where
SI and SG are sets of I-fluent literals.

Example 10.6.4 Suppose that we have a Blocks World instance
with three blocks. Then, the corresponding structure is:

I = 〈S, U, fT 〉
U = {1, 2, 3, table}
fT = {object 7→ {1, 2, 3, table}}

where S is as defined in Example 10.6.1.

Variable Types
Variables in actions and fluents are typed according to the argument
positions where they occur. We will use a simple definition where each
variable has a unique type in every expression that it appears in. We
use this convention for simplicity even though having multiple types for
a variable would allow us to eliminate fluents like is-block/1 in Blocks
World that act as type predicates.

10. ENCODING PLANNING PROBLEMS 199

Definition 10.6.5 Let S = 〈T ,A,F , f〉 be a BP action signature.
Then, the variable type assignment T (V, E) of a variable V in an

expression E is defined as follows:

1. If E is an atom A = p(V1, . . . , Vn) (p ∈ A∪F), T (V, A) is the set:

T (V, E) = {Ti | f(p) = 〈T1, . . . , Tn〉 and V = Vi for some i ∈ [1, n]}.

2. If E is a literal ¬A, then T (V, E) = T (V, A).

3. If E is a conjunction of fluent literals F∧ = F1 ∧ · · · ∧ Fn, then

T (V, E) =
⋃

i∈[1,n]

T (V, Fi) .

4. If E is a static law L if F , then

T (V, E) = T (V, L) ∪ T (V, F) .

5. If E is a dynamic law A causes L if F∧, then

T (V, E) = T (V, A) ∪ T (V, L) ∪ T (V, F∧) .

An expression E is correctly typed if for every variable V ∈ Var(E) it
holds that |T (V, E)| = 1.

When E is correctly typed, T (V, E) is a singleton set and we can treat
it as a function that assigns the type to the variable.

Instantiation
A BP action description combined with a structure induces a planning
domain. We define the domain via instantiation in the same way as we
defined it for CCPs in Section 3.7.

Definition 10.6.6 Given a set of variables V and a function f : V → 2U

that associates a set of elements to each variable V , a BP -substitution
σ assigns an element from f(v) for every variable v ∈ V . The set of all
possible substitutions with V and f is denoted by subs(V, f).

A substitution σ applied to an atom p(v1, . . . , vn) (where {v1, . . . , vn} ⊆
V) is the atom p(σ(v1), . . . , σ(vn)).

Definition 10.6.7 Let I = 〈S, U, fT 〉 be a BP structure and E be a
correctly typed BP expression. Then, the I-instantiation instI(F) is the
set:

{Eσ | σ ∈ subs(Var(E), rVar(E))}
where rVar(E) : Var(E)→ 2U is the function

rVar(E)(V) = fT (T (V, E)) .

The I-instantiation of a BP action description D = 〈S,Ls,Ld〉 is the B
action description:

instI(D) = 〈S ′,L′s,L′d〉
S ′ = 〈{instI(a(V1, . . . , Vn)) | a ∈ A}, {instI(f(V1, . . . , Vn)) | f ∈ F}〉
L′s = {instI(L) | L ∈ Ls}
L′d = {instI(L) | L ∈ Ld} .

200 10. ENCODING PLANNING PROBLEMS

Definition 10.6.8 A BP action description D and a structure I induce
the LTS that corresponds to the instantiation instI(D).

10.6.1 Translating BP to ASP

We define the translation from BP to CCPs so that we can translate ac-
tion descriptions and structures separately. The translation of an action
description gives us then a uniform encoding for a planning domain and
the structures are then defined with facts.

We can use essentially the same translation to CCPs as we did before,
but we have to include the domain literals in the bodies of the rules. We
will have two kinds of domain predicates, those representing the time and
those representing types.

In these translations we again use the notation from Section 7 where
an n-ary atom p(V1, . . . , Vn) is denoted by p(V).

Representing Time
We will define a new domain predicate symbol time/1 that gives us all
possible time steps. In all cases we define it by the rule:

time(1 . . t)←

where t is an interpreted constant that evaluates to an integer.

There is one additional complication that we have to handle. If we
can take t consequent actions, then we reach our final state at the time
step t + 1 and we have to define our encoding so that the world state is
consistent also then. Thus, we define also another time predicate c-time/1
that tells when the constraints have to hold:

c-time(1 . . t + 1)← .

We could do this also by imposing a restriction that all actions have
to take place at a time step i < t. The two encodings are essentially
equivalent and choosing between them is purely a matter of preference.

Definition 10.6.9 The program time is a set of two facts:

time = {〈time(1 . . t), ∅〉, 〈c-time(1 . . t + 1), ∅〉}

We will use the variable I exclusively for holding the time information
in the translation.

Representing Type Information
We define a new unary domain predicate for every type that occurs in a
predicate signature. Then, whenever a variable has that type in a law,
we will add the correct domain literal for it.

Definition 10.6.10 Let T be a set of type identifiers. Then, pT denotes
a unary type predicate symbol for each T ∈ T .

10. ENCODING PLANNING PROBLEMS 201

Definition 10.6.11 Let E be a BP expression on a predicate signature
S = 〈T ,A,F , f〉. Then, the set type(E) of type literals is defined as
follows:

type(E) = {pT (V) | V ∈ Var(E) and T (V, E) = T} .

The set type(E) contains a domain literal for every variable V that
occurs in E. The extensions of the type predicates will come from the BP

structure that defines the particular planning instance.

Translating Atoms
We change an n-ary BP atom into a n + 1-ary CCP atom by adding a
new argument to hold the time information.

Definition 10.6.12 If p(V1, . . . , Vn) is an action atom, then the plan-
ning translation tl(p(V1, . . . , Vn) = actionp(V1, . . . , Vn, I). If p(V1, . . . , Vn)
is a fluent atom, then the translations tl and tl+ are defined as follows:

tl(p(V1, . . . , Vn)) = fluentp(V1, . . . , Vn, I)

tl+(p(V1, . . . , Vn)) = fluentp(V1, . . . , Vn, I + 1) .

For a negative fluent literal ¬F , tl(¬F) = ¬tl(F) and for a conjunction
F = F1 ∧ · · · ∧ Fn, tl(F) =

⋃
i∈[1,n] tl(Fi).

Again, we need rules to derive the strong negation of a fluent literal
that is not true.

Definition 10.6.13 Let S = 〈T ,A,F , f〉 be a predicate signature. Then,
the totalizing program total(S) is the set of rules:

total(S) = {〈¬tl(F), {not tl(F), c-time(I)} ∪ type(F)〉 |
F is a fluent atom on S} .

Translating Static Laws
The static and dynamic laws are translated essentially the same way as
we did earlier in the propositional case and we only need to add the
domain literals to the rule bodies.

Definition 10.6.14 Let D = 〈S,Ls,Ld〉 be a BP action description.
Then, the planning translation of a static law S = L if F ∈ Ls is the
rule:

law(S) = 〈tl(L), tl(F) ∪ type(S) ∪ {c-time(I)}〉 .

The planning translation laws(Ls) is the set of rules:

laws(Ls) =
⋃

S∈Ls

law(D) .

202 10. ENCODING PLANNING PROBLEMS

Translating Dynamic Laws
Previously we defined the translations of preconditions and effects of an
action in terms of the planning domain induced by it. Now that we want
to have a uniform encoding we need to keep the variables in the atoms.

Definition 10.6.15 Let D = 〈S,Ls,Ld〉 be a BP action description.
The precondition of an action p(V) is the set:

pre(p(V)) =⋂
p(V) causes L if F∈Ld

{Fi | F = F1 ∧ · · · ∧ Fn and 1 ≤ i ≤ n} .

The set of effects of an action is

eff(p(V)) = {〈L, F ′〉 | p(V) causes L if F ∈ Ld and

F ′ = F \ pre(A)} .

Definition 10.6.16 Let D = 〈〈T ,A,F , f〉,Ls,Ld〉 be a BP action de-
scription. Then, the dynamic translation of an action A = p(V) ∈ A is
the set of rules:

act(A) ={〈{tl(A)}, tl(pre(A)) ∪ dp({A})}〉}
∪ {〈tl+(L), {tl(A)} ∪ tl(F) ∪ dp({A, L, F})〉

where
dp(S) = {time(I)} ∪

⋃
L∈S

type(L) .

The translation acts(Ld) is the set of rules:

acts(Ld) =
⋃

A∈A

act(A) .

Inertia
The fluent inertia is defined in a similar way to Definition 10.4.2 except
that we have to add the domain literals to the rule bodies.

Definition 10.6.17 Let S = 〈T ,A,F , f〉 be a predicate signature and
p ∈ F be an n-ary predicate symbol. Then, the inertia translation
inertia(p) is the set of two rules:

inertia(p) = {〈tl+(p(V)), {tl(p(V)), not ¬tl+(p(V)), time(I)}
∪ type(p(V))〉,
〈¬tl(p(V)), {¬tl(p(V)), not tl+(p(V)), time(I)}
∪ type(p(V))〉}

The inertia translation inertia(F) is the set

inertia(F) =
⋃
p∈F

inertia(p) .

10. ENCODING PLANNING PROBLEMS 203

Example 10.6.5 Suppose that we have an inertial fluent at(X, Y) that
is true when an object X is at the location Y . Then,

tl(at(X, Y)) = fluentat(X, Y, I)

tl+(at(X, Y)) = fluentat(X, Y, I + 1)

type(at(X, Y)) = {object(X), location(Y)} ,

and the rules of inertia(at) are:

fluentat(X, Y, I + 1)← fluentat(X, Y, I), not ¬fluentat(X, Y, I + 1),

object(X), location(Y), time(I)

¬fluentat(X, Y, I + 1)← ¬fluentat(X, Y, I), not fluentat(X, Y, I + 1),

object(X), location(Y), time(I) .

Completing the Action Description Translation
The translation of a complete BP action description puts together all the
component parts.

Definition 10.6.18 Let D = 〈S,Ls,Ld〉 be a BP action description
where S = 〈T ,A,F , f〉. Then, the planning translation tl(D) is the
CCP:

tl(D) = time ∪ laws(Ls) ∪ acts(Ld) ∪ inertia(F) ∪ total(S) .

Translating Structures and States
We get the extensions of the type predicates from a BP structure. We go
through all types and add a fact for every element that occurs in a given
type.

Definition 10.6.19 The domain translation domain(I) of a BP struc-
ture I = 〈〈T ,A,F , f〉, U, fT 〉 is the ground CCP:

domain(I) = {〈pT (e), ∅〉 | t ∈ T and e ∈ fT (t)} .

When we have an initial state SI , we set all literals that belong to it
true at the first time step.

Definition 10.6.20 Let SI be a set of literals. Then, the initial trans-
lation initial(SI) is the set of rules:

initial(SI) = {〈fluentp(e1, . . . , en, 1), ∅〉 | p(e1, . . . , en) ∈ SI}∪
{〈¬fluentp(e1, . . . , en, 1), ∅〉 | ¬p(e1, . . . , en) ∈ SI} .

The literals that belong to the goal condition have to be true at the
final time step.

Definition 10.6.21 Let SG be a set of literals. Then, the goal transla-
tion is the set of rules:

goal(SG) = {〈⊥, {not fluentp(e1, . . . , en, t + 1)}〉 | p(e1, . . . , en) ∈ SG}∪
{〈⊥, {not ¬fluentp(e1, . . . , en, t + 1)}〉} | ¬p(e1, . . . , en) ∈ SG} .

204 10. ENCODING PLANNING PROBLEMS

Translating BP Instances

When we have a BP planning instance, we add the domain translation of
the structure to the program.

Definition 10.6.22 Let I = 〈D, I, SI , SG〉 be a BP planning instance.
Then, the translation tl(D, I, SI , SG) is defined as:

tl(I) = tl(D) ∪ domain(I) ∪ initial(SI) ∪ goal(SG) .

10.6.2 The Blocks World Example

Next we go through the complete Blocks World encoding in BP and
translate it to a CCP. We use the action description that we introduced
previously in Figure 10.5.

Example 10.6.6 The translation for the move action is:

{move(X, Y, I)} ← ¬blocked(X, I),¬blocked(Y, I),

is-block(X, I), object(X), object(Y), time(I)

on(X, Y, I + 1)← move(X, Y, I), object(X), object(Y), time(I)

¬on(X, Z, I + 1)← move(X, Y, I), on(X, Z, I), object(X),

object(Y), object(Z), time(I) .

¬blocked(X, I + 1)← move(X, Y, I), object(X),

object(Y), time(I)

The translations for the static laws are:

¬blocked(X, I)← ¬is-block(X, I), object(X), c-time(I)

blocked(X, I)← on(Y,X, I), is-block(X, I),

object(X), object(Y), c-time(I)

← on(X, Y, I), on(Z, Y, I),¬equal(X, Z, I), is-block(Y, I),

object(X), object(Y), c-time(I)

← on(X, X, I), object(X), c-time(I)

← on(X, Y, I), on(X, Z, I),¬equal(Y, Z, I),

object(X), object(Y), object(Z), c-time(I)

equal(X, X, I)← object(X), c-time(I)

10. ENCODING PLANNING PROBLEMS 205

The inertia of fluents is translated to:

on(X, Y, I + 1)← on(X, Y, I), not ¬on(X, Y, I + 1),

object(X), object(Y), time(I)

¬on(X, Y, I + 1)← ¬on(X, Y, I), not on(X, Y, I + 1),

object(X), object(Y), time(I)

is-block(X, I + 1)← is-block(X, I), not ¬is-block(X, I + 1),

object(X), time(I)

¬is-block(X, I + 1)← ¬is-block(X, I), not is-block(X, I + 1)

object(X), time(I)

blocked(X, I + 1)← blocked(X, I), not ¬blocked(X, I + 1)

object(X), time(I)

¬blocked(X, I + 1)← ¬blocked(X, I), not blocked(X, I + 1)

object(X), time(I)

equal(X, X, I + 1)← equal(X, X, I), not ¬equal(X, X, I + 1)

object(X), time(I)

¬equal(X, X, I + 1)← ¬equal(X, X, I), not equal(X, X, I + 1)

object(X), time(I) .

Finally, we add the time program and the totalizing program:

time(1 . . t)←
c-time(1 . . t + 1)←
¬on(X, Y, I)← not on(X, Y, I), object(X), object(Y), c-time(I)

¬blocked(X, I)← not blocked(X, I), object(X), c-time(I)

¬is-block(X, I)← not is-block(X, I), object(X), c-time(I)

¬equal(X, I)← not equal(X, I), object(X), c-time(I) .

When we look at this example, we see that it has many rules that
contain redundant information. For example, we do not really need to
add time information for the is-block/1 fluent. If X is a block when
we start the planning, it will always be a block. Even more redundant
example is the fluent equal/2 since we end up generating 4n · (t+ 1) rules
where n is the number of objects and t the number of time steps when
we could have added a simple test X 6= Y to the rule bodies.

10.7 PLAN GENERATION

When we create a planning encoding using the previous schema, we end
up with a program whose complexity is in NP because we use only a
limited number of variables and only interpreted functions. The general
Planning problem is PSPACE-complete [18] and we bridge this gap
by using the oracle method.

An extremely naive algorithm for finding plans is shown in Figure 10.6.
It starts with only one time steps and iteratively tests every possibility

206 10. ENCODING PLANNING PROBLEMS

function find-plan(Action Description A)
t := 1
while t ≤ 2||fluents|| do

〈R,M〉 := oracle(tl(A, t))
if R = sat then

return actions(M)
endif
t := t + 1

endwhile
return unsat

endfunction

Figure 10.6: A naive algorithm for plan generation

until it either finds a plan or it has determined that no plan exists. If
there are n fluents in a planning instance, then there are at most 2n

different states. Since the longest possible plan visits every state once,
we know that no plan may be longer than that. The function actions is
an auxiliary that extracts the actions that we take from the answer set.

We can improve the exponential worst case behavior by finding the
value of t with a binary search: first try find a plan with the length
2n−1. If one exists, then try next with t = 2n−2. If not, the next test is
at (2n−1 + 2n)/2. This approach drops the number of necessary queries
to n.

If we are solving a real-world planning instance, we do not want to use
the binary search even if it has a better worst-case behavior. A realistic
instance can have hundreds or thousands of fluents and we cannot expect
an ASP solver to handle a program with well over 2100 atoms in it.

A real-world heuristic is to start with an educated guess of a potential
plan length, and then increase t by a fixed amount, usually between one
and three, until either a plan is found or the instance sizes grow so large
that they cannot be solved in a reasonable time.

10.8 MORE ON PLANNING VARIANTS

Next we examine some variants in both planning in general and action
languages in particular. We keep our discussion mostly informal through-
out this section.10

10.8.1 Fluent Variants

Many action languages allow us to define properties for fluents. We al-
ready saw how we can handle inertia that is the most important property.
The properties that we consider are:

• inertia: an inertial fluent keeps its value if it is not explicitly
changed by some action;

10We also leave domain predicates out of rule bodies.

10. ENCODING PLANNING PROBLEMS 207

• default value: a fluent can have a default value that it takes if it is
not explicitly set to the other value;

• freedom: a free fluent can take any value during the planning if it
is not explicitly set; and

• fixedness : a fixed fluent has the same value in every state of the
domain.

Inertia
If a fluent is inertial, it keeps its value unless it is explicitly changed.

on(X, Y, I + 1)← on(X, Y, I), not ¬on(X, Y, I + 1)

¬on(X, Y, I + 1)← ¬on(X, Y, I), not on(X, Y, I + 1) .

Default Value
A fluent can have a default value associated for it. For example, a door or
a gate can close automatically shortly after it is opened. We can model
this behavior by adding a rule that allows us to conclude the default
value unless its complement is explicitly set by some action:

closed(I)← not ¬closed(I) .

Free Fluents
A fluent is free if it may change its value freely during the planning. We
can get this behavior by adding a choice rule for the fluent:

{fluent(I)} ← time(I) .

If we need also the strong negation of the free fluent, we can add a rule:

¬true-fluent(I)← not true-fluent(I) .

Free fluents occur most often in dynamic planning domains where the
state of the world may change independently of actions that are taken.

Fixed Fluents
Fixed fluents have the same truth value in all states of the planning do-
main. They are used to encode more fine-grained type information than
what singly-typed variables allow. We will leave the time parameter out
of them completely and we also define them so that they will be domain
predicates. This allows us to cut down the size of the instantiation of the
CCP.

For example, in Blocks World we will define is-block directly in
the instance description file with a set of facts of the form is-block(x)←.

Default or Strong Negation
Using the strong negation in the encodings has the weakness that a pair
of literals F , ¬F is translated into two distinct atoms F and F ′ (Sec-
tion 7.4.2) and a rule that forbids them to be true at the same time.

208 10. ENCODING PLANNING PROBLEMS

The strong negation is convenient for defining inertia but we can often
do without when our planning formalism has non-inertial fluents.11 For
example, in Blocks World we have the rule:

{move(X, Y, I)} ← ¬blocked(X, I),¬blocked(Y, I) .

We derive a literal ¬blocked(X, I) indirectly in terms of blocked(X, I):

blocked(Y, I)← on(X, Y, I)

¬blocked(Y, I)← not blocked(Y, I) .

We can simplify the rules by cutting out ¬blocked(X, I) out altogether:

{move(X, Y, I)} ← not blocked(X, I), not blocked(Y, I) .

From this on we use strong negation only with inertial fluents.

10.8.2 Action Variants

In this section we examine several variations for defining actions. We will
keep our discussion on an informal level.

Complex Preconditions
Some action languages allow the user to write complex boolean expres-
sions in preconditions or allow actions to have non-deterministic effects.

We can handle arbitrary preconditions for actions by using the same
form as we used in our encoding for general Boolean expressions (Prob-
lem 7, page 161). For example, if the causation law is of the form:

a causes e if p1 ∨ p2,

we can encode it with:

{a} ← preconda

preconda ← p1

preconda ← p2 .

The remaining boolean connectives can be handled in same way. We
can use conditional literals here to encode existential quantification. For
example, we might want to say:

a(x) causes e if ∃y.p(x, y)

to denote that x may take the action a if there exists at least one y for
which the precondition p(x, y) holds. This can be encoded with:

{a(X)} ← 1 {Y.p(X, Y) : domain(Y)} .

11With the exception of default values.

10. ENCODING PLANNING PROBLEMS 209

Executability Laws
Many action languages allow the user to write out the preconditions of
an action explicitly with executability laws of the form:

executable A if P .

The semantics is that A may be taken only if P is true. The simplest
way how we can translate an executability law is to make P to be the
precondition in the translation:

{tl(A, I)} ← tl(P, I) .

We can combine this translation with our original one to get a rule:

{tl(A, I)} ← tl(P, I), tl(PA, I)

where PA is the precondition that is computed from the dynamic laws
of A in the manner of Definition 10.3.11.

A language can also have the complement construction nonexecutable
that tells when an action can not be taken. A blocking rule can be im-
plemented as a constraint. For example, the law:

nonexecutable a if c

can be rendered with:
← tl(a, i), tl(c, i) .

Temporal Considerations
The assumption that every action takes the same length makes planning
much easier from the computational standpoint. Unfortunately, many
real-world planning problems are inherently temporal and this simplifi-
cation cannot be used with them.

As long as the time differences are not too long, we can say that the
fastest action takes one time step to execute and the other actions take
some fixed number of steps.

For example, if loading a package to a truck took three time steps, we
could encode it as:

{load(O, T, I)} ← preconditions

in(O, T, I + 3)← load(O, T, I)

loading(O, I2)← load(O, T, I1), I1 ≤ I2 ≤ I1 + 3 .

We define the predicate loading/2 so that we can block conflicting actions
from happening during loading.

This approach has the significant weakness that it makes the plans
longer. The longer a plan is, the more difficult it is to compute.

10.9 TWO PLANNING EXAMPLES

Next we examine two additional planning domains. Vacuum World
is a simple example domain where we want to find an efficient way of

210 10. ENCODING PLANNING PROBLEMS

Instance Plan

laboratory bedroom

hallphone
booth s1 s2

plug(c, s1, 1)

clean(c, lr, 2)

move(c, lr, pb, 3)

clean(c, pb, 4)

move(c, pb, lr, 5)

unplug(c, s1, 6)

move(c, lr, h, 7)

plug(c, s2, 8)

clean(c, h, 9)

move(c, h, br, 10)

clean(c, br, 11)

unplug(c, s2, 12)

Figure 10.7: A vacuum world example

cleaning an apartment, and we also encode the puzzle game Sokoban as
a planning problem.

We give a BP encoding for Vacuum World that uses some of the
extensions from the previous section, and show how we can express it as
rules. This domain is more complex than Blocks World but it is still
simple enough that we can give a straightforward description for it.

We can apply the same general principles to Sokoban but to get an
encoding that is efficient enough to solve real game instances we have to
apply domain-specific knowledge to the modeling. These optimizations
are difficult to express in BP so we give only logic program rules for it.

10.9.1 Vacuum World

In the Vacuum World [167] we have to clean a multi-room house with
a vacuum cleaner. The otherwise simple domain is complicated by the
fact that the cleaner has to be plugged in a power socked before it can
be used and the power cord may not be long enough to reach every room
from a single socket so we may have to change sockets during cleaning.
Figure 10.7 shows a Vacuum world instance and its solution and Ta-
ble 10.1 contains a semi-formal description of the domain.

In this section we leave out the domain literals from the rule bodies.
Instead, we use systematic naming for variables where each variable has
always the same domain. For example, the variable C denotes always a
vacuum cleaner so we add the domain literal cleaner(C) to the bodies of
all rules containing C.12 The domain literals are shown in Table 10.1.

Fluents
The Vacuum World has three inertial fluents that describe the basic
facts of a state:

inertial at(C, L)

inertial in-socket(C, S)

inertial dirty(L) .

12This practice is supported by the lparse instantiator that uses #domain declara-
tions to define implicit domain literals.

10. ENCODING PLANNING PROBLEMS 211

Fluents
at(c, l) The vacuum cleaner c is in room l. Inertial.
dirty(l) The room l is dirty. Inertial.
in-socket(c, s) The cleaner c is connected to the socket s. Inertial.

Auxiliaries
plugged(c) The cleaner c is plugged to some socket.
reachable(l, s) Cleaner that is plugged in s can reach room l

without unplugging.
next(l1, l2) Rooms l1 and l2 are adjacent to each other

Actions
clean(c, l) Use cleaner c to clean the room l.

Preconditions: at(c, l), dirty(l), and plugged(c)
Effects: ¬dirty(l)

move(c, f, t) Move cleaner c from room f to t.
Preconditions: at(c, f), next(c, f), either ¬plugged(c)
or in-socket(c, s) and reachable(t, s)
Effects: at(c, t), ¬at(c, f)

plug(c, s) Plug the cleaner c into the socket s.
Preconditions: ¬plugged(c), at(c, l) and reachable(c, s)
Effects: in-socket(c, s).

unplug(c, s) Unplug the cleaner c from the socket s.
Preconditions: in-socket(c, s)
Effects: ¬in-socket(c, s)

Static Laws
A cleaner may not be at two places at the same time.
A cleaner may be plugged to only one socket at a time.
A cleaner may take at most one action at each time step.

Table 10.1: The Vacuum World planning domain

212 10. ENCODING PLANNING PROBLEMS

Variable Domain literal
C cleaner(C)
L location(L)
F location(F)
T location(T)
S socket(S)
I time(I)

Table 10.2: The domain literals of the Vacuum World

Since we are not really interested in the negated versions of at and
in-socket, we include only positive inertia rules for them:

at(C, L, I + 1)← at(C, L, I), not ¬at(C, L, I + 1)

in-socket(C, S, I + 1)← in-socket(C, S, I), not ¬in-socket(C, S, I + 1)

dirty(L, I + 1)← dirty(L, I), not ¬dirty(L, I + 1)

¬dirty(L, I + 1)← ¬dirty(L, I) .

In the last rule we assume that there is not enough time for the rooms
to become dirty again.

The layout of the apartment does not change during cleaning so we
declare the fluents defining it fixed:

fixed next

fixed reachable .

In practice this means that we can use them as domain predicates if
necessary.

We have also two auxiliary fluents, plugged and may-move that we
describe later when we discuss the frame axioms.

Dynamic Laws
Clean We start with the action clean(C, L). Its laws are:

clean(C, L) causes ¬dirty(L) if dirty(L) ∧ at(C, L) ∧ plugged(C)

clean(C, L) causes at(C, L) if dirty(L) ∧ at(C, L) ∧ plugged(C)

clean(C, L) causes in-socket(C, S) if

dirty(L) ∧ at(C, L) ∧ plugged(C) ∧ in-socket(C, S) .

Even though ¬dirty(L) is the only real effect of the action, we add
at(C, L) and in-socket(C, S) to the effects to ensure that every cleaner
does only one action in each time step; including at(C, L) prevents mov-
ing the cleaner from the room and in-socket(C, S) prevents unplugging
it. The CCP rules for clean are:

{clean(C, L, I)} ← at(C, L, I), plugged(C, I), dirty(L, I)

¬dirty(L, I + 1)← clean(C, L, I)

at(C, L, I + 1)← clean(C, L, I)

in-socket(C, S, I + 1)← clean(C, L, I), in-socket(C, S, I) .

10. ENCODING PLANNING PROBLEMS 213

clean(C, L) causes ¬dirty(L) if dirty(L) ∧ at(C, L) ∧ plugged(C)

clean(C, L) causes at(C, L) if dirty(L) ∧ at(C, L) ∧ plugged(C)

clean(C, L) causes in-socket(C, S) if dirty(L) ∧ at(C, L)

∧ plugged(C) ∧ in-socket(C, S)

move(C, F, T) causes at(C, T) if at(C, F) ∧may-move(C, F, T)

move(C, F, T) causes ¬at(C, F) if at(C, F) ∧may-move(C, F, T)

move(C, F, T) causes in-socket(C, S) if in-socket(C, S)

∧may-move(C, F, T)

plug(C, S) causes in-socket(C, S) if at(C, L) ∧ reachable(L, S)

∧ ¬plugged(C)

plug(C, S) causes at(C, L) if at(C, L) ∧ reachable(L, S)

∧ ¬plugged(C)

unplug(C, S) causes ¬in-socket(C, S) if in-socket(C, S)

unplug(C, S) causes ¬at(C, L) if in-socket(C, S) ∧ at(C, L)

Figure 10.8: The dynamic laws of Vacuum World

Move There are two different ways to satisfy the precondition of the
action move/3. We encode the preconditions using the boolean expression
translation. However, we encode the disjunction with the help of static
laws and an additional fluent may-move that is true when one of the
preconditions is satisfied. This is clearer since otherwise the preconditions
would become quite long

move(C, F, T) causes at(C, T) if at(C, F) ∧may-move(C, F, T)

move(C, F, T) causes ¬at(C, F) if at(C, F) ∧may-move(C, F, T)

move(C, F, T) causes in-socket(C, S) if in-socket(C, S)

∧may-move(C, F, T) .

The corresponding rules are:

{move(C, F, T, I)} ← may-move(C, F, T, I)

at(C, T, I + 1)← move(C, F, T, I)

¬at(C, F, I + 1)← move(C, F, T, I)

in-socket(C, S, I + 1)← move(C, F, T, I), in-socket(C, S, I)

The disjunctive precondition is defined as:

may-move(C, F, T) if at(C, F) ∧ next(F, T)∧
(¬plugged(C) ∨ (in-socket(C, S) ∧ reachable(S, T)))

When expressed as rules it becomes:

may-move(C, F, T, I)← at(C, F, I), next(F, T), not plugged(C, I)

may-move(C, F, T, I)← at(C, F, I), next(F, T), in-socket(C, S, I),

reachable(T, S) .

214 10. ENCODING PLANNING PROBLEMS

may-move(C, F, T) if at(C, F) ∧ next(F, T)∧
(¬plugged(C) ∨ (in-socket(C, S) ∧ reachable(S, T)))

plugged(C) if in-socket(C, S)

⊥ if at(C, L1) ∧ at(C, L2) ∧ L1 6= L2

⊥ if in-socket(C, S1) ∧ in-socket(C, S2) ∧ S1 6= S2

Figure 10.9: The static laws of Vacuum World

Plug A vacuum cleaner may be plugged in if it is within reach of a
socket:

plug(C, S) causes in-socket(C, S) if at(C, L) ∧ reachable(L, S)

∧ ¬plugged(C)

plug(C, S) causes at(C, L) if at(C, L) ∧ reachable(L, S)

∧ ¬plugged(C) .

The rules for this action are:

{plug(C, S, I)} ← at(C, L, I), reachable(L, S), not plugged(L, I)

in-socket(C, S, I + 1)← plug(C, S, I)

at(C, L, I + 1)← plug(C, S, I), at(C, L, I) .

Unplug Unplugging a cleaner is straightforward:

unplug(C, S) causes ¬in-socket(C, S) if in-socket(C, S)

The rules for it are:

{unplug(C, S, I)} ← in-socket(C, S, I)

¬in-socket(C, S, I + 1)← unplug(C, S, I) .

Static Laws
The predicate plugged/2 is an auxiliary that is defined with the rule:

plugged(C, I)← in-socket(C, S, I) .

Next, we need frame axioms to forbid the cleaner from being in two
places at the same time and from being plugged to two sockets at one
time.

← 2 {L.at(C, L, I) : location(L)}
← 2 {S.in-socket(C, S, I) : socket(S)} .

Finally, we demand that at the end all rooms have to be clear and all
vacuum cleaners unplugged:13

← dirty(L, t + 1), location(L)

← plugged(C, t + 1), cleaner(C) .

13Here we remove the double negation from not ¬L and use L, instead.

10. ENCODING PLANNING PROBLEMS 215

Figure 10.10: A Sokoban instance and an optimal solution

10.9.2 Sokoban

In the game of Sokoban,14 the player takes the role of a warehouse keeper
(“Sokoban”) who has to rearrange a number of boxes. Sokoban can move
boxes only by pushing them in one of the four main directions and he can-
not climb over or squeeze between them. One example Sokoban puzzle15

and its solution is shown in Figure 10.10.

In this section we create a planning-based encoding for solving Sokoban
puzzles. Since Sokoban games may be rather large, we have to pay close
attention in making our solution as efficient as possible.

How to Model Sokoban Puzzles?
The first step in modeling Sokoban is to decide what a move will be. One
possibility would be to use Sokoban’s movement directly, so that one time
step of the plan corresponds to Sokoban moving one square in the puzzle.
However, this approach has the problem that the plans quickly become
dozens or hundreds of steps long, far too long to be solved in a reasonable
amount of time. Instead, we take the approach that a move begins when
Sokoban starts to push a box into a direction, and ends when the box
finally comes to rest and Sokoban starts to move another box. Thus, if
a box is pushed four squares in a row, it is taken to be a single move.

Sokoban move is the most complex action that we have seen up to
date. With an abstracted action language like syntax it becomes:

14The game of Sokoban was originally created by Hiroyuki Imabayashi in 1980.
15This level is designed by Yoshio Murase and it is downloaded from

http://www.ne.jp/asahi/ai/yoshio/sokoban/main.htm.

216 10. ENCODING PLANNING PROBLEMS

1
1 2 3 4 5

segment(1, 1, 2, 1, right);

segment(1, 1, 3, 1, right);

segment(2, 1, 3, 1, right)

Figure 10.11: An example of Sokoban segments

move(x1, y1, x2, y2) causes has-box(x2, y2) ∧ at(x3, y3) ∧ ¬has-box(x1, y1)

if has-box(x1, y1);

(x1, y1) and (x2, y2) lie on the same segment;

the squares between (x1, y1) and (x2, y2) are empty;

Sokoban can reach the square behind (x1, y1); and

the last square Sokoban enters is (x3, y3).

We can divide the preconditions into dynamic and static preconditions
where a static property depends only on the description of the problem
instance and a dynamic property depends on how conditions change dur-
ing planning. Essentially, fluents that describe static preconditions have
fixed values that cannot change during the planning.

Here the only static precondition is the segment(x1, y1, x2, y2) that
denotes that the squares (x1, y1) and (x2, y2) are in the same line segment
and we can push a box from the former to the latter in one movement
action. We can automatically prune out all model candidates that violate
this property by making it a domain predicate and creating only those
instances of move action that satisfy it.

For example, in the grid example shown in Figure 10.11 we see that
(2, 1) is on the same segment as (3, 1) but the wall in (4, 1) blocks (5, 1)
from being on it.

One of the dynamic preconditions for move is that Sokoban has to
be able to reach the position that is immediately behind the box that
is to be moved. This means that we have to compute the set of all
squares that Sokoban can reach at each time step. This is a feature
that makes Sokoban tricky to model using planning formalisms that are
based on propositional logic [106] since expressing the transitive closure
of a reachability relation is not straightforward.16 Also, note that the
reachability condition is partly static. In Figure 10.11 we note that even
though (1, 1) and (3, 1) lie on the same segment, it is actually not possible
to push a box from one to the other since the walls block Sokoban from
getting behind the boxes. We can again use domain predicates to remove
these impossible moves from the encoding.

The final consideration about the move action is that we have large
numbers of actions that have similar preconditions and effects. The only
thing that separates actions move(1, 1, 1, 4) and move(1, 1, 1, 5) is that the

16One way to do it with only a logarithmic increase on the number of atoms can
be adapted from [101].

10. ENCODING PLANNING PROBLEMS 217

latter requires that (1, 5) is also empty but otherwise their preconditions
are exactly the same.

We can reduce the instantiation sizes of our problems by making use of
this similarity by breaking the move/4 action into two predicate symbols:
move-from(X, Y, D) and move-to(X, Y) where the first one encodes the
starting location and the direction of a move, and the second encodes the
target location.

To see how much this helps consider the case where we have a segment
that is 10 squares long. With a single move action and disregarding most
of the preconditions and effects our rules have the form:

{move(X1, Y1, X2, Y2, I)} ← segment(X1, Y1, X2, Y2)

has-box(X2, Y2, I + 1)← move(X1, Y1, X2, Y2, I)

¬has-box(X1, Y1, I + 1)← move(X1, Y1, X2, Y2, I)

With 10 squares in the segment, there are 90 possible move actions when
we suppose that we can traverse the segment fully in both directions.
This means that all three rules have 90 instances with a total of 270
ground rules.

On the other hand, if we split the rules we get:

{move-from(X, Y, D, I)} ← possible-push(X, Y, D)

1 {{X2, Y2}.move-to(X2, Y2, I) : segment(X1, Y1, X2, Y2, D)} 1

← move-from(X1, Y1, D)

¬has-box(X, Y, I + 1)← move-from(X, Y, D, I)

has-box(X, Y, I + 1)← move-to(X, Y, I) .

Splitting the move action made it necessary to add the directional pa-
rameter to segment. Now the first three rules have 18 ground instances
where the second rule has on average five literals inside the choice. The
final rule has 10 instances so the total for this encoding is 64 ground
instances, a saving of about 75%.

Instance Description
The Sokoban domain differs from our previous planning domains in that
we want to define a number of domain predicates that will help us to
make the encoding more efficient in practice. Our data predicates will
be:

• initial-at(x, y): the initial location of Sokoban;

• initial-box(x, y): the initial positions of boxes;

• square(x, y): locations of open squares; and

• target-square(x, y): the goal locations.

The new domain predicates are:

• m-square(x, y): this predicate encodes all possible locations where
a box may be during the planning;

218 10. ENCODING PLANNING PROBLEMS

• segment(x1, y1, x2, y2, d): starting at location (x1, y1) there is an
uninterrupted straight line to (x2, y2) along the direction d;

• between(x, y, x1, y1, x2, y2): the square (x, y) lies between squares
(x1, y1) and (x2, y2); and

• possible-push(x, y, d): it is possible that some time during the plan-
ning we may push a box from the location (x, y) to the direction d.

The idea behind m-square/2 is that we know from outset that there
are some moves that we may not take during the planning and we want to
rule them out immediately. For example, if we push a box into a corner,
it is stuck in there. If the corner is not a goal square, we have made the
puzzle unsolvable.

We define m-square/2 using an auxiliary predicate has-route(x, y) that
is true if it is possible to push a box from (x, y) to some goal location. It
is defined with the rules:

has-route(X, Y)← target-square(X, Y)

has-route(X, Y)← has-route(X + 1, Y),

square(X − 1, Y), square(X, Y) .

The second rule states that if we can push a box to right from (x, y) and
reach a square that has a route to some target, then we have a route
from (x, y). In addition we need three corresponding rules for the other
directions. After that we can define m-square/2:

m-square(X, Y)← has-route(X, Y) .

The other three new domain predicates are defined in terms of m-square.
The segment is defined with rules of the form:

segment(X, Y, X + 1, Y, right)← m-square(X, Y),m-square(X + 1, Y)

segment(X1, Y, X2, Y, right)← segment(X1, Y, X2, Y, right),

m-square(X2 + 1, Y) .

The predicate possible-push/3 is defined with rules of the form:

possible-push(X, Y, right)← m-square(X, Y),m-square(X + 1, Y),

square(X − 1, Y) .

Finally, between/6 is defined with four rules of the form:

between(X, Y, X1, Y, X2, Y)← segment(X1, Y, X2, Y, right),

square(X, Y),

X > X1, X ≤ X2 .

The reason why we use X ≤ X2 instead of X < X2 is that we can then
use one rule to check that both the target square and all squares leading
to it are empty.

10. ENCODING PLANNING PROBLEMS 219

Fluents
The two most important fluents are:

• has-box(x, y): there is a box at location (x, y); and

• at(x, y): Sokoban is at location (x, y).

The box location is inertial while at is not since Sokoban makes a move
every time step.

We also define several auxiliary fluents whose values are computed
from the previous fluents and instance description:

• can-push(x, y, d): it is possible to push the box that is in loca-
tion (x, y) to the direction d. This fluent is used to abstract the
preconditions of the move action.

• reachable(x, y): Sokoban can reach the location (x, y).

We can make a push if there is a box in the location and the location
behind it is reachable. We again use four rules, one for each direction:

can-push(X, Y, right, I)← possible-push(X, Y, D),

has-box(X, Y, I),

reachable(X − 1, Y, I) .

The definition of reachable/2 computes a transitive closure of the ad-
jacency relation from the current location through the empty squares:

reachable(X, Y, I)← at(X, Y, I)

reachable(X + 1, Y, I)← reachable(X, Y, I),

square(X + 1, Y), square(X, Y),

not has-box(X + 1, Y) .

Since has-box was inertial, we need the rule:

has-box(X, Y, I + 1)← has-box(X, Y, I), not ¬has-box(X, Y, I + 1) .

The values for the fluents are initialized from the data predicates:

has-box(X, Y, 1)← initial-box(X, Y)

at(X, Y, 1)← initial-at(X, Y) .

Actions
The move/4 action is split into move-from/3 and move-to/2 actions:

{move-from(X, Y, D, I)} ← can-push(X, Y, D, I),

possible-push(X, Y, D)

1 {{X2, Y2}.move-to(X2, Y2, I) :

segment(X1, Y1, X2, Y2, D)} 1← move-from(X1, Y1, D),

possible-push(X1, Y1, D) .

220 10. ENCODING PLANNING PROBLEMS

These rules do not take the requirement that the boxes have to pass
through empty squares into account. We add it as a constraint:

← has-box(X, Y, I), between(X, Y, X1, Y1, X2, Y2),

move-from(X, Y, D, I),move-to(X2, Y2, I),

segment(X1, Y1, X2, Y2, D).

The main effect is that the box moves to the new location:

has-box(X, Y, I + 1)← move-to(X, Y, I)

¬has-box(X, Y, I + 1)← move-from(X, Y, I),

possible-push(X, Y, D, I) .

The other effect is that the location of Sokoban also changes. We can sim-
plify the rules for at by noting that the location where we started pushing
is necessarily reachable from Sokoban’s new location. Since Sokoban can
move freely on the empty squares, we can take this square as Sokoban’s
new location without causing an error:

at(X, Y, I + 1)← move-from(X, Y, D, I), possible-push(X, Y, D) .

Consistency Constraints
Because in this domain the boxes are functionally equivalent to each
other, we do not have to worry about them being in multiple locations
at the same time. In fact, the only consistency constraint that we need
is a rule that forbids us from taking two moves in one time step:

← 2 {{X, Y }.move-to(X, Y, I) : m-square(X, Y)} .

Optimizations
We can add a number of other optimizations to make the plan generation
more efficient. We consider two basic kinds of optimizations:

1. optimizations that prune out incorrect branches of the search tree;
and

2. optimizations that prune redundant moves from the plan.

For example, we know that Sokoban should never push two boxes
together along a wall since they will be stuck there. The only exception
is if both of the squares are goal locations. This constraint can be encoded
with rules of the form:

edge-pair(X, Y, X + 1, Y)← m-square(X, Y),m-square(X + 1, Y),

not square(X, Y + 1),

not square(X + 1, Y + 1)

allowed-pair(X, Y, X + 1, Y)← target-square(X, Y),

target-square(X + 1, Y)

← edge-pair(X1, Y1, X2, Y2),

not allowed-pair(X1, Y1, X2, Y2),

has-box(X1, Y1, I),

has-box(X2, Y2, I) .

10. ENCODING PLANNING PROBLEMS 221

We can use similar rules to remove plan candidates where three boxes
are pushed to an L-shape around a corner or four boxes pushed to form
a square.

An example of the second kind of optimization is that we can forbid
Sokoban from making two moves where one would be sufficient. We make
it an error if one box is pushed two times to the same direction:

← push-dir(D, I),

move-to(X, Y, I)

move-from(X, Y, D, I + 1)

push-dir(D, I)← move-from(X, Y, D, I) .

Another similar optimization is that we might explicitly forbid Sokoban
from immediately reversing a move. These conditions can be expressed
as:

← push-dir(right, I),

move-to(X, Y, I)

move-from(X, Y, left, I + 1)

reachable(X + 1, Y, I) .

We add reachable(X + 1, Y, I) to the rule body because we might need
to push a box back to the same direction if we were not able to go to the
other side previously.

The final possible consideration is that we can further reduce the size
of the ground instantiation with additional domain predicates. Since we
know where all boxes are at the beginning, we need not generate rules for
squares that we know are empty. To do this we can add a new domain
literal possible-box(X, Y, I) to every rule where a literal has-box(X, Y, I)
occurs somewhere. A reasonably simple definition for it could be:

possible-box(X, Y, 1)← initial-box(X, Y)

possible-box(X, Y, 2)← initial-box(X, Y)

possible-box(X2, Y2, 2)← initial-box(X1, Y1),

segment(X1, Y1, X2, Y2, D)

possible-box(X, Y, I)← m-square(X, Y), I > 2 .

Here a box may be only in its initial location in the first time step and
be somewhere along the same segment in the next time step. As keeping
track of possible locations gets complicated quite soon, we stop it at the
third time step and suppose that the boxes can be anywhere in the area.

222 10. ENCODING PLANNING PROBLEMS

11 CONCLUSIONS

The cardinality constraint programs are a powerful extension of normal
logic programs. The cardinality and conditional literals, together with
choice rules make it possible to have intuitive and concise uniform answer
set programming encodings for many if not most NP-complete problems.
With the oracle method we can use these NP-encodings to solve also
many PSPACE-complete problems.

Cardinality literals allow us to express conditions that are based on
sets of objects, and conditional literals make it possible to define those
sets concisely. Choice rules help in creating uniform encodings since they
facilitate the generate-and-test method by allowing a clear separation of
the generator and the tester.

We define the language of cardinality constraint programs in two
phases where the semantics is first defined for a basic language and the
extended constructs of the full language are defined as translations to the
basic language. This approach allows us to have both a simple semantics
that is easy to understand and implement and an expressive language for
writing problem encodings. The semantics itself is based on the stable
model semantics of normal logic programs.

A major criterion on the design of the language is that it should be
possible to do the translation from the full language to the basic language
on the level of programs with variables. This makes it easier to incorpo-
rate modularity to programming. We want to use uniform encodings and
usually we do not know what particular problem instances we want to
solve. When the translation does not depend on the particular instance,
we can do it immediately after we create the encoding and before we have
the instances. Also, if we want to try to use some different encoding for
a subproblem, we can do the change without having to worry about the
facts of the instance description.

Another consideration was that the transformations should not add
new atoms to the programs. This goal was not completely satisfied , but
the new atoms that we generate have the property that it is possible to
compute their extensions in linear time. This means that they do not
significantly increase the computational effort for finding answer sets.

The published literature contains many other types of aggregate liter-
als in addition to cardinality atoms. The reason why we selected only one
aggregate into the language is simplicity: cardinality atoms are mono-
tonic and adding them does not increase the computational complexity of
the semantics. Using only monotonic aggregates has the advantage that
the definition of the stable model semantics is simple and intuitive, and
it can be done using a provability-operator analogously to the normal
programs. The downside is that it is not possible to use nonmonotonic
aggregates with this approach.

However, we have been able to create reasonably concise uniform en-
codings for most of the graph problems [198] in the classic list of NP-
complete problems compiled by Garey and Johnson [78]. The most sig-
nificant weakness is that even with weight constraints it is cumbersome to

11. CONCLUSIONS 223

perform arithmetic with numbers that occur as arguments in an arbitrary
set of atoms.

We define the ω-restricted subclass of the language that has the prop-
erty that it stays decidable even when we allow function symbols with
the Herbrand interpretation. We create a hierarchy of predicate symbols
where the first stratum has a finite extension and each new stratum adds
a finite number of atoms into the answer set.

The computational complexity of for deciding whether a ω-restricted
program has an answer set is in 2-NEXP and thus computationally ex-
tremely intractable. Fortunately, most practical encodings do not need
the full power of the language. The most significant raise in complexity
comes from function symbols with the Herbrand interpretation. When we
do not use such functions, the complexity of the language is the same as
the stable model semantics for normal logic programs. In practice, most
of our encodings will use only few variables and all functions are arith-
metic operators so they belong to the subclass where deciding whether
an answer set exists is NP-complete.

We also examined briefly the question on efficiency of encodings. It is
possible that we have two programs that are strongly equivalent in the
sense that they have the same answer sets no matter the context where we
use them but where we need much more effort to solve one than the other.
We gave a practical example where we optimized an encoding for solving
Kakuro puzzles. We tested the encodings with an extremely large puzzle
instance and the result was that two solvers, smodels and clasp, could
find a solution and prove that it was unique without making any guesses
at all when the optimizations were used, while with the straightforward
encoding smodels needed almost 600 guesses to find a solution and almost
1000 guesses to prove that it was the only one and for clasp the figures
were 7248 and 7256, respectively.

The lparse instantiator handles a large subset of ω-restricted CCPs
under the standard interpretation. We described the general structure
of the implementation and compared it with a compiler for an ordinary
programming language. The front-end of lparse reads in a user program
written in the full language and it translates it into an internal repre-
sentation which is almost equivalent to the basic language. Then, the
back-end does the actual instantiation. This basic architecture allows us
to use the same framework to instantiate different logical languages by
writing a new front-end and also to use different semantics for one pro-
gram by changing the back-end to produce a different target language.

The actual instantiation works in two phases. First we compute the
domain model and then use it to instantiate the non-domain program.
The instantiator handles all rules in a uniform way, so when we compute
the model of a stratum program we first instantiate it normally and then
compute its least model.

As the final part of this work we examined how we can use ASP tech-
niques in general and CCPs in particular to solve AI planning problems.
Many real-world problems can be expressed as planning problems so it
is an important research area. The advantage of ASP in planning is that
we can have declarative programs that are simple to understand.

224 11. CONCLUSIONS

We present a systematic translation from an action language into
CCPs and showed that it is faithful to the original semantics. We iden-
tify a set of possible sources of problems that we have to consider when
making encodings that admit serializable parallel planning, since there is
a risk that if we are not careful we might end up with plans that cannot
be realized in practice.

We also showed how we can use domain-specific knowledge to obtain
encodings that are more efficient in practice. Planning problems are com-
putationally hard and if we want to be able to solve real-world problems,
we have to expend significant effort to make the system fast enough.

In conclusion, this work examined both theoretical and practical as-
pects of answer set programming. We defined a language and analyzed
its theoretical properties and then showed how we can solve NP- and
PSPACE-complete problems with it.

Aggregates are a major focus on the current research on the theoretical
aspects of ASP. A number of different approaches has been proposed for
them and none of them has gained prominence over others. Finding a
semantics that gives answer sets that seem intuitively correct and that
does not increase the computational complexity is a difficult problem
that can be hopefully solved in near future.

From the practical side one of the major challenges is to develop frame-
works that allow simpler interfacing between ASP and traditional pro-
grams. An ASP solver might be able to find answers for all of our in-
teresting instances of an NP-complete problem, but that does not help
the user if there is no convenient way to create the instance facts or in-
terpret the answers. ASP is still mostly a field for scientific research.
To change that and bring ASP into the public consciousness we need a
better integration between solvers and conventional programming.

11. CONCLUSIONS 225

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools. Addison-Wesley Publishing Com-
pany, 1986.

[2] Christian Anger, Kathrin Konczak, and Thomas Linke. Nomore:
A system for non-monotonic reasoning under answer set seman-
tics. In Proceedings of the 6th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’01), pages
406–410, September 2001.

[3] Krzysztof R. Apt and Roland N. Bol. Logic programming and
negation: A survey. Journal of Logic Programming, 19–20:9–71,
1994.

[4] Krzysztof R. Apt and Maarten H van Emden. Contributions to
the theory of logic programming. Journal of the Association for
Computing Machinery, 29:841–862, July 1982.

[5] Yulia Babovich. Cmodels, a system computing answer sets for tight
logic programs, 2002.

[6] Sabrina Baselice, Piero A. Bonatti, and Giovanni Criscuolo. On
finitely recursive programs. In Proceedings of the 23rd International
Conference Logic Programming (ICLP’07), pages 89–103, 2007.

[7] Sabrina Baselice, Piero A. Bonatti, and Michael Gelfond. To-
wards an integration of answer set and constraint solving. In Pro-
ceedings of the 21st International Conference Logic Programming
(ICLP’05), pages 52–66. Springer-Verlag, 2005.

[8] R. J. Jr. Bayardo and R.C Schrag. Using CSP look-back techniques
to solve real world sat instances. In Proceedings of the 14th National
Conference on Artificial Intelligence, pages 203–208, 1997.

[9] A. Blum and M. Furst. Fast planning through planning graph
analysis. Artificial Intelligence, 90:281–300, 1997.

[10] Piero A. Bonatti. Finitary open logic program. In Proceedings of
the 2nd International Workshop on Advances in Theory and Im-
plementation in Answer Set Programming (ASP’03), 2003.

[11] Piero A. Bonatti. Reasoning with infinite stable models. Artificial
Intelligence, 156(1):75–111, 2004.

[12] Gerhard Brewka, Ilkka. Niemelä, and Tommi Syrjänen. Imple-
menting ordered disjunction using answer set solvers for normal
programs. In The Proceedings of the 8th European Conference on
Logics in Artificial Intelligence (JELIA’02), 2002.

226 BIBLIOGRAPHY

[13] Gerhard Brewka, Ilkka Niemelä, and Tommi Syrjänen. Logic
programs with ordered disjunction. Computational Intelligence,
20(2):333–357, 2004.

[14] Francesco Buccafurri, Wolfgang Faber, and Nicola Leone. Disjunc-
tive logic programs with inheritance. Theory and Practice of Logic
Programming, 2(3):293–321, 2002.

[15] Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Strong
and weak constraints in disjunctive datalog. In Proceedings of
the 4th International Conference on Logic Programming and Non-
Monotonic Reasoning, pages 2–17. Springer-Verlag, 1997.

[16] Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Enhanc-
ing disjunctive datalog by constraints. Knowledge and Data Engi-
neering, 12(5):845–860, 2000.

[17] Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. Reso-
lution for quantified boolean formulas. Information and Computa-
tion, 117(1):12–18, 1995.

[18] Tom Bylander. The computational complexity of propositional
STRIPS planning. Artificial Intelligence, 69:165–204, 1994.

[19] Francesco Calimeri and Giovambattista Ianni. External sources of
computation for answer set solvers. In Proceedings of the 8th In-
ternational Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’05), pages 105–118, 2005.

[20] Francesco Calimeri and Giovambattista Ianni. Template programs
for disjunctive logic programming: An operational semantics. AI
Communications, 19(3):193–206, 2006.

[21] Fransesco Calimeri, Wolfgang Faber, Nicola Leone, and Simona
Perri. Declarative and computational properties of logic programs
with aggregates. In Proceedings of the 19th International Joint
Conference on Artificial Intelligence (IJCAI’05), pages 406–411,
2005.

[22] Claudio Castellini, Enrico Giunchiglia, and Armando Tacchella. C-
plan: A conformant planner based on satisfiability. In IJCAI 2001
Workshop on Planning under Uncertainty and Incomplete Infor-
mation, pages 98–103, 2001.

[23] Claudio Castellini, Enrico Giunchiglia, and Armando Tacchella.
Sat-based planning in complex domains: concurrency, constraints
and nondeterminism. Artificial Intelligence, 147(1-2):85–117, 2003.

[24] Luis Castro, Terrance Swift, and David Scott War-
ren. The XSB System Version 3.0 Volume 2: Li-
braries, Interfaces and Packages. chapter 12. Available at:
http://xsb.sourceforge.net/manual2/node166.html.

BIBLIOGRAPHY 227

[25] Douglas Cenzer, Jeffrey B. Remmel, and Victor W. Marek. Logic
programming with infinite sets. Annals of Mathematics and Arti-
ficial Intelligence, 44:309–339, 2005.

[26] Ashok K. Chandra and David Harel. Computable queries for re-
lational database systems. Journal of Computer and System Sci-
ences, 21:156–178, 1980.

[27] Ashok K. Chandra and David Harel. Horn clause queries and gen-
eralizations. Journal of Logic Programming, 2:1–15, 1985.

[28] David Chapman. Planning for conjunctive goals. Technical report,
Massachusetts Institute of Technology, 1985.

[29] Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where
the Really Hard Problems Are. In Proceedings of the Twelfth In-
ternational Joint Conference on Artificial Intelligence, IJCAI-91,
pages 331–337, 1991.

[30] Weidong Chen and David Scott Warren. Tabled evaluation with
delaying for general logic programs. Journal of the Association for
Computing Machinery, 43:20–74, 1 1996.

[31] Pawe l Cholewiński, Victor W. Marek, and Miroslaw Truszczyński.
Default reasoning system DeReS. In Luigia Carlucci Aiello, Jon
Doyle, and Stuart Shapiro, editors, KR’96: Principles of Knowl-
edge Representation and Reasoning, pages 518–528. Morgan Kauf-
mann, San Francisco, California, 1996.

[32] Keith L. Clark. Negation as failure. In H. Gallaire and J. Minker,
editors, Logic and Data Bases, pages 293–322. Plenum Press, 1978.

[33] Alain Colmerauer, Henry Kanoui, Pasero Robert, and Roussel
Philippe. Un système de communication en français, preliminary
report. Technical report, October 1972.

[34] Stephen A. Cook and Robert A Reckhow. The relative efficiency of
propositional proof systems. Journal of Symbolic Logic, 44:36–50,
1979.

[35] Chiara Cumbo, Wolfgang Faber, and Gianluigi Greco. Improv-
ing query optimization for disjunctive datalog. In Proceedings of
the Joint Conference on Declarative Programming APPIA-GULP-
PRODE 2003, pages 252–262, 2003.

[36] Chiara Cumbo, Wolfgang Faber, and Gianluigi Greco. Enhancing
the magic-set method for disjunctive datalog programs. In Pro-
ceedings of the the 20th International Conference on Logic Pro-
gramming (ICLP’04), pages 371–385, 2004.

[37] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei
Voronkov. Complexity and expressive power of logic programming.

228 BIBLIOGRAPHY

In Proceedings of the Twelfth Annual IEEE Conference on Com-
putational Complexity, pages 82–101, Ulm, Germany, June 1997.
IEEE Computer Society Press.

[38] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei
Voronkov. Complexity and expressive power of logic programming.
ACM Computing Surveys, 33:374–425, 2001.

[39] Martin Davis and Hilary Putnam. A computing procedure for quan-
tification theory. Journal of the ACM, 7(3):201–215, 1960.

[40] Martin D. Davis, Ron Sigal, and Elaine J. Weyuker. Computability,
complexity, and languages (2nd ed.): fundamentals of theoretical
computer science. Academic Press Professional, Inc., San Diego,
CA, USA, 1994.

[41] James P. Delgrande, Torsten Schaub, and Hans Tompits. Logic
programs with compiled preferences. In Proceedings of the 14th
European Conference on Artificial Intelligence (ECAI’2000), pages
464–468, Berlin, Germany, August 2000.

[42] Tina Dell’Armi, Wolfgang Faber, Giuseppe Ielpa, Nicola Leone,
and Gerald Pfeifer. Aggregate functions in disjunctive logic pro-
gramming: Semantics, complexity, and implementation in dlv. In
Proceedings of the 18th International Joint Conference on Artificial
Intelligence (IJCAI’03), 2003.

[43] Marc Denecker, Nikolay Pelov, and Maurice Bruynooghe. Ultimate
well-founded and stable semantics for logic programs with aggre-
gates. In Proceedings of the 17th International Conference on Logic
Programming (ICLP’01), pages 212–226, 2001.

[44] Marc Denecker and Eugenia Ternovska. A logic of nonmonotone
inductive definitions. ACM Transactions on Computational Logic,
9(2):1–52, 2008.

[45] Bistra N. Dilkina, Carla P. Gomes, and Ashish Sabharwal. Trade-
offs in the complexity of backdoor detection. In Principles and
Practice of Constraint Programming (CP’07), 13th International
Conference, pages 256–270, 2007.

[46] Yannis Dimopoulos. On computing logic programs. Journal of
Automated Reasoning, 17:259–289, 1996.

[47] Yannis Dimopoulos, Bernhard Nebel, and Jana Koehler. Encoding
planning problems in nonmonotonic logic programs. In Proceedings
of the Fourth European Conference on Planning, pages 169–181,
1997.

[48] Jürgen Dix, Ugur Kuter, and Dana Nau. Htn planning in answer
set programming. Technical Report CS-TR-4336 (UMIACS-TR-
2002-14), Dept. of CS, University of Maryland, College Park, MD
20742, February 2002.

BIBLIOGRAPHY 229

[49] Semra Doğandağ, F. Nur Alpaslan, and Varol Akman. Using sta-
ble model semantics (smodels) in the causal calculator (ccalc). In
The Tenth Turkish Symposium on Artificial Intelligence and Neural
Networks (TAINN’01). 2001.

[50] Semra Doğandağ, Paolo Ferraris, and Vladimir Lifschitz. Almost
definite causal theories. In Proceedings of the 7th International
Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’04), pages 74–86. Springer-Verlag, 2004.

[51] William F. Dowling and Jean H. Gallier. Linear-time algorithms
for testing the satisfiability of propositional Horn formulae. Journal
of Logic Programming, 3:267–284, 1984.

[52] Deborah East and Miroslaw Truszczyński. Propositional satisfia-
bility in answer-set programming. In Proceedings of KI 2001: Ad-
vances in Artificial Intelligence, pages 138–153, 2001.

[53] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer.
The diagnosis frontend of the dlv system. AI Communications,
12(1-2):99–111, 1999.

[54] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and
Axel Polleres. Planning under incomplete knowledge. In Proceed-
ings of the First International Conference on Computational Logic
(CL 2000), pages 807–821, 2000.

[55] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and
Axel Polleres. Answer set planning under action costs. Journal of
Artificial Intelligence Research (JAIR), 19:25–71, 2003.

[56] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and
Axel Polleres. A logic programming approach to knowledge-state
planning, ii: The DLVK system. Artificial Intelligence, 144:157–
211, March 2003.

[57] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and
Axel Polleres. A logic programming approach to knowledge-state
planning: Semantics and complexity. ACM Transactions on Com-
putational Logic, 5(2):206–263, 2004.

[58] Thomas Eiter, Wolfgang Faber, Gerald Pfeifer, and Nicola Leone.
Computing preferred answer sets by meta-interpretation in answer
set programming. Research Report 1843–02–01, Institut Für Infor-
mationssysteme, Technische Universität Wien, January 2002.

[59] Thomas Eiter and Michael Fink. Uniform equivalence of logic pro-
grams under the stable model semantics. In Proceedings of the 19th
International Conference on Logic Programming, pages 224–238,
2003.

230 BIBLIOGRAPHY

[60] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive
datalog. ACM Transactions on Database Systems, 22(3):364–418,
September 1997.

[61] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and
Hans Tompits. dlvhex: A system for integrating multiple semantics
in an answer-set programming framework. In WLP, pages 206–210,
2006.

[62] Thomas Eiter, Thomas Lukasiewicz, Roman Schindlauer, and Hans
Tompits. Combining answer set programming with description
logics for the semantic web. In Proceedings of the 9th Interna-
tional Conference on the Principles of Knowledge Representation
and Reasoning (KR’04), pages 141–151, 2004.

[63] Thomas Eiter, Hans Tompits, and Stefan Woltran. On solution cor-
respondences in answer set programming. In Proceedings of the 19th
International Joint Conference on Artificial Intelligence, pages 96–
102, 2005.

[64] Charles Elkanan. A rational reconstruction of nonmonotonic truth
maintenance systems. Artificial Intelligence, 43:219–234, 1990.

[65] Wolfgang Faber. Decomposition of nonmonotone aggregates in an-
swer set programming. In 20th Workshop on Logic Programming
(WLP’06), pages 164–171, 2006.

[66] Wolfgang Faber, Gianluigi Greco, and Nicola Leone. Magic sets
and their application to data integration. Journal of Computer
and System Sciences, 73(4):584–609, 2007.

[67] Wolfgang Faber and Nicola Leone. On the complexity of answer
set programming with aggregates. In Proceedings of the 9th In-
ternational Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’07), pages 97–109, 2007.

[68] Wolfgang Faber, Nicola Leone, Cristinel Mateis, and Gerald Pfeifer.
Using database optimization techniques for nonmonotonic reason-
ing. In Proceedings of the Seventh International Workshop on De-
ductive Databases and Logic Programming, 1999.

[69] Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Recursive aggre-
gates in disjunctive logic programs: Semantics and complexity. In
Proceedings of the 9th European Conference on Logics in Artificial
Intelligence (JELIA’04), pages 200–212, 2004.

[70] François Fages. Consistency of Clark’s completion and existence
of stable models. Methods of Logic in Computer Science, 1:51–60,
1994.

[71] Paolo Ferraris and Enrico Giunchiglia. Planning as satisfiability
in nondeterministic domains. In Proceedings of the 17th National
Conference on Artificial Intelligence (AAAI-00), pages 748–753,
2000.

BIBLIOGRAPHY 231

[72] Paolo Ferraris and Vladimir Lifschitz. Weight constraints as nested
expressions. Theory and Practice of Logic Programming, 5:45–74,
2005.

[73] Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to
the application of theorem proving to problem solving. Artificial
Intelligence, 2:189–208, 1971.

[74] Raphael A. Finkel, V. Wiktor Marek, and Miroslaw Truszczyński.
Constraint lingo: A program for solving logic puzzles and other
tabular constraint problems. In Proceedings of the 8th European
Conference on Logics in Artificial Intelligence (JELIA’02), pages
513–516, 2002.

[75] Melvin Fitting and Marion Ben-Jacob. Stratified and three-valued
logic programming semantics. In Robert A. Kowalski and Ken-
neth A. Bowen, editors, Proceedings of the Fifth International Con-
ference and Symposium on Logic Programming, pages 1054–1069,
Seatle, 1988. The MIT Press.

[76] Haim Gaifman, Harry Mairson, Yehoshua Sagiv, and Moshe Y.
Vardi. Undecidable optimization problems for database logic pro-
grams. Journal of the ACM, 40(3):683–713, 1993.

[77] Hervé Gallaire, Jack Minker, and Jean-Marie Nicolas. Logic and
databases: A deductive approach. Computing Surveys, 16, June
1984.

[78] Michael R. Garey and David S. Johnson. Computers and in-
tractability: a guide to the theory of NP-completeness. W.H. Free-
man and Co, 1979.

[79] Martin Gebser, Benjamin Kaufmann, André Neumann, and
Torsten Schaub. clasp: A conflict-driven answer set solver. In
Proceedings of the 9th International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR’07), 2007.

[80] Martin Gebser, Benjamin Kaufmann, André Neumann, and
Torsten Schaub. Conflict-driven answer set solving. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’07), 2007.

[81] Martin Gebser, Torsten Schaub, and Sven Thiele. GrinGo : A new
grounder for answer set programming. In Proceedings of the 9th In-
ternational Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’07), pages 266–271, 2007.

[82] Michael Gelfond. The USA-Advisor: A case study in answer set
programming. In Proceedings of the 8th European Conference on
Logics in Artificial Intelligence (JELIA’02), pages 566–568, Lon-
don, UK, 2002. Springer-Verlag.

232 BIBLIOGRAPHY

[83] Michael Gelfond and Nicola Leone. Logic programming and knowl-
edge representation — the A-Prolog perspective. Artificial Intelli-
gence, 138:3–38, 2002.

[84] Michael Gelfond and Vladimir Lifschitz. The stable model se-
mantics for logic programming. In Proceedings of the 5th Inter-
national Conference on Logic Programming, pages 1070–1080. The
MIT Press, August 1988.

[85] Michael Gelfond and Vladimir Lifschitz. Logic programs with clas-
sical negation. In Proceedings of the 7th International Confer-
ence on Logic Programming, pages 579–597, Jerusalem, Israel, June
1990. The MIT Press.

[86] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic
programs and disjunctive databases. New Generation Computing,
9:365–385, 1991.

[87] Michael Gelfond and Vladimir Lifschitz. Representing action and
change by logic programs. Journal of Logic Programming, 17:301–
321, 1993.

[88] Michael Gelfond and Vladimir Lifschitz. Action languages. Elec-
tronic Transactions on Artificial Intelligence, 2:193–210, 1998.

[89] Michael Gelfond and T. Son. Reasoning with prioritized defaults. In
Selected Papers presented at the Workshop on Logic Programming
and Knowledge Representation (LPKR’97), pages 164–223, 1998.

[90] Ian P. Gent and Toby Walsh. The SAT phase transition. In Proceed-
ings of the Eleventh European Conference on Artificial Intelligence
(ECAI’94), pages 105–109, 1994.

[91] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, and Hud-
son Turner. Causal laws and multi-valued fluents. In In Proceed-
ings of Workshop on Nonmonotonic Reasoning, Action and Change
(NRAC), 2001.

[92] Enrico Giunchiglia, G. Neelakantan Kartha, and Vladimir Lifschitz.
Representing action: indeterminancy and ramifications. Artificial
Intelligence, 95:409–438, September 1997.

[93] Carla P. Gomes, Bart Selman, and Henry Kautz. Heavy-tailed
phenomena in satisfiability and constraint satisfaction problems.
Journal of Automated Reasoning, 24:67–100, 2000.

[94] Keijo Heljanko. Using logic programs with stable model semantics
to solve deadlock and reachability problems for 1-safe Petri nets.
In Proceedings of the 5th International Conference on Tools and
Algorithms for Construction and Analysis of Systems, pages 240–
254. Springer-Verlag, 1999.

BIBLIOGRAPHY 233

[95] Keijo Heljanko and Ilkka Niemelä. Answer set programming and
bounded model checking. In Proceeedings of the AAAI Spring 2001
Symposium on Answer Set Programming: Towards Efficient and
Scalable Knowledge Representation and Reasoning. AAAI, 2001.

[96] Keijo Heljanko and Ilkka Niemelä. Bounded LTL model checking
with stable models. Theory and Practice of Logic Programming,
3:519–550, 2003.

[97] Gerd G. Hillebrand, Paris C. Kanellakis, Harry G. Mairson, and
Moshe Y. Vardi. Undecidable boundedness problems for datalog
programs. Journal of Logic Programming, 25:163–190, 1995.

[98] David A. Huffman. Impossible objects as nonsense sentences. Ma-
chine Intelligence, 6:295–323, 1971.

[99] Katsumi Inoue and Chiaki Sakama. Negation as failure in the head.
Journal of Logic Programming, 35:39–78, 1998.

[100] Tomi Janhunen. Comparing the expressive powers of some syn-
tactically restricted classes of logic programs. In Proceedings of the
First International Conference on Computational Logic (CL 2000),
pages 852–866, London, UK, July 2002.

[101] Tomi Janhunen. Representing normal programs with clauses. In
Proceedings of the 16th European Conference on Artificial Intelli-
gence (ECAI’06), pages 358–362, 2004.

[102] Tomi Janhunen, Ilkka Niemelä, Patrik Simons, and Jia-Huai You.
Unfolding partiality and disjunctions in stable model semantics. In
Principles of Knowledge Representation and Reasoning: Proceed-
ings of the 7th International Conference, pages 411–419. Morgan
Kaufmann Publishers, April 2000.

[103] Tomi Janhunen and Emilia Oikarinen. Capturing parallel circum-
scription with disjunctive logic programs. In The Proceedings of
the 9th International Conference on Logics in Artificial Intelligence
(JELIA’04), pages 134–146, 2004.

[104] Dana Nau Juergen Dix, Ugur Kuter. Planning in answer set
programming using ordered task decomposition. In B. Neumann
A.Günther, R. Kruse, editor, Proceedings of the 27th German An-
nual Conference on Artificial Intelligence (KI ’03), Hamburg, Ger-
many, LNAI 2821, pages 490–504, Berlin, 2003. Springer.

[105] Matti Järvisalo, Tommi A. Junttila, and Ilkka Niemelä. Unre-
stricted vs restricted cut in a tableau method for boolean circuits.
Annals of Mathematical Artificial Intelligence, 44:373–399, 2005.

[106] Henry Kautz and Bart Selman. Pushing the envelope: Planning,
propositional logic, and stochastic search. In Proceedings of the
13th National Conference on Artificial Intelligence, 1999.

234 BIBLIOGRAPHY

[107] David B. Kemp and Peter J Stuckey. Semantics of logic programs
with aggregates. In Proceedings of the International Logic Program-
ming Symposium, pages 387–401, 1991.

[108] Philip Kilby, John Slaney, Sylvie Thiébaux, and Toby Walsh. Back-
bones and backdoors in satisfiability. In Proceedings of the 20th Na-
tional Conference on Artificial Intelligence and the 17th innovative
applications of artificial intelligence conference, pages 1368–1373.
AAAI Press, 2005.

[109] Konstantinos F. Sagonas, Terrance Swift, and David Scott Warren.
An abstract machine for computing the well-founded semantics. In
Proceedings of Joint International Conference and Symposium on
Logic Programming, pages 274–289, Bonn, Germany, September
1996. The MIT Press.

[110] Nicola Leone, Simona Perri, and Francesco Scarcello. Improving
asp instantiators by join-ordering methods. In Proceedings of the
6th International Conference Logic Programming and Nonmono-
tonic Reasoning (LPNMR’01), Vienna, Austria, September 2001.

[111] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter,
Georg Gottlob, Simona Perri, and Francesco Scarcello. The dlv
system for knowledge representation and reasoning. ACM Trans-
actions on Computational Logic, 7:499–562, 2006.

[112] Harry R. Lewis and Christos H. Papadimitriou. Elements of the
Theory of Computation (2nd ed). Prentice Hall, 1998.

[113] Vladimir Lifschitz. Action languages, answer sets and planning. In
The Logic Programming Paradigm: a 25-Year Perspective, pages
357–373. Springer Verlag, 1999.

[114] Vladimir Lifschitz. Answer set planning. In D. De Schreye, editor,
Proceedings of the 16th International Conference on Logic Program-
ming, pages 25–37, Las Cruces, New Mexico, December 1999. The
MIT Press.

[115] Vladimir Lifschitz. Answer set programming and plan generation.
Artificial Intelligence, 138:39–54, 2001.

[116] Vladimir Lifschitz, David Pearce, and Agustin Valverde. Strongly
equivalent logic programs. ACM Transactions on Computational
Logic, 2:526–541, 2001.

[117] Vladimir Lifschitz and Hudson Turner. Splitting a logic program.
In Proceedings of the Eleventh International Conference on Logic
Programming, pages 23–37, 1994.

[118] Vladimir Lifschitz and Hudson Turner. Nested expressions in
logic programs. Annals of Mathematics and Artificial Intelligence,
25:25–369, 1999.

BIBLIOGRAPHY 235

[119] Fangzhen Lin and Yuting Zhao. ASSAT: Computing answer sets of
a logic program by SAT solvers. In Proceedings of the 18th National
Conference on Artificial Intelligence, pages 112–118, Edmonton,
Alberta, Canada, July/August 2002. The AAAI Press.

[120] Zhijun Lin, Yuanlin Zhang, and Hector Hernandez. Fast SAT-based
answer set solver. In Proceedings of the 21st National Conference
on Artificial Intelligence (AAAI’06). AAAI Press, 2006.

[121] John W. Lloyd. Foundations of Logic Programming. Springer-
Verlag, 1987.

[122] Lionello Lombardi. Mathematical structure of nonarithmetic data
processing procedures. Journal of the Association of Computing
Machinery (JACM), 9(1):136–159, 1962.

[123] Alan K. Machworth. Constraint satisfaction. In Stuart C. Shapiro,
editor, Encyclopedia of Artificial Intelligence. John Wiley and Sons,
1987.

[124] Tomi Männistö, Timo Soininen, Juha Tiihonen, and Reijo Sulonen.
Framework and conceptual model for reconfiguration. In Configu-
ration Papers from the AAAI Workshop, AAAI Technical Report
WS-99-05. AAAI Press, 1999.

[125] Rainer Manthey and François Bry. SATCHMO: a theorem prover
implemented in prolog. In Proceedings of the 9th International
Conference on Automated Deduction (CADE-88), pages 415–434,
1988.

[126] Victor W. Marek, Ilkka Niemelä, and Miroslaw Truszczyński. Logic
programs with monotone abstract constraint atoms. Theory and
Practice of Logic Programming, 8:167–199, 2008.

[127] Victor W. Marek and Jeffrey B. Remmel. On the foundations of
answer set programming. In Answer Set Programming: Towards
Efficient and Scalable Knowledge Representation and Reasoning,
pages 124–131. AAAI Press, March 2001.

[128] Victor W. Marek and Jeffrey B. Remmel. On logic programs with
cardinality constraints. In Proceedings of the 9th International
Workshop on Non-Monotonic Reasoning, pages 219–228, 2002.

[129] Victor W. Marek and Jeffrey B. Remmel. Set constraints in logic
programming. In Proceedings of the 7th International Confer-
ence on Logic Programming and Nonmopnotonic Reasoning (LP-
NMR’04), pages 154–167, 2004.

[130] Victor W. Marek and Miroslaw Truszczyński. Stable models and
an alternative logic programming paradigm. In K.R. Apt, V.W.
Marek, M. Truszczyński, and D.S. Warren, editors, The Logic
Programming Paradigm: a 25-Year Perspective, pages 375–398.
Springer-Verlag, 1999. cs.LO/9809032.

236 BIBLIOGRAPHY

[131] Victor W. Marek and Miroslaw Truszczyński. Autoepistemic logic.
Journal of the Association for Computing Machinery, 38:588–619,
1991.

[132] Victor W. Marek and Miroslaw Truszczyński. Nonmonotonic Logic.
Springer-Verlag, 1993.

[133] Victor W. Marek and Miroslaw Truszczyński. Stable models and an
alternative logic programming paradigm. In The Logic Program-
ming Paradigm: a 25-year Perspective, pages 375–398. Springer-
Verlag, 1999.

[134] Viktor W. Marek, Anil Nerode, and Jeffrey B. Remmel. The stable
models of a predicate logic program. Journal of Logic Programming,
21(3):129–153, 1994.

[135] Norman McCain and Hudson Turner. Causal theories of action and
change. In Howard Shrobe and Ted Senator, editors, Proceedings
of the Thirteenth National Conference on Artificial Intelligence and
the Eighth Innovative Applications of Artificial Intelligence Confer-
ence, pages 460–465, Menlo Park, California, 1997. AAAI Press.

[136] Norman McCain and Hudson Turner. Satisfiability planning with
causal theories. In Anthony G. Cohn, Lenhart Schubert, and Stu-
art C. Shapiro, editors, ICPKR98, pages 212–223. Morgan Kauf-
mann, San Francisco, California, 1998.

[137] Drew McDermott. The 1998 AI planning systems competition. AI
Magazine, 21:35–55, Summer 2000.

[138] Veena S. Mellarkod and Michael Gelfond. Integrating answer set
reasoning with constraint solving techniques. In Proceedings of the
9th International Symposium on Functional and Logic Program-
ming (FLOPS’08), pages 15–31, 2008.

[139] David G. Mitchell, Bart Selman, and Hector J. Levesque. Hard and
easy distributions for SAT problems. In Paul Rosenbloom and Peter
Szolovits, editors, Proceedings of the 10th National Conference on
Artificial Intelligence, pages 459–465, Menlo Park, California, 1992.
AAAI Press.

[140] Robert C. Moore. Semantical considerations on nonmonotonic
logic. Artificial Intelligence, 25:75–94, 1985.

[141] Allen Newell and Herbert A. Simon. Computer science as empir-
ical inquiry: symbols and search. Communications of the ACM,
19(3):113–126, 1976.

[142] Jean-Marie Nicolas. Logic for improving integrity checking in rela-
tional databases. Acta Informatica, 18, December 1982.

[143] Ilkka Niemelä. Logic programs with stable model semantics as a
constraint programming paradigm. Annals of Mathematics and
Artificial Intelligence, 25(3,4):241–273, 1999.

BIBLIOGRAPHY 237

[144] Ilkka Niemela and Jussi Rintanen. On the impact of stratification
on the complexity of nonmonotonic reasoning. In ECAI Workshop
on Knowledge Representation and Reasoning, pages 275–295, 1992.

[145] Ilkka Niemelä and Patrik Simons. Extending the smodels system
with cardinality and weight constraints. In Jack Minker, editor,
Logic-Based Artificial Intelligence, pages 491–521. Kluwer, 2000.

[146] Ilkka Niemelä, Patrik Simons, and Timo Soininen. Stable model
semantics of weight constraint rules. In Proceedings of the 5th In-
ternational Conference on Logic Programming and Nonmonotonic
Reasoning, pages 317–331, El Paso, Texas, USA, December 1999.
Springer-Verlag.

[147] Ilkka Niemelä, Patrik Simons, and Timo Soininen. Stable model
semantics of weight constraint rules. In Proceedings of the Fifth
Interational Conference on Logic Programming and Nonmonotonic
Reasoning. Springer-Verlag, December 1999.

[148] Ilkka Niemelä, Patrik Simons, and Tommi Syrjänen. Smodels: A
system for answer set programming. In Proceedings of the 8th In-
ternational Workshop on Non-Monotonic Reasoning, April 2000.

[149] Sergei P. Odintsov and David Pearce. Routley semantics for answer
sets. In Proceedings of the 8th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’05), pages
343–355, 2005.

[150] Emilia Oikarinen and Tomi Janhunen. Lpeq and dlpeq — transla-
tors for automated equivalence testing. In Proceedings of the 7th In-
ternational Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’04), pages 336–340, January 2004.

[151] Emilia Oikarinen and Tomi Janhunen. Modular equivalence for
normal logic programs. In Proceedings of the 17th European Con-
ference on Artificial Intelligence, 2006.

[152] Christos H. Papadimitriou. Computational Complexity. Addison-
Wesley Publishing Company, Inc, 1994.

[153] David Pearce and Agust́ın Valverde. Towards a first order equi-
librium logic for nonmonotonic reasoning. In The Proceedings of
the 9th European Conference on Logics in Artificial Intelligence
(JELIA’04), pages 147–160, 2004.

[154] Nikolay Pelov, Marc Denecker, and Maurice Bruynooghe. Well-
founded and stable semantics of logic programs with aggregates.
Theory and Practice of Logic Programming, 7:301–354, May 2007.

[155] Simona Perri and Nicola Leone. Parametric connectives in disjunc-
tive logic programming. AI Communications, 17(2):63–74, 2004.

238 BIBLIOGRAPHY

[156] Axel Polleres. Advances in Answer Set Planning. PhD thesis, Insti-
tut für Informationssysteme, Technische Universität Wien, Septem-
ber 2003.

[157] Hemantha Ponnuru, Raphael A. Finkel, Victor W. Marek, and
Miroslaw Truszczyński. Automatic generation of English-language
steps in puzzle solving. In Proceedings of the International Confer-
ence on Artificial Intelligence, (IC-AI’04), pages 437–442, 2004.

[158] Teodor C. Przymusinski. Stationary semantics for disjunctive logic
programs. In Proceedings of the North American Logic Program-
ming Conference, pages 40–59, Austin, Texas, 1990. MIT Press.

[159] Teodor C. Przymusinski. Stable semantics for disjunctive programs.
New Generation Computing Journal, 9(3):401–424, 1991.

[160] Teodor C. Przymuysinski. On the declarative and procedural se-
mantics of logic programs. Journal of Automated Reasoning, 5:167–
205, 1989.

[161] Prasad Rao, Konstantinos F. Sagonas, Terrance Swift, David Scott
Warren, and Juliana Freire. XSB: A system for effciently comput-
ing WFS. In Logic Programming and Non-monotonic Reasoning
(LPNMR’97), pages 431–441, 1997.

[162] Raymond Reiter. A logic for default reasoning. Artificial Intelli-
gence, 13:81–132, 1980.

[163] Francesco Ricca, Wolfgang Faber, and Nicola Leone. A backjump-
ing technique for disjunctive logic programming. AI Communica-
tions – The European Journal on Artificial Intelligence, 19:155–172,
2006.

[164] Francesco Ricca and Nicola Leone. Disjunctive logic programming
with types and objects: The dlv+ system. Journal of Applied Logic,
5(3):545–573, 2007.

[165] Jussi Rintanen. Lexicographic priorities in default logic. Artificial
Intelligence, 106(2):221–265, 1998.

[166] Jussi Rintanen, Keijo Heljanko, and Ilkka Niemelä. Planning as
satisfiability: parallel plans and algorithms for plan search. Artifi-
cial Intelligence, 170:1031–1080, 2006.

[167] Stuart Russel and Peter Norvig. Artificial Intelligence: A Modern
Approach. Prentice-Hall, Inc., 1995.

[168] Domenico Saccà and Carlo Zaniolo. Partial models and three-
valued stable models in logic programs with negation. In Pro-
ceedings of the Workshop on Nonmonotonic Reasoning and Logic
Programming, pages 87–101, 1991.

BIBLIOGRAPHY 239

[169] Chiaki Sakama and Katsumi Inoue. Prioritized logic programming
and its application to commonsense reasoning. Artificial Intelli-
gence, 123(1–2):185–222, 2000.

[170] Torsten Schaub and Kewen Wang. A comparative study of logic
programs with preference. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI’01), pages 597–602,
2001.

[171] John S. Schlipf. The expressive powers of logic programming se-
mantics. Journal of Compututer and System Sciences, 51(1):64–86,
1995.

[172] Robert Sedgewick. Algorithms in C. Addison-Wesley Publishing
Company, Inc, 1990.

[173] Josefina Sierra-Santibañez. Heuristic planning: a declarative ap-
proach based on strategies for action selection. Artificial Intelli-
gence, 153(1–2):307–337, 2004.

[174] Patrik Simons. Extending and implementing the stable model se-
mantics. Research Report 58, Helsinki University of Technology,
Helsinki, Finland, 2000.

[175] Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and
implementing the stable model semantics. Artificial Intelligence,
138(1–2):181–234, 2002.

[176] Raymond Smullyan. What is the name of this book? Simon &
Schuster, Inc., 1978.

[177] Timo Soininen. An Approach to Knowledge Representation and
Reasoning for Product Configuration Tasks. PhD thesis, Helsinki
University of Technology, Finland, 2000.

[178] Timo Soininen and Niemelä Ilkka. Formalizing configuration knowl-
edge using rules with choices. Technical Report TKO-B142, Lab-
oratory of Information Processing Science, Helsinki University of
Technology, 1998.

[179] Timo Soininen and Ilkka Niemelä. Developing a declarative rule
language for applications in product configuration. In Proceedings
of the First International Workshop on Practical Aspects of Declar-
ative Languages. Springer-Verlag, January 1999.

[180] Timo Soininen, Ilkka Niemelä, Juha Tiihonen, and Reijo Sulonen.
Representing configuration knowledge with weight constraint rules.
In Proceedings of the AAAI Spring 2001 Symposium on Answer Set
Programming: Towards Efficient and Scalable Knowledge, Stan-
ford, USA, March 2001.

[181] Tran Cao Son, Chitta Baral, Nam Tran, and Sheila McIlraith.
Domain-dependent knowledge in answer set planning. ACM Trans-
actions on Computational Logic (TOCL), 7:613–657, 2006.

240 BIBLIOGRAPHY

[182] Tran Cao Son and Enrico Pontelli. A constructive semantic char-
acterization of aggregates in answer set programming. Theory and
Practice of Logic Programming, 7:355–375, May 2007.

[183] Tran Cao Son, Enrico Pontelli, and Phan Huy Tu. Answer sets for
logic programs with arbitrary abstract constraint atoms. In Pro-
ceedings of the 21st National Conference on Artificial Intelligence
(AAAI-06), pages 129–134, 2006.

[184] Leon Sterling and Ehud. Shapiro. The Art of Prolog. MIT press,
1994.

[185] Gerald Sussman. A Computer Model of Skill Acquisition. Elsevier
Science Inc, New York, USA, 1975.

[186] Tommi Syrjänen. Implementation of local grounding for logic pro-
grams with stable model semantics. Technical Report B 18, Helsinki
University of Technology, Helsinki, Finland, October 1998.

[187] Tommi Syrjänen. A rule-based formal model of software configu-
ration. Research Report A 55, Helsinki University of Technology,
Laboratory for Theoretical Computer Science, Helsinki, Finland,
December 1999.

[188] Tommi Syrjänen. Including diagnostic information in configuration
models. In Proceedings of the First International Conference on
Computational Logic, London, UK, July 2000. Springer-Verlag.

[189] Tommi Syrjänen. Modelling the game of life using logic programs.
In Nisse Husberg, Tomi Janhunen, and Ilkka Niemelä, editors,
Leksa Notes in Computer Science, Festschrift in Honour of Pro-
fessor Leo Ojala, pages 115–124. 2000.

[190] Tommi Syrjänen. Optimizing configurations. In Proceedings of
the ECAI Workshop W02 on Configuration, pages 85–90, Berlin,
Germany, August 2000.

[191] Tommi Syrjänen. Omega-restricted logic programs. In Proceed-
ings of the 6th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’01), Vienna, Austria, Septem-
ber 2001. Springer-Verlag.

[192] Tommi Syrjänen. Version spaces and rule-based configuration man-
agement. In Proceedings of the IJCAI Workshop on Configuration,
August 2001.

[193] Tommi Syrjänen. Logic programming with cardinality constraints.
Research Report A 86, Helsinki University of Technology, Labora-
tory for Theoretical Computer Science, Helsinki, Finland, Decem-
ber 2003.

BIBLIOGRAPHY 241

[194] Tommi Syrjänen. Cardinality constraint logic programs. In The
Proceedings of the 9th European Conference on Logics in Artificial
Intelligence (JELIA’04), pages 187–200, Lisbon, Portugal, Septem-
ber 2004. Springer-Verlag.

[195] Tommi Syrjänen. Debugging inconsistent answer set programs. In
Proceedings of the 11th International Workshop on Non-Monotonic
Reasoning, Lake District, UK, May 2006.

[196] Tommi Syrjänen and Ilkka Niemelä. The Smodels system. In
Proceedings of the 6th International Conference on Logic Program-
ming and Nonmonotonic Reasoning, pages 77–84, Vienna, Austria,
September 2001. Springer-Verlag.

[197] Tommi Syrjänen. Lparse User’s Manual. Available at:
<url:http://www.tcs.hut.fi/Software/smodels>.

[198] Tommi Syrjänen. Answer set programming and 52 graph problems
(manuscript), 2008.

[199] Alan Turing. On computable numbers, with an application to the
entscheidungsproblem. Proceedings of the London Mathematical
Society, Series 2, 42:230–265, 1936.

[200] Alan Turing. Systems of logic based on ordinals. Proceedings of the
London Mathematical Society, 45:161–228, 1939.

[201] Hudson Turner. Polynomial-length planning spans the polynomial
hierarchy. In Proceedings of European Conference on Logics in Ar-
tificial Intelligence (JELIA), pages 111–124, 2002.

[202] Jeffrey D. Ullman. Principles of database and knowledge-base sys-
tems Vol 1. Rockville, 1989.

[203] Jeffrey D. Ullman. Principles of database and knowledge-base sys-
tems Vol 2. Rockville, 1989.

[204] Maarten H. van Emden and Robert A. Kowalski. The semantics of
predicate logic as a programming language. Journal of the Associ-
ation for Computing Machinery, 23:733–742, 1976.

[205] Allen van Gelder. Negation as failure using tight derivations for
general logic programs. Journal of Logic Programming, 6:109–133,
1989.

[206] Allen van Gelder. The alternating fixpoint of logic programs with
negation. Journal of Computer and System Sciences, 47:185–221,
August 1993.

[207] Allen van Gelder, Kenneth A. Ross, and John S. Schlipf. The
well-founded semantics for general logic programs. Journal of the
Association for Computing Machinery, 38(3):620–650, July 1991.

242 BIBLIOGRAPHY

[208] Daniel S. Weld. Recent advances in AI planning. AI Magazine,
20:93–123, Summer 1999.

[209] Ryan Williams, Carla P. Gomes, and Bart Selman. Backdoors to
typical case complexity. In Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJCAI’03), 2003.

[210] Terry Winograd. Understanding Natural Language. Academic
Press, 1972.

[211] Johan Wittocx, Joost Vennekens, Maarten Mariën, Marc Denecker,
and Maurice Bruynooghe. Predicate introduction under stable
and well-founded semantics. In Proceedings of the 22nd Interna-
tional Conference Logic Programming (ICLP’06), pages 242–256.
Springer-Verlag, 2006.

[212] Stefan Woltran. Characterizations for relativized notions of equiv-
alence in answer set programming. In Proceedings of the 9th Euro-
pean Conference on Logics in Artificial Intelligence, pages 161–173,
2004.

[213] Jia-Huai You and Li-Yan Yuan. A three-valued semantics for de-
ductive database and logic programs. Journal of Computer and
System Science, 49:334–361, 1994.

[214] Jia-Huai You and Li-Yan Yuan. On the equivalence of semantics for
normal logic programs. Journal of Logic Programming, 20(1):79–
89, 1995.

[215] Yan Zhang and Norman Y. Foo. Answer sets for prioritized logic
programs. In International Logic Programming Symposium, pages
69–83, 1997.

BIBLIOGRAPHY 243

Index

⊥ (an atom that is always false), 13
⊥ (an atom that is always false), 15
� (a satisfaction relation), 19
�I (an I-satisfaction relation), 36
> (an atom that is always true), 13
↑ (the composition operator), 23
2-EXP complexity class, 76
2-NEXP complexity class , 76

A (an arbitrary atom), 13
A(action names), 175
ACCP (augmented cardinality con-

straint programs), 13
ACCP (augmented programs), 133
act(A, t) (planning action transla-

tion), 184
action language, 173
action description, 175
action language

causal theory, 189
action language B, 175
action signature, 175
action translation (planning), 184
aggragate

literal, 115
aggregate

count, 72
aggregates

relational, 67
application, 30
approximated size, 88
arguments, 13
atom, 13

cardinality, 14, 118, 119, 121
simple, 14

cardinality bound, 14
I (planning atom), 199
justification, 27

atomic term, 12
Atoms(P) (atoms of P), 15
AtomsH(P) (the Herbrand base of

P), 29

attribute name, 66
augmented basic programs, 133
augmented standard interpretation,

127

B (action language), 175
back end, 133
backdoor, 104
backjumping, 146
base, 29

Herbrand, 29
basic cardinality constraint program,

15
basic language, 12
basic literal, 13
basic rule, 14
binder, 155
binding, 135
bind-variables, 137
Blocks World, 176
body, 14
body−L(R) (the negative conditional

literals in R), 16
body+(R) (the positive basic liter-

als in R), 16
body+

L(R) (the positive conditional
literals in R), 16

Boolean Sat, 161
bound, 14
Bounded Planning, 181
BP (planning action language), 198
brave consequence, 33

C (a cardinality literal), 14
can-bind, 137
cardinality atom

reduct, 20
cardinality atom, 14, 118, 119

bound, 14
cardinality literal, 14
causal theory, 189
cautious consequence, 33

244

CCP, 15
CCP (cardinality constraint program),

13
CCP-solver, 101

partial, 102
choice point, 101
choice rule, 14
classical model, 19
classical negation, 129
Cn (planning consequences), 177
completeness, 76
complexity class

polynomial time, 75
complexity results, 91
compound term, 12
computation tree, 101
compute-extensions, 151
cond(L) (planning condition), 175
cond(L) (the condition of L), 14
condition, 13
condition (planning), 175
conditional effect (planning), 181
conditional literal, 13, 122
consequence, 33
constant, 12
count aggregate, 72
create-stratification, 53

bodyD(R) (the domain literals of R),
49

D(P) (the domain predicates of P),
49

D(P) (the dependency relation of
P), 47

D (action description), 198
D (action description), 175
D1(P) (the one-step dependency re-

lation of P), 46
data predicate, 159
Datalog, 68
Datalog¬, 68
decision problem, 75
dependency relation

negative, 47
one-step, 46

dependency path, 46
dependency relation, 47
derivation length, 23

len(A, P) (the derivation length of
A in P), 23

D−(P) (the negative dependency re-
lation of P), 47

domain(I) (planning domain trans-
lation), 204

domain translation (planning), 204
domain computation

as constraint satisfaction, 153
domain computation, 148

database method, 152
discarded negations method, 152

domain computer, 135
domain literal, 49
domain model, 62
domain predicate, 49
domain program, 56
dynamic law, 175

E(Lc, U) (the expansion of Lc), 30
EA (planning conditional effects), 181
ECCP (extended cardinality constraint

programs), 13
eff(L) (planning effect), 175
effect (planning), 175
elementary actions, 175
encoding

Boolean Sat, 162
Maxsat, 163
planning translation, 182
Sat, 159
Turing machine, 79
uniform, 108, 158
Vertex Coloring, 158

equivalence, 32
eval-rule, 68
EXP complexity class, 76
expand, 151
expansion, 30

relevant, 60
expression, 17

correctly typed (planning), 200
ground, 17

extended rule, 118
extension, 32
extensional predicate, 68

F(fluents), 175
fact, 14

INDEX 245

FCCP (full cardinality constraint pro-
gram), 13

find-plan, 206
finitary programs, 117
fluent

default value, 208
fixed, 208
free, 208
inertia, 183, 203, 208
totalizing, 184, 202

fluent inertia (planning), 183, 203
fluents, 175
F (M), 56
formula, 17
front end, 133
full language, 118
function

interpretation, 34
interpreted, 33

function symbol, 12
function problem, 75
function term, 12
Functional Model, 101

generate and test, 157
generator, 157
get-next-instance, 137
global variable, 17
goal(Sg) (planning goal translation),

204
ground term, 12
ground expression, 17

hardness, 76
has-stable-model, 64
〈H, B〉 (a rule H ← B), 16
head, 14
head(R) (the head of R), 16
Herbrand

base, 29
instantiation, 31
relevant instantiation, 61
universe, 29

instHr(P, M) (the relevant instanti-
ation of P), 61

Is (the standard interpretation), 41
I (planning instance), 176
I (planning structure), 199
I-satisfaction, 36

I-Instantiation, 36
implementation

overview, 133
induced LTS, 177
inertia(F, t) (inertia translation), 183
inertia(p, t) (inertia translation), 203
initial(Si) (planning initial transla-

tion), 204
instantiate-local, 137
instantiate-relevant, 139
instantiate-rule, 135, 137, 139
instantiation, 30

Herbrand, 31
interpreted, 36
planning, 200
relevant, 55, 61
relevant Herbrand, 61
rule, 30

instantiation, 89
instantiator, 135
integral range, 124
intensional predicate, 68
interpretation, 34

arithmetic, 41
augmented standard, 127
numbers, 41
numerically interpreted constants,

42
standard, 41

interpreted function, 33
iterator, 137

kakuro puzzles, 168
Knaster-Tarski -operator, 22

L (an arbitrary basic literal), 13
L (labeled transition system), 177
L (the complement of a literal L),

13
Ld (planning dynamic laws), 198
Ld (planning dynamic laws), 175
Ls (planning static laws), 175, 198
labeled transition system, 177

induced, 177
language

action, 173
causal theory, 189

language hierarchy, 132
law

dynamic, 175

246 INDEX

static, 175
law(S, t) (planning static law trans-

lation), 185
law(S, t) (planning static law trans-

lation), 202
least model, 19
Linearization, 192
linearization (planning), 192
lit(L) (the main literal of L) , 14
literal

aggragate, 115
basic, 13
cardinality, 14
closed set, 177
complete set, 175
conditional, 13, 122
conditional expansion, 30
conditional in rule body, 123
domain, 49
main, 13
negative, 13
positive, 13, 15
weight, 127

local variable, 13
logical consequence, 33
LTS (labeled transition system), 177

M(P) (all classical models of P), 19
main literal, 13
Maxsat, 162
minimal model, 19
MM(P) (the minimal models of P),

19
model, 19

classical, 19
domain, 62
function problem, 101
I-stable, 37
least, 19
minimal, 19
partial domain, 62
stable, 25, 32
supported, 27

modularity, 108, 158
of transformation, 108

naive-datalog, 68
naive-instantiate-relevant, 64
natural join, 67

neg(C) (negative conditional liter-
als in C), 14

negation
classical, 129
strong, 129

negative
literal, 13

negative dependency, 47
NEXP complexity class, 76
no-op, 180
nondeterminism, 76
NP complexity class, 76
numerals, 81

Ω(R,S) (the ω-valuation of R), 50
ω-restriction, 50
ω-stratification, 47
ω-valuation, 50
one-step dependency relation, 46
optimization, 167
oracle, 163

basic form, 163
solving function problems, 164
two program construction, 165
with exclusion, 164

P (planning atoms), 177
P(P) (the program predicates of P),

49
PA (planning precondition), 181
parametric connectives, 113
parser, 134
partial CCP-solver, 102
partial domain model, 62
partial domain program, 56
PC(t), 72
PD (the domain program), 56
PDDL, 174
πP (a dependency path), 46
Pk (the kth stratum program), 56
P≤k (the kth partial domain pro-

gram), 56
plan, 178

parallel, 178
proper, 180
sequential, 178

planning
action translation, 184
Bounded Planning, 181
condition, 175

INDEX 247

conditional effect, 181
different forms, 174
effect, 175
executability, 210
fluent inertia, 183, 203
inertia translation, 183, 203
instance, 199
instantiation, 200
linearization, 192
no-op, 180
parallel, 191
plan generation, 206
precondition, 181, 203, 209
predicate signature, 197
static law translation, 185, 202
temporal, 210
translation, 202
variables, 197
variants, 207

Planning, 181
planning problem, 176
PM (reduct of P w.r.t. M), 20
Pω (the non-domain program), 58
pos(C) (positive conditional literals

in C), 14
positive

literal, 13, 15
rule, 14

P | p (the rules for predicate sym-
bol p), 15

precondition, 209
precondition (planning), 181
precondition (planning), 203
Preds(P) (predicate symbols occur-

ring in P), 15
pred(A) (predicate symbol of A), 13
predicate

data, 68, 159
domain, 49
extension, 32
extensional, 68
intensional, 68
program, 68, 159
signature (planning), 197
standard, 42
type (planning), 201

predicate symbol, 13
problem

completeness, 76

decision, 75
function, 75
hardness, 76
Instantiation, 74
Model, 74
planning B, 176

program
cardinality constraint, 15
consequence, 33
disjunctive, 191
domain, 56
equivalence, 32
finitary, 117
full language, 118
instantiation, 31
λ-restricted, 154
normal, 18
normal as a CCP, 28
ω-restricted, 51
optimization, 167
partial domain, 56
proper, 15
simple, 15
size, 87
stratified, 58
stratum, 56
top, 57

program predicate, 159
programming methodology, 157
projection, 66
proper

plan, 180
program, 15

provability operator, 22
PTIME, 75
P (U,M) (the top program), 57

2-QBF (quantified boolean formula),
165

R (LTS transition relation), 177
range, 118
range-restriction, 43
RC , 72
reduct, 20

cardinality atom, 20
CCP, 20
conditional literal, 20
general concept, 18
normal program, 18

248 INDEX

rule, 20
weight literal, 128

reduction, 75
relational database model, 66
relevant

expansion, 60
relevant Herbrand instantiation, 61
relevant expansion, 60
relevant instantiation, 55, 61
remove-binding, 137
renaming, 66
reset-instances, 137
restriction

ω, 50
RL, 72
Rp, 71
RR, 72
RR,D, 71
rule

basic, 14
body, 14
choice, 14
empty head, 15
extended, 118
fact, 14
head, 14
I-Instantiation, 36
instantiation, 30
pair notation, 16
positive, 14
reduct, 20
rewriting, 145
smodels, 155
smodels basic rule, 155
smodels choice rule, 156
smodels constraint rule, 156
smodels weight rule, 156
translating to smodels, 156

S (planning action signature), 175
S (planning predicate signature), 197
S (LTS states), 177
S (an ω-stratification), 47
S (action signature), 175
σ, 30
Sat, 159
Sat, 104
satisfaction, 19

of planning instance, 178

SCC graph, 52
SCCP (simple cardinality constraint

programs), 13
search tree, 102
selection, 66
signature

action, 175
simple

cardinality atom, 14
simple program, 15
size

approximated, 88
explosion, 88
of a program, 87

size(P) (of a program), 87
sizeA(P) (approximated size), 88
Sokoban, 216
Sokoban, 216
solution, 102
solver

CCP, 101
partial, 102

splitting set, 57
stable model

interpreted, 37
stable model

of a ground CCP, 25
of a non-ground CCP, 32

standard interpretation, 41
standard predicate symbols, 42
static law, 175
stratification, 58

ω, 47
strict ω, 47

stratified program, 58
stratum program, 56
strict ω-stratification, 47
STRIPS, 174
strong negation, 129
subs(V, U) (the set of all substitu-

tions V → U), 30
substitution, 30

application, 30
BP (planning), 200

supported models, 27
symbol

function, 12
predicate, 13

symbolic sets, 113

INDEX 249

syntax
basic, 12
full, 118

T (V, E) (planning type assignment),
200

TP (the provability operator), 22
T (LTS transitions), 177
temporal planning, 210
term, 12

atomic, 12
compound, 12
constant, 12
function, 12
ground, 12
integral range, 124
range, 118
variable, 12

tester, 157
time(i) (planning time literal), 201
tl (planning translation), 183
tl(D, t) (complete planning transla-

tion), 185
total(F, t) (planning totalizing trans-

lation), 184, 202
totalizing fluents (planning), 184, 202
transformer, 134
translation

domain (planning), 204
goal (planning), 204
initial (planning), 204

tree
complete, 101
computation, 101
search, 102

Turing machine
nondeterministic, 76
time-bounded, 75

Turing machine
acceptance, 78
computation, 78
configuration, 78
definition, 78
determinizing, 101
encoding, 79
nondeterminist simulation, 86
nondeterministic acceptance, 79
nondeterministic definition, 79
numeral representation, 81

simulation, 83
space-bounded, 75
termination, 78
time-bounded, 78

type(E) (planning type literals), 202
type assignment (planning), 200
type identifier, 197
type predicate (planning), 201

U(P) (the standard universe of P),
40

UH(P) (the Herbrand universe of
P), 29

uniform encoding, 108
uniform encodings, 158
universe, 29

Herbrand, 29
standard, 40

U s
H(P) (the simple Herbrand uni-

verse of P), 29

V (LTS valuation), 177
V , 119
Vacuum World, 211
valuation

ω, 50
Var(E) (variables occurring in E),

17
variable, 12

backdoor, 104
binding, 135
first-level, 17
global, 17
local, 13
substitution, 30
type assignment (planning), 200

Vart(E) (the first level variables of
E), 17

Varg(E) (the global variables of E),
17

Var1(E) (the local variables of E),
17

Vertex Coloring, 157
visit, 151
visit-components, 150

weight literal, 127

250 INDEX

TKK DISSERTATIONS IN INFORMATION AND COMPUTER SCIENCE

TKK-ICS-D2 Laur, Sven

Cryptographic Protocol Design. 2008.

TKK-ICS-D3 Harva, Markus
Algorithms for Approximate Bayesian Inference with Applications to Astronomical Data
Analysis. 2008.

TKK-ICS-D4 Ukkonen, Antti

Algorithms for Finding Orders and Analyzing Sets of Chains. 2008.

TKK-ICS-D5 Tatti, Nikolaj

Advances in Mining Binary Data: Itemsets as Summaries. 2008.

TKK-ICS-D6 Klami, Arto

Modeling of Mutual Dependencies. 2008.

TKK-ICS-D7 Oikarinen, Emilia

Modularity in Answer Set Programs. 2008.

TKK-ICS-D8 Salojärvi, Jarkko

Inferring Relevance from Eye Movements with Wrong Models. 2008.

TKK-ICS-D9 Yang, Zhirong

Discriminative Learning with Application to Interactive Facial Image Retrieval. 2008.

TKK-ICS-D10 Järvisalo, Matti

Structure-Based Satisfiability Checking: Analyzing and Harnessing the Potential. 2008.

TKK-ICS-D11 Tikka, Jarkko

Input Variable Selection Methods for Construction of Interpretable Regression. 2008.

ISBN 978-951-22-9762-7 (Print)

ISBN 978-951-22-9763-4 (Online)

ISSN 1797-5050 (Print)

ISSN 1797-5069 (Online)

